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Quantum Krylov subspace diagonalization (QKSD) algorithms provide a low-cost alternative to
the conventional quantum phase estimation algorithm for estimating the ground and excited-state
energies of a quantum many-body system. While QKSD algorithms typically rely on using the

Hadamard test for estimating Krylov subspace matrix elements of the form, 〈φi|e−iĤτ |φj〉, the
associated quantum circuits require an ancilla qubit with controlled multi-qubit gates that can
be quite costly for near-term quantum hardware. In this work, we show that a wide class of
Hamiltonians relevant to condensed matter physics and quantum chemistry contain symmetries
that can be exploited to avoid the use of the Hadamard test. We propose a multi-fidelity estimation
protocol that can be used to compute such quantities showing that our approach, when combined
with efficient single-fidelity estimation protocols, provides a substantial reduction in circuit depth.
In addition, we develop a unified theory of quantum Krylov subspace algorithms and present three
new quantum-classical algorithms for the ground and excited-state energy estimation problems,
where each new algorithm provides various advantages and disadvantages in terms of total number
of calls to the quantum computer, gate depth, classical complexity, and stability of the generalized
eigenvalue problem within the Krylov subspace.

INTRODUCTION

The eigenpair problem for large matrices, which often
consists of finding the smallest k (or largest k) eigen-
values and eigenvectors of a matrix, remains one of the
most ubiquitous problems in science. Within physics
and chemistry, this problem is equivalent to finding the
ground and low-lying excited state energies of a quantum
many-body system represented by a large Hamiltonian
matrix. While quantum computers provide a scalable
route for solving this problem through the multi-ancilla-
based quantum phase estimation algorithm [1–8], this
approach will most likely require fault-tolerant quantum
computing hardware. As a result, variational quantum
algorithms such as the variational quantum eigensolver
(VQE) [9–11] and quantum approximate optimization al-
gorithm (QAOA) [12] have emerged as possible candidate
algorithms capable of dealing with the constraints of the
current hardware in the noisy intermediate scale quan-
tum (NISQ) era [13]. . As a result, variational quantum
algorithms such as the variational quantum eigensolver
(VQE) [9–11] and quantum approximate optimization al-
gorithm (QAOA) [12] have emerged as possible candidate
algorithms capable of dealing with the constraints of the
current hardware in the noisy intermediate scale quan-
tum (NISQ) era [13]. this approach will most likely re-
quire fault-tolerant quantum computing hardware [6–8].
As a result, variational quantum algorithms such as the
variational quantum eigensolver (VQE) [9–11] and quan-
tum approximate optimization algorithm (QAOA) [12]
have emerged as possible candidate algorithms capable
of dealing with the constraints of the current hardware
in the noisy intermediate scale quantum (NISQ) era [13].

Variational quantum algorithms aim to solve an opti-

mization problem, minθ C(θ), encoded through a cost
function that is typically written in the form C(θ) =
〈Ψ(θ)|H|Ψ(θ)〉, where H represents a Hermitian opera-
tor that encodes the problem of interest [14]. By defining

a parameterized quantum circuit, |Ψ(θ)〉 = U(θ) |0〉⊗N ,
with respect to a tunable set of parameters θ, e.g. single-
qubit Pauli rotation gates, the quantum computer pro-
vides estimates of C(θ) while the classical computer per-
forms an optimization subroutine that provides an up-
date rule for the parameters θ (e.g. using gradient
descent). This methodology can be used to solve the
eigenpair problem to estimate the ground and excited-
state energies of quantum systems [15–17]. While varia-
tional quantum algorithms have a substantial advantage
in terms of gate depth, they also have significant draw-
backs. For example, it has been shown that for a large
class of quantum circuits, the optimization landscapes
are highly non-convex, making the problem of finding the
global minimum NP-hard [18]. It has also been shown
that barren plateaus, consisting of exponentially vanish-
ing gradients, can also arise in a wide range of condi-
tions [19–22]. For such cases, the optimization problem
becomes intractable due to the inability to update the
optimization parameters θ.

In recent years, quantum subspace diagonalization
(QSD) methods have emerged as an alternative way of
solving the eigenvalue problem for large matrices, capable
of dealing with the aforementioned drawbacks [23–26].
The basic idea consists of using a set of non-orthogonal
quantum states, easily preparable on quantum comput-
ers, which can be used to define a generalized eigenvalue
problem where the size of the corresponding matrices are
exponentially smaller. The hybrid quantum-classical al-
gorithm consists of using the quantum computer to com-
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pute the relevant matrix elements, while the generalized
eigenvalue problem is solved on the classical computer
(see Figure 1). The solution of the generalized eigenvalue
problem provides an estimate of the relevant eigenpairs.

A number of interesting QSD methods have been pro-
posed which can be classified according to the numerous
ways that the non-orthogonal states are defined. For in-
stance, McClean et al. showed that by using the set of
non-orthogonal basis states a†iaj |ΨG〉, it is possible to
find low-lying excited states based on the ground state
|ΨG〉 ≈ |Ψ(θ)〉, which is found through the standard vari-
ational quantum eigensolver [27, 28]. K-moment states
have also been proposed as an alternative way of con-
structing the non-orthogonal basis states, which becomes
scalable when the K-moment unitaries are tensor prod-
ucts of Pauli operators [29, 30].

It is also possible to have provable guarantees for
convergence if the set of non-orthogonal states form a
Krylov basis [31], which is defined by the repeated ap-
plication of the matrix of interest, H, acting on the ini-
tial guess vector |φo〉, resulting in the Krylov subspace
KM = span{|φo〉 , H |φo〉 , H2 |φo〉 , · · · , HM−1 |φo〉}. The
Lanczos method [32] is one of the most well-known al-
gorithms that uses this subspace to solve the eigenpair
problem with convergence properties that are dependent
on the spectral properties of the matrix H as well as
the overlap of the guess vector |φo〉 with the true solu-
tion. While this method is routinely executed on classical
computers, its implementation on a quantum computer
is more challenging since H is not unitary. Nonetheless,
interesting approaches that invoke sums of unitary oper-
ators as approximations to the Hamiltonian matrix and
its higher powers have recently been suggested [25, 33]
and remains an ongoing research direction. Motta et al.
have also proposed the QLanczos algorithm which defines
the Krylov subspace by the repeated application of the

imaginary time evolution propagator, f(Ĥ) = e−βĤ [34].
In this framework, the non-unitary imaginary-time prop-
agator is written as a unitary operator under the condi-
tion that the Hamiltonian is k-local. A linear system of
equations must be solved classically for each imaginary
time step, where the number of measurements and size
of such equations grows exponentially with the spreading
of entanglement.

In this manuscript, we focus on solving the eigenpair
problem with sets of Krylov basis states generated by
real-time quantum dynamics. This idea, in the con-
text of quantum computing approaches to the eigen-
pair problem, was pioneered by Parrish and McMahon
[24]. They referred to their approach as the quantum
filter diagonalization (QFD) algorithm, because of simi-
larities with the classical-computer-based filter diagonal-
ization methods developed in the 1990s [35–37]. Inde-
pendently, Stair et al. proposed a multi-reference se-
lected quantum Krylov subspace (MRSQK) algorithm
[26] which can be viewed as a generalization of QFD.

FIG. 1. Overview of quantum Krylov subspace algorithms.

These methods represent variants of the QLanczos algo-

rithm where the real-time evolution operator, e−iĤτ , is
used to generate the Krylov basis, where τ is equal to
the time step size and we assume atomic units such that
~ = 1 throughout this manuscript. While these methods
have shown great promise, they are not without practi-
cal issues with respect to NISQ-era applications. First,
quantum Krylov subspace algorithms based on real-time
dynamics require Hadamard test quantum circuits (see
Appendix for more details), which uses an ancilla qubit
with controlled multi-qubit controlled unitary operations
[24, 26]. This approach substantially increases the circuit
depth, making it more difficult for NISQ-era hardware.
Second, the number of calls to the quantum computer
that are required to construct the Krylov subspace ma-
trices scales as O(LM2) where L is the number of terms
in the Hamiltonian and M is the subspace matrix size
[26]. Third, single-reference Krylov subspace algorithms
also suffer from large condition numbers (ratio of largest
to smallest singular values) of the overlap matrix S that
become substantially worse as the number of time steps
increases. In principle, this could make the solution of
the generalized eigenvalue problem not possible for many
problems of interest, such as strongly correlated systems.

