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Abstract

The simulation of strongly correlated many-electron systems is one of the most promising ap-

plications for near-term quantum devices. Here we use a class of eigenvalue solvers (presented

in Phys. Rev. Lett. 126, 070504 (2021)) in which a contraction of the Schrödinger equation is

solved for the two-electron reduced density matrix (2-RDM) to resolve the energy splittings of

ortho-, meta-, and para-isomers of benzyne C6H4. In contrast to the traditional variational quan-

tum eigensolver, the contracted quantum eigensolver can solve an integration (or contraction) of

the many-electron Schrödinger equation onto the two-electron space. The quantum solution of the

anti-Hermitian part of the contracted Schrödinger equation (QACSE) provides a scalable approach

with variational parameters that has its foundations in 2-RDM theory. Experimentally, a variety

of error mitigation strategies enable the calculation, including a linear shift in the 2-RDM targeting

the iterative nature of the algorithm as well as a projection of the 2-RDM onto the convex set of

approximately N -representable 2-RDMs defined by the 2-positive (DQG) N -representability con-

ditions. The relative energies exhibit single-digit millihartree errors, capturing a large part of the

electron correlation energy, and the computed natural orbital occupations reflect the significant

differences in the electron correlation of the isomers.

I. INTRODUCTION

The simulation of many-body quantum systems is a key application for near-term quan-

tum computing [1–4]. The complexity of these simulations is such that algorithms on even

moderately sized quantum devices—tens of qubits—with sufficient error mitigation will likely

be competitive with existing classical methods [5–8]. A particular instance is the simula-

tion of strongly correlated molecular systems, such as occur in many chemical reactions,

transition-metal complexes, energetically degenerate processes, and solid-state materials [9–

11]. These systems, which often cannot be treated consistently with perturbative or polyno-

mially scaling approaches relying on a single determinant, are ideal candidates for realizing

an advantage from the use of quantum computers in lieu of classical computers, known

as quantum advantage. Realizing such as advantage, however, requires algorithms that
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are optimal for quantum computers in terms of state preparation, measurement, and error

mitigation for the noise present in near-to-intermediate-term devices [12, 13].

Various variational quantum eigensolvers (VQE) for molecular simulation exist [14–21],

most of which attempt to minimize the energy of a parameterizable ansatz against the

Schrödinger equation. An alternative family of algorithms known as contracted quantum

eigensolvers (CQE) [22], involves minimizing the residual of a projection (or contraction)

of the N -electron Schrödinger equation onto the space of two electrons, known as the con-

tracted Schrödinger equation (CSE) [23–30]. Closely connected to classical reduced density

matrix theory, the CQE has several key features that are favorable to efficient quantum

molecular simulations. First, the solution of the CSE, it has been shown, produces an exact,

rapidly convergent parametrization of the wave function from a product of only two-body

exponential transformations [31, 32]. Furthermore, solution of the anti-Hermitian part of

the CSE, known as the anti-Hermitian CSE (ACSE) [33–36], can yield a parameterization

of the wave function in terms of two-body unitary transformations [33, 35], which is theoret-

ically exact [37] and readily implementable through unitary gates for state preparation on a

quantum computer. Second, the residual of the ACSE yields the gradient of the energy with

respect to two-body unitary transformations, which allows for more efficient optimization

on quantum computers than derivative-free schemes [14, 38–41] that could be limited to

hundreds of parameters. Indeed, recent work by our group introduced a CQE algorithm

which can solve the ACSE efficiently on a quantum computer [22].

Solution of the ACSE for the 2-RDM on classical computers has been applied to treating

both ground and excited states of strongly correlated molecules including non-trivial con-

ical intersections [35, 42–48]. The solution of the ACSE on quantum computers—a CQE

algorithm or quantum ACSE—can potentially avoid the approximate reconstruction of the

three-particle RDM (3-RDM) from the 2-RDM through preparation of the wave function

on the quantum computer in polynomial time [49]. The quantum ACSE also shares certain

similarities with the methods that attempt to decoupled and expand the single exponential

unitary coupled cluster (UCC) ansatz [50, 51], such as the adaptive derivative-assembled

pseudo-trotterization VQE (ADAPT-VQE) method [52]. The quantum ACSE circumvents

issues of the trotterization of the ansatz (necessary for an exact exponential expression) and

high variational cost involved in an update step, and contains a natural selection of a pool

of unitary transformations through the elements of the ACSE. Moreover, because the ACSE
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generates the 2-RDM, it is readily combined with error mitigation strategies that correct

the N -representability of the 2-RDM. With its theoretical advantages and promising com-

putational results, the ACSE method provides a potentially flexible framework for molecular

simulation on quantum computers.

In the present work we apply the quantum ACSE solver to resolve the relative ground-

state energies of the correlated isomers of benzyne on a superconducting quantum computer.

The ortho-, meta-, and para-benzyne (C6H4) isomers contain non-trivial electron correlation,

especially para-benzyne which is a biradical [53–58]. The computed relative energies are ac-

curate to less than 0.005 hartrees, and the natural-orbital occupations reflect the differences

in electron correlation among the isomers. The accuracy of the results demonstrates the

benefits of both the solver and the error mitigation strategies. Because these strategies

are general, they can be applied to larger, more correlated molecules and represent a step

towards performing strongly-correlated calculations on a quantum computer

II. THEORY

In this section we review the theoretical framework for the quantum ACSE algorithm [22],

and explore the error mitigation schemes necessary for the calculation, including the use of

N -representability conditions for the purification of the measured 2-RDM[59, 60].

A. Quantum Solver of the Anti-Hermitian Contracted Schrödinger Equation

For a many-electron system the two-electron contracted Schrödinger equation [23–30] is

〈Ψ|â†i â
†
j âlâkĤ|Ψ〉 = E 2Dij

kl, (1)

where 2D is the 2-RDM, â†i and âi are creation and annihilation operators for a spin orbital

i, and Ĥ is the Hamiltonian operator that is given by

Ĥ =
∑
pqrs

2Kpq
st â
†
pâ
†
qâtâs, (2)

in which 2K is the reduced Hamiltonian matrix containing the one- and two-electron inte-

grals. Taking the anti-Hermitian part of Eq. (1) produces the ACSE [33–35, 46, 47]:

〈Ψ|[â†i â
†
j âlâk, Ĥ]|Ψ〉 = 0, (3)
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which depends upon not only the 2-RDM but also the 3-electron RDM (3-RDM) (see

Refs. [34, 61, 62] and Appendix B 4). The residual of the ACSE is equal to the gradi-

ent of the energy with respect to two-body unitary transformations, and hence, the residual

of the ACSE vanishes if and only if the gradient vanishes. Consequently, the ACSE provides

a framework for the iterative optimization of a product of two-body unitary transformations

on a reference wave function, which leads to the quantum ACSE algorithm presented in

Figure 1.

Let |Ψn〉 be the n-th iteration of the wave function, where 2D0 is the 2-RDM of the initial

Hartree-Fock state |Ψ0〉. The 2-RDM of the (n+ 1)-th iteration is

2Dpq;st
n+1 = 〈Ψn|e−εnÂn â†pâ

†
qâtâse

εnÂn|Ψn〉, (4)

where εn is theoretically an infinitesimal step and 2Ân is an anti-Hermitian operator

2Ân =
∑
ijkl

2Aij:kln â†i â
†
j âlâk. (5)

The energy at each iteration is computable from the 2-RDM

En+1 =
∑
pqst

2Kpq
st

2Dpq;st
n+1 . (6)

Elements of the 2An matrix can be selected [34] as the residual of the ACSE

2Aij;kln = 〈Ψn|[â†i â
†
j âlâk, Ĥ]|Ψn〉, (7)

which is effective because the ACSE’s residual is related to the gradient of the energy with

respect to the elements of 2An

〈Ψn|[â†i â
†
j âlâk, Ĥ]|Ψn〉 = − 1

εn

∂En+1

∂ 2Aij;kln

+O(εn). (8)

Hence, by using the residual, we are choosing a search direction that maximizes the change

in the energy for small εn. The ACSE can be expressed in terms of the 2- and 3-RDMs and

can be evaluated classically with an O(r6) cost using a reconstructed 3-RDM in which r is

the rank of the one-electron basis set. On a quantum computer, we can obtain elements

of 2An in a potentially more efficient manner without the reconstructed 3-RDM. Define an

auxiliary 2-RDM:

2
±Λij;kl

n = 〈Ψn|e∓iδĤ â†i â
†
j âlâke

±iδĤ |Ψn〉, (9)
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in which the n-th wave function is propagated through a time-like step δ in the forward or

reverse direction. Then, we can obtain elements of the residual from tomography of these

auxiliary RDMs with O(r4) scaling:

2Aij;kln =
1

2iδ
(2+Λij;kl

n − 2
−Λij;kl

n ) +O(δ2). (10)

These equations suggest an iterative approach to finding a solution of the ACSE, which is

depicted in Fig. 1. After initializing the wave function and 2-RDM, for a given iteration we

construct the operator 2A through classical or quantum approaches, prepare and measure

2Dn+1 (possibly optimizing εn and carefully selecting elements of 2An to include in the wave

function), and iterate between 2Dn and 2An until ||2An|| is less than a certain threshold.

