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Evolution in imaginary time is a prominent technique for finding the ground state of quantum
many-body systems, and the heart of a number of numerical methods that have been used with great
success in quantum chemistry, condensed matter and nuclear physics. We propose an algorithm to
implement imaginary time propagation on a quantum computer. Our algorithm is devised in the
context of an efficient encoding into an optimized gate, drawing on the underlying characteristics of
the quantum device, of a unitary operation in an extended Hilbert space. However, we prove that
for simple problems it can also be successfully applied to standard digital quantum machines. This
work paves the way for porting quantum many-body methods based on imaginary-time propagation
to near-term quantum devices, enabling the future quantum simulation of the ground states of a
broad class of microscopic systems.

I. INTRODUCTION

As originally proposed by Feynman in the 1980’s [1],
quantum computers are theorized to be exponentially
more efficient than any classical algorithm in the descrip-
tion of non-relativistic quantum many-body system. A
notoriously hard problem for a classical computer is to
find the ground state of a complex many-body system,
be it in chemistry, condensed matter or nuclear physics.
In most many-body methods, such as configuration-
interaction or coupled-cluster, the main limiting factor
is the exponential growth of the model space with in-
creasing number of particles or increased fidelity of the
calculation. On the other hand, in quantum Monte Carlo
methods applied to Fermionic systems one has to contend
with an exponential increase of the computing time with
the number of particles caused by the emergence of the
Fermion sign problem, which has been shown to be a
NP-hard problem in general [2]. There is therefore a de-
sire to develop quantum versions of prominent quantum
many-body methods, and in particular quantum algo-
rithms that can be efficiently applied to emerging pro-
totypes of quantum computing platforms, which suffer
from limitations in gate error rates and quantum-device
noise.

Many classical algorithms for the calculation of the
ground state of microscopic systems, including projec-
tion Monte Carlo techniques, are based on the Imaginary
Time Propagation (ITP) method (for an application in
nuclear structure theory see e.g. Ref. [3]). In a nutshell,
this consists of solving the time-dependent Schrödinger
equation along the imaginary time axis, rather than along
the real time one (the so-called Wick rotation). The re-
sulting evolution operator causes the exponential decay
of the amplitude of all states with respect to the ground
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state one. Such operator can then be applied to com-
pute the actual ground state of any given Hamiltonian
starting from an arbitrary state that is not orthogonal
to the ground state itself. Methods to simulate imagi-
nary time evolution on a quantum computer using a hy-
brid quantum-classical variational algorithms were pro-
posed in Refs. [4, 5]. Other hybrid quantum-classical
approaches for computing ground states include the vari-
ational quantum eigensolver [6], which has been applied
to several quantum systems [7–15] and the quantum ap-
proximate optimisation algorithm proposed in Ref. [16].
In these algorithms the classical computer takes care of
the optimisation of the parameters of a variational wave
function while a universal quantum computer is used to
perform e relatively small number of discrete qubit op-
erations (gates) within a finite universal set. The use
of such shallow quantum circuits is a common strategy
to reduce the adverse impact of noise, enabling the ap-
plication of the algorithm on present-day and near-term
quantum hardware.
The main drawback of hybrid quantum-classical ap-
proaches that implement ITP using a variational pro-
cedure is the systematic error introduced by a fixed
parametrization of the evolved wave-function: purely
variational methods like the one proposed in Ref. [4] de-
pend directly on the expressibility afforded by the chosen
variational ansatz while hybrid approaches like QITE [5]
can become prohibitevely expensive when the correlation
length in the system becomes too large. These problems
can be addressed in full generality by devising quantum
approaches to ITP which do not rely on the availabil-
ity of efficient representations of the evolved quantum
state in terms of a small number of classical variables.
The improvement comes however at the cost of likely
larger circuit depths and therefore possibly lower fideli-
ties for implementation on near term noisy devices. In
this work we propose a method to implement ITP on a
quantum computer by means of a purely quantum al-
gorithm. While the real-time propagator of a quantum
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mechanical system is a unitary operator, the correspond-
ing imaginary-time propagator is not, and cannot be di-
rectly translated into a quantum gate. Therefore, we
devise a unitary operator that implements the ITP by
working within an extended Hilbert space, given by the
tensor product of the computational model space with a
reservoir (or ancilla) qubit. The approach of realizing a
quantum simulation by working in an extended Hilbert
space was first proposed in Ref. [17, 18], and it is at the
basis of several other proposed methods for state prepa-
ration [19–22] or Gibbs sampling [23–25]. An advantage
of the technique proposed in this work over these meth-
ods is the requirement of only a single auxiliary qubit
to carry out the simulation. Other algorithms, such as
iterative phase estimation (see e.g. [26]) also share this
property, but require more complex control logic to be
carried out. Different from these previous approaches,
in this work we introduce an expression of the ITP that
does not necessarily rely on short time propagation and
can effectively exploit a direct encoding into a single opti-
mized gate following the optimal control (OC) approach
discussed in Ref. [27]. We note that gate synthesis using
OC strategies can also be beneficial for hybrid quantum-
classical algorithms like those presented in Refs. [4, 5] as
they might allow for a more efficient compilation of the
required unitaries. Purely quantum approaches like the
one described in this work have however the significant
advantage that the required unitary operations do not
depend on external classical variables that need to be
updated as the algorithm progresses, this allows for the
expensive optimization required in OC to be carried out
only once before the calculation starts.
We study the accuracy of this method in applications to
the Hydrogen atom and a simple nuclear system [27] by
comparing an exact, classical simulation with the results
obtained by implementing a circuit of primitive gates on a
universal quantum computer (namely the IBM Quantum
Experience system), and by simulating the implementa-
tion of optimal quantum control on the superconduct-
ing three-dimensional (3D) transmon qudit of Ref. [28].
These are two of the currently available quantum com-
puting platforms.
The present work is structured as follows, in Sec. II
our quantum imaginary time propagation method is pre-
sented, in Sec. III some results are shown. In Sec. IV
there is a further discussion about ancilla probability
with some improvements. In Sec. V we present an al-
ternative to perform a sequence of imaginary time evolu-
tions and in Sec. VI we provide an error analysis of this
multi-step procedure and comment on the scalability of
the algorithm to large systems. We finally provide our
conclusions and outline future directions in Sec. VII.

II. QUANTUM IMAGINARY-TIME
PROPAGATION

Before introducing the quantum version of the algo-
rithm, here we briefly recall the basic ITP method (ad-
ditional detail can be found, for example, in Ref. [3]).

Given a time-independent Hamiltonian H, an arbi-
trary state |ψ〉 belonging to the Hilbert space of H can
be evolved in imaginary time τ = it (with t the real time)

by formally applying the propagator e−Ĥτ according to:

|ψ(τ)〉 = e−Ĥτ |ψ(0)〉 =

∞∑
n=0

cne
−Enτ |φn〉 , (1)

where we have decomposed the initial state at time t = 0
(τ = 0) in terms of the eigenvectors |φn〉 of the Hamilto-
nian, with eigenvalues En. We notice that the imaginary-
time propagator is hermitian but not unitary. In general,
this causes the normalization of the evolved state and of
its components not to be preserved. It is possible to keep
constant at least the normalization of the ground state,
modifying the propagator in the following way:

|ψ(τ)〉 = e−(Ĥ−ET )τ |ψ(0)〉 . (2)

The standard way is to choose ET as the ground state en-
ergy E0, in this case Eq. (1) suggests that, in imaginary
time, any arbitrary state non orthogonal to the ground
state |φ0〉 evolves to the mathematical ground state of