In this work, we provide several major contributions
which address the outstanding problems discussed above.
First, we show that the Hadamard test is not required
to estimate the Krylov subspace elements of the form

〈φi|e−iτĤ |φj〉 for a large class of Hamiltonians relevant
to nuclear physics, quantum chemistry, and condensed
matter physics. Our approach avoids the need for an an-
cilla qubit with controlled unitary operations and, when
combined with efficient fidelity estimation protocols, pro-
vides a substantial reduction in circuit depth compared
to previous approaches. Our second major contribution
includes the proposal of three new generalized eigenvalue
problems which can be used to estimate both ground and
excited-state energies. Each of these generalized eigen-
value problems provides various advantages and disad-
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vantages in terms of the total number of calls to the quan-
tum computer, gate depth, classical post-processing com-
plexity, as well as stability of the generalized eigenvalue
problem based on the condition number of the overlap
matrix S.

In particular, we show that two of the newly pro-
posed generalized eigenvalue problems involving the uni-

tary function e−iĤτ only require O(M) calls to the quan-
tum computer compared to the O(LM2) calls that are
required for QKSD algorithms which use Hamiltonian-
based generalized eigenvalue problems. We also show
that two of the newly proposed generalized eigenvalue
problems, which also use real-time quantum dynamics to
generate the Krylov space as in the QFD approach [24]
more closely resemble the original classical filter diago-
nalization method (FDM) originally proposed by Wall
and Neuhauser [35] and subsequently further developed
and elaborated upon by Mandelshtam and Taylor [36]
in that they target specific energy ranges by energy fil-
tering. Compared to typical Krylov subspace algorithms
which have a classical computational complexity scaling
that is polynomial in the total number of time steps,
the FDM method provides a constant time scaling O(1).
We also find empirical evidence that the corresponding
generalized eigenvalue problems have condition numbers
that are orders of magnitude smaller than the single-
reference Krylov subspace counterparts as the number of
time steps increases. To test the efficacy of the proposed
algorithms, we numerically compare these four methods
for the problem of finding the ground-state and excited-
state energies of various quantum chemistry Hamiltoni-
ans, showing fast convergence with a small number of
discrete time steps.

It is worth noting that while we were finalizing this
manuscript, we became aware of the paper by Klymko et
al. [38], currently in preprint, which is similar in spirit
to our work. Klymko et al. provide a theoretical ba-
sis for non-orthogonal states generated by real-time dy-
namics, and independently proposed a hybrid quantum-
classical algorithm based on the generalized eigenvalue

problem with the unitary function, e−iĤτ , which they
refer to as variational QPE or VQPE. This method is
equivalent to one of the three new methods that we
present in this manuscript, which we refer to as KDM
U. In addition, their major contributions include a com-
prehensive study of the effects of noise, Trotter-Suzuki
error, and a comparison between VQPE and the con-
ventional QPE algorithm in terms of the total simula-
tion time and total number of time steps required to
reach chemical accuracy. Our major contributions in-
clude the multi-fidelity estimation protocol which may
be used to avoid the Hadamard test, as well as the two
hybrid quantum-classical algorithms based on Fourier fil-
ter energies, which more closely resemble the classical fil-
ter diagonalization method of Wall and Neuhauser, and

Mandelshtam and Taylor [35, 36], which we refer to as
the FDM H and FDM U methods.

QUANTUM KRYLOV SUBSPACE
DIAGONALIZATION METHOD

We aim to find the ground and excited-state energies of
a general many-body Hamiltonian written as a sum of N -
qubit Pauli terms, Ĥ =

∑L
i hiP̂i, where hi is a weighting

coefficient and P̂i is a general tensor product of N Pauli

operators, P̂i = ⊗Ni

k=1σ̂
(µk)
ik

, with µk denoting the qubit
number and ik acting as a label for the type of Pauli
operator {Î , σ̂x, σ̂y, σ̂z}. We do not impose any type of
restrictions on the locality of the Hamiltonian, thereby al-
lowing for the implementation of the proposed algorithms
for many problems relevant to nuclear physics, condensed
matter physics, and quantum chemistry. For illustration
purposes, we will focus on the canonical quantum chem-
istry Hamiltonian in second quantization which is able
represent the electronic structure problem of a wide va-
riety of molecular systems (see Appendix A for details).

The Hamiltonian Ĥ obeys the standard eigenvalue
equation, Ĥ |ψk〉 = Ek |ψk〉, with the energy eigenvalue
Ek and corresponding eigenvector |ψk〉, assumed to sat-
isfy the orthonormality condition, 〈ψk′ |ψk〉 = δkk′ . Gen-
eral functions of the Hamiltonian f(Ĥ) will also obey the
eigenvalue equation,

f(Ĥ) |ψk〉 = f(Ek) |ψk〉 . (1)

The matrix size for this eigenvalue problem scales expo-
nentially with the total number of qubits. However, as
we show below, this equation can be used to define a wide
variety of generalized eigenvalue problems in a subspace
that is exponentially smaller. The basic idea requires ex-
panding the eigenvector |ψk〉 as a linear combination of
non-orthogonal states |φn〉,

|ψk〉 ≈
M−1∑
n=0

cn |φn〉 . (2)

Substituting this result into (1) and multiplying from the
left by 〈φn′ |, we find the generalized eigenvalue problem,

F(Ĥ)c = f(Ek)Sc, (3)

where c = (c0, c1, · · · , cM−1)T is a column vector of ex-
pansion coefficients and the subspace matrices F(Ĥ) and
S are defined by the matrix elements,

[F(Ĥ)]nn′ = 〈φn|f(Ĥ)|φn′〉 and [S]nn′ = 〈φn|φn′〉 . (4)

Naturally, the subspace matrix size is much smaller in
the non-orthogonal basis when M � 2N , and is also
more general than Hamiltonian-based generalized eigen-
value problems derived in previous works. The choice
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of Hamiltonian function f(Ĥ) and non-orthogonal ba-
sis, |φn〉, will ultimately lead to a wide variety of differ-
ent hybrid quantum-classical algorithms with trade-offs
in terms of convergence, number of calls to the quan-
tum computer, circuit depth, and classical complexity
required for post-processing. Although it might not be
implementable in the near-term, it is worth mention-
ing that a non-orthogonal basis defined by the function,

f(Ĥ) = exp
(
i arccos (Ĥτ)

)
, as used in qubitization [39],

would provide an effective way to estimate both ground
and excited-state energies with equivalent circuit depths
as a single Trotter time step but avoiding Trotter error
[40]. However, this comes at a cost adding a register of
ancilla qubits with controlled multi-qubit unitary gates.
For our purposes, we will focus on the standard Hamil-
tonian and real-time evolution operators, f(Ĥ) = Ĥ and

f(Ĥ) = e−iĤτ . We will also consider two different sets
of non-orthogonal states, thereby obtaining four differ-
ent quantum-classical algorithms which provide various
advantages and disadvantages as discussed below.

Krylov subspace diagonalization method (KDM). The
Krylov subspace diagonalization method assumes the
eigenvector |ψk〉 may be written as a linear combination
of real-time evolved Krylov basis states,

|ψk〉 ≈ |ψK〉 =

M−1∑
n=0

cne
−inĤτ |φo〉 =

M−1∑
n=0

cn |φn〉 (5)

where |φo〉 is the initial single-reference state. Using
the steps outlined above, the corresponding generalized
eigenvalue problem may be written as, FK(Ĥ)cK =
f(Ek)SKcK , where the subscriptK denotes the real-time
Krylov basis with the subspace matrix elements defined
using equation (4). We emphasize that this basis, specif-
ically when f(Ĥ) = Ĥ, which we refer to as the KDM H
method, recovers the QFD and MRSQK methods in the
limit of a single reference state [24, 26]. Our new contri-
bution therefore corresponds to the KDM method with

f(Ĥ) = e−iĤτ , which we refer to as the KDM U method,
which also coincides with the recent proposal by Klymko
et al. [38].