In the classical-computing algorithm the solution of the ACSE requires an approximate

reconstruction of the 3-RDM from the 2-RDM through a cumulant expansion [61, 63, 64]

to compute the 2-RDM without the wave function. In the quantum-computing algorithm,

in contrast, the wave function is prepared with polynomial scaling, and hence, approximate

reconstruction of the 3-RDM is not necessary. A hybrid quantum-classical approach exists as

well, where we prepare the wave function and measure the RDMs on the quantum computer

but evaluate the ACSE for the residual (gradient) on the classical computer. In the noiseless

limit the ACSE can be solved by the quantum-computing algorithm to an arbitrary level

of accuracy. The errors arising from the expansion in Eq. (6) are controllable with respect

to δ. Computationally, we find in the noiseless limit that the solution of the ACSE yields

a wave function, parameterized by two-body unitary transformations, that solves not only

the ACSE but also the N -electron Schrödinger equation.

Finally, several variations of the algorithm are possible for practical implementations on

quantum computers. For example, a limited portion of 2An, such as its largest terms, can

be used; a stochastic gradient or reduced gradient sampling technique can be implemented,

lowering the measurement cost of 2Λn at each step. The quantum and classical methods

can be combined where direct quantum tomography is only employed for the parts of the

2-RDM that are strongly correlated.
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FIG. 1. The quantum-ACSE algorithm. After initializing the state (0), we begin an iterative

process of obtaining the 2A elements (1) using a quantum (QPU) or classical (CPU) processor,

which will have errors in the series expansion (O(δ2)), a higher measurement cost (O(r6)), or

errors from the 3-electron reduced cumulant matrix (3∆). After checking for convergence against a

threshold x (2), we construct the next ansatz (3), and optionally perform a classical minimization

against the step size. Finally, we measure the new 2-RDM (4), and proceed to (1) until we converge

or n = nmax.

B. Quantum Computation

In this work we utilize the QACSE method and generate 2Dn on the quantum computer,

and obtain elements of 2An on the quantum computer for the smaller qubit calculations

(Eq. 10), and classically with a reconstructed 3-RDM for the larger qubit calculations (Eq. 8).

Figure 2 provides an overview of the process to obtain a fully error mitigated 2Dn. We also

include details related to the specific techniques and other aspects of the calculation in

Appendix B.

To obtain 2Dn, at a given step, we first transform the 2An operator into a suitable

form for the quantum computer (including our qubit reduction scheme). Explicitly, this is

done through a first order trotterization of the exponential of Eq. (5), where each element

of the 2An matrix is implemented separately. However, because we would like to avoid

implementing all the operators at once, we use an element threshold to determine inclusion

in the ansatz. To implement the gate sequence, we prepare and manually simplify the set of 2-

RDM operators corresponding with possible elements of 2An. These are assembled according
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FIG. 2. Error mitigation scheme to obtain corrected 2-RDMs. We first take a set of instructions,

and construct the appropriate circuit design. We run these on the quantum computer to obtain a

set of measurement results which are then corrected through the inversion of a state preparation

matrix (SPAM, small hatched rectangle). Measurements corresponding to diagonal elements of

the 2-RDM (M c
i ) will commute with the N̂ and Ŝz symmetries, and so are projected onto the

proper operator space. We then apply our shift correction, Γn, which also preserves trace but can

introduce negative eigenvalues, and optionally, a purification of the 2-RDM.

to our inclusion criteria, and then the circuits are run. After measurement, we apply a filter

(via construction and inversion of a state transition matrix, referred to as SPAM) and then

apply a projection into the proper number and projected spin space (N ∈ {2, 4}, Sz = 0)

for measurements which commuted with these operators (which are Zi type measurements).

In some cases we then apply our limit-preserving correction Γn to the ansatz (see below),

followed by an optional purification of the 2-RDM.

To our knowledge, the penultimate error mitigation technique has not been used else-

where, and the final technique was recently introduced for quantum simulations [60] but

not yet demonstrated experimentally, and so we briefly detail them here. The first is a

correction targeting errors in an iterative ansatz that arise simply from adding extra gates,

whereas the second is an expansion of techniques related to ensuring the physicality of the

measured RDM through N−representability constraints.
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C. Limit-Preserving Correction for an Iterative Ansatz

To compensate for errors which occur at each step due to the increasing the number

of gates in an iterative scheme, we present an error mitigation strategy which we call a

limit-preserving correction or a 2Γ-correction. Consider the n-th iteration of the QACSE

algorithm. Given the elements of 2An, we can consider the (n+ 1)-th 2-RDM as a function

of εn as it approaches 0 from the positive direction:

2Dpq;st
n+1 (0+) = lim

εn→0+

2Dpq;st
n+1 (εn) (11)

= 2Dpq;st
n (εn−1) + lim

εn→0+
εn〈Ψn|[a†pa†qatas, 2Ân]|Ψn〉. (12)

While this quantity theoretically approaches 2Dn(εn−1) as εn → 0+, in practice the discrete

unitary gates are subject to substantial noise on current-to-intermediate-term quantum com-

puters and hence, do not collapse to the identity operator for any actual gate sequence. The

noise channels in general will contract the set of possible 2-RDMs (e.g., for systems with

strong depolarizing errors this is to a fully depolarized 2-RDM). For our system, this can

lead to a result that any energy obtained will be higher than the energy of the previous step

(see Appendix C 3 for an example). In these instances, the change in energy due to noise is

greater than any change from the optimization.

Let 2Γn be a matrix of the same rank as the 2-RDM, and 2D̃n(εn) be the corrected

2-RDM. Then we define a correction by the following system of equations:

2D̃n+1(εn) = 2Dn+1(εn) +
n∑
i=0

2Γi (13)

2Γn = 2Dn(εn−1)− 2Dn+1(0
+), (14)

2D0 = 2DHF. (15)

Eq. (13) defines the error mitigated 2-RDM at each step. The 2Γn in Eq. (14) is the

difference between the new state with εn = 0+ and the previous state. Eq. (15) gives

the initial condition of the system. The correction helps to avoid noise-related barriers in

the optimization surface (as 2D̃n+1(0
+) = 2Dn(εn−1)), allowing us to reach 2-RDMs that are

normally inaccessible due to the noise. For a noise-free simulation, we also have that 2Γn = 0

for all n, ensuring that we would maintain the exact result on a perfect quantum computer.

We use the corrected 2-RDM 2D̃n+1 throughout the optimization in evaluating the energy
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as well as choosing the elements of 2An+1. While the gradient information reflected in 2A

around 2D and 2D̃ will not be the same when 2Γ is large, because we are optimizing E[2D̃n],

and because we generate 2An with Eq. (8), this is the appropriate choice. If we were to use

Eq. (10) instead, then we would obtain information around 2Dn, and would have to correct

2A as well.

There are a number of practical considerations in the implementation of the 2Γ-correction

such as the potential variability of the noise. Because we are adding RDMs with separate

uncertainties, the uncertainty in the result increases (if we assumed independent 2Γi with

equal standard deviations σ, this would be
√
nσ after n iterations), which may require us to

increase the sampling of 2Γi. The errors affecting the quantum computer may exhibit a time

dependence on the order of the run time. To avoid this possibility, we run the results as

contiguously as possible with the total number of iterations n being kept relatively low (for

all instances n ≤ 5). Additionally, the 2-RDM is purified in some cases to ensure that the

negative eigenvalues of the 2-RDM and the related 2-hole and particle-hole RDMs (see next

section) are eliminated. Regardless, we find this error mitigation strategy to be necessary

to obtain meaningful results within the context of an iterative ansatz.