Ĥ because the components along the excited states are
exponentially suppressed. In practical applications it is
not necessary to know in advance the exact value of E0,
but it is sufficient to have an upperbound, which could be
obtained e.g. with variational methods, with a precision
(ET − E0) ≤ εT . The precise requirements for the error
tolerance εT to guarantee the scheme to be stable and
convergent will be provided further below. To reproduce
this algorithm on a quantum computer, we need to take
into account the intrinsic non-unitarity of the process.
One possibility to implement a dissipative process is to
extend the Hilbert space coupling it to a reservoir, and
transfer probability to the components of the computa-
tional basis orthogonal to the original Hilbert space. Let
us map an arbitrary state of the physical system onto a
(multi)qubit state |ψs〉. We then introduce the product
state of |ψs〉 with a reservoir qubit prepared in the |0〉
state, yielding the total initial wave function:

|Ψinit〉 = |0〉 ⊗ |ψs〉 =

(
1
0

)
⊗ |ψs〉 , (3)

and the unitary operator acting on the total Hilbert
space (system times reservoir qubit)

Û(τ) =

 Q̂ITP(τ) 1√
1+e−2(Ĥ−ET )τ

1√
1+e−2(Ĥ−ET )τ

−Q̂ITP(τ)

 . (4)
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Each matrix element in Eq. (4) is an operator acting
on the Hilbert space describing the physical system, with

Q̂ITP(τ) =
(

1 + e−2(Ĥ−ET )τ
)−1/2

e−(Ĥ−ET )τ and 1 be-

ing, respectively, the normalized imaginary-time propa-
gator and the identity operator . (A proof that Û(τ) is
a unitary operator is provided in Appendix A). Notice

that Û(τ) can also be written as the sum of the tensor

products σ̂z ⊗ Q̂ITP(τ) and σ̂x⊗
(

1 + e−2(Ĥ−ET )τ
)−1/2

,

where σ̂z and σ̂x are the Pauli Z and X operators acting
on the reservoir qubit.

The application of Û(τ) to |Ψinit〉 yields:

|Ψ(τ)〉 = |0〉 ⊗ Q̂ITP(τ) |ψs〉 (5)

+ |1〉 ⊗
(

1 + e−2(Ĥ−ET )τ
)− 1

2 |ψs〉 .

It follows that, performing a measurement along the
reservoir state |0〉, the total system collapses to the state:

|Ψfin〉 = C |0〉 ⊗ Q̂ITP(τ) |ψs〉 , (6)

where C is a coefficient introduced to normalize the
state after the measurement. The expression in Eq. (6)
is analogous to the standard imaginary time propagator
applied to the initial wave function of Eq. (2). There are
however some important differences in the quantum ITP
scheme. Above all, in the quantum algorithm version
of ITP, the normalization constant C is of great impor-
tance as it’s square gives the success probability of the
imaginary-time step (i.e. the probability of measuring
the reservoir qubit in the |0〉 state after the application

of Û(τ)). Fortunately we can ensure that the success
probability P (0) = |C|2 is reasonably larger than 0 for
any value of the imaginary-time step τ . It is in fact easy
to show (see Appendix D for a full derivation) that, if
we indicate with c0 = 〈φ0|ψs〉 the initial overlap with the
ground-state, one has

P (0) ≥ |c0|2

1 + exp (2τ(E0 − ET ))
. (7)

This shows that if, as indicated above, we take ET ≥
E0 to be an upperbound on the ground-state energy then
P (0) ≥ |c0|2/2 even at long imaginary times (note that,
if ET is strictly greater than E0, this bound actually gets
better converging to P (0) ≥ |c0|2 as τ → ∞). On the
other hand, if we take ET < E0 instead, P (0) decays
exponentially to 0 with imaginary-time, preventing an
efficient use of the quantum ITP algorithm. Obtaining a
large value for P (0) is critical for the multi-step (short-
time propagation) procedure that will be described in
Sec. V since the final success probability afterM steps de-
cays exponentially as ≈ P (0)M . One method to achieve
large P (0) is clearly to improve the initial state fidelity
(i.e. increase |c0|2) by optimizing the starting state |ψs〉.

In addition, it is possible to effectively increase P (0) to
values close to one by using amplitude amplification and
increasing the depth of the quantum circuit by a factor
≈ 1/

√
P (0) [29]. We will show results obtained on real

quantum hardware for the latter approach in Sec. IV.
More generally, one can prove that |Ψs(τ)〉is closer to

the ground state of Ĥ than the initial state (see proof in

Appendix E). In fact, the overall effect of Q̂ITP(τ) can
be computed in two important limits:

• The limit for τ→0. In this limit, expanding at first
order in τ , one can show that:(

1 + e−2(Ĥ−ET )τ
)−1/2

' 1√
2
e(Ĥ−ET )τ/2,

and hence the action of Q̂ITP(τ) corresponds to the
application of a classical ITP algorithm, but over
an imaginary-time interval τ

2 . This limit is useful
when adopting a Trotter-Suzuki decomposition of
the Hamiltonian.

• The limit for τ� 1
E1−E0

, where E1 is the energy of
the first excited state and E0 is the ground state
energy. In this limit, the ground state |φ0〉 of the
system can be obtained with a single application
of the operator Q̂ITP choosing ET < E1 (see Ap-
pendix E). In the case ET = E0, it follows that

Q̂ITP(τ) |ψs〉
τ→∞−−−−→ c0√

2
|φ0〉 where c0 = 〈φ0|ψs〉.

One can also observe that, after the measurements,
the final state of the system and reservoir qubits are in
the same initial condition as in Eq. (3). Therefore, re-
peating this algorithm N times yields the evolution for a
total imaginary time τtot > N τ

2 for a generic time step τ .

III. RESULTS

As a demonstration, we applied our quantum ITP al-
gorithm to two physical problems: finding the ground
state of the Hydrogen atom, and the search of the lowest
energy spin state of two neutrons at a given distance, as
described in Ref. [27]. For the Hydrogen atom, we im-
plemented two different strategies, i.e. expressing the uni-
tary transformation in terms of standard quantum gates
(namely, Rx, Rz and CNOT , as shown in Fig. 1, in which
U3 can be decomposed in multiplication of Rx and Ry)
and the optimal control approach for a trasmon qudit as
discussed in Ref. [27]. For the two neutron system, we
opted for the optimal control method only. Additional
details can be found in Appendix B. Experimentally, the
occupation probability of each state in the computational
basis when the system has reached the ground state,
pβ(τtot) = |〈β|ψs(τtot)〉|2 with |β〉 = |0〉 , |1〉 , ..., can be
obtained from the occupancies measured when the reser-
voir qubit is measured in the |0〉 state, p0β , according
to:
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FIG. 1: Gate set for implementing U(τ) for the Hydrogen atom Hamiltonian with τ = 15 hartree−1. q1 represents
the reservoir qubit and q0 the system qubit.

pβ(τtot) =
p0β(τtot)∑

i∈{β} p0i(τtot)
, (8)

where β indicates the index of the physical state (for n
qubit β runs from 0 to 2n−1). In our words, we normalize
the state

In the simulation of the Hydrogen atom, we assume
spherical symmetry in the s-wave and expand the ra-
dial wave function on the STO-2G basis, i.e. a linear
combination of two Gaussian functions that approxi-
mate a Slater-type orbital [30]. Because this is a non-
orthogonal basis, before applying our quantum algo-
rithm, we first orthonormalize the Hamiltonian matrix
(see, e.g., Eq. (5.15) of Ref. [31]. The quantum ITP algo-
rithm requires two qubits: one qubit to represent the two
orthonormalized basis states plus an additional reservoir
qubit. We prepare the system-plus-reservoir wave func-
tion in the initial condition of Eq. (3) in the |x〉 state
(|c0|2 = 0.361), and apply our quantum ITP algorithm
in a ‘single shot’ (i.e., working in the τ � 1 limit) using
τtot = τ = 15.0 hartree−1.