Filter Diagonalization Method (FDM). The filter di-
agonalization method, on the other hand, approximates
|ψk〉 as a linear combination of time-evolved wavefunc-
tions that are Fourier transformed with respect to a set
of filter energies Ej ,

|ψk〉 ≈ |ψF 〉 =

J∑
j=1

M−1∑
n=0

cje
−in(Ĥ−Ej)τ |φo〉 =

J∑
j

cj |φj〉

(6)

resulting in the generalized eigenvalue problem,
FJ(Ĥ)cJ = f(Ek)SJcJ with matrix elements defined
by the non-orthogonal basis of filter energies. This type
of basis has an interesting property in that |φj〉 will be

dominated by eigenvectors whose eigenvalues are close
to the filter energies Ej . If we expand the starting
state, |φo〉, in terms of the true eigenvectors |ψk′〉 of the
Hamiltonian, such that |φo〉 =

∑
k′ ck′ |ψk′〉, then it is

possible to show that,

|φj〉 =
∑
k′

ck′
1− e−iM(Ek′−Ej)τ

1− e−i(Ek′−Ej)τ
|ψk′〉 , (7)

highlighting the fact that eigenvectors with eigenvalues
Ek′ that are close to the filter energies Ej (Ek′ ∼ Ej) will
have the largest contribution. In total, the FDM method
will give rise to two new quantum-classical algorithms
which we refer to as the FDM H method if f(Ĥ) = Ĥ

and FDM U method if f(Ĥ) = e−iĤτ .
Relationship between both non-orthogonal bases. An-

alyzing the two generalized eigenvalue problems, it is pos-
sible to show that the two approaches are related by the
M × J transformation matrix,

W =


1 1 · · · 1

e−iE1τ e−iE2τ · · · e−iEJτ

e−i2E1τ e−i2E2τ · · · e−i2EJτ

...
...

. . .
...

e−i(M−1)E1τ e−i(M−1)E2τ · · · e−i(M−1)EJτ


resulting in the following relationship between the real-
time evolution Krylov diagonalization method and the
filter diagonalization method,

W†FK(Ĥ)W = FJ(Ĥ) (8)

W†SKW = SJ . (9)

In the case that the filter frequencies are chosen with
an equidistant grid, such that Ej = 2π

Mτ j where j =
0, · · · ,M−1, then the transformation W becomes a uni-
tary matrix up to a normalization factor equivalent to
the discrete Fourier transform matrix. It is important
to emphasize, however, that the total number of discrete
energies J can be much smaller than the total number
of time steps, M , resulting in a constant-time O(1) com-
putational complexity for solving the FDM-based gen-
eralized eigenvalue problem on the classical computer,
compared to the polynomial scaling O(poly(M)) for the
KDM method. Moreover, the choice of filter window with
a suitable number of filter energies can also stabilize the
generalized eigenvalue problem resulting in smaller con-
dition numbers for the overlap matrix S. We provide
evidence of this result in the numerical experiments sec-
tion of the manuscript.
Number of calls to the quantum computer. In the fol-

lowing, we provide an estimate of the number of calls
to the quantum computer, NK , required to construct
the Krylov subspace matrix elements defined by Equa-
tion (4). We assume that the subspace matrix elements
are computed with Hadamard-test quantum circuits, or
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f(Ĥ) Non-orthogonal Basis NK Classical Complexity

Ĥ real-time dynamics O(LMp/ε2) O(poly(M))

e−iĤτ real-time dynamics O(M/ε2) O(poly(M))

Ĥ Fourier filter energies O(LMp/ε2) O(1)

e−iĤτ Fourier filter energies O(M/ε2) O(1)

TABLE I. Summary of results. NK is equal to the number of measurements/calls to the quantum computer required to

construct the Krylov subspace matrix elements. L is equal to the total number of terms in the Hamiltonian Ĥ. M is equal
to the order of real-time evolved Krylov subspace. The exponent p is equal to one if the Hamiltonian, Ĥ, perfectly commutes

with the quantum circuit unitary which approximates the time-evolution operator, e−iτĤ , otherwise it is equal to two.

equivalently, with the multi-fidelity estimation protocol
which we describe in the following section. For the lat-
ter, our estimates are based on single fidelity estimation
circuits, such as a SWAP-test circuit or a mirror-like quan-
tum circuit, as outlined in the Discussion section below.
In general, the estimation of these quantities to precision
ε will require 1/ε2 samples, which will result in a 1/ε2

multiplicative factor for all of the cases we consider be-
low. Furthermore, we will restrict ourselves to the single-
reference Krylov subspace algorithm, though more gen-
eral estimates of the multi-reference case may be done
with the same arguments.

We first consider the estimation of the overlap ma-
trix elements in S, noting that they will be the same
for all four methods. These matrix elements are equiv-
alent to correlation functions of the form Cn(τ) =

〈φo|e−inĤτ |φo〉. By assuming that a single call to the
quantum computer provides an estimate of both the real
and imaginary parts of the correlation function Cn(τ),
then M − 1 calls to the quantum computer are required
to construct the overlap matrix S.

For f(Ĥ) = Ĥ, the matrix elements of the sub-
space matrix F(Ĥ) may be written as 〈φn|Ĥ|φn′〉 =

〈φo|einĤτ Ĥe−in
′Ĥτ |φo〉. Here, the number of calls to the

quantum computer will depend on whether the Hamil-
tonian Ĥ and the quantum circuit implementation of

the time-evolution operator, e−inĤτ , commute. If we as-
sume that they commute, these elements may be written

as 〈φo|Ĥe−i(n
′−n)Ĥτ |φo〉 =

∑L
i hi 〈φo|P̂ie−i(n

′−n)Ĥτ |φo〉,
resulting in a Toeplitz matrix structure that requires
O(LM) calls to the quantum computer. However, in the
case of Trotterized quantum circuits where the commu-
tation relation does not hold exactly, the total number of
calls would scale as O(LM2).

Methods using the real-time evolution function,

f(Ĥ) = e−iĤτ , will have a complexity that is substan-
tially less. In this case, the matrix elements will also cor-
respond to correlation functions, Cn(τ). The matrix ele-
ments from the overlap matrix, S, can therefore be used
to construct the majority of the matrix elements in F(Ĥ).
The off-diagonal elements in the top-right and bottom-
left corners, however, will require an additional call to
the quantum computer for the estimation of the CM (τ)

correlation function. In total, the f(Ĥ) = e−iĤτ method
will require M calls to the quantum computer. This,
however, comes at the cost of requiring a single quan-
tum circuit evaluation with an increased circuit depth
equivalent to a single time step (assuming a Trotterized
time-evolution circuit).

Finally, it is worth noting that for fixed f(Ĥ), the
KDM and FDM methods will have an equivalent num-
ber of calls to the quantum computer because they are
related by equations (8) and (9). This highlights the
fact that both methods only differ in the post-processing
methodology used to estimate the ground and excited-
state energies and, as a result, both methods can be
carried out in parallel on a classical computer. A sum-
mary of these results is shown in Table I, underlining how
each of these four methods carries different complexities
due to quantum and classical computational resources.
Here, we wrote the scaling of the number of calls NK for
f(Ĥ) = Ĥ as O(LMp) where p = 1 if the Hamiltonian
and time-evolution unitary circuit commutes and p = 2
otherwise.

MULTI-FIDELITY ESTIMATION PROTOCOL

We now consider the evaluation of the complex-valued
matrix elements (4), equivalent to a single call the quan-
tum computer as defined above. The Hadamard test
is the standard method used for estimating these types
of non-Hermitian quantities (see Appendix D for more
details), which originates from the single-ancilla-based
quantum phase estimation algorithm from Kitaev. This
approach requires an ancilla qubit with controlled uni-
tary operations that substantially increases the total
number of multi-qubit gates in the overall circuit. In the
near term, multi-qubit gates (e.g. CNOT gates) repre-
sent an expensive resource. In the following, we propose
a method that avoids the Hadamard test thereby making
a wide variety of quantum Krylov subspace diagonaliza-
tion methods more amenable to near-term devices.