D. Purification of the 2-RDM

As mentioned above, the effect of noise in a quantum simulation is that measured quantum

state might no longer represent a physical system. While we cannot directly assess the

purity or fidelity of an RDM, we can “purify” the 2-RDM to ensure that the eigenvalues

of the various permutations of the particle and hole reduced density matrices are positive

semidefinite, which are necessary criteria for a pure-state or ensemble N -representable 2-

RDM [65]. A matrix is positive semidefinite if and only if its eigenvalues are nonnegative. For

instance, for the 2-RDM, the 2-particle (2D), 2-hole (2Q), and particle-hole (2G) matrices

must have nonnegative probabilities, and hence, must be positive semidefinite in a set of

conditions known as the 2-positivity (or DQG) conditions [59, 66–68]

2D < 0, (16)

2Q < 0, (17)

2G < 0, (18)
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where the elements of these metric matrices are given by

2Dij
kl = 〈Ψ|â†i â

†
j âlâk|Ψ〉, (19)

2Qkl
ij = 〈Ψ|âkâlâ

†
j â
†
i |Ψ〉, (20)

2Gil
kj = 〈Ψ|â†i âlâ

†
j âk|Ψ〉. (21)

We accomplish the purification by semidefinite programming, which allows us to minimize

an function of a matrix subject to linear constraints while ensuring that the matrix remains

positive semidefinite [69–71]. The general method was developed by one of the authors for

reconstructing noisy processes for quantum tomography [59], and was more recently applied

in the context of quantum simulation by Rubin et al. [60].

The objective in this work is to create a purified 2-RDM, 2DSDP, which minimizes the

norm of the error matrix E = 2D − 2DSDP, subject to the constraints (DQQ) ensuring that

2DSDP represents a physical system. To express this as a semidefinite program, we take F

to be a matrix of free variables, and then minimize the trace of the following block matrix: I E

E† F

 < 0. (22)

Taking the determinant of the 2 × 2 block matrix allows us to relate the trace of F to

the Frobenius norm, providing a semidefinite relaxation for the minimization problem. The

DQG constraints can be expressed in a block-diagonal form:
2D 0 0

0 2Q 0

0 0 2G

 < 0. (23)

These semidefinite conditions, the linear mappings between the metric matrices, and the

trace of the 2-RDM define the constraints in the SDP. To solve the SDP, we use a boundary-

point algorithm for the direct variational calculation of the 2-RDM [71–74]. The algorithm

for purification of the 2-RDM with the DQG conditions has a scaling of O(r6).

III. BENZYNE CALCULATIONS

In this work we use the QACSE method to investigate the ortho-, meta-, and para-

isomers of benzyne, which may be obtained via the elimination of two substituents in the
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relevant positions of the benzene ring. Owing to their versatility as reactive intermedi-

ates in biological processes, derivatives of the isomeric benzynes have been the subject of a

growing interest in the synthetic research community in the development of biomimetic reac-

tions [75], such as the Diels-Alder reaction [76] and in so-called “click chemistry” [77], with

a wide range of applications to the synthesis of heterocycles [78] and natural products [76].

Even though biradicals such as benzyne play key roles across synthetic and materials chem-

istry, making their accurate theoretical description quintessential to the understanding of

chemical processes, their exact treatment continues to pose a challenge to electronic struc-

ture theory [53, 54]. Details regarding the electronic structure treatment of these systems

are included in Appendix A.

Figure 3 shows the structures for each of the three isomers, as well as the occupations

of the highest and lowest occupied natural orbitals. The energetic ordering of the three

isomers follows their degree of diradical character, with experimental gas phase heats of

formation showing ortho as the energetically lowest isomer, followed by the meta and then

para isomers, at energies of 10 ± 3 kcal/mol and 22 ± 3 kcal/mol relative to the ortho

reference, respectively [79]. The variations in ground-state energy and diradical character

are driven by the degree to which the geometric constraints of the given isomer allow for

overlap between the singly occupied carbon-p orbitals, which is demonstrated by the elec-

tron densities of the highest occupied natural orbital (HONO) and the lowest unoccupied

natural orbital (LUNO), shown in Fig. 3. In the ortho isomer, adjacency of the singly occu-

pied orbitals allows for good overlap and energetically favorable formation of a bond with

significant π character, giving this isomer C-C triple bond character. While somewhat com-

pensated by geometric distortion, driven by the greater C-C radical distance the magnitude

of this bonding interaction is reduced in the meta isomer, and essentially diminished in the

para geometry, where no overlap between the lobes of the carbon-based radical orbitals is

geometrically feasible.

Besides the relative ground-state energies, the singlet-triplet gaps of these isomers are

well documented experimentally and are used for benchmarking multi-reference electronic

structure methods [53, 54, 57]. In this work we focus on resolving the differing degrees of

correlation present solely in the ground-state 2-RDMs. As the radical electrons are localized

in orbitals perpendicular to the π-system, a minimal [2,2] active space is sufficient to describe

the multi-reference correlation in these systems and the inclusion of additional orbitals solely
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FIG. 3. Molecular orbital diagram and natural-orbital occupations of the highest and occupied

lowest natural orbitals for ortho-, meta-, and para-benzyne. Geometries for the ortho- and meta-

isomers were obtained from reference [80] and optimized with spin-flip time dependent density func-

tional theory (SF-TDDFT), and the para- isomer was obtained from reference [81] and optimized

with spin-flip coupled cluster with singles and doubles (SF-CCSD).

results in the recovery of additional dynamic correlation. A recently published companion

work utilizes these results as the kernel for a classical calculation that includes dynamic

correlation effects from orbitals beyond the active space [82]. The inclusion of these orbitals

as well as larger basis sets is necessary for more rigorous experimental comparisons. An

exploration of the singlet-triplet gaps is the goal of future work.

The relative energies from the complete active space self-consistent field method (CASSCF)

and from the quantum calculations are listed in Table 1 and Figure III for the [2,2] and [4,4]

active spaces where the notation [X,Y] denotes X electrons in Y orbitals. The CASSCF

calculations optimize the active electrons and orbitals in the mean-field of the remaining

electrons and orbitals. The target CASSCF results yield the correct ordering, although

each gap is slightly higher than experimental values. For the [2,2] case, the meta and para

energies relative to ortho are 15 and 23 kcal/mol, respectively. For the [4,4] active space,

the meta and para energies relative to the ortho configuration are 13 and 29 kcal/mol re-

spectively. The [2,2] active space corresponds with a 1-qubit quantum calculation, whereas

the [4,4] calculation was performed with 4 and 3 qubits, representing exact and near-exact

symmetries respectively (see Appendix B 2, B 1, and B 3). The error mitigation ranges

from a simple measurement correction to our full scheme of corrections (denoted L+, or

MPL+). M refers to a state preparation and measurement, P to the application of the
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FIG. 4. Overview of results shows active space calculations for the different configurations of

benzyne across several methods, including Hartree-Fock, CASSCF, and QACSE for [2,2] and [4,4]

active spaces. The 3- and 4-qubit results utilize the limit-preserving correction (L) and purification

(+) schemes of error mitigation. The data corresponds with results taken in Table 1.

number projection, L to the use of the 2Γ-correction, and + to the SDP corrected state.

The error in the obtained relative energies on the quantum computer in the [4,4] case is

1.6 kcal/mol (2.6 mhartree) for both the 3-qubit (3Q) and 4-qubit (4Q) cases, whereas for

the [2,2] space, we obtain a result within 2 kcal/mol (3 mhartree). The number of unique

iterations is between 3−6, depending on the ansatz developed. The operators in the qubit

basis (see Appendix B 6) for the 3-qubit calculations have 0−8 CNOT gates, while the pool

of operators for the 4-qubit operators each have 8-12 CNOT gates.

Another comparison between the error mitigation schemes is seen in the target energies

for each calculation relative to the classical CASSCF result. These errors are listed in

Table 1. In particular, despite having differences between configurations of only a few

kcal/mol, the difference from the CASSCF results for results without the 2Γ-correction is

around 20 to 30 kcal/mol higher than the target energies across the configurations. These

results are more common for what might be expected from noisy quantum devices, as often

the lowest energy states are not the final state of the optimization. The 2Γ-corrected results
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TABLE 1. Relative energies between the configurations of benzyne with classical CASSCF and

QACSE methods for differing active spaces and levels of error mitigation, in kcal/mol. [0,0] active

space refers to the initial Hartree-Fock calculation. M refers to a state preparation and measure-

ment error, P to the application of the number projection, L to the use of the 2Γn-correction, and

+ to the SDP corrected state.