Fig. 2 shows the simulated normalized occupation
probabilities pβ(τtot) of the two computational states.
The results obtained by running the quantum circuit of
Fig. 1 on the free access IBM ibmq santiago system [32]
with 8192 shots are compared with a device level simula-
tion of the implementation on a generic multilevel trans-
mon using the optimal control approach as in Ref. [27].
We note that all the results reported here do not employ
any form of error mitigation but are instead the bare out-
comes of either an experiment (for the IBM device) or a
classical simulation (for the OC results). The possible in-
crease in logical fidelity afforded by error mitigation will
be explored in detail in future work. We report in Table I
the obtained fidelities between the normalized final state
and the true ground state. For the state identification,
we used the method illustrated in Appendix F.
One can see that the final state is essentially the ground
state for the optimal control simulation and quite close
to it in the IBM results. We want to highlight that the
results of IBM are obtained on a real device, instead,
the OC data are the result fo a classical device-level sim-
ulation of the transmon qudit obtained by solving the
Master equation with a realistic noise model. Using the

FIG. 2: Normalized occupation probabilities (pβ) for
the computed wave function of the Hydrogen atom
using the STO-2G basis set at τ = 0 (red bar with

vertical lines) and τ = 15.0 hartree−1 in two different
approaches: the IBM result (blue dots and green square

grid bars) and the optimal control with inclusion of
hardware noise (grey bar with stars) compared to the

exact ground-state distribution (orange bar with
horizontal lines). The black bar represents the

uncertainties. The blue IBM results are obtained
applied the QITP algorithm and the green results

applied the QITP operator with the amplitude
amplification (AA) algorithm

OC approach one expects to reduce the contribution of
gate infidelity in the results and this will be put to test
with an implementation on the physical device in a later
study.

As a second example, we apply our quantum ITP al-
gorithm to a system of two neutrons interacting with a
chiral effective field theory (χ-EFT) nucleon-nucleon po-
tential at leading order (LO) [33, 34], characterized by a
spin-state dependence that includes full tensorial terms.
A detailed expression for the Hamiltonian is given in Ap-
pendix C. As previously done in Ref. [27], we consider the
simplified case in which the two neutrons are ‘frozen’ in
space, reducing the problem to the description of two
spins interacting through the nuclear Hamiltonian at a
fixed separation.

In this example, the extended Hilbert space is cov-
ered by the first 8 levels (3 qubits) of a qudit, represent-
ing the tensor product between the 4 levels (2 qubits)
used to describe the spin state of the two neutrons, and
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Hydrogen atom system

Simulation Fidelity

Simulator of transmon qudit with noise2 0.9978

Fidelity transmon qudit without noise2 1.00000000

IBM ITP1 0.942(4)

IBM ITP+AA1 0.9968(4)

Nuclear spin system

Simulation Fidelity

Simulator of transmon qudit with noise2 0.9919

Fidelity trasmon qudit without noise2 0.999999996

TABLE I: Fidelity results for the different applications
of ITP algorithm. The 1 indicates the fidelity is

computed with the density matrix obtained solving the
Master equation; the 2 indicates the fidelity is computed
with the state estimated with the tomography described

in Apppendix F

FIG. 3: Normalized occupation probabilities (pβ) for
the two spin neutron system with τ = 1 MeV−1 in the

optimal control approach. Same legend of Fig. 2.

the two levels of the reservoir qubit. The mapping of
the computational states to the quantum processor is
as follows: the |0〉 Fock state corresponds to the ten-
sor product of the reservoir qubit in state |0〉 with the
uncoupled spin state of |0〉 ⊗ |↓↓〉. Likewise, |1〉, |2〉,
and |3〉 correspond, respectively, to the tensor products
with the uncoupled spin states |0〉 ⊗ |↓↑〉, |0〉 ⊗ |↑↓〉,
and |0〉 ⊗ |↑↑〉. The next four Fock states have a sim-
ilar mapping, except for the reservoir qubit being in
the |1〉 state. The system is initially prepared in the
state |ψs(τ = 0)〉 = 1

2 (|0〉+ |1〉+ |2〉+ |3〉) with overlap

|c0|2 = 0.407. As before, we work in the one-shot limit,
τ � 1/(E1 − E0), in particular, we simulated a single
propagation over an imaginary time τtot = τ = 1 MeV−1.
In Fig. 3 we present the simulated occupation probabil-
ities of the two neutrons spin states. Once again, the
probability distribution is already very close to that of
the exact ground state. The fidelity is shown in Table I.
The robustness of the algorithm is discussed at the end
of Appendix E, where we also show examples on how the
final state depends on the choice of the parameter ET in

the propagator.

IV. ANCILLA PROBABILITY VS
PARAMETERS OF THE SYSTEMS

When one applies the imaginary time method, the evo-
lution depends mainly on the energy shift ET , the time
step τ and c0, the overlap between the initial state and
the ground state (GS). Following the asymptotic limit
presented in Sec. II one can easily verify the ancilla prob-
ability in the |0〉 state tends to 1

2 in the limit τ −→ 0.

Instead, in the limit τ −→∞ it goes to |c0|2

1+e2 τ (E0−ET ) .

One can prove that for a generic time step τ the prob-
ability of measuring the ancilla qubit in the |0〉 state is

between |c0|2
2 and |c0|2

1+e2 τ (E0−ET ) . For instance, choos-

ing ET = E0, it is in the interval
[
|c0|2

2 , 1
2

]
. Choosing

ET > E0 one can increase the success probability in the
long time limit up to |c0|2. More details can be found
in Appendix D. To increase the probability of success
of this quantum algorithm, that is to the probability to
measure the |0〉 state of the ancilla, one can use quantum
amplitude amplification [29].

In Fig. 4 we present the obtained results for ancilla
probability in the |0〉 state as a function of the imag-
inary time step for different initial state. The squares
and stars indicate the data from the ibmq manila QPU
for a single application of the QITP algorithm, the cir-
cles and diamonds represent the data running on IBM
adding the amplitude amplification after the bare QITP.
The blue circles and squares are computed from an ini-
tial state with an overlap probability of 0.361 with the
GS and the green diamonds and stars one with 0.639.
The dashed and continuous lines represent the exact re-
sults. Applying amplitude amplification there is a great
improvement of measuring the ancilla probability in |0〉.
Moreover, the experimental and exact results for raw ITP
using a trial energy greater than the ground energy, in
this case ET = E0 + 1

2E1, are represented by the black
plus symbols and line respectively. One can observe a
raising of the success probability of the ITP algorithm.

V. IMAGINARY TIME EVOLUTION

The application of a sequence of short-time imaginary
time propagators may lead to a more practical (and pos-
sibly scalable) algorithm because in the limit τ → 0 it
may be possible to generate accurate approximations to
the Û(τ) unitary of Eq. (4) for large qubit systems. A
drawback of the present method is the requirement of
measuring the ancilla qubit in |0〉 state at each time step
to continue towards the ground state. This can slow
down the efficiency of the method. Luckily, using the
amplitude amplification method at each time step one
can avoid measuring the ancilla qubit because it would
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FIG. 4: Ancilla probability in the |0〉 state as a function of time step τ and for different overlap with the ground
state (GS) applying the ITP operator and ITP operator with the amplitude amplification(AA) with different values

of the trial energy ET . All uncertainties are smaller than 5 10−3.

be automatically in the initial condition of the present
QITP method. In addition, one can also avoid measuring
the reservoir qubit at each iteration by applying the same
gates with different reservoir qubits, and easily reach a
long time propagation. In the event the quantum circuit
should become very deep, one can measure the reservoir
qubits after a number of steps and perform a complete
state tomography to identify which state has been ob-
tained and then re-inizialize the quantum circuit with the
evaluated state. This is similar in spirit to the “restart-
ing” procedure proposed in [35], where the state after
one step of dynamical evolution is approximated by op-
timizing a variational circuit before performing the next
time step. In general, the state tomography procedure
proposed here is not in scalable to more than a couple of
qubits for the system register, but can provide interesting
benchmarks on small scale near-term devices.

