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Abstract: Attenuating a quantum state using a beam splitter will introduce noise and decoherence.  

Here we show that heralding techniques can be used to attenuate Schrödinger cat states and squeezed 

vacuum states without any noise or decoherence [Mičuda et al., Phys. Rev. Lett. 109, 180503 

(2012)]. Noiseless attenuation also preserves quantum interference effects in nonclassical states 

such as squeezed vacuum states. 

 

 

 

I. Introduction 

 

Photon loss in the transmission of continuous-variable 

quantum states can produce a large amount of decoherence, 

which limits the usefulness of continuous-variable quantum 

states in quantum communication systems.  These effects 

can be reduced by noiselessly attenuating the signal prior to 

transmission, followed by noiseless amplification after 

transmission [1].  In this paper, we analyze the degree of 

coherence of several kinds of continuous-variable quantum 

states after they have been noiselessly attenuated.  We show 

that ordinary attenuation by a beam splitter would introduce 

a large amount of decoherence, but that noiseless attenuation 

preserves the coherence of the quantum states and their 

ability to produce quantum interference effects. 

Noiseless amplification techniques have been studied 

and experimentally verified, using linear or nonlinear optical 

elements combined with heralding techniques [2-5]. These 

probabilistic devices avoid the noise that is always 

introduced by deterministic, phase-preserving linear 

amplifiers [6, 7]. Similarly, the inverse transformation of 

noiseless attenuation can be implemented using several 

kinds of non-deterministic devices [1, 8]. The effect of 

noiseless attenuation can be described by the non-unitary 

operator 𝜈𝑛̂, where the parameter   can have values 

between 0 and 1.  This transforms an input state of the form 

n

nc n  into ,n
n

n

c n  where   is a suitable 

normalization constant.  In addition to reducing  the average 

photon number [9], we will show that such a device is truly 

“noiseless” in the sense that it preserves the coherence of 

several nonclassical states of interest. 

We will analyze the effects of a noiseless attenuator 

implemented using a beam splitter and conditional 

measurements (heralding) [1], as illustrated in Fig. 1.  

Noiseless attenuation can also be achieved using an optical 

parametric amplifier and heralding techniques [8]. Ordinary 

attenuation by a beam splitter (without heralding) will leave 

which-path information in the environment, which produces 

decoherence and a reduction in quantum interference. 

Heralding on zero photons in the upper output path of Fig. 1 

eliminates any which-path information in the environment. 

Several recent experiments have demonstrated the 

feasibility of heralding on the detection of zero photons [10-

16].  

We will use the Wigner distributions [17] of the states 

as the primary tool for monitoring their evolution, since 

negative regions of the Wigner distribution are an indicator 

of non-classicality and they can be used to test for any 

decoherence due to attenuation.  In addition, the Wigner 

distribution is a useful tool since it can be reconstructed 

using homodyne measurements [18, 19]. 

 

 

 

 

 

 

 

 

 

 

FIG. 1. A noiseless attenuator implemented using a beam splitter 

combined with heralding on the presence of zero photons in one of 

the output ports.  The conditional measurement is represented by a 

projection 0  on the reflected mode. 

 

The rest of paper is as follows. In Section II, the 

nonclassicality of Schrödinger cat states is shown to be 

preserved under the action of a noiseless attenuator. In 

Section III, we consider the noiseless attenuation of single 

mode squeezed vacuum (SMSV) states. Section IV expands 

the analysis to two-mode states, including the effect of 
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noiseless attenuation on the quantum interference of two 

SMSV states using a Mach-Zehnder interferometer. Section 

V deals with the effects of limited detector efficiency. A 

summary and conclusions are provided in Section VI. 

 

II. Schrödinger cat states 

 

Schrödinger cat states are a superposition of 

macroscopically distinguishable states. In the context of 

quantum optics, they are usually assumed to be a 

superposition of two coherent states [20]. For a coherent 

state, the Wigner distribution [17] is a Gaussian distribution 

centered at the corresponding amplitude.  A cat state shows 

additional oscillations in between the Gaussians of the 

individual coherent states, as can be seen in Fig. 2.  These 

oscillations are due to quantum interference between the two 

components of the cat state. The interference also gives rise 

to negative regions of the Wigner distribution, which is an 

indicator of the nonclassical nature of the state [21].  