Number Error Eisomer − Eortho (kcal/mol)

Method [X,Y] Qubits Mitigation meta para

CASSCF [0,0] 27.3 94.2

[2,2] 15.2 23.4

[4,4] 16.5 29.5

QACSE [2,2] 1 M 13.4 21.7

[4,4] 3 MP 19.6 15.4

[4,4] 3 MPL 32.5 55.7

[4,4] 3 MPL+ 18.1 31.0

[4,4] 4 MPL 27.1 23.6

[4,4] 4 MPL+ 17.6 27.5

Expt. [79] 10 ± 3 22 ± 3

on the other hand in some instances can be below the variational CI bound, highlighting the

need for purification. Comparisons with ideal results in Appendix B 5 show that the ideal

QACSE essentially achieves the CASSCF result, while the ideal reconstructed 3-RDM-based

approach yields errors on the order of millihartrees with the largest error for meta-benzyne.

While the error from the reconstruction might seem significant, it is an order of magnitude

smaller than the error from the noise on the quantum devices..

Finally, the natural-orbital occupation numbers, which are the eigenvalues of the 1-RDM,

can help infer the nature and degree of electron correlation in the system. The Hartree-Fock

state, corresponding with a single determinant, has eigenvalues of 2 or 0 across all (spatial)

orbitals, while a biradical system would exhibit equal occupations of 1 in the highest occupied

and lowest unoccupied natural orbitals. We report the natural orbital occupations for the

CASSCF and purified results in Table III for the 1-,3-, and 4-qubit QACSE calculations.

In each case, we see significant differences between the para isomer and the other two
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TABLE 2. Difference in energy between the QACSE methods including various error mitigation

schemes and the CASSCF result in millihartrees (mhartree).

Number Error Error Relative to CASSCF (mhartree)

[X,Y] Qubits Mitigation ortho meta para

[2,2] 1 M 4.8 1.9 1.9

[4,4] 3 MP 51.9 43.2 29.5

[4,4] 3 MPL −53.6 − 28.1 −11.8

[4,4] 3 MPL+ 2.1 4.6 4.5

[4,4] 4 MPL −25.9 − 9.0 −35.3

[4,4] 4 MPL+ 20.2 21.9 17.0

isomers (ortho and meta) on the quantum computer. The para-benzene, which does not

have any overlapping density between the carbon p orbitals (see Fig. 3), exhibits biradical

character, whereas the other two configurations exhibit more single-reference character. This

is also reflected in the amount of correlation energy recovered (ECASSCF − EHF) for each

configuration (see Fig. III). When compared to the CASSCF occupations, the results for the

3-qubit case were all with 0.09 of the target occupations. In the 4-qubit case the ortho (0.14)

and meta (0.19) HONO and LUNO occupations have more significant errors, which could

be expected from the increased absolute energies seen for each of these isomers. By looking

at the HONO-1 and LUNO+1 orbitals in the [4,4] space, we also see that the fractional

occupations of the HONO and LUNO are not an artifact of error on the quantum computer,

as the closeness of the HONO-1 and LUNO+1 occupations to 2 and 0 is maintained.

IV. DISCUSSION

The results of these benzyne calculations highlight the potential for quantum simulation

on near-term devices, particularly with quantum RDM methods and error mitigation tools

designed for RDMs. Though work in our group and elsewhere has investigated and obtained

highly accurate results for small systems or particular configurations of electrons (namely in

taking advantage of pure N -representability constraints) [4, 20, 83], this work represents a

step towards more general quantum computing algorithms based on RDM theory. Indeed,
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TABLE 3. Largest natural-orbital occupation numbers for the CASSCF results and the purified,

2Γ-corrected results for the [2,2] and [4,4] active spaces on the quantum computer. In each case, the

para-benzyne solution exhibits biradical character in the highest occupied and lowest unoccupied

natural orbitals, though to differing degrees based on the method.

Number Orbital Occupations

Method [X,Y] Qubits Orbital ortho meta para

CASSCF [2,2] HONO 1.811 1.712 1.232

[2,2] LUNO 0.189 0.288 0.768

QACSE [2,2] 1 HONO 1.695 1.604 1.127

[2,2] 1 LUNO 0.305 0.396 0.873

CASSCF [4,4] HONO−1 1.947 1.977 1.981

[4,4] HONO 1.813 1.756 1.235

[4,4] LUNO 0.187 0.244 0.765

[4,4] LUNO+1 0.053 0.023 0.019

QACSE [4,4] 3 HONO−1 1.956 1.976 1.992

[4,4] 3 HONO 1.851 1.761 1.148

[4,4] 3 LUNO 0.149 0.239 0.852

[4,4] 3 LUNO+1 0.045 0.012 0.008

QACSE [4,4] 4 HONO−1 1.973 1.985 1.956

[4,4] 4 HONO 1.938 1.570 1.200

[4,4] 4 LUNO 0.054 0.433 0.790

[4,4] 4 LUNO+1 0.036 0.012 0.055

the [4,4] active space represents an important step from model systems and minimal cases

towards the end goal of robustly treating strongly correlated many-body systems. These

results also demonstrate a useful classical-quantum hybrid approach, incorporating elements

from both classical and quantum techniques.

With regards to the number of iterations and the variational cost, for many systems, in-

cluding the benzyne isomers, the QACSE method is consistently able to recover a large part

of the correlation energy within a few iterations. While we also evaluated derivative-free
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1-dimensional optimizers that might be able to help in a noisy landscape [14, 20, 39], practi-

cally, the trust-region optimization combined with a rejection criteria provides a reliable way

of choosing a step size for Eq. (4), and making sure that convergence progresses as a whole.

The rejection criteria in particular eliminate iterations which do not contribute to the ansatz

properly with an optional reevaluation of the last 2An step. This helps in particular with

overcoming instances where the errors in the gradient are too large to take a meaningful

step. It is also worth mentioning that the experiment requirements for convergence and

termination of the method are different from ideal conditions. While lowering the residuals

of the ACSE is ideal, and ensures a properly converged state, noise will combat the ability

of actually reaching a meaningful RDM. Because of the limitations of noise, in the present

multi-qubit examples the 2A matrix is updated by a classical algorithm with reconstruction

of the 3-RDM rather than the quantum algorithm shown in Eq.(10). In these instances, er-

ror from reconstruction of the 3-RDM is lower than the error from the noise on the quantum

devices. Importantly, the classical and quantum algorithms can be interchanged depending

upon the complexity of the circuit and the level of noise on a given device.

These results highlight the necessity of different error mitigation schemes. The qubit

reduction technique allows for significant simplification of the problem (although not to a

trivial degree for the [4,4] case), as well as different thresholds of accuracy. It is somewhat

known that with the Jordan-Wigner transformation and r spatial orbitals, for molecular

systems one can always find two Z symmetries of length r, corresponding to the constant

parity of the α and β sets of orbitals in a N and Sz preserving simulation, which reduces the

number of qubits to 2r − 2 (similar to ideas covered elsewhere[3, 84]). Applying additional

symmetries from the Hamiltonian is exact, with the limitation that the final and initial

states share the same symmetries. For systems with near-symmetries (symmetries existing

in a modified Hamiltonian), elimination of small nonzero elements can help to find these

symmetries (see Appendix B 3). In general, further tapering of a state to a symmetry that

does not exactly commute with the Hamiltonian will constrain the state space, yielding an

approximation to the eigenstate.

To further motivate this, we can consider the symmetry constrained state as an ap-

proximation to the full state. Within quantum chemistry numerous approximations are

commonly made based on available computational resources, such as the use of finite basis

sets, the separation of nuclear and electronic motion, and the truncation of the manifold
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of excitations.[9] On a quantum computer a significant consideration is the level of noise

generated in a preparation and measurement from the complexity of the circuits. In the

context of NISQ systems, a theoretically lower quality ansatz can produce a better result

than a higher quality, or even exact, ansatz if the added noise offsets the improvement in

accuracy from the theoretically superior ansatz. Additionally, the combination of noise and

error mitigation techniques can result in 2-RDMs whose energies are below those from noise-

less simulations but above those from an exact calculation in the given basis set. For these

reasons, it is not surprising that the 3-qubit case can produce results that are superior to

the 4-qubit case with approximate symmetries.