An example of imaginary-time evolution is shown in
Fig. 5 for the Hydrogen atom using the manila IBM
QPU. At each time step, we initialize the state with a
U3 gate on the state evaluated in the previous round,
allowing for a repeated application and for a propagation
over a large total imaginary time. To establish in which
state the circuit would be found at the end of each step,
one can perform three measurements, i.e. the probability
for the bare circuit, that for the circuit plus an additional
Rx(−π4 ) gate, and that for an additional Ry(−π4 ) gate.
From these rotations one can determine the relative
phase between the two states of the system qubit (see
Appendix F for details). Since we are constraining the
results to be described by a pure state, this tomography
procedure performs a purification of the system’s qubit.
Figure 5 shows the energy at each iteration. The result
for τ = 1.0 is computed with a single application of
Û(τ = 1.0 hartree−1). For τ = 2 · 0.75, instead, we

apply twice the Û(τ = 0.75 hartree−1) with two different

ancilla qubits. The other results are computed using
the Amplitude Amplification (AA) algorithms where
the integer factor multiplying the time step indicates
the number of repetitions of ITP(+AA) quantum circuit
before the tomography procedure. The shaded area
shows the energy of states that reach the GS with fidelity
greater than 80%. The time shown in the plot is the
time parameter used in the QITP (τ) propagator which,
in general, cannot be directly matched to the time τ
in the standard ITP propagator e−τ(H−ET ) due to the
presence of the normalization factor. At the end of
the imaginary time evolution, all quantum simulations
converge to a state very close to the GS.

VI. TROTTER DECOMPOSITION

In order to understand the prospects for scalability of
the QITP algorithm for large system size, in this section
we present results for approximating the QITP unitary
using a Trotter-like decomposition of the unitary Û(τ)
from Eq. (4). For Hamiltonians that can be written as

Ĥ =
∑L
l Ĥl, with Ĥl acting only on a constant num-

ber of qubits, the scheme consists in applying r times a
short-time unitary Û(δτ) with δτ = τ/r and then ap-
proximate each operation as a product of L unitaries.
The post-selection in the |0〉 state of the ancilla used to
define the individual unitary (cf. Eq. (4)) can be per-
formed by either using Lr ancilla and post-selecting on

their state being in |0〉⊗Lr or, equivalently, using a single
ancilla qubit and post-selecting it for Lr times. We start
by describing the decomposition of the full evolution into
r short-time steps, and how the fidelity is affected by the
decomposition. We then show how to approximate each
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FIG. 5: Results for the expectation value of the energy as a function of imaginary time for different time steps τ
with a re-initialization procedure. The light-green color bar indicates the energy range with fidelity with GS greater
than 80% .The cases indicated with AA are computed with Amplitude Amplification. The case labeled with “2nd

ancilla” represented the simulation done with 2 ancilla qubits. The integer factor in front of the time step indicates
the number of repetitions of the ITP quantum circuit before the tomography procedure.

short-time step with controllable error and close this sec-
tion by showing bound on the total success probability.
The full operator obtained after time-stepping can be
written as

(
M̂0Û(δτ)

)r
=

( e−δτ(Ĥ−ET )√
1+e−2δτ(Ĥ−ET )

)r
0

0 0

 , (9)

where M̂0 = |0〉 〈0| is the projector operator to the |0〉 in
the ancilla qubit. Using this sequence of operations the
fidelity with the ground-state becomes then

F =

(
1 +

∑
n

|cn|2

|c0|2
e−2τ(En−ET )

(
1 + e−2 δτ (E0−ET )

)r
e−2τ(E0−ET )

(
e−2 δτ(En−ET ) + 1

)r
)−1

(10)
Using the result from Eq. E4 in Appendix E for the fi-
delity bound and using r ∈ N we get:

F ≥

(
1 +

1− |c0|2

|c0|2

(
e2δτ(E0−ET ) + 1

e2δτ(E1−ET ) + 1

)r)−1

, (11)

Assuming E1 > ET > E0 and considering small time-
steps 2δτ ∆ < 1, one can prove that(

e2δτ(E0−ET ) + 1

e2δτ(E1−ET ) + 1

)r
≤ exp

(
−1

2
rδτ∆

)
. (12)

For a derivation of this result see Eq. (H22) in Ap-
pendix H. This shows that the fidelity converges expo-
nentially to one in rδτ∆. In general this will however
still be subexponential in the number of steps r since we
need to decrease δτ with r in order to control the approx-
imation error. To see this we use the following Lemma.

Lemma. Let a Hermitian operator Ĥ be expressed as a

sum of L Hermitian operators {Ĥ1, .., ĤL}, Ĥ =
∑L
l Ĥl

and Λ = maxj

∥∥∥Ĥj − ET
∥∥∥
∞
. Then,∥∥∥∥∥Q̂ITP (τ)−

L∏
k

Q̂
(k)
ITP (τ)

∥∥∥∥∥ ≤ L2Λ2
T τ

2 , (13)

where Q̂
(k)
ITP (τ) = e

−τ(Ĥk−
ET
L )√

1+e
−2τ(Ĥk−

ET
L )

.

This result can be obtained using similar techniques to
those in Appendix F of Ref. [36]. We provide a detailed
proof and a generalization of this result in Appendix H.
The key advantage of this strategy is that, if the Hamilto-
nians in the decomposition are at most m-local (ie. they
act non-trivially on at most m quibts) their synthesis us-
ing standard universal gate sets, composed of one- and
two-qubit operations, can be achieved with a gate count
scaling as O(4k) (see e.g. [37]). For small k one can also
use Optimal Control strategies like those described in
Appendix B. In order to use this to approximate the r
steps with total error ε we then need

δτ ≤
√
ε

r

1

LΛT
� 1 . (14)

This result can be obtained applying the union bound on
the product of r Trotterized evolution and using Eq. (13).
Using this bound, together with the results in Eq. (11)
and Eq. (12), this shows that the fidelity with the ground-
state goes to 1 as:

F ≤ 1

1 + 1−|c0|2
|c0|2 O

(
exp

(
− 1

2
∆
LΛT

√
rε
)) . (15)

The proof and more details are shown in App. H. This
result shows that the Trotterized QITP algorithm con-
verges super-polynomially but sub-exponentially to unit
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fidelity with the ground state as we increase the number
of steps r. The scaling exp(−O(

√
r)) can possibly be im-

proved using higher order Trotter-Suzuki formulas [38]
(see also [36]).