It is well known that photon loss from a Schrodinger cat 

state will leave which-path information in the environment, 

which suppresses the interference pattern in the Wigner 

distribution [22, 23]. If a noiseless attenuator is to be truly 

“noiseless”, it must preserve the oscillations in the Wigner 

distribution.  We will analyze the effects of the noiseless 

attenuator shown in Fig. 1, where the measurement of no 

photons in one of the output modes heralds the successful 

generation of the attenuated output in the other path.  

We will assume that the input to the noiseless attenuator 

is an even cat state given by 

 

                              

 
22| |

,

2 1
cat

e 

 




 




 (1) 

Here    is a real parameter and   is a coherent state with 

that amplitude.  A coherent state is given in the number basis 

by 

                            
2
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



   (2) 

If we consider relatively small amplitude cat states then, to 

a good approximation, we only need to keep a small number 

of photon number states .n  All of the subsequent 

numerical calculations were performed using an initial value 

of 2   and keeping the first 20 photon number terms.  

The wave function of the initial cat state in the 

coordinate representation [24] is thus a superposition of the 

wave functions ( )n x  of the corresponding photon number 

states  

 

                                ( ) ( ).cat n n

n

x c x   (3) 

The coefficients nc  can be obtained from Eqs. (1) and (2) as 

is described in more detail in the Appendix.  The Wigner 

distribution for a pure state | in units where 1  is then 

given [10] by the transformation 

 

        *1
( , ) .

2 2 2

ipy y y
W x p dy e x x 













   
     

     (4) 

Fig. 2 shows the Wigner distribution of the input cat state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 2. Wigner distribution of the input cat state with 2.   The 

oscillations near the origin are due to quantum interference 

between the two coherent states in Eq. (1).  The fact that the Wigner 

distribution has negative regions indicates that the state is 

nonclassical.  (Dimensionless units.) 

 

The beamsplitter transformation used to represent the 

input photon creation operators in terms of the output 

operators was chosen to be 

                                 ,
t ir

B
ir t

 
  
 

 (5) 

where t  and r  are the transmissivity and the reflectivity of 

the beam splitter.  Eq. (5) is equivalent to several commonly 

used beam splitter transformations with the addition of 

different phases at its input and output modes.  
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a) Ordinary attenuation 

 

 The beam splitter shown in Fig. 1 can couple 

photons into the output path labelled A as well as the 

auxiliary mode labelled B, which can be thought of as the 

environment. In the photon number basis, the state of the 

system after the beam splitter can be written as  

                 ( , ) .

a b

out a b a b

n n

c n n n n   (6) 

Here the coefficients ( , )a bc n n  can be found using Eqs. (1), 

(2), and (5), while an  and bn  correspond to states with 

an  and bn  photons in the two output modes.  The details of 

the calculations are described in the Appendix. 

Since the number of photons in the environment is 

not measured in an ordinary attenuator, we need to take a 

partial trace over the environment.  We will denote the 

projection onto the state with bn  of photons in mode b as 

 | ,
bout n  which is given by 

 

           | ( , ) .
b

a

out n a b

n

an n nc                      (7) 

 

The density matrix of the mixed state after tracing over mode 

b is given by  

     

                |  | .ˆ
b b

b

out out n out n

n

    (8) 

The trace operation represents the decoherence due to loss 

of information into the environment. 

           The Wigner distribution of the mixed state after the 

partial trace is then given by 

 
                         

 | .
b

bn

out out nW W  (9) 

Here  | bout nW  is the Wigner distribution of state  | .
bout n   

Note that  | bout n is an unnormalized state in our notation. 