The motivation for our proposed method stems from
the field of interferometry which aims to measure a target
phase θt that encodes a physical parameter of interest.
Interference pattern measurements can only provide in-
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formation about the phase difference, ∆θ = θr − θt. A
reference laser is typically used to provide a controllable
reference phase θr, allowing for the proper estimation of
θt. While the Hadamard test provides a reference phase
through use of the ancilla qubit, the multi-fidelity es-
timation (MFE) protocol generates the reference phase
through the superposition state 1√

2
(|R〉 + |φk〉), where

the reference state |R〉 and the target state |φk〉 origi-
nate from different symmetry sectors of the Hamiltonian.
If the time evolution of the reference state is classically
simulatable, it will be possible to have a reference phase
without an ancilla qubit. Below, we provide a more de-
tailed mathematical description.

The proposed approach assumes that the Hamiltonian
contains a symmetry Ŝ such that, [Ĥ, Ŝ] = 0, with quan-
tum states |φk〉 that have a definite symmetry, such that
〈φk|Ŝ|φk〉 = sk, where sk corresponds to an eigenvalue
of the symmetry operator Ŝ. We also assume that there

exists a reference state |R〉 where 〈R|e−inτĤ |R〉 is effi-
cient to calculate on the classical computer. We empha-
size that the reference and target states, |R〉 and |φk〉,
are not required to be eigenstates of the Hamiltonian,
but they do need to originate from different symmetry
sectors such that 〈R|φk〉 = 0. If all of these conditions
hold, then it will be possible to implement the multi-
fidelity estimation protocol as shown below. For many
nuclear physics, quantum chemistry and condensed mat-
ter physics applications, the particle number, total spin
and spin projection symmetries may be applicable and
can be used in this approach due to the fact that they
contain symmetry sectors that are classically tractable.

As a concrete example, we consider the quantum chem-
istry Hamiltonian which conserves the electron number
N̂ =

∑
i â
†
i âi. We assume that the quantum states

|φk〉 have a definite electron number, 〈φk|N̂ |φk〉 = nk,
that is not equal to zero. To estimate the most gen-

eral off-diagonal element, 〈φi|e−inĤτ |φj〉, as required by
multi-reference Krylov-based methods, the MFE proto-
col requires measuring the following state fidelities on the
quantum computer,

F1 = | 〈φi|e−inĤτ |φj〉 |2, (10)

F2 = 1
4 |(〈φi|+ 〈R|)|e

−inĤτ |(|R〉+ |φj〉)|2. (11)

Combining both results yields the magnitude and phase

of the off-diagonal matrix element 〈φi|e−inĤτ |φj〉 = reiθ,
written in complex polar coordinates,

r =
√
F1 (12)

θ = cos−1
(

4F2 − F1 − r2R
2rR
√
F1

)
+ θR (13)

where rR and θR represent the reference amplitude and

phase defined as, 〈R|e−inĤτ |R〉 = rRe
iθR . If we take

the reference state as the zero particle number (vacuum)

state, |R〉 ≡ |0〉⊗N , then the reference amplitude rR will
be equal to one while the reference phase will be equal
to θR = −nτ 〈0|Ĥ|0〉, where 〈0|Ĥ|0〉 denotes the expec-
tation value of the Hamiltonian with respect to the vac-
uum state which can be evaluated efficiently on a classical
computer.

Preparation of 1√
2
(|R〉+ |φk〉)

One of the key requirements of this protocol is the
preparation of the state 1√

2
(|R〉+ |φk〉) on the quantum

computer. Note that because we have imposed the re-
quirement that |R〉 and |φk〉 belong to different symmetry
sectors (e.g. contain different particle numbers), it is pos-
sible to prepare such states using GHZ-state-preparation
circuits. For instance, we consider the preparation of the
state 1√

2
(|R〉+ |φHF〉) where |R〉 is the vacuum state and

|φHF〉 is the Hartree-Fock state for a system of N spin-
orbitals (represented by N qubits) and η electrons. In
the Jordan-Wigner basis, the Hartree-Fock state takes
the simple product-state form, |φHF〉 = |0〉⊗N−η ⊗ |1〉⊗η,
where the first η qubits are prepared in the one state and
the rest of the qubits remain in the zero state. To pre-
pare the target superposition state, 1√

2
(|0〉⊗N + |φHF〉), a

Hadamard gate is applied to the first qubit, followed by a
ladder of CNOT gates applied up to the ηth qubit, result-
ing in a total of η− 1 CNOT gate operations. More gen-
eral states can also be prepared by subsequently applying
a symmetry-conserving quantum circuit US [41], which
could in principle represent a parameterized quantum cir-
cuit originating from a VQE pre-processing step. As an
example, we provide the quantum circuit that prepares
the state, 1√

2
(|000000〉 + |000111〉), where the Hartree-

Fock state represents a system of six spin-orbitals with
three electrons.

|0〉 H •

US

|0〉 •

|0〉

|0〉

|0〉

|0〉

1√
2
(|00000〉+ |000111〉)
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Circuit depth estimate

In principle, it is possible to roughly quantify the to-
tal gate depth reduction afforded by the multi-fidelity
estimation protocol as follows. We first assume that the

unitary time evolution, U = e−iĤt acting on N qubits,
is decomposed into a quantum circuit consisting of p
CNOTs and q single-qubit gates. The corresponding
controlled-unitary gate required for the Hadamard test
would require p Toffoli gates and q two-qubit controlled
gates. The Toffoli gates may be further decomposed into
CNOT gates and would require somewhere in between 3p
and 6p total CNOTs with additional single-qubit gates
[42–44]. As discussed in Ref. 44, the controlled unitary
gate will have somewhere in between (3p+q) CNOTs and
(6p+2q) CNOTs with some additional single-qubit gates.
Comparatively, the multi-fidelity estimation protocol will
only require (p+ r) CNOTS where r corresponds to the
number of CNOTs required to implement the superpo-
sition state, 1√

2
(|R〉 + |φk〉). As mentioned previously,

for the case of a Hartree-Fock target state prepared in
the Jordan-Wigner basis, the total number of CNOTs
would correspond to r = η, where η is equal to the to-
tal number of particles (e.g. electrons) in the number-
conserving Hamiltonian. This number will be always be
smaller than or equal to the total number of qubits and
will be substantially smaller than q which has an upper
bound proportional to the total number of Hamiltonian
terms O(N4). The additive factor q may therefore have
a large contribution on the total circuit depth. On the
other hand, although the multiplicative factor ranging
from 3 to 6 in the first term may not seem impressive, it
can potentially have a large impact on the total number
of time steps that can be implemented on the hardware
for the quantum Krylov subspace algorithms discussed
within this manuscript. In other words, assuming that a
single time step requires 6p CNOTs (p >> q, r), then the
multi-fidelity estimation protocol would allow between 3
and 6 more time steps than the Hadamard test approach.
This added reduction in circuit depth might be significant
for near-term devices.

In addition, it is worth noting that connectivity could
also play a role in the total gate depth reduction af-
forded by the MFE protocol compared to the Hadamard
test. The connectivity between qubits affects the to-
tal circuit depth of the controlled unitary gate opera-
tion since limited connectivity implies that additional
CNOT gates would be required to swap information be-
tween non-connected qubits. Therefore, quantum hard-
ware with limited connectivity could suffer from longer
circuit depth requirements, which can be especially detri-
mental for the controlled multi-qubit operations required
for the Hadamard test. This could be countered, how-
ever, by advanced compilation techniques as well as richer
native gate sets that could also decrease the gate depth.

As a result, there exists additional hardware-specific con-
straints which might increase or decrease the total esti-
mated gate count and would have to be accounted for
accordingly.

We finalize this section by noting that the multi-fidelity
estimation protocol proposed in this work, which avoids
the use of an auxiliary qubit with controlled multi-qubit
operations, is similar in nature to the protocols proposed
in [45–47]. In particular, Lu et al. [45] suggest the prepa-
ration of cat-like states that avoid the use of an aux-
iliary qubit where one of the cat states corresponds to
an eigenvector of the Hamiltonian and the second state
corresponds to the target state (not necessarily an eigen-
state). Refs. 46 and 47 also demonstrate ancilla-free
approaches for robust phase estimation. Ref. 46 outlines
a methodology that achieves a shot-noise-limited scaling
with the number of samples (Ns ∼ O(1/ε2)), while Ref.
47 demonstrates Heisenberg-limited scaling with respect
to the total number of time steps M , which they illus-
trate for a superposition state consisting of a reference
state and target state that are both eigenstates of the
Hamiltonian. Our approach closely coincides with these
methodologies; however, we have also shown how Hamil-
tonian symmetries can be exploited to ensure that both
states remain orthogonal to one another after time evolu-
tion. We have also suggested the use of a reference state
that belongs to a symmetry sector with small Hilbert
space dimension (e.g. dim(HS) scaling at most poly-
nomially with the number of qubits). This latter point
makes the time evolution of the reference state classically
simulatable, and therefore relaxes the eigenstate condi-
tion mentioned in Refs. 45 and 47. We also presented
an explicit quantum circuit that prepares such superpo-
sition states, highlighting the fact that the MFE proto-
col is highly scalable with low circuit depth compared to
non-ancilla based approaches. It will be interesting to
explore, in future work, whether quantum Krylov-based
algorithms can also take advantage of Heisenberg-limited
scaling with respect to the total number of samples (i.e.
Ns ∼ O(1/ε)).