We did not explicitly identify the effect of the measurement errors involving the inversion

of the state transition matrix, although these have been documented elsewhere to help

improve results on the order of the measurement error. Because incorrectly measured states

can easily lead to different particle states, this can lead to large differences in the obtained

energies. However, regardless of the measurement error, the projection of the RDM onto the

correct particle number space in the diagonal entries is a critical step. The energetic effect of

this correction is system dependent, but can easily be on the order of hartrees. Quite simply

put, the results are often not meaningful without this correction, which can also be seen in

its success in other work[4, 83]. While it is preferable in theory to correct the diagonal and

off-diagonal elements of the 2-RDM, for the latter instances, a measurement sequence which

commutes with the particle number operator must be developed. Additionally, this greatly

changes the tomography requirements of the 2-RDM, rendering useless the advantages of

local measurement commutation. The incremental improvements in the quantum devices

over the last year are also critically important, as other devices were tested that did not

achieve the same level of results (not reported).

The 2Γ-correction serves indirectly to expand the set of accessible 2-RDMs while preserv-

ing the integrity of the iterative optimization. While the application here to an iterative

ansatz is unique, the idea at each iteration could be seen as a zeroth-order extrapolative

procedure, like the Richardson extrapolation, repeated at each iteration [17, 85]. Instead of

attempting a linear or higher order fit to a variable noise strength, we simply add a cor-

rection RDM. As a result, we do not have to deal with adjusting how noise is applied in

the underlying pulse, and the cost of the mitigation procedure is kept low. Even if at each

step we recalculated 2Γ, the number of evaluations would be linear with respect to n. While
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the implementation here is straightforward, it is likely that this method or variations on it

could be applied to other iterative methods in a straightforward manner. In terms of the

set of possible RDMs that can be measured, this approach slowly shifts our corrected RDM

by 2Γ through the set of all possible RDMs. Qualitatively, the effect of this strategy on the

obtained benzyne energies is to improve the result usually by tens of mhartrees, and in some

instances up to 0.1 Hartree. However, as it is possible to move beyond the boundary of the

set of physical RDMs, purification of the RDM is a necessary step, albeit with approximate

N -representability conditions. The distance between the 2Γ−corrected 2-RDM and the pu-

rified 2-RDM, which is also not consistent, can be used as an exclusionary criteria in the

optimization.

Both QACSE and ADAPT-VQE use the ACSE wave function ansatz [31–34] that was

developed in the ACSE literature [33–36] (for example, see section IIE of Ref. 34). The

structure of this wave function—product of unitary two-body exponential operators on a

reference wave function—has the ACSE as its stationary equation [31, 34]. The ACSE

ansatz is related to the single-term two-body exponential ansatzes [86–93] and the two-body

exponential product ansatzes [31, 32], which were investigated in the context of the con-

tracted Schrödinger equation (CSE) [23–30]. Notably, while this wave function has been

stated heuristically and called an adaptive generalized unitary coupled-cluster singles and

doubles wave function in the ADAPT-VQE literature, its stationary equation is not a cou-

pled cluster equation, and its definition in the ACSE literature significantly predates its

recent discussion. In fact, Grimsley et al. [52] describe ADAPT-VQE as “not so much an

approximation to UCC [unitary coupled cluster] as it is a wholly unique ansatz.” From this

perspective, by minimizing the ACSE wave function, both QACSE and ADAPT-VQE are

seeking solutions of the ACSE—rather than a direct solution of the Schrödinger equation as

in VQE, and hence, both can be understood as types of contracted quantum eigensolvers.

The distinction between the VQE and CQE is important because the CQE framework in-

forms both the structure of the wave function and its stationary condition.

Although both QACSE and ADAPT-VQE can be viewed as quantum solutions of the

ACSE, their motivations and initial implementations have significant differences. Unlike

the ADAPT-VQE which optimizes all parameters in the wave function simultaneously in

the spirit of the variational principle of the wave function governing VQE, the ACSE takes

a greedy, iterative approach in which the wave function is optimized only with respect
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to the two-body exponential transformation of the current iteration. This more targeted

optimization leads to a contracted stationary condition—the solution of the ACSE, which

is a hallmark of the ACSE theory [31–34].

Specifically, the ADAPT-VQE [52] defines a predefined pool of parameterized unitary

two-body exponential operators from which the ACSE wave function can potentially be

constructed from the reference (Hartree-Fock) wave function. The algorithm improves the

trial ACSE wave function at the nth iteration by (i) multiplying the (n − 1)th ACSE wave

function by the operator from the pool with the largest energy gradient and (ii) reoptimizing

the energy with respect to all parameters in the pool operators. In contrast, the QACSE

does not use a predefined pool of operators but rather computes the residual of the ACSE

either from a an efficient quantum measurement of an effective 2-RDM as shown in Eq. (10)

or a classical evaluation where the 3-RDM is approximately reconstructed. This generality

gives the QACSE additional flexibility, which may become increasingly important in the

treatment of larger, more correlated atoms and molecules where a limited operator pool may

miss significant correlation effects. Perhaps most importantly, because the QACSE is aiming

to satisfy the ACSE rather than the standard variational principle for the wave function, the

QACSE does not reoptimize its parameters in previous steps as in part (ii) of the ADAPT-

VQE algorithm. While a reoptimization phase decreases circuit depth, especially for small

molecules, it is not necessary for converging to a solution of the ACSE, and it may require a

significantly larger number of energy function and gradient evaluations for larger molecules.

V. CONCLUSIONS

Molecular simulations on quantum computers have the potential to treat strongly cor-

related problems that are currently intractable on conventional computers. The practical

realization of such simulations, however, requires quantum molecular algorithms that are

mappable to transformations, such as products of unitary transformations, that are natural

for quantum computers. Here we implement a novel contracted quantum eigensolver (CQE)

from a contraction of the Schrödinger equation onto the space of only two electrons, known

as the anti-Hermitian contracted Schrödinger equation (ACSE). To make the solution of

the ACSE more practical for more realistic chemical problems on quantum computers, we

utilize robust error mitigation techniques, including techniques based on N -representability
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constraints. The solution of the anti-Hermitian CSE (ACSE) through iterative minimization

of its residual generates a rapidly convergent product of two-body unitary transformations

that is natural for implementation on quantum computers. Furthermore, unlike the solu-

tion of the ACSE on the classical computer, the contracted Schrödinger solver on quantum

computers can fully or partially remove approximate reconstructions of higher RDMs, and

hence, can potentially achieve exact results without the exponential complexity of the many-

electron wave function.

The combination of the ACSE solver with robust error mitigation provides a scalable

approach to molecular simulations on quantum computers with low circuit depth and few

variational parameters. We apply the algorithm to the resolution of the ortho-, meta-,

and para-isomers of benzyne C6H4. The relative energies exhibit single-digit millihartree

errors, and the computed natural-orbital occupations capture the biradical nature of the

para-isomer. The molecular simulation of the benzyne isomers represents an important step

in eigensolver and error-mitigation technologies towards the practical simulation of larger,

even more complex molecules on quantum computers.

ACKNOWLEDGMENTS

D.A.M. gratefully acknowledges the Department of Energy, Office of Basic Energy Sci-

ences, Grant DE-SC0019215 and the U.S. National Science Foundation Grants No. CHE-

2035876, No. DMR-2037783, and No. CHE-1565638. The views expressed are of the authors

and do not reflect the official policy or position of IBM or the IBM Q team. We also are

grateful for the reviewers in providing helpful suggestions that improved the manuscript.

Appendix A: Electronic Structure Calculation

Complete active state self consistent field (CASSCF) calculations were performed as im-

plemented in the Maple Quantum Chemistry Package [94–96] using [2,2] and [4,4] active

spaces with the correlation-consistent valence double-zeta (cc-pVDZ) basis set [97]. Follow-

ing convergence of the CASSCF procedure, effective active space electron integrals for the

quantum ACSE calculation were obtained via the folding of the core-active cross terms into
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the active space, such that effective active space energy is given by:

Ẽact =
1

2

∑
pqst

2K̃pq
st

2Dpq
st (A1)

where 2K̃pq
st are the active space electron integrals containing the core-active cross terms.

The elements of the effective active space integral matrix 2K̃pq
st are constructed from the one-

and two-electron integrals as follows:

2K̃pq
st =

1

N − 1
( 1K̃p

s δ
q
t + 1K̃q

t δ
p
s) + 2Kpq

st , (A2)

where

1K̃p
s = 1Kp

s +
∑
i

(2 2Kpi
si − 2Kpi

is ) , (A3)

and p, q, s, t runs over all active orbitals and i runs over all core orbitals.