Fig. 3 shows the Wigner distribution of the mixed 

state after tracing over the environment. The peaks 

corresponding to the original coherent states have been 

moved closer to the origin due to the overall attenuation.  In 

addition, the oscillations near the origin have been reduced 

and are not as negative as before attenuation, which indicates 

a loss of decoherence and less nonclassical behavior.   

 

 

FIG. 3. Wigner distribution of the output state after a Schrodinger 

cat state has passed through an ordinary beam splitter. Here, the 

reflectivity of the beam splitter was arbitrarily chosen to be 

0.5r  (a 50-50 beam splitter). The oscillations near the origin 

have been reduced due to decoherence arising from the which-path 

information left in the environment.  (Dimensionless units.)   

 

b) Noiseless attenuation 

 

In the previous section, we considered the case in which 

there was no heralding based on the number of photons that 

were coupled into the auxiliary mode (environment), which 

reduces the amount of quantum interference. Now we will 

analyze the output of a noiseless attenuator in which the 

output is only accepted when no photons are found in the 

auxiliary mode.  

With postselection of that kind, the Wigner distribution 

of the output mode is obtained by keeping only the 0bn 

term in Eq. (9).  After renormalization, this gives 

 

                      
 | 0( )

 |  0 | 0 

,b

b b

outheralded
out

out out

W
W

 
  (10) 

where  

                               | 0 .
b n

n

n
out c t n   (11) 

 The results are plotted in Fig. 4, where it can be seen 

that the oscillations in the Wigner distribution have been 

restored.  The negativity of the Wigner distribution is also 

similar to that of the original state in Fig. 2.  At the same 

time, the peaks due to the two coherent states have been 

moved closer to the origin as a result of the attenuation.   

For comparison, the Wigner distribution of an exact 

Schrödinger cat state corresponding to a superposition of 

coherent states with a reduced amplitude of   1.414 is 

plotted in Fig. 5.  It can be seen that the Wigner distributions 

in Fig. 4 and 5 are the same, as can be shown analytically as 

well. The noiseless attenuation of a cat state is equivalent to 
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simply reducing the amplitude of the coherent states in Eq. 

(1) while maintaining the coherence of their superposition. 

The amplitude of coherent states in the cat state at the output 

is given by .t   

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 4. Wigner distribution of the state of the output mode after 

noiseless attenuation of a Schrodinger cat state.  Here the output 

was postselected for events in which no photons were observed in 

the auxiliary mode. The oscillations near the origin are much larger 

than is the case for ordinary attenuation in Fig. 3, which shows that 

the coherence of the state has been maintained.  (Dimensionless 

units.) 

 

 

FIG. 5. Wigner distribution of an exact Schrodinger cat state with 

a coherent-state amplitude of   1.414.  Comparing these results 

with those of Fig. 4 show that noiseless attenuation of a cat state is 

equivalent to simply reducing the amplitude of the two coherent 

states in Eq. (1).  (Dimensionless units.)  

 

The success probability successP   is state dependent and 

given by 

            
2 2

 |   0 | 0 .
b b

n
success out out n

n

P c t    (12) 

If the input state can be approximated by an expansion in the  

Fock basis with a maximum of N photons, then it is evident 

from Eq. (12) that 
2 ,N

successP t i.e. it is lower bounded [1]. 

This is true a good approximation for weak cat states and 

squeezed vacuum states and for some .N  For the example 

shown in Fig. 4, 0.14.successP    

III.  Single-mode squeezed vacuum 

 

We saw in the previous section that a noiseless 

attenuator preserves the coherence of a Schrodinger cat 

state. We will now consider another example in which a 

single-mode squeezed vacuum (SMSV) state with squeezing 

along the x quadrature is passed through a noiseless 

attenuator. The initial SMSV state is given [25] by 

 

       
0

21 tan

2

h
2 ,

cosh
SMSV

n

n

n
n

n




 


   

    
  

  (13) 

where   is a parameter related to the strength of the 

interaction in a 
(2)  medium.  States of this kind can be 

produced using parametric down-conversion  [26] and they 

are widely used in many applications. 