NUMERICAL EXPERIMENTS

In Figure 2, we compare these four methods for the
estimation of the ground-state energy curves for three
different molecular systems: (a) a one-dimensional H6

chain, (b) an H2O molecule with fixed bond angle φ =
104.45◦, and (c) a BeH2 molecule. The energy curves
are plotted as a function of interatomic distance R la-
belled in the insets. See Appendix A for a discussion
of the various levels of electronic structure theory used
in these examples. In all cases, we numerically simu-
late the hybrid quantum-classical algorithm as described
in Figure 1 using the Hartree-Fock (HF) state as the ini-
tial single-reference state |φo〉 and an ideal time-evolution
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FIG. 2. Comparison of KDM and FDM methods for predicting the ground-state potential energy curves of a (a) 6-site linear
hydrogen chain, (b) H2O molecule, and (c) BeH2 molecule. The top row plots the absolute energy scale measured in Hartrees.
The second and third rows plot the energy error ∆E = |EFCI − Eapprox| between the full configuration interaction calculation
and the proposed approximate methods, where the second row uses a narrow frequency window, [EHF − 0.3Eh, EHF + 0.2Eh]
for the FDM method, while the third row uses a large frequency window, [EHF − 20Eh, EHF + 20Eh].

quantum circuit U(nτ) = e−inĤτ where the time step
size, τ = 0.1 a.u., is used for all of the simulations. The
choice of time step is very important but can be a subtle
issue that is discussed in Appendix B. It should be noted
that the probabilities required for the multi-fidelity esti-
mation protocol were computed directly from the state
vector simulation. We have confirmed that the quantum
Krylov-based methods presented herein also work well
with the inclusion of sample/shot noise and have noticed
that the FDM method is more susceptible to sample noise
when compared to the KDM method. A quantitative ex-
ploration of sample noise, Trotter-Suzuki error, and other
effects is beyond the scope of the current paper and will
be subject to future work, though we refer the reader
to recent work by Klymko et al. for some preliminary
discussions on this topic [38].

In the top row of Figure 2, we plot the absolute energy
scale measured in Hartrees while the bottom two rows
show the energy error ∆E = |EFCI − Eapprox|. We also
compare the FDM method with a small frequency win-
dow [EHF−0.3Eh, EHF + 0.2Eh] in the second row and a
large frequency window [EHF−20Eh, EHF +20Eh] in the
third row. The conventional implementation of the FDM
method uses a narrow frequency window to select the fil-
ter energies Ej [36], corresponding to the methodology
used in the second row. Using this approach, we find that
the FDM method converges much more slowly than the
equivalent KDM method, thereby requiring more time
steps to achieve similar accuracy. Instead we found that

by using large frequency windows to choose the filter en-
ergies Ej , it is possible to improve the convergence rate of
the FDM method so that it is comparable to the KDM
method. This is shown by the nearly overlapping en-
ergy error curves in the third row. In the latter case,
we find that we are able to achieve chemical accuracy
within 3 to 6 time steps for all three molecular systems.
While we do not consider Trotter error in this work, it is
worth noting that previous work [24, 26] has shown that
Trotterized quantum circuits provide an additional error,
∆t, that increases the energy error ∆E of the ground-
state energy estimate. We expect similar behavior for
the quantum-classical algorithms that we have proposed
in this manuscript, but will leave such studies for future
work.

Figure 2 demonstrates the dependence of the energy
error of the FDM method as a function of the hyper-
parameters: Emin, Emax, and J which define the en-
ergy window [Emin, Emax] as well as the total number
of filter energies, J . The choice of energy window and
number of filter energies affects the convergence rate of
the FDM method quite dramatically, which is also illus-
trated clearly in Figure 3. In practice, a hyperparame-
ter optimization loop can be added to the conventional
hybrid quantum-classical algorithm depicted in Figure
1, which would be performed on the classical computer
exclusively without any additional calls to the quantum
computer. For instance, this loop may consist of an ex-
haustive grid search of the parameters Emin, Emax, and J
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FIG. 3. (a) Energy error ∆E, (b) condition number of the
overlap matrix S, and (c) variance of the approximate wave-
function as a function of time steps, n. The results are shown
for the water molecule for the extended bond length, R = 2.8

a.u., from Figure 1-b. The operator, f(Ĥ) = e−iĤτ , was
used for the KDM method (blue) and FDM method (red).
The FDM results are decomposed in terms of various total
number of filter energies (J = 3, 4, 5) for the small frequency
window and J = 6, 7, 8 for the large frequency window. The
transparency of the KDM curve is determined by a threshold
value, κth = 1×1017, for illustration purposes, where the dark
blue lines correspond to κ < κth.

while monitoring either the ground-state energy estimate
or the variance of the function f(Ĥ) as a function of the

FDM wavefunction, |ψF 〉 =
∑J
j cj |φj〉. For the ground-

state energy estimation problem, cj would correspond to
the eigenvector coefficients from the generalized eigen-
value equation (3) with the smallest eigenvalue. Explic-
itly, the hyperparameter optimization loop for the FDM
U method would monitor the variance of the function,

f(Ĥ) = e−iĤτ , written as

Var[e−iĤτ ] = 1− |〈ψF |e−iĤτ |ψF 〉|2, (14)

where we have assumed that the function |ψF 〉 has been
normalized, such that 〈ψF |ψF 〉 = 1. This definition of
the variance has a maximum value of 1 and minimum
value of zero when |ψF 〉 is an eigenstate of the Hamilto-
nian, Ĥ. It is important to note that the second term
on the right hand side of equation (14) may be written
as a sum of the matrix elements defined by equation (4),

〈φn|e−iĤτ |φn′〉, highlighting the fact that the variance is
easily calculated on the classical computer with no addi-
tional calls to the quantum computer.

To better compare the KDM and FDM-based algo-
rithms, we plot the energy error, condition number,
and variance in Figure 3 as a function of total num-

ber of time steps. We only plot the results for the
water molecule case from Figure 1-b at the long in-
teratomic distance of R = 2.8 a.u. because it rep-
resents the toughest point with the largest energy er-
ror for both methods. In general, we found similar
behavior for the other two molecules for different in-
teratomic distances. In the Figure, we only plot the

f(Ĥ) = e−iĤτ operator case, though similar behavior
is seen for the Hamiltonian case, f(Ĥ) = Ĥ. In the
top row, we present the result for the narrow filter fre-
quency window, [EHF − 0.3Eh, EHF + 0.2Eh], while the
bottom row presents the results for the large frequency
window, [EHF − 20Eh, EHF + 20Eh]. We emphasize that
we have not performed the hyperparameter optimiza-
tion loop as discussed above, but chose the appropriate
frequency window and total number of filter energies J
for illustration purposes. We first analyze the KDM U
method results which is the same for the top and bottom
rows. We find that the KDM U method reaches chemical
accuracy within four time steps while also reaching the
minimum variance of 2 × 10−6 within eight time steps.
The condition number of the KDM method, however, dis-
plays a troubling increasing trend as a function of time
steps. We highlight this point by controlling the trans-
parency of the KDM curve based on the threshold value,
κth = 1 × 1017, where the dark blue lines correspond to
κ < κth. In general, we find that the KDM method be-
comes unstable as the number of time steps increases, as
shown by the fluctuating energy error (light blue lines)
and relatively large variance values ∼ 10−2. Compar-
atively, the FDM method displays drastically different
behavior based on the chosen frequency window. While
the small frequency window stabilizes the FDM method
quite well, as shown by the decreasing condition numbers
in the top row of Figure 3-b, the corresponding energy
error (Figure 3-a) and variance (Figure 3-c) decreases
much more slowly, never quite reaching the minimum
energy error and variance values of the KDM method. It
is also worth noting the convergence behavior for the dif-
ferent numbers of filter energies (J = 3, 4, 5). The overall
condition number for the J = 3 FDM method is much
smaller than the J = 5 case, though for a large num-
ber of time steps, the energy error for the latter is over
two orders of magnitude smaller. On the other hand, the
FDM method, based on the large frequency window, is
able to achieve fast convergence comparable to the KDM
method. As the total number of time steps increases,
the FDM method displays a much smaller energy error,
condition number, and variance compared to the KDM
method. These results highlight the fact that for certain
problems of interest, where a large number of time steps
are required to estimate the ground (or excited-state) en-
ergies, the FDM method might be preferable when com-
pared to the KDM method, resulting in much smaller
energy errors even within 10 to 20 time steps.