While we could also include number excitation terms, because we start with a multi-

reference guess solution, the number-excitation terms are small, even after a few iterations,

and can be mostly ignored. Using solely double excitations allows for sufficient quality

results convergence. Part of the difficulty in describing the meta-benzyne configuration is

that the solution could be described as more single reference, and requires more than a few

excitation terms with small coefficients to be described properly.

Appendix B: Quantum Calculation

Using the electron integrals for the active space from above, we perform a quantum

calculation on different IBMQ devices. In particular, we perform [2,2] and [4,4] calculation

under the Jordan-Wigner transformation. Different IBMQ devices were utilized through the

IBM Quantum Experience. These devices utilize fixed-frequency transmon qubits with co-

planer waveguide resonators [98, 99]. We use the python 3 package qiskit (v 0.15.0) [100]

to interface with the device. The calculations themselves are multifaceted, with nonstandard

approaches taken in a number of different areas. We document these in subsequent sections.

Each measurement was performed with 213 shots. Stochastic effects were on the order of

mhartree, though are affected in a substantial way through the purification scheme. For the

collection of all 2-RDMs we utilized a symmetry projected operator basis using the N̂ and

Ŝz symmetries [101].
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For the 1-qubit calculations, we utilized ibmq-armonk, while for the 3- and 4-qubit cal-

culations, we utilized ibmq-bogota and ibmq-santiago. qiskit was used to interface with

the IBMQ devices.

1. Quantum [2, 2] Active Space Calculations

Using the Jordan-Wigner transformation, the [2,2] case with 4 spin orbitals maps to 4

qubits. The [2,2] calculations contain two Pauli symmetries related to the parities of the

total number of electrons and the number of electrons in a subset of spin orbitals (either

α or β), and a further symmetry is found for most molecular systems, allowing the [2,2]

system to be represented with a single-qubit. These can be expressed as:

S1 = {Z1Z2, Z1Z3, Z1Z4}. (B1)

The elements of 2A were determined through the quantum ACSE method, with Euler’s

method being used to propagate the ansatz. An l2 norm of 2A below 0.01 was used as the

stopping criterion, which was usually reached in 10-12 iterations. The exact exponential of

any combination of Pauli operators is well known for the single-qubit case, and so we are

able to exactly express U =
∏

i e
Ai as well as U ′ = eiHδ

∏
i e
Ai . For these runs, we chose

δ = 0.25.

2. Quantum [4, 4] Active Space Calculations

The Jordan-Wigner representation maps the [4,4] case with 8 spin orbitals to 8 qubits.

Again, two symmetries related to fermionic parity can be utilized, and then depending

on the Hamiltonian we can find additional symmetries. For these particular integrals, we

find 2 additional symmetries across all configurations, and then an additional symmetry

for the para- configurations, which can be applied to the ortho- and meta- configurations

as approximate symmetries. A more detailed discussion on the process of finding these

symmetries is included in the next section. While we can also find approximate symmetries

through truncation of the Hamiltonian, the application of this additional symmetry from

the para−isomer yielded sufficient results for the ortho-isomer case, with a difference from

the target (CASSCF) energy of 9.2 × 10−4 H. For the meta case, we found an additional
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symmetry with approximately 0.6×10−3 H error from the CASSCF. The solutions are exact

for the 3-qubit para, and all of the 4-qubit cases. We show the effects of some approximate

tapering schemes in the next section.

The symmetries are listed in the follow set for the 4- and 5-symmetry cases respectively:

S4 = {Z1Z2Z3Z4, Z1Z2Z5Z6, Z1Z3Z5Z6, Z2Z3Z5Z8}, (B2)

S
p/q
3 = {Z1Z2Z3Z4, Z1Z5, Z2Z6, Z3Z7, Z1Z2Z3Z8}, (B3)

Sm3 = {Z1Z4, Z2Z3, Z1Z2Z5Z6, Z1Z2Z5Z7, Z5Z8}. (B4)

As a result, we are able to perform 3- and 4- qubit simulations of these systems on the 5-

qubit linearly connected ibmq-bogota device, and ibmq-santiago. When tapering off qubits,

we use eigenvalues which match the eigenvalues of the initial Hartree-Fock determinant.

While the initial determinant in this paper is consistently a closed-shell configuration, it can

also represent an open-shell configuration for an extension of the procedure to open-shell

systems.

The calculations themselves utilized a 1-dimensional model-trust region Newton’s method,

where the initial trust region was taken to be 2, and the quadratic fit was taken from εn = ±1.

Additionally, we used a threshold of 0.75×amax where amax indicated the largest magnitude

term in the 2A for a given iteration. The convergence criteria was taken to be 0.02-0.03 in

the trust region criteria (or in the norm of 2A), and we used 5-8 iterations. Instances of the

runs themselves are included in the open-source HQCA software package [102].

3. Qubit Reduction by Tapering and Hamiltonian Truncation

The qubit reduction scheme follows previous work by Bravyi et al. and expanded by

Setia et al. for applications to point group symmetries [84, 103]. In particular, we express

the Hamiltonian in the Pauli basis and then put these terms in a check sum representation

to construct the generator and parity check matrices from the field of quantum error cor-

rection [104]. By performing Gaussian elimination on the parity check matrix, we can find

generators of the Hamiltonian, which in turn allow us to select a basis for the corresponding

null space. Elements of the null space will commute with every term in the Hamiltonian,
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and thus are symmetries of H. Thus, the nullity of this matrix is the number of symmetry

elements, and thus the number of qubits which we can taper. By using a particular unitary

transformation:

Ui =
1√
2

(Xj + si) (B5)

where Xj is selected so that Xj anticommutes with si, and commutes with all other si, i 6= j,

we transform the Hamiltonian so that qubits j have only X or I in each term. By selecting an

appropriate eigenvalue of X, we can taper off these terms, resulting in a modified fermionic

transformation. We use eigenvalues which agree with the eigenvalues of the initial closed-

shell singlet Hartree-Fock determinant.

For a general N̂ and Ŝz preserving state, there exist two symmetries related to the parities

of the α or β electrons. One can see this simply by noting that there exist two Pauli strings of

length r, over the α and β electrons respectively, which can be selected. These symmetries

preserve the commuting and anti-commuting relations described in Bravyi et al.[84], and

hence, can be tapered as symmetries of the Hamiltonian (or more generally, the set of all

2-RDM operators). While mappings such as the parity or Bravyi-Kitaev mapping explicitly

assign these symmetries to qubits, we still can identify and utilize these symmetries with

the Jordan-Wigner transformation.

As mentioned in the discussion, we can exploit approximate symmetries for a decrease

in circuit complexity by either projecting the state onto a nearby symmetry or truncating

the Hamiltonian. To show the effect of using approximate symmetries through tapering

Hamiltonian elements, Figure B 3 shows the accuracy and potential symmetries that can be

found for a given truncation of elements of the Hamiltonian. In particular, we are interested

in finding the highest symmetry state—the state whose generator matrix has the largest

nullspace—with the lowest energy error. For these instances, the ortho-, meta- and para-

isomers all have exact representations with 4 symmetries (and 5 for the para-isomer). The

meta-isomer has the highest error 3-qubit representation, which we safely assume to be less

than contributions of noise in the present work.

4. Classical Solution to the ACSE

In the fully quantum algorithm, the quantum computer is used in both the calculation

of the 2A and 2D matrices. For the [4,4] cases we used a classical approach in solving for
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FIG. 5. Comparison of the truncation used in the 2K matrix for ortho-, meta- and para-benzyne,

with respect to the resulting accuracy given in the representation against the CASSCF result.

Additionally, the number of symmetries found (i.e., the nullity of the generator) is reported next

to the appropriate marker.

elements of 2A, which reduces the computational demands on the quantum computer and

yields sufficient accuracy in this case. This can be found by calculating elements of 2A from:

2Ai,kj,l = 〈Ψ|[â†i â
†
kâlâj, Ĥ]|Ψ〉. (B6)

More specifically, for a molecular system, the reduced Hamiltonian 2K can be written as:

2Kp,r
q,s =

1

2(N − 1)

(
δpq

1Kr
s + δrs

1Kp
q + 2V p,r

q,s (N − 1)
)

(B7)

we define an operator W p,r
q,s = 2Kp,r

q,s − 2Kp,r
s,q , which then leads to an expression for the total

ACSE equation as [33, 34]:

2Ai,kj,l =
∑
p,q

(
2Dp,q

i,kW
p,q
j,l −

2Dp,q
j,lW

p,q
i,k

)
+
∑
pqr

(
3Dp,r,k

j,l,q W
p,r
i,q − 3Dp,r,i

j,l,qW
p,r
k,q −

3Di,k,p
r,q,jW

p,l
r,q + 3Di,k,p

r,q,lW
p,j
r,q

)
.