The Wigner distribution of a single-mode squeezed 

vacuum state is described by a Gaussian of the form [17] 

 

                
2

2 2( , ) exp 2 ,
p

W x p A sx
s


  

     
   

 (14)  

 

as illustrated in Fig. 6.  The squeezing parameter s  is related 

to    by ln ,s   while the width   has the same value 

as in an ordinary vacuum state where 1s   and 1/ 2.   

The uncertainty in one direction of phase space is reduced at 

the expense of an increased uncertainty in the orthogonal 

direction, as required by the uncertainty principle.   

 

 

FIG. 6. Wigner distribution of a single mode squeezed vacuum 

state with a squeezing parameter of 3s   (arbitrary units). Fitting 

the distribution with Eq. (14) gives 0.707.    (Dimensionless 

units.) 
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Figure 7 shows the Wigner distribution of the output state 

after a single-mode squeezed vacuum state has passed 

through an ordinary attenuator consisting of a 50-50 beam 

splitter.  In comparison, Fig. 8 shows the Wigner distribution 

after the state has passed through a noiseless attenuator with 

postselection on the auxiliary mode as discussed earlier. A 

reduction in the squeezing can be clearly seen in both cases.  

A fit to Eq. (12) gives 0.759   and 1.732s   for ordinary 

attenuation, while noiseless attenuation gives 0.707   

and 1.667.s   It can be seen that noiseless attenuation gives 

a state with lower uncertainty (noise) than is obtained using 

ordinary attenuation, although the difference is not as 

apparent as it is for a Schrödinger cat state. The new 

squeezing parameter in the state at the output is given by 

       2 2 2 21 1 1 1 .s t t s t t        
   

  For the 

example shown in Fig. 7, 0.90.successP    

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 7. Wigner distribution of a single-mode vacuum state after it 

has passed through an ordinary attenuator consisting of a beam 

splitter with an arbitrarily chosen reflectivity 0.5.r   Fitting the 

distribution with Eq. (14) gives 0.759  and 1.732.s    

(Dimensionless units.) 

 

FIG. 8. Wigner distribution of a single-mode squeezed vacuum 

state after noiseless attenuation using a beam splitter and heralding, 

as illustrated in Fig. 1.  Fitting the distribution with Eq. (14) gives 

7,0.70  which is same as that for the original single-mode 

squeezed state in Fig. 6, along with a value of 1.667.s    

(Dimensionless units.) 

IV. Quantum interference 

 

Fig. 4 shows that noiseless attenuation maintains the 

quantum interference that is responsible for the oscillations 

near the origin of the Wigner distribution of a Schrodinger 

cat state.  In this section, we will use a Mach-Zehnder 

interferometer to give a more explicit demonstration of the 

effects of a noiseless amplifier.  In an ordinary attenuator, 

which-path information left in the environment will produce 

a large decrease in the visibility of the interference pattern.  

A noiseless attenuator eliminates the which-path 

information and would be expected to maintain the 

coherence of the quantum interference.  

The interferometer measurements of interest are 

illustrated in Fig. 9.  A two-mode squeezed state is incident 

in the two input ports of 50-50 beam splitter which is 

assumed to have the same form as in Eq. (5). It can be shown 

that this transformation generates two independent single-

mode squeezed states in the two output modes [27]. These 

single-mode-squeezed states then pass through noiseless 

attenuators placed in both paths, which consist of a beam 

splitter and heralding on zero photons in one of the output 

paths as in Fig. 1.  Finally, the two beams are mixed on a 

second beam splitter to form a Mach-Zehnder 

interferometer.  Coincidence measurements are performed 

on the two outputs.  