In Figure 4, we numerically simulate the estimation
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FIG. 4. Comparison of KDM and FDM methods for the
first four singlet excited state energies of H2O as a function
of interatomic distance R between the oxygen and hydrogen
atoms. (a) Absolute energy scale (measured in Hartrees) as
a function of interatomic distance. (b) Energy error of the

nth excited state, ∆En = |E(n)
FCI − E

(n)
approx|, as a function of

interatomic distance.

of the first four singlet excited-state energies for the wa-
ter molecule as a function of interatomic distance R. It
is important to emphasize that the excited-state energy
estimation problem has a wide variety of important ap-
plications across physics and chemistry, where classical
algorithms are often much less developed than the cor-
responding ground-state energy estimation algorithms.
For illustration purposes, we only consider the singlet
(S = 0) excited-state energy levels, and use singlet states
with zero total angular momentum as the initial starting
states (see Appendix E for more details) where a time
step size of τ = 0.1 a.u. is used for all of the simu-
lations. We emphasize that our approach does not re-
quire knowledge of the ground-state wavefunction (or any
other eigenfunction), making this approach distinct from
conventional excited-state energy estimation algorithms,
specifically within the scope of variational quantum al-
gorithms, which typically use the ground-state wavefunc-
tion as a prerequisite. Here, we present the results for the
FDM method with a large frequency window. We found
that a small frequency window did not give very good re-
sults for the FDM method. We find that both the KDM
(blue) and FDM (red) methods perform comparably well
for the first three excited states. For the first two excited-
state energy levels, both methods achieve chemical accu-
racy within 4 time steps across all interatomic distances.
The third and fourth excited state energy curves are quite
challenging due to an avoided crossing at approximately
R = 2.6 a.u. which results in nearly degenerate energy
curves for the last four data points. We find that both
the KDM and FDM methods achieve chemical accuracy
for the third excited-state energy curve for nearly all of
the interatomic distances, all within three time steps. On

the other hand, the fourth excited state energy curve es-
timation was particularly challenging for both methods.
Although it is not shown here, we found that the KDM
method only remained stable up to the fifth time step.
However, even within five time steps it was unable to
reach chemical accuracy for any of the interatomic dis-
tances. For this reason, we present the excited-state en-
ergy predictions for the tenth time step, where the KDM
U method reaches chemical accuracy for nine out of the
twenty data points. Furthermore, as evidenced by Figure
4-a and Figure 4-b, the KDM H method, denoted by the
blue crosses, displays a large amount instability where it
is only able to reach chemical accuracy for four out of the
twenty data points. For the fourth excited-state energy
curve, the FDM U method outperforms all of the other
methods, achieving chemical accuracy for seventeen out
of the twenty data points within 10 time steps. The FDM
H method is only able to reach chemical accuracy for nine
out of the twenty data points within ten time steps.

Finally, it is worth emphasizing that increasing the to-
tal number of time steps does not help improve the con-
vergence of the KDM method due the large condition
numbers, however, using step sizes that are much larger
(e.g. τ = 0.5 a.u.) does improve the performance of the
KDM method quite dramatically. This, however, comes
at a cost of requiring larger Trotter circuits for a single
time step to maintain an equivalent Trotter error. Al-
ternatively, Klymko et al. [38] have shown that singular
value decomposition [31] applied to the overlap matrix
with small singular values being neglected can be used to
stabilize the KDM time iterations. We should also point
out that within all of the numerical experiments, the
presented results correspond to a fixed number of time
steps across all interatomic distances. In practice, the
quantum-classical algorithm could have a predetermined
stopping criterion, as illustrated in Figure 1, which would
imply that every distance point could terminate with a
different number of time steps. This would also hold
for the hyperparameter optimization loop, which may
be implemented independently for every time step and
distance point. In summary, while both methods pro-
vide adequate excited-state energy estimation, the FDM
method might be the preferable choice and perhaps even
the only option for reaching a high level of accuracy based
on these numerical simulations.

DISCUSSION

Single Fidelity Estimation Protocols. In the follow-
ing, we discuss various single fidelity estimation protocols
that are relevant to the MFE protocol presented above.
Over the past few years, there have been a wide range of
resource-efficient fidelity estimation protocols that have
been developed for the problem of measuring the state
fidelity between two pure states |φi〉 and |φj〉. Here, we
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highlight a few of these methods which could be used
to provide a substantial reduction in the overall circuit
depth in conjunction with the multi-fidelity estimation
protocol, specifically when compared to the standard
Hadamard test. Before discussing modern approaches, it
is worth noting that in the context of fault-tolerant quan-
tum computing, it is sufficient to use the SWAP test to
estimate the state fidelity |〈φi|φj〉|2, to precision ε with
O(1/ε2) repeated measurements. However, the original
implementation of the SWAP test requires a 2N+1 qubit
circuit, where two N -qubit registers are used for storing
|φi〉 and |φj〉 with a controlled-SWAP gate that uses an
additional ancilla qubit.

Destructive SWAP Test

As shown in [48, 49], the destructive SWAP test
achieves the same outcome as the original SWAP test
but without the use of an ancilla qubit. This approach
uses set of parallel Bell measurements and classical post-
processing to achieve the same result as the original
SWAP test with constant depth, O(1). As a concrete ex-
ample, we provide the quantum circuit that implements
the destructive SWAP test for two 3-qubit registers:

|0〉

Uj

• H

|0〉 • H

|0〉 • H

|0〉

Ui|0〉

|0〉

These Bell measurements only require one-to-one con-
nectivity between each of the qubits in each of the two
registers (as shown above). In principle, this might be
a more hardware-friendly connectivity compared to the
Hadamard test quantum circuit which requires one-to-all
connectivity between the ancilla qubit and the rest of the
N -qubit register. In addition, the destructive SWAP test
also allows for an additional reduction in the gate depth
by allowing the implementation of Trotterized quantum
circuits where only n/2 time steps are implemented on
each register. Overall, the destructive SWAP test avoids
the use of controlled multi-qubit unitaries, and reduces
the depth of the time-stepping circuits by a half, resulting
in a substantial reduction in overall circuit depth com-
pared to the original Hadamard test.

Mirror-type Quantum Circuits

As discussed in [50], it is also possible to estimate pure-
state fidelities by using the following mirror-type quan-
tum circuits (shown for a 3-qubit register):

|0〉

Uj U†i|0〉

|0〉

By assuming that the all-zero state |0〉⊗N is the initial
state of the quantum circuit, it is then possible to esti-
mate F1 by measuring the transition probability of re-
turning to the same state at the output, i.e. measuring
F1 = |〈0|U†i Uj |0〉|2. The same type of circuit can be used
to measure the second fidelity F2, however, Ui and Uj
must be replaced with the appropriate circuits that pre-
pare 1√

2
(|0〉⊗N + |φi〉) and 1√

2
(|0〉⊗N + |φj〉) respectively.

While this approach requires higher depth quantum cir-
cuits, it does not require a second qubit register as in the
destructive SWAP test.