(B8)

Notably, this expression involves the 3-RDM, which can be reconstructed from its cumulant

expansion [61]:

3Di,j,k
p,q,s = 6 1Di

p ∧ 1Dj
q ∧ 1Dk

s + 9 2∆i,j
p,q ∧ 1Dk

s +3 ∆i,j,k
p,q,s (B9)
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Here, the wedge product denotes the Grassmannian operator, combining antisymmetric

permutations of upper and lower indices and dividing by the total number of permutations,

n∆ represents the n-th order reduced cumulant matrix, and we assume that 3∆ = 0.

5. Simulated Quantum Results

Using the above schemes, we can provide simulated results without noise of the different

benzyne isomers. Table 4 shows simulated results with the quantum solution of the ACSE

at different convergence criteria and number of qubits. Table 5 shows similar results where

the evaluation of the ACSE residual on the quantum computer is replaced by a classical

evaluation including classical reconstruction of the 3-RDM from the 2-RDM by a cumulant

expansion.

TABLE 4. Energetic error results (millihartrees) for different convergence thresholds and qubit

representations for the QACSE with a quantum solution of the ACSE (or measured 3-RDM) for

the ortho-, meta-, and para-benzyne configurations. The number of qubits refers to the qubit-

representation and related symmetries utilized, which for ortho and meta have non-zero errors.

Values of |2|A|| refers to the convergence criteria, which is the norm of the 2A matrix.

Energy Error Relative to CASSCF (mhartree)

ortho meta para

Qubits/||2A|| 0.05 0.01 0.001 0.05 0.01 0.001 0.05 0.01 0.001

3 1.393 1.393 0.916 11.197 1.108 0.869 0.284 0.284 0.003

4 2.957 0.033 0.006 10.563 0.363 0.115 0.284 0.284 0.003

8 13.634 0.200 0.008 14.042 0.240 0.101 5.711 0.042 0.005

In Table 4, we can see that with more strict convergence criteria, we are able to obtain

highly accurate results for our given representation. Because there is error in the 3 and 4

qubit simulations, given a low norm in 2A (which is taken relative to the truncated Hamilto-

nian operator and not the reduced Hamiltonian matrix 2K), these results return essentially

the approximation in the ortho and meta cases (0.92 and 0.8 mH, respectively). Addition-

ally, these results show the most ideal case for the QACSE algorithm with the current choice

of tapering, highlighting its potential on beyond-NISQ devices.
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TABLE 5. Error in energy results (millihartree) for different convergence thresholds and qubit

representations for the QACSE algorithm with a reconstructed 3-RDM. The number of qubits

refers to the qubit-representation and related symmetries utilized. Instead of the norm of the 2A

matrix, we use a trust region and energetic increase stopping criteria. We also indicate where or

not all of the elements of the 2A matrix are implemented.

Energy Error Relative to CASSCF (mhartree)

ortho meta para

Trust Criterion Entire 2A 3Q 4Q 3Q 4Q 3Q 4Q

5×10−2 No 1.113 1.112 4.913 4.174 5.675 5.675

1×10−3 No 1.113 1.112 2.975 2.077 1.231 1.234

1×10−6 No 1.113 1.112 2.976 2.077 0.267 0.269

1×10−6 Yes 1.126 0.181 3.687 3.002 0.182 0.182

If we consider the systems with a reconstructed 3-RDM, as seen in Table 5, we note several

differences. Because the 2A matrix from the reconstructed 3-RDM does not represent the

true gradient, we use one-dimensional trust region convergence criteria for our convergence

threshold as in previous work. The criteria are (1) the quadratic model of the trust region,

and (2) the error in the energy. In some cases we also trim the 2A matrix in generating the

ansatz—discard elements in our current iteration that are below a given threshold (in his

case, 0.5). If we do not trim the operator, then all of the terms are utilized.

These results are not unexpected, as errors from cumulant reconstruction in the literature

are often in the single mhartree region. It also is possible that on a quantum computer, the

disconnect between an exact 2-RDM and inexact 2A leads to an increase in errors. Unlike

the quantum ACSE, here the 4-qubit results match the full-qubit result for each instance,

and so the latter are not reported. The ortho and para calculations achieve good accuracy,

while the meta appears to have slightly more error. Despite this, the results recover the

majority of the correlation energy, demonstrating that the reconstructed approach is not

unsuitable for noisy simulations where errors are generally much larger than 1 mhartree.
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6. Circuit Implementations

Once the 2A operator is obtained for each step, we use a threshold to truncate the

operator, and at each step add only one or two additional fermionic terms. As mentioned in

the main text, the circuits are constructed by expressing eεnAn as a first order trotterization,

resulting in products of exponentials Pauli strings which can be realized generally with

CNOT gates and single-qubit rotations. In some instances we see a reduction in the number

of two-qubit gates by using the following single-qubit identity:

eiπU †σjU =


σx if j=x

σy if j=z

σz if j=y

(B10)

where U = S†HS. This can just as easily applied to exponential transformations as well,

and with this, we can transform an operator such as eα(X1X2+Y1Y2), which is expressed in 3

or 4 CNOT gates, to U †e−α(X1X2+Z1Z2)U which can be expressed with only 2 CNOT gates.

In general, we utilize straightforward concatenation techniques which possibly reduced the

CNOT gates while preserving the connectivity of the device (which is linear).

While performing simulations under noiseless, stochastic, and simulated device-like noise,

we examined the pool of required operators, and then performed simplifications to reduce the

number of CNOT gates that were involved. While in general this is not required, for optimal

performance on near-term devices circuit simplifications are critical. Different compilation

methods were attempted, but ultimately (likely due to the connectivity constraints of the

devices), manual simplifications yielded lower CNOT counts. The symmetries have the effect

of reducing the number of nonzero excitation operators, as certain excitation sequences act

outside the symmetry state. Acting on the imaginary elements of the 2-RDM, we can find the

nonzero elements and then prepare circuits accordingly. For the 3-qubit case this resulted in

6 unique Pauli strings. A similar procedure was carried out with the 4-qubit case, although

we found that we did not have to prepare the entire pool of operators.

7. Quantum Device Specifications

For the quantum computation we used three different quantum devices. For the single

qubit simulation, we used IBMQ Rome (5-qubit device), whereas for the 3- and 4-qubit
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calculations we used IBMQ Bogota as well as IBMQ Santiago, which are same generation

linearly connected 5-qubit devices. These were accessed through the IBM Quantum Experi-

ence. The quantum devices use fixed-frequency transmon qubits with co-planer waveguide

resonators [98, 99]. The Python package Qiskit (v 0.15.0, 0.17.1) [100] was used to interface

with the device. Device properties can be found in Tables 6, 7, and 8.

U2 and U3 represent single qubit gate errors containing one and two Xπ/2 pulses and two

and three frame changes respectively. Newer devices (see Table 8) directly express these as

rotations using the
√
X and X gates with intermediate frame changes representing rotations

along the z−axis. ROi|j represents the probability of measuring the state i given a prepared

state j. T1 and T2 are the given thermal relaxation times for each qubit. Frequency refers

to the qubits operational frequency, and influences the excited state population based on

the device temperature. [j] specifies the target qubit with control qubit i, and the number

in parenthesis after each entry in the CNOT column indicates the gate length. The gate

lengths for the U2 and U3 gates were 35 ns and 71 ns respectively.

TABLE 6. Calibration data for the IBMQ Rome device taken on November 11th, 2020, from

randomized benchmarking of the qubit gates. The gate lengths for the U2 and U3 gates were 35 ns

and 71 ns respectively.