Finally we need to assess the behavior of the success
probability for the scheme proposed above. We start dis-
cussing the bound on the probability to obtain the op-
erator in Eq. (9) using the exact short-time QITP step.
Using the result found in Appendix D we have

P (0; r) ≥ |c0|2

(e2δτ(E0−ET ) + 1)r
(16)

which, for the choice E1 > ET > E0 can be rewritten
more clearly as

P (0; r) ≥ |c0|2

(e−2δτ |E0−ET | + 1)r
≥ |c0|

2

2r
(17)

which decays exponentially with the number of steps. In
Appendix H we present a generalization of the unitary
Û(τ) with an additional free parameter that can be
tuned to improve this scaling at the expense of a slower
convergence of the fidelity with step number r. For
the full scheme using the approximation in Eq. (13) for
r steps with a total error bounded by ε, the success
probability is reduced by at most an additive factor 2ε
(see Appendix H for a derivation). Since the bound
in Eq. (17) becomes exponentially small, this indicates
that there is a maximum number of steps for which we
can guarantee a non-zero success probability. This is
possibly a problem with the lower bound more than with
the algorithm itself and in future work it will be useful
to both benchmark this result on model systems but
also to derive upper-bounds on the success probability.
Finally, using the first order Trotter expansion discussed
here and denoting the scaling of the fidelity as φ(r)
(ie. F (r) ' 1 − φ(r)) we will have that asymptotically

P (0; r) ≈ φ(r)
√
r. As mentioned above, it could be

possible to obtain better exponents using higher-order
decompositions. We leave this exploration to future
studies. The results discussed in this section show that
the QITP algorithm might not be suitable in general
for long time propagation but could prove useful as a
preconditioner to prepare state close to the ground-state
that can then help the convergence of other algorithms
that might be asymptotically more efficient (as e.g [21]).

VII. CONCLUSIONS

In this work, we proposed a quantum version of the
Imaginary Time Propagation algorithm for an arbitrary
Hamiltonian. The method was tested and validated
for two different, simple physical problems: finding the
ground state of the Hydrogen atom expanded over a
STO-2G basis set, and the spin ground state of two neu-
trons interacting with a realistic nuclear Hamiltonian at
fixed distance. We showed that a single application of
the propagator over a sufficiently large imaginary time
interval is sufficient to obtain a very good approximation
of the ground state. Moreover, results of the imaginary
time evolution for a generic time step and further im-
provements have been discussed. The robustness of the
algorithm against quantum noise was tested both in a de-
vice level simulation of a transmon qudit using a single
customized gate and on a real quantum computer using a
standard gate set, proving the potential for solving more
general problems in fields such as nuclear structure, solid
state physics or quantum chemistry. As in the classical
ITP algorithms, one of the main problems is the choice of
the initial state. In particular, in the limit of τ�1 start-
ing from a state loosely overlapping with the ground state
implies the need for a very large number of repetitions
of the measurements in order to reach a reasonable accu-
racy since the success probability is directly proportional
to the overlap probability with the GS. This can be im-
proved by coupling the method with effective methods for
preparing the initial state. Even though asymptotically
more efficient methods are known (such as [20, 21]), the
low ancilla requirement of the present method and the
possibility to leverage Optimal Control techniques could
allow QITP to be used successfully for short propaga-
tion times in order to prepare better approximations to
the ground state as starting point of more efficient tech-
niques. Finally, this algorithm can be generalized to a
complex time propagation. A study along this direction
is underway.
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Û† Û =

(
e−(Ĥ−ET )τ 1

1 −e−(Ĥ−ET )τ

)
1√

1 + e−2(Ĥ−ET )τ

1√
1 + e−2(Ĥ−ET )τ

(
e−(Ĥ−ET )τ 1

1 −e−(Ĥ−ET )τ

)

=
1

1 + e−2(Ĥ−ET )τ

(
e−(Ĥ−ET )τ 1

1 −e−(Ĥ−ET )τ

)(
e−(Ĥ−ET )τ 1

1 −e−(Ĥ−ET )τ

)

=
1

1 + e−2(Ĥ−ET )τ

(
1 + e−2(Ĥ−ET )τ 0

0 1 + e−2(Ĥ−ET )τ

)
=

(
1 0

0 1

)
(A2)

In the proof we used the fact that the operators 1 and

e−(Ĥ−ET )τ are Hermitian. Also, in the second line of
eq. (A2), we have used that the factor 1

1+e−2(Ĥ−ET )τ com-

mutes with the identity and e−(Ĥ−ET )τ .

Appendix B: Optimal control approach

To implement the device level simulations presented
in the main text, we mapped the physical system un-
der investigation onto the levels of a superconducting a
three-dimensional transmon architecture [27], and solved

for the control Hamiltonian Ĥc(t) in the general opti-
mization problem:

U(τ) = T exp

{
− i
~

∫ T

0

[
Ĥ

(4)
d + Ĥc(t)

]
dt

}
, (B1)

where Ĥ
(4)
d is the Hamiltonian for a 3D transmon coupled

to a readout cavity (up to forth order in the phase across
the Josephson junction), the notation T exp stands for a
time-ordered exponential, and T is the duration of the
control pulse (for additional details, we refer the inter-
ested reader to Ref. [27] ). Eq. (B1) was solved by means
of the Gradient Ascent Pulse Engineering (GRAPE) al-
gorithm [39].

The output of the quantum device is obtained in the
presence of realistic quantum hardware noise using the
open source quantum optics toolbox (QUTIP) [40].
The unitary operator U(τ) of Eq. (4) is a 2N -by-2N
matrix (where N is the total number of physical states),
which we compute using the QUTIP expm function. The
control pulse is obtained with a 99.9999% fidelity using
the same pulse duration (T = 50 ns) and maximum
drive strength (20 MHz) adopted in Ref. [27]. The
relaxation time was chosen as T1 = 50 ns and the
dephasing time as T2 = 7 ns. The GRAPE code was
fed with a pulse initialized using the ”ZERO” class of
qutip.control.pulseoptim (the initial pulse is a complex
array of zeros), and the error fidelity threshold was set
to less than 10−6.

Appendix C: Nuclear Hamiltonian

The simplest realistic model of the nucleon-nucleon
interaction can be based on the leading order (LO) of
a chiral effective field theory (χ-EFT). In this approxi-
mation, the nucleon-nucleon interaction is given by the
sum of three terms (see Fig. 6). The first describes a
mid range interaction due to the exchange of a pion.
The second and the third are effective contact terms
to be introduced in the renormalization procedure.
These terms give rise to spin-independent (SI) and spin-
dependent (SD) components, so that the Hamiltonian
can be expressed as H = T + V SI + V SD, where T is the
kinetic energy of the nucleons.
In this work we are not interested in reproducing the
whole dynamics of the particles, but rather in studying
the spin dynamics of two neutrons kept at fixed sep-
aration. More explicitly, considering a system of two
neutrons, we neglect the spin independent terms in H
and restrict ourselves to the SD interaction evaluated at
a given separation ~r = ~r2 − ~r1. V SD can then be divided
into a vector and a tensor component as

V SD = A1(~r)
∑
α

σ1
ασ

2
α +

∑
αβ

σ1
αA

αβ
2 (~r)σ2

β , (C1)

where σ are the Pauli matrices acting on the nucleon
spin states. A1(~r) and A2(~r) can be obtained evaluating
the coordinate-dependent parts of the nucleon-nucleon
interaction considered (for the explicit functional forms
see e.g. Refs. [33, 34]).