Randomized Measurements

Fidelity estimation protocols involving randomized
measurements [51–55] may also be used for the proposed
quantum Krylov subspace algorithms. These types of
protocols simply require preparing the quantum state
|φk〉 = Uk |0〉⊗N (k = i, j), and applying a random-
ized measurement quantum circuit at the output, labelled
Umeas, as shown below for a three-qubit register.

|0〉

Uk Umeas|0〉

|0〉

The choice of measurement quantum circuit will result in
different approximate classical descriptions of the quan-
tum state |φk〉, a so-called classical shadow, which can
be used to estimate an exponential number of local ob-
servables as well as state fidelities with a small number
of measurements [55]. For instance, it was shown in [55]
that N -qubit Clifford circuits achieve a precision ε with
1/ε2 measurements, while a measurement circuit con-
sisting of randomized single-qubit Pauli gates achieves
a precision ε with 4k/ε2 measurements, i.e. scaling ex-
ponentially with the locality k of the observable which
is relevant for fidelity estimation. While the Clifford cir-
cuit approach is the most powerful, it comes with in-
creased depth requirements, making it less desirable for
near-term quantum computing applications. In princi-
ple, this randomized measurement approach can reduce
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the number of calls/measurements NK even further from
the estimate that we provided in Table 1, though a more
careful analysis of the trade-off between the circuit depth
(required for Clifford circuits) and exponential number of
samples (as required by the Pauli circuits) would need to
be performed in order to understand the benefits of this
approach in the near term.

CONCLUDING REMARKS

Building on important previous work on the eigen-
pair problem on quantum computers [24, 26], and the
classical filter diagonalization method [35–37], we have
presented a unified view of quantum subspace diagonal-
ization methods including the introduction of three new
generalized eigenvalue problems that can be used to es-
timate the ground and excited-state energies of quantum
many-body Hamiltonians. Numerical illustrations of the
approaches were carried out for three quantum chemistry
problems. Each of these methods provide various advan-
tages and disadvantages in terms of number of calls to
the quantum computer, gate depth, classical complexity,
and numerical stability on the classical computer portion
of the algorithms. A key new aspect of our approach is a
multi-fidelity estimation protocol that avoids the use of
the Hadamard test to estimate the off-diagonal subspace
matrix elements, which allows for a substantial reduction
in gate depth.

Overall, we observed that all of the methods, when
tuned properly, converged to the correct eigenstate and
provided excellent estimates of the energy eigenvalues
with a small number time steps for both the ground
and excited state energy estimation problems. While
the KDM H and FDM H methods require less circuit
depth (equivalent to a single Trotter time step), the KDM
U and FDM U methods require a lot less calls to the
quantum computer, scaling as O(M/ε2) compared to the
O(LMp/ε2) scaling. This difference is particularly strik-
ing for quantum chemistry Hamiltonians in a localized
basis where L scales as O(N4) where N is equal to the
total number of spin-orbitals. For instance, a 50 spin-
orbital problem may have approximately 106 terms in
the Hamiltonian, which is substantial. This not only in-
creases the total time to solution, but also increases the
overall cost of the algorithm when the quantum computer
requires a per-shot fee.

We also found that by properly tuning the FDM hy-
perparameters, both FDM methods converged as quickly
as the KDM methods while also remaining much more
stable over a large number of time steps. As a result, we
found that the FDM algorithms achieved a much smaller
energy error and variance magnitude compared to the
KDM methods as the number of time steps increased.
The FDM methods also provide a clear advantage in
their classical complexity which might make them more

appealing for much larger problems. For example, it is
quite possible that a multi-reference method with tens
of thousands (or over a million) initial reference states
could be used to ensure that the initial wavefunction has
a strong overlap with the true ground state wavefunction.
In such a case, the classical cost of solving the generalized
eigenvalue problem would become a severe limitation for
the KDM methods, while the FDM methods would not
suffer from such problems. The FDM method should also
provide an advantage in finding interior excited-state en-
ergies (eigenvalues) where a large number of time steps
would be required and the filtering technique becomes
more important.

It should be noted that the QKSD algorithms, and in
particular the ones we introduced based on diagonaliza-
tion of the time evolution propagator (the “U” forms)
share some commonalities with the quantum phase es-
timation (QPE) algorithm, as also pointed by Klymko
et al. [38]. QPE is similar in spirit to Fourier analysis
of a correlation function and as a consequence one of-
ten sees arguments that the maximum propagation times
(equivalent to maximum circuit depth) must be on the
order of of O(1/ε) to achieve an eigenvalue estimation
accurate to ε [56, 57]. This would suggest propagation
times several orders of magnitude greater would be re-
quired for QPE algorithms compared to the short prop-
agation times shown here for QKSD algorithms, which
was also confirmed in [38]. Variations on QPE that use
more sophisticated signal processing ideas [58, 59] could
potentially overcome the O(1/ε) limit. Such methods ef-
fectively use prior knowledge about the form of the cor-
relation function or related quantities and, as a result,
the QKSD approaches discussed here could also be put
in this class.

Lastly, it is worth mentioning that the proposed algo-
rithms can also be used in conjunction with variational
quantum algorithms that use parameterized quantum cir-
cuits. This approach would use the final optimized quan-
tum circuit, obtained from a specific variational quan-
tum algorithm, as the initial state |φo〉 and would sub-
sequently build a Krylov basis to improve the energy or
cost function estimate. A more detailed analysis of the
effect of Trotter error, noise, as well as the development
of algorithmic-specific error mitigation strategies might
also represent important next steps for future work.
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APPENDIX A: QUANTUM CHEMISTRY AND
MOLECULAR SYSTEMS STUDIED

Within the Born-Oppenheimer approximation, a
molecule is comprised of η electrons interacting within
a potential produced by nuclei at fixed positions. Using
the second quantization formalism, the problem may be
cast in terms of N single-particle spin orbitals that can
be occupied or empty. In the absence of external fields,
the non-relativistic molecular Hamiltonian is written as:

H = hnuc +
∑
pq

hpqa
†
paq + 1

2

∑
pqrs

hpqrsa
†
pa
†
qaras (15)

where ap and a†p correspond to fermionic annihilation and
creation operators that obey the anti-commutation rela-
tions, {aj , ak} = 0, {a†j , a

†
k} = 0, and {aj , a†k} = δjk.

hnuc corresponds to the classical electrostatic repulsion
between nuclei, while hpq and hpqrs correspond to one-
and two-electron integrals and written explicitly as:

hnuc =
1

2

∑
i6=j

ZiZj
|Ri −Rj |

, (16)

hpq =

∫
dσ φ∗p(σ)

(
−∇

2
r

2
−
∑
i

Zi
|Ri − r|

)
φq(σ), (17)

hpqrs =

∫
dσ1dσ2

φ∗p(σ1)φ∗q(σ2)φr(σ1)φs(σ2)

|ri − rj |
. (18)

where the summations run over all nuclei. Zi represents
the nuclear charge, r and R denote electronic and nu-
clear spatial coordinates, and σ is a generalized coordi-
nate consisting of the spatial and spin degrees of freedom,
σi = (ri, si). The function φ(σ) represents a one-electron
spin-orbital. In the main text, we calculate the potential
energy surface E(R), which can be used to describe a
wide range of processes such as reaction dynamics, bond-
breaking, and chemical dynamics. In order to predict
thermochemical properties accurately at room tempera-
ture and atmospheric pressure, we require an estimate
of the potential energy surface within a chemical accu-
racy of 1 kcal/mol or equivalently 1.59 × 10−3 Hartrees
or 43.4 meV, represented by the horizontal lines in the
energy error plots in the manuscript.

For our illustrative calculations, we consider (i) a
6-atom linear hydrogen chain, H6, (ii) the bent H2O
molecule, and (iii) the linear BeH2 molecule. We employ
minimal STO-3G bases such that there are six spatial
molecular orbitals for H6, and seven molecular orbitals
each for H2O and BeH2. The number of qubits, after
performing the Jordan-Wigner transformation is equal

to the number of (active) spin-orbitals being treated.
The hydrogen chain can thus be treated with twelve
qubits corresponding to the total number of spin-orbitals
and within full configuration interaction (FCI). For H2O
and BeH2 we employ a complete active space approach
wherein there are n active electrons distributed in m spa-
tial orbitals with a full configuration interaction being
carried out only among the active electrons and orbitals,
sometimes denoted as CASCI(n,m). Generally the m
orbitals are the highest energy ones and the remaining
electrons are effectively frozen in the lower, inactive or-
bitals. In the case of H2O we use CASCI(8,6) and for
BeH2 we use CASCI(6,6), both corresponding to twelve
qubit Hamiltonians in both cases. Of course the levels of
theory here, in particular the use of STO-3G basis sets, is
quite crude by computational chemistry standards, but
it is sufficient to illustrate and compare the various diag-
onalization procedures of interest to us.