Qubit Frequency U2 U3 RO0|1 RO1|0 T1 T2 [j] CNOTj
i (gate length)

i GHz 10−4 10−4 10−2 10−2 µ s µ s 10−2 (ns)

0 4.969 2.4 4.7 2.0 0.6 92.0 66.3 [1] 0.7 (320)

1 4.770 2.9 5.7 4.9 3.4 104.1 68.3 [0] 0.7 (356) [2] 2.0 (1109)

2 5.015 3.5 7.1 7.0 2.2 74.3 155.0 [1] 2.0 (1145) [3] 1.0 (377)

3 5.259 5.8 11.7 3.2 1.0 67.7 101.1 [2] 1.0 (341) [4] 1.6 (476)

4 4.997 2.7 5.3 1.6 0.7 50.1 103.0 [3] 1.6 (512)

Appendix C: Error Mitigation Methods

To directly mitigate the effects of noise on the quantum computer, we use a variety of

techniques in addition to the ones listed in the main text (limit-preserving correction and

the purification of the 2-RDM).
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TABLE 7. Calibration data taken for IBMQ Bogota from December 4th to 7th, 2020. from

benchmarking. See Table 6 for descriptions. The gate lengths for the U2 and U3 gates were 35 ns

and 71 ns respectively.

Qubit Frequency U2 U3 RO0|1 RO1|0 T1 T2 [j] CNOTj
i (gate length)

i GHz 10−4 10−4 10−2 10−2 µ s µ s 10−2 (ns)

12− 04− 20

0 5.000 4.8 9.6 4.0 1.4 93.5 141.4 [1] 1.7 (690)

1 4.845 2.2 4.4 4.4 2.9 134.4 76.1 [0] 1.7 (654) [2] 0.7 (498)

2 4.783 1.7 3.4 4.9 1.5 128.2 206.2 [1] 0.7 (533) [3] 3.3 (626)

3 4.858 15.7 31.3 4.6 1.2 84.6 36.8 [2] 3.3 (590) [4] 2.5 (370)

4 4.978 4.2 8.3 4.9 1.6 50.9 87.1 [3] 2.5 (334)

12− 05− 20

0 5.000 3.0 6.1 3.7 1.3 91.5 119.8 [1] 1.7 (690)

1 4.845 2.6 5.2 4.3 3.3 137.4 75.4 [0] 1.7 (654) [2] 0.8 (498)

2 4.783 1.5 3.0 3.3 1.3 133.0 226.5 [1] 0.8 (533) [3] 0.6 (626)

3 4.858 1.6 3.3 3.4 0.6 159.7 244.4 [2] 0.6 (590) [4] 0.8 (370)

4 4.978 1.9 3.9 2.8 1.0 107.3 146.1 [3] 0.8 (334)

12− 06− 20

0 5.000 3.5 7.0 5.3 1.6 88.2 107.7 [1] 1.8 (690)

1 4.845 2.4 4.9 3.8 2.2 145.0 95.8 [0] 1.8 (654) [2] 0.7 (498)

2 4.783 1.8 3.6 4.7 1.4 165.0 211.2 [1] 0.7 (533) [3] 0.6 (626)

3 4.858 2.6 5.2 1.9 0.7 160.2 311.7 [2] 0.6 (590) [4] 0.7 (370)

4 4.978 1.9 3.8 3.6 1.2 126.0 149.4 [3] 0.7 (334)

12− 07− 20

0 5.000 3.5 7.0 8.2 1.6 44.8 55.7 [1] 1.8 (690)

1 4.845 2.4 4.9 4.7 2.6 178.2 98.8 [0] 1.8 (654) [2] 0.8 (498)

2 4.783 1.8 3.6 3.9 0.9 126.0 231.0 [1] 0.8 (533) [3] 0.8 (626)

3 4.858 2.6 5.2 2.8 0.4 124.0 168.6 [2] 0.8 (590) [4] 0.9 (370)

4 4.978 1.9 3.8 3.9 1.3 93.5 188.0 [3] 0.9 (334)
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TABLE 8. Calibration data taken for IBMQ Santiago from August 24th. The gate lengths for

the
√
X and X gates are both 35 ns. Santiago was used to calculate the 3-qubit meta-isomer

calculation.

Qubit Frequency
√
X X RO0|1 RO1|0 T1 T2 [j] CNOTj

i (gate length)

i GHz 10−4 10−4 10−2 10−2 µ s µ s 10−2 (ns)

2 4.821 2.0 2.0 1.5 0.5 99.0 89.8 [3] 0.7 (377)

3 4.742 3.0 3.0 1.4 0.5 75.7 67.4 [2] 0.7 (412) [4] 0.7 (377)

4 4.816 1.6 1.6 2.2 1.0 99.5 155.1 [3] 0.7 (341)

1. Number Preserving Projection to Diagonal Elements of the 2-RDM

The most effective error correction comes by filtering diagonal elements of the 2-RDM, of

the form 2Dp,q
p,q , so that the number operator is preserved. Because these elements commute

with single-qubit measurements that are performed, they can be filtered according to the

measurement result. Counts that have differing values of N or Sz are rejected, and so we

are filtered to a set of RDMs with the proper trace and projected spin properties (i.e.,

Tr 2D = N(N − 1)). While heavily erroneous off-diagonal elements can also lead to non-

physical eigenvalues[4], correcting for these in the 2-RDM case is not straightforward and

likely would not reduce the overall errors.

2. Measurement Correction of Prepared States (SPAM)

Finally, the state preparation and measurement, which involves preparing all possible

quantum states for some qubit space, and constructing a transition matrix with the as-

sociated inverse, was utilized to mitigate measurement errors. We applied this to local

qubits, and so did not correct for correlated measurement errors. This procedure has been

documented in many places [105, 106] and can be implemented through qiskit.

3. Limit-Preserving Correction for an Iterative Ansatz

In the main text we described our error mitigation strategy which we denoted as a limit-

preserving correction for an iterative ansatz, and described the framework or context in which
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it could be useful. To illustrate these points, Figure C 3 highlights the effect of performing

a traditional (3-qubit) calculation with an iterative design, versus a 2Γ−corrected result.

The increasing energy can be seen in each iteration with the standard result. For the ortho,

meta, and para results, only 1, 2/3, and 1 step(s), respectively, are able to be taken in each

case before the ansatz has been too corrupted and can no longer provide a reasonable ground

state. However, though the optimization with the 2Γ correction is still noisy, and not always

smooth, we are able to keep or improve upon the energy gains in each case, and achieve

results closer to the true ground state.

FIG. 6. Two optimization attempts for (a) ortho-, (b) meta-, and (c) para-benzyne configurations

with and without the 2Γ preserving correction showing the first 5 iterations. In the meta-isomer

case without the 2Γ correction, unfavorable steps in choosing εn are rejected and so the run plateaus

after the first step.
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Appendix D: Symmetry and the ACSE

Given a symmetry operator Ŝ (where [Ŝ, Ĥ] = 0) utilizing the QACSE method leads to

natural advantages in terms of the generated ansatz and preserving the symmetry subspace.

In particular, we can readily see that any symmetry of the system is not violated throughout

the QACSE iterations.

Take a particular iteration of the ACSE algorithm for a generic quantum system, where

we are in a single symmetry state s0 of the symmetry Ŝ. Then, we can write our Hamiltonian

and state as:

Ĥ =
∑
i,s

Hi,s|i, s〉〈i, s| (D1)

|Ψn〉 =
∑
k

dk,s0n |k, s0〉. (D2)

where |i, s〉 represents a state i within the symmetry subspace of s and Hi,s and dk,s0 are

coefficients. In this formulation, elements of Â can be found as:

Aαu;βvn = 〈ψn|[M̂α,u
β,v , Ĥ]|ψn〉 (D3)

=
∑
k,j

∑
i,s

dk,s0n d∗n
j,s0〈k, s0|[|α, u〉〈β, v|, Ĥ]|j, s0〉 (D4)

=
∑
k,j

dk,s0n d∗n
j,s0(Hj,s0δ

k,s0
α,u δ

β,v
j,s0
−Hk,s0δ

k,s0
α,u δ

β,v
j,s0

) (D5)

where M̂α,u
β,v represents a measurement operator between two basis elements |i, t〉 and |j, u〉.

This expression is clearly nonzero only if u = s0 and v = s0, and so at each step we will

preserve whatever symmetry subspace we are in, which means that throughout the algorithm

the symmetry state of system is preserved.

Note that this only applies if we are in the symmetry basis of Ŝ. Practically, this is not

always the case. For instance, the standard second quantized representation for a fermionic

simulation uses Slater determinants, which commute with the number and projected spin

operators (Slater determinants). While using the entire 2A operator will preserve all sym-

metries, using a truncated 2A operator can lead to symmetry violations in the total spin,
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requiring the use of a symmetry-adapted basis.
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