Appendix D: Bounds on the success probability

Consider an initial state given as

|Ψ〉 = |c0| |φ0〉+
√

1− |c0|2
∣∣φ⊥0 〉 (D1)

with 0 < |c0| ≤ 1 the overlap with the ground state. The∣∣φ⊥0 〉 state is the superposition of the other eigenstates
of H. After the application of U0(τ) to this state, the
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FIG. 6: Schematic description of the leading order
nucleon- nucleon interaction. The left diagram depicts a

single pion exchange while the middle and right
diagrams depict a spin- independent and

spin-dependent contact term, respectively .

component with the ancilla in |0〉 reads

|Ψ0〉 =
e−τ(E0−ET )

√
1 + e−2τ(E0−ET )

|c0| |φ0〉 ⊗ |0〉

+
√

1− |c0|2
∑
n>0

e−τ(En−ET )

√
1 + e−2τ(En−ET )

〈φn|φ⊥0 〉 |φn〉 ⊗ |0〉 ,

(D2)

where we used the energy eigenbasis. It’s then easy to
show that, if we call ∆ = E1 − E0 the energy gap , the
success probability is bounded by

P (0) ≥ e−2τ(E0−ET )

1 + e−2τ(E0−ET )
|c0|2

+ (1− |c0|2)
e−2τ(‖H‖∞−ET )

1 + e−2τ(‖H‖∞−ET )

P (0) ≤ e−2τ(E0−ET )

1 + e−2τ(E0−ET )
|c0|2

+ (1− |c0|2)
e−2τ(E0+∆−ET )

1 + e−2τ(E0+∆−ET )
,

(D3)

where ‖ · ‖∞ denotes the spectral norm and we have used
the fact that

f(x) =
e−x√

1 + e−x
, (D4)

is monotonically decreasing in x. This immediately shows
that if we take E0 − ET � 1/τ the success probability
drops quickly to zero. One way to ensure this is not the
case is to use an upperbound of E0 for ET , as can be
found e.g. using a variational method. In order to see
how bad this upperbound can be, it might be useful to
rewrite the bounds as

P (0) ≥ 1

1 + e−2τ |E0−ET |
|c0|2

+ (1− |c0|2)
e−2τ(‖H‖∞−ET )

1 + e−2τ(‖H‖∞−ET )

P (0) ≤ 1

1 + e−2τ |E0−ET |
|c0|2

+ (1− |c0|2)
e−2τ(E0+∆−ET )

1 + e−2τ(E0+∆−ET )
.

(D5)

For the worse possible upperbound ET = ‖H‖∞ and in
the τ →∞ limit we find

1 ≥ P (0) ≥ 1 + |c0|2

2
. (D6)

In practice we want to choose ET closer to E0 and for
ET < ‖H‖∞ we find instead

1 ≥ P (0) ≥ |c0|2 . (D7)

In the main text we performed the approximation
‖H‖∞ − ET � 1/τ and used the worse lower bound

P (0) ≥ 1

1 + e−2τ |E0−ET |
|c0|2 (D8)

which still obtains the asymptotic limit found above.
In the following, we showed a real simulation of de-
pendence of the fidelity and ancilla probability on the
parameter ET .

Appendix E: Bounds on ground-state fidelity

We provide here a complete proof for the conditions to
guarantee convergence to the ground-state in the large
imaginary time limit of the quantum ITP presented in
Sec. II. Let’s start with the full expression of the state
after the application of the Û(τ) unitary in Eq. (4) of the
main text

|Ψ(τ)〉 =
e−τ(E0−ET )

√
1 + e−2τ(E0−ET )

c0 |φ0〉 ⊗ |0〉

+
√

1− |c0|2
∑
n>0

e−τ(En−ET )

√
1 + e−2τ(En−ET )

〈φn|φ⊥0 〉 |φn〉 ⊗ |0〉

+
c0 |φ0〉 ⊗ |1〉√

1 + e−2τ(E0−ET )

+
√

1− |c0|2
∑
n>0

〈φn|φ⊥0 〉√
1 + e−2τ(En−ET )

|φn〉 ⊗ |1〉 ,

(E1)

with the (normalized) state
∣∣φ⊥0 〉 defined in Eq. (D1).

Upon a successful measurement of the reservoir qubit in
|0〉, occurring with probability P (0), the resulting nor-
malized state reads

|Ψ0(τ)〉 =
e−τ(E0−ET )

√
1 + e−2τ(E0−ET )

c0√
P (0)

|φ0〉

+

√
1− |c0|2√
P (0)

∑
n>0

e−τ(En−ET )

√
1 + e−2τ(En−ET )

〈φn|φ⊥0 〉 |φn〉 .

(E2)

The state fidelity with the ground-state |φ0〉 is then

F (τ) = |〈φ0|Ψ0(τ)|2 =
e−2τ(E0−ET )

1 + e−2τ(E0−ET )

|c0|2

P (0)
. (E3)
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This expression can be bounded from above and below
using the bounds on the success probability found earlier
in Appendix D. In particular we have the lower bound

F (τ) ≥
(

1 +
1− |c0|2

|c0|2
1 + e2τ(E0−ET )

1 + e2τ(E0+∆−ET )

)−1

. (E4)

Using this last equation one can prove that fidelity is al-
ways greater than the initial one. We can now distinguish
two situations

• for ET ≥ E0 + ∆ the lower bound becomes

F (τ) ≥
(

1 +
1− |c0|2

|c0|2

)−1

= |c0|2 . (E5)

This is manifestly greater than the initial fidelity
F (0) = |c0|2 and the quantum ITP algorithm is
guaranteed not to worsen the ground-state fidelity
for non-zero values of τ

• for E0 + ∆ > ET > E0 the lower bound is instead

F (τ) ≥
(

1 + 2
1− |c0|2

|c0|2
e−2τ |E0+∆−ET |

)−1

, (E6)

which, for long propagation times τ � 1/(E0 +∆−
ET ), converges to 1 exponentially fast.

As the derivation above shows, for a good convergence of
the quantum ITP algorithm described in the main text
it is important to choose E0 + ∆ > ET > E0. This
shows that, if we use a variational simulation to get an
upperbound on E0, we also need to ensure it’s accuracy is
better than the energy gap ∆. For many problems where
the ground-state energy is not known with precision bet-
ter than ∆, we cannot ensure the algorithm will correctly
converge to the ground-state. Nevertheless, the quantum
ITP scheme can still be useful in situations where both
E0 and ∆ are known beforehand and the task is only to
prepare a good approximation to the ground-state.

Using the previous equations we tested how the fidelity
and probability of measuring the ancilla in |0〉 changed for
different values of ET considering as system a simple one
whose spectra is given by [0, 1, π2 ]. We computed the ex-
act fidelity with GS using eq. (E3) and lower bound limit
given by eq. (E4) and our results are shown in Fig. 7.
Fig. 8 show the ancilla probability.
For all the values of ET , one can observe that the nor-
malized final state is closer to to GS than the initial one
because the final fidelity with GS is greater than initial
one. Nevertheless, for trial energy ET >E1, in particular
in the limit τ � 1, the fidelity with GS asymptotically
goes to a value equal or greater than initial one. For
ET <E1, applying the quantum ITP algorithm one reach
the ground state.
Looking instead the ancilla probability plot one see the
contrary behaviour. For ET < E0, it drops exponentially
to the 0 value. In this case, the final unitary gate U(τ)

FIG. 7: Fidelity with GS for different values of ET .
Lines represent the real fidelities, the dashed lines the
lower bounds. The lowest horizontal black dashed line
indicates the initial fidelity between the ground state

|c0|2

FIG. 8: Ancilla probability for different values of ET

eventually reduces to an X gate on the ancilla qubit, im-
plying that the final probability of measuring the ancilla
in the |0〉 state tends to 0. Moreover, in a realistic sim-
ulations, the measured probability of the |0〉 state of the
ancilla would exclusively be the result of quantum noise
of machine. In the other case, ET ≥ E0 one can de-
mostrate the ancilla probability has lower bound given
by eq. (D3).
In conclusion, one may choose as optimal parameter for
ET , a value that is between the ground state E0 and the
energy of first excited state E1 because maximizes the
overlap with GS and probability of measuring the ancilla
in |0〉.