To obtain the coefficients of the second quantized
Hamiltonian, we defined the structure of the molecule by
its constituent elements and nuclear coordinates of the
atoms. The initial basis of single-particle states was ob-
tained via the Hartree-Fock method where each electron
is treated as an independent particle that moves under
the influence of the Coulomb potential due to the nuclei
as well as a mean field generated by all of the other elec-
trons. We used the quantum chemistry package PySCF
[60] to obtain the optimized coefficients of the linear com-
bination of the atomic orbitals, obtained via the Hartree-
Fock method. To map the fermionic second quantiza-
tion Hamiltonian to a qubit-basis, it is possible to use
the Jordan-Wigner, Parity, or Bravyi-Kitaev transforma-
tions. We used the OpenFermion Python package [61]
to obtain the qubit representation of the Hamiltonian,
where the Jordan-Wigner basis was chosen for all of the
numerical simulations. All of these packages can also
be found within the Pennylane cross-platform Python li-
brary [62].

APPENDIX B: CHOICE OF TIME STEP

First we consider the case that the generalized eigen-
value problem involves f(Ĥ) = Ĥ. If an absolute energy
scale is used for the corresponding Hamiltonian matrix
such that the energy eigenvalues of interest could be large
in magnitude, the time step τ should ideally be equal
to or smaller than π/∆E where ∆E is an upper bound
to the spectral range (difference between maximum and
minimum eigenvalues) and atomic units (~ = 1) are as-
sumed. This parallels considerations of discrete Fourier
transforms wherein the possible range of eigenvalues is
determined from the Nyquist interval (in terms of angu-
lar frequencies or energies), −π/τ to +π/τ [63]. Note
that it is generally not difficult to make such an upper
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limit estimate to the spectral range given some knowl-
edge of the problem, e.g., the Hartree-Fock and molecu-
lar orbital energies in the case of the electronic structure
problem.

If sufficient accuracy can still be achieved with the cor-
responding Trotter time steps, however, one can actu-
ally use larger τ values than π/∆E if the energy zero
of the Hamiltonian is simply shifted to be in the center
of the desired energy range, i.e. the Hamiltonian in all
equations is taken to be the energy-shifted one. Alias-
ing, i.e., mapping of eigenvalues outside the correspond-
ing Nyquist interval into it can be easily and cheaply
monitored for: a slightly different τ will yield the same
“true eigenvalues but the aliased ones will shift. Actu-
ally, in the three chemical systems considered in this pa-
per there were no issues with aliasing at all because even
with the energy shifting permitting the larger τ values,
the Nyquist interval was still tens of Hartrees wide and
sufficient to capture all relevant eigenvalues present.

Similar considerations to the above apply when
the generalized eigenvalue problem involves f(Ĥ) =
exp(−iĤτ). That is, ideally τ ≤ π/∆E where ∆E is
an upper bound to the Hamiltonian’s spectral range but,
with appropriate recognition of aliasing issues larger τ
could be used. We note that in this case the eigenval-
ues f(Ek) are complex and lie on the unit circle. Let
θk = tan−1(−Im f(Ek)/Re f(Ek)) be the angle between
−π and π that results from typical numerical arctangent
function (“atan2(y, x)) calls. The possible energy eigen-
values are Ek = (θk+j2π)/τ , where j = 0, ±1, ±2, etc. If
some absolute energy scale that leads to large magnitude
physical energy eigenvalues is used, then |j| ≥ 1 value
may have to be used to obtain energy eigenvalues in the
desired physical range. The Hamiltonian energy shift-
ing noted above is particularly convenient for this case
because then, typically, it is not necessary to shift the
eigenvalues and j = 0 suffices. Finally, it is worth not-
ing that the ill-conditioning that can occur in KDM and
to a somewhat lesser extent in FDM might be avoided
through the use unequal and more largely spaced time
steps as, for example, are used in quantum phase esti-
mation and this is another avenue worth investigating in
future work.

APPENDIX C: NUMERICAL SOLUTION OF
THE GENERALIZED EIGENVALUE PROBLEM

The numerical simulations shown in Figures 2 to 4 were
performed with an in-house Python code using standard
NumPy and SciPy numerical linear algebra packages. The
classical solution of the complex generalized eigenvalue
problem, Fc. = fSc, was performed using the QZ al-
gorithm or generalized Schur decomposition [31] of the
complex matrices F and S, which we found to be much

more stable compared to conventional generalized eigen-
value solvers.

An alternative, more “hands on” approach to solving
the generalized eigenvalue problem is to carry out singu-
lar value decomposition [31, 38] of the overlap matrix, S,
thereby allowing construction of its inverse and turning
the problem into an eigenvalue problem for a complex
matrix of the form, e.g., S−1Fc = fc. The latter prob-
lem can be numerically solved with standard numerical
software but may require appropriate zeroing of some of
the singular values when the inverse is constructed.

APPENDIX D: OVERVIEW OF HADAMARD
TEST

In the following, we describe the Hadamard test used
for estimating the matrix element, 〈φi|U |φi〉. This
method uses an ancilla qubit initially prepared in the |0〉
state, with the rest of the quantum circuit shown below:

|0〉 H •

|φi〉 / U

This type of approach will effectively require an an-
cilla with one-to-all connectivity in order to keep the
circuit gate depth as short as possible. The real and
imaginary parts of the matrix element are obtained by
measuring the ancilla qubit in the X and Y Pauli ba-
sis, where it can be shown that 〈σx + iσy〉 = 〈φi|U |φi〉.
This type of Hadamard quantum circuit is sufficient for
single-reference-based Krylov subspace algorithms. For
more general off-diagonal matrix elements of the form,
〈φi|φj〉 = 〈0|U†i Uj |0〉, as required by multi-reference
Krylov subspace algorithms [26], the following quantum
circuit would be used:

|0〉 H X • X •

|0〉⊗N / Uj Ui

where Ui and Uj correspond to the quantum circuits
that prepare |φi〉 and |φj〉, defined through the relations
|φi〉 = Ui |0〉 and |φj〉 = Uj |0〉 respectively. The real and
imaginary parts are obtained through the measurement
of the ancilla qubit in the X and Y Pauli basis as before.

APPENDIX E: DETAILS OF EXCITED-STATE
ENERGY CALCULATIONS

In the main manuscript, we performed excited-state
energy calculations for a water molecule as a function
of the bond length R between the oxygen and hydro-
gen atoms. We only considered the singlet excited-state
energies where the total angular momentum is zero. In
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principle, it is possible to use the Hartree-Fock state as
the initial starting state |φo〉 since it corresponds to a
singlet state and, by symmetry, it will be connected to
the excited singlet states. However, the convergence to-
wards the excited-state energies will be slow because the
Hartree-Fock state is nearly orthogonal to the desired
excited-state wavefunctions. Here, we propose the use of
physically-motivated ansatz states to find the first four
singlet excited-state energies of water. The ansatze con-
sists of the following four states:

|Φ0〉 = 1√
2

(|000110111111〉 − |001001111111〉) (19)

|Φ1〉 = 1√
2

(|000111101111〉 − |001011011111〉) (20)

|Φ2〉 = 1√
2

(|010010111111〉 − |100001111111〉) (21)

|Φ3〉 = 1√
2

(|010011101111〉 − |100011011111〉) (22)

where we use an alternating alpha (spin up) beta (spin
down) ordering for the spin-orbitals with increasing en-
ergies from right to left. Note that each of these states
has zero total angular momentum, therefore, they will
be decoupled from any triplet states that might other-
wise slow down the convergence of the Krylov-based al-
gorithm. For the calculations, we used states (18)-(21)
as the initial single-reference starting state |φo〉. Each of
the calculations are independent from one another. To
perform the multi-fidelity estimation protocol from the
main manuscript, each of these four states would require
a state preparation step that initializes the superposi-
tion state, 1√

2
(|0〉⊗N + |Φk〉), where k = 0, 1, 2, 3, on the

quantum computer.
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