Appendix F: Partial tomography: qubit estimation

In this appendix we provide details on the tomography
procedure employed in Sec. V of the main text. This
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is different from standard qubit tomography in that we
perform measurements of 〈X〉, 〈Y 〉 and 〈Z〉 but directly
fit the results to a pure state.
Our aim is to evaluate P0, P1 and θr = θ1 − θ0 of the
following qubit:

ψ =

(
a+ i b

c+ i d

)
= eiθ0

( √
P0√

P1e
−i(θ1−θ0)

)
, (F1)

where we can neglect θ0 because it represents a global
phase of qubit. We used the following algorithm:

1. Measure the probabilities of the bare circuit (we
have P0 and P1)

2. Measure the probabilities of the bare circuit with a
final Ry(−π2 ) rotation.

3. Measure the probabilities of the bare circuit with a
final Rx(−π2 ) rotation

We need to the two rotations to establish uniquely the
relative phase. In particular, one finds the probability of
the |0〉 with a Ry(−π2 ) gate is given by

P y0 =
1

2

(
(a+ c)2 + (b+ d)2

)
=

1

2

(
(a2 + b2 + c2 + d2) + 2ac+ 2bd

)
=

1

2

(
1 + 2

√
P0P1 cos(θ0) cos(θ1) + 2

√
P0P1 sin(θ0) sin(θ1)

)
.

(F2)

Therefore, we have:

cos(θ0 − θ1) =
1√
P0P1

(
P y0 −

1

2
(P0 + P1)

)
. (F3)

Similarly for the Rx rotation we obtain:

sin(θ0 − θ1) =
1√
P0P1

(
P x0 −

1

2
(P0 + P1)

)
. (F4)

With these two equations we can establish unequivocally
the angle θ0 − θ1.

1. Density matrix formulation

The general density matrix for a single qubit can be
expressed as follows:

ρ =
1

2
(1 + cxX + cy Y + cz Z) . (F5)

Applying a Rx(−π2 ) and Rx(−π2 ) to ρ, one gets:

ρx = Rx(−π
2

)ρRx(−π
2

)† =
1

2
(1 + cxX − cy Z + cz Y )

(F6)

〈X〉 〈Y 〉 〈Z〉

without noise 0.3132 -0.1618 -0.9358

t
T2

= 1 and T1 = 0 0.3132 -0.1618 -0.9358

t
T1

= t
T1

= 1 0.8508 -0.4395 0.2879

TABLE II: Results of 〈X〉 , 〈Y 〉 and〈Z〉 using the
exposed tomography method with the Bloch Redfield

density matrix using a randomic qubit state

ρy = Ry(−π
2

)ρRy(−π
2

)† =
1

2
(1 + cx Z + cy Y − czX) .

(F7)
Measuring the |0〉 state for both the two density matrices,
one obtains:

P x0 =
1

2
(1− cy)

P y0 =
1

2
(1 + cx) .

(F8)

Using the formula in eqs. (F3) and (F4) in the case of
a general density matrix, one gets

θ1 − θ0 = − arctan

((
P x0 − 1

2 (P0 + P1)
)(

P y0 − 1
2 (P0 + P1)

))

= − arctan

( 1
2 (1− cy)− 1

2
1
2 (1 + cx)− 1

2

)
= arctan

(
cy
cx

)
.

(F9)

In the following, we show how its work with a qubit
state, |ψ〉 = α |0〉+β |1〉, using the Bloch-Redfield density
matrix [41] shown in eq. (F10).

ρ =

(
1 + (|α|2 − 1)e−

t
T1 αβ∗e−

t
T2

α∗βe−
t
T2 |β|2e−

t
T1

)
(F10)

Table II shows our expactation values of 〈X〉 , 〈Y 〉
and〈Z〉 using the exposed tomography method with the
Bloch Redfield density matrix (eq. (F10)). for the follow-
ing randomic state,

|ψ〉 = (0.1792) |0〉+ (0.8741− 0.4515 i) |1〉 . (F11)

We observe that our purification and tomography proce-
dure resist to the dephasing error, but not to the relax-
ation process.

Appendix G: Discussion of the results obtained on
the IBM system

We tested the validity of the method presented in
this paper running the code in Fig. 1 of the main text
on different free access IBM Quantum Experience ma-
chines [32].
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All tests were performed using 8192 shots starting from
the |x〉 = 1√

2
(|0〉+ |1〉) state. The initial fidelity with

the GS is 0.361, the trial energy ET = E0 and τ = 15
hartree−1. The numerical results are shown in Table III
for different QPUs. The errors of the QPUs were reported
in the same table.

Appendix H: Proofs of Trotter decomposition

A simple generalization of the QITP unitary from
eq. (4) is given by the following operator:

Û(τ, η) =

 e−τ(Ĥ−ET )√
η2+e−2τ(Ĥ−ET )

η√
η2+e−2τ(Ĥ−ET )

η√
η2+e−2τ(Ĥ−ET )

− e−τ(Ĥ−ET )√
η2+e−2τ(Ĥ−ET )

 ,

(H1)
where η is a real positive number. We recover the stan-
dard operator Û(τ) of eq. (4) when η = 1.
We are interested in implementing the Trotter decompo-
sition for the evolution. We apply r times a short-time
Û(τ, η) where at implementation we measure the ancilla
and we obtain the ancilla in |0〉 with some probability.
The whole operator would be obtained from:

(
M̂0Û(τ, η)

)r
=

( e−τ(Ĥ−ET )√
η2+e−2τ(Ĥ−ET )

)r
0

0 0

 , (H2)

where M̂0 =|0〉〈0| is the projector operator to the |0〉
state of the ancilla qubit.

We arrive to the following Lemma. The case for η = 1
is the Lemma of the main text.

Lemma. Let H be a Hermitian operator expressed as
the sum of L Hermitian operators {Ĥ1, .., ĤL} as Ĥ =∑L
l Ĥl and ΛT = maxj

∥∥∥Ĥj − ET
∥∥∥
∞
. Then,∥∥∥∥∥Q̂ITP (η, τ)−

L∏
k

Q̂
(k)
ITP (η, τ)

∥∥∥∥∥ ≤ L2Λ2
T τ

2 , (H3)

where

Q̂
(k)
ITP (η, τ) =

e
−τ
(
Ĥk−

ET
L

)
√
η2 + e

−2τ
(
Ĥk−

ET
L

) . (H4)

Proof. We begin the discussion by generalizing the result
in appendix F of Ref. [36] to the QITP operator. We first
introduce the notation Rk(f) to denote the remainder
of the truncated Taylor series of an analytic function f .
Consider the following function, a simplified form of the
QITP operator,

f(x) =
e−x√

η2 + e−2 x
, (H5)

with η > 0. This is analytic for any real x and using
Langrange’s expression for the Taylor series remainder
we can write

Rk(f ;x) =

∞∑
m=k+1

fm(x)

m!
xm =

fk+1(ξ)

(k + 1)!
xk+1

(H6)

for some ξ ∈ [0, x]. In the following we need a bound for
k = 1 and we have

f2(x) =
e−x√

η2 + e−2 x
− 4

e−3x

(η2 + e−2 x)
3/2

+ 3
e−5x

(η2 + e−2 x)
5/2

=
e−x√

η2 + e−2 x

(
1− e−2x

η2 + e−2x

(
4− 3

e−2x

η2 + e−2x

))
≤ e−x√

η2 + e−x

(
1− e−2x

η2 + e−2x

)
≤ e−x√

η2 + e−x
≤ 1 .

(H7)

Consider now the operator function

f(tĤ) =
∑
n

|n〉〈n|f(tEn)

=

∞∑
m=0

∑
n

|n〉〈n|f
m(tEn)

m!
(tEn)m ,

(H8)

where |n〉 indicates the eigenstate of H with eigenvalue
En.
Noting that f(x) is positive definite we can bound the
remainder for k = 1 with∥∥∥R1(f, tĤ)

∥∥∥ =

∥∥∥∥∥f2(tĤ)

2
(tĤ)2

∥∥∥∥∥ ≤ t2‖Ĥ‖2

2
(H9)

Consider now the remainder of the product

fL(t, ~x) =

L∏
l=1

f(txl) (H10)

written in terms of derivatives with respect to the scalar
variable t (for bookkeeping purposes)

f1
L(t, ~x) =

L∑
m=1

xmf
1(txm)

L∏
l 6=m

f(txl) (H11)

and

f2
L(t, ~x) =

L∑
m=1

x2
mf

2(txm)

L∏
l 6=m

f(txl)

+

L∑
m=1

L∑
k 6=l

xmxk f
1(txm)f1(txk)

L∏
l 6=m,k

f(txl)

≤
L∑

m=1

x2
mf

2(txm) +

L∑
m=1

L∑
k 6=l

xmxkf
1(txm)f1(txk)

≤ L2 max
k

[x2
k] ,

(H12)
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QPUs GS Fidelity R. q0 R. q1 Cnot
√
σx(q0)

√
σx(q1) T1(q0) (µs) T2(q0) (µs) T1(q1) (µs) T2(q1) (µs)

ibmq lima 0.885(9) 0.0207 0.0169 0.0051 0.00021 0.00023 71.88 116.87 98.84 126.62

ibmq manila 0.882(14) 0.020 0.023 0.0062 0.00016 0.00017 184.94 131.68 100.90 97.51

ibmq santiago 0.950(3) 0.014 0.015 0.0072 0.00023 0.00022 113.05 64.23 202.74 80.14

ibmq quito 0.889(4) 0.036 0.018 0.017 0.00077 0.00031 78.81 67.26 114.10 154.79

TABLE III: Obtained fidelities between GS and the normalized state obtained after quantum ITP simulation with
τ = 15.0 hartree−1 for different IBM QPUs. The parameters (Readout error of qubit 0 and 1, of Cnot and

√
σx

implementations) of IBM QPUs are also shown. The initial fidelity was 0.361

since |f1(x)| ≤ 1 and f2(x) ≤ 1 for any real x following
the same argument used to derive eq. (H7). We now have
for the remainder

R1

[
L∏
l=1

f(tĤl)

]
=

∥∥∥∥∥f2
L(t, Ĥ)

2
t2

∥∥∥∥∥
≤ t2L2 maxl[‖Ĥ‖2l ]

2
.

(H13)

In order to simplify the notation we will use Q =

QITP (η, τ) and Q(k) = Q
(k)
ITP (η, τ) whenever there is no

risk of confusion. Using the triangular inequality, we get:∥∥∥∥∥Q−
L∏
k

Q(k)

∥∥∥∥∥ =

∥∥∥∥∥R1

(
Q−

L∏
k

Q(k)

)∥∥∥∥∥
=

∥∥∥∥∥R1 (Q)−R1

(
L∏
k

Q(k)

)∥∥∥∥∥
≤ ‖R1 (Q)‖+

∥∥∥∥∥R1

(
L∏
k

Q(k)

)∥∥∥∥∥
(H14)

Using the results obtained above we have

‖R1 (QITP (η, τ))‖ ≤ τ2‖Ĥ − ET ‖2

2

≤ τ2L2Λ2
T

2
,

(H15)

while for the product∥∥∥∥∥R1

(
L∏
k

Q(k)(η, τ)

)∥∥∥∥∥ ≤ τ2L2Λ2
T

2
. (H16)

Note that neither bound depends explicitly on the choice
of the η parameter. The results easily follows by summing
these two contributions.

In order to use this to approximate the r steps with
total error ε we then need

δτ = O
(√

ε

r

1

LΛT

)
� 1 . (H17)

Applying r times the Û(δτ, η) with the measure of an-
cilla qubit in |0〉 state, one gets that the fidelity with GS
becomes using the same formula of eq. (E3):

F =

(
1 +

∑
n

|cn|2

|c0|2

(
η2e2 δτ (E0−ET ) + 1

)r(
η2e2 δτ r (En−ET ) + 1

)r
)−1

(H18)

Using the result of eq. (E4) for the fidelity bound, in
the general case of η and r ∈ N we get:

F ≥

(
1 +

1− |c0|2

|c0|2

(
η2e2δτ(E0−ET ) + 1

η2e2δτ(E1−ET ) + 1

)r)−1

. (H19)

In order to bound the behavior in the parenthesis we use

η2e2δτ(E0−ET ) + 1

η2e2δτ(E1−ET ) + 1
=

η2 + e−2δτ(E0−ET )

η2e2δτ∆ + e−2δτ(E0−ET )

= 1− η2 e2δτ∆ − 1

η2e2δτ∆ + e−2δτ(E0−ET )
.

(H20)

Assume now we choose E1 > ET > E0, this means ET −
E0 < ∆ and we have

η2e2δτ(E0−ET ) + 1

η2e2δτ(E1−ET ) + 1
< 1− η2

1 + η2

e2δτ∆ − 1

e2δτ∆

≤ 1− η2

1 + η2

2δτ∆

1 + 2δτ∆
.

(H21)

https://www.overleaf.com/project Considering a small
enough error ε or large r to be in the limit 2δτ ∆ < 1,
one can prove that

(
η2e2δτ(E0−ET ) + 1

η2e2δτ(E1−ET ) + 1

)r
≤
(

1− η2

1 + η2

2δτ∆

1 + 2δτ∆

)r
≤
(

1− η2

1 + η2
δτ∆

)r
≤ exp

(
− η2

1 + η2
rδτ∆

)
= O

(
exp

(
− η2

1 + η2

∆

LΛT

√
rε

))
. (H22)
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The result shown in the main text is obtained for η = 1.
Finally we can compute the success probability as a func-
tion of r. Using the result found above and in Ap-
pendix D we have

P (0; r) = 〈Ψ|
(
M̂0Û(δτ, η)

)2r

|Ψ〉

= 〈Ψ|Q̂ITP (δτ)2r|Ψ〉
≥ |c0|2〈φ0|Q̂ITP (δτ)2r|φ0〉

≥ |c0|2

(η2e2δτ(E0−ET ) + 1)r

(H23)

which, for the choice E1 > ET > E0 can be rewritten
more clearly as

P (0; r) ≥ |c0|2

(η2e−2δτ |E0−ET | + 1)r
≥ |c0|2

(η2 + 1)r
(H24)

which decays exponentially with the number of steps.
By tuning η one can make also this behavior to be sub-
exponential, at the expense of a slower convergence of
the fidelity with step number r. For η = 1 we obtain the

result shown in the main text. This results holds only
for the exact short-time unitary Û(δτ, η) but using the
approximation in Eq. (H3) of the Lemma above we still
have that the difference in probabilities is bounded as

δP =

∣∣∣∣∣〈Ψ|Q̂ITP (δτ)2r|Ψ〉 − 〈Ψ|
L∏
k

Q̂
(k)
ITP (η, τ)|Ψ〉

∣∣∣∣∣
=

∣∣∣∣∣〈Ψ|
(
Q̂ITP (δτ)2r −

L∏
k

Q̂
(k)
ITP (η, τ)

)
|Ψ〉

∣∣∣∣∣
≤

∥∥∥∥∥Q̂ITP (δτ)2r −
L∏
k

Q̂
(k)
ITP (η, τ)

∥∥∥∥∥
≤ 2rL2Λ2

T δτ
2 .

(H25)

In other words, if we use an approximation for the full
sequence of r steps with error bounded by ε, the success
probability will be at most 2ε smaller. Since the decay of
P (0; r) is exponential in r, the lower bound in Eq. (H24)
will go to zero at some finite number of steps. This is
possibly a consequence of the looseness of the bound for
δP given above.
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