 

 

FIG. 9. A modified Mach-Zehnder interferometer that could be 

used to measure the amount of quantum interference between two 

states after noiseless attenuation. The input state is a two-mode 

squeezed state, which is transformed into two independent single 

mode squeezed states after passing through the first beam splitter 

on the left. The noiseless attenuators are shown enclosed in blue 

dashed boxes. A phase shift  is applied in one path, after which 

the two modes are recombined at a second beam splitter on the 

right. The effects of quantum interference can be observed in 

coincidence measurements between the two output ports. 
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The incident two-mode squeezed state can be written in 

the number state basis in the form [28]  

           
0

1
tanh .

cosh

n

T

n

MSV n n 






   (15) 

Here   is once again related to the strength of the squeezing 

interaction, which we arbitrarily assumed to have the value 

0.5.   For relatively small squeezing, it is sufficient to 

retain only the first few terms in a number-state expansion.  

Eq. (15) can be used to calculate the effects of the first beam 

splitters, and the coincidence rate was calculated 

numerically using the same techniques as before.    

          With 100% reflective beam splitters (mirrors) in the 

two paths through the interferometer, Fig. 9 reduces to a 

standard Mach-Zehnder interferometer, and the calculated 

results show a visibility of 100% in the interference pattern. 

By reducing the reflectivity of the intermediate beam 

splitters, ordinary attenuation is introduced in both paths, 

adding noise. An arbitrarily chosen reflectivity of 0.5,r 

for both beam splitters give a reduced visibility of ~90%. 

Noiseless attenuation is achieved by heralding on zero 

photons in the auxiliary modes, as shown in the dashed 

boxes of Fig. 9. This restores the interference visibility to 

100%, as illustrated in Figure 10.  For the example shown in 

Fig. 10, 0.83.successP    

 

 

 

FIG. 10. Probability of a single-photon coincidence in the two 

output paths of the Mach-Zehnder interferometer of Fig. 9.  The 

solid (blue) line shows the results for the case of ordinary 

attenuation, where no heralding on the auxiliary mode was 

performed.  This reduces the visibility of the interference pattern to 

~90%. The dashed (orange) line shows the results for noiseless 

attenuators, where the output was heralded on the presence of zero 

photons in the auxiliary mode; this gives a visibility of 100%. Both 

cases correspond to a value of 0.5   and 0.5,r  chosen 

arbitrarily.  (Dimensionless units.) 

These results show that noiseless attenuation does 

maintain the coherence required for quantum interference 

effects.  

 

V. Detector efficiency 

 

Up to this point, the single-photon detectors used in the 

heralding process were assumed to have 100% detection 

efficiency.  Limited detection efficiency can have a 

significant effect on the output of the heralded detection 

process shown in Fig. 1, which will no longer be completely 

“noiseless” [16]. In this section, we will model the effects of 

limited detection efficiency using a perfect detector 

preceded by a beam splitter to simulate the effects of loss or 

detection inefficiency.  

Figure 11 shows the effects of a noiseless detector on a 

Schrodinger cat state for several different values of the 

detector efficiency.  It can be seen that the coherence of the 

cat state is completely maintained for a perfect detector, but 

that the performance of the device gradually degrades to that 

of an ordinary attenuator for a detection efficiency of 0.  

Intermediate values of the detection efficiency produce a 

reduction in the oscillations near the origin of the Wigner 

distribution, indicating a gradual decrease in the coherence 

of the output state.  It can be seen from Fig. 11 (c) that a 

detection efficiency as low as 50% can still give 

significantly better performance than an ordinary attenuator. 

For a initial cat state, the Wigner function of the output state 

can be solved analytically for arbitrary detector efficiency 

(see the Appendix). 

 

 

(a)                                 (b) 
 

(c)                                           (d) 

 
FIG. 11. Effect of using inefficient detectors for heralding on no 

photons for noiseless attenuation of cat states. Wigner distribution 

of the outputs when the efficiency is: (a) 100% (b) 75% (c) 50% 

(d) 0%.  (Dimensionless units.) 



7 

 

The dependence of the Mach-Zehnder interferometer of 

Fig. 9. on the detection efficiency is shown in Fig. 12, which 

is a plot of the visibility as a function of detector efficiency. 

There is a decrease in the visibility for lower efficiency 

photodetectors, which can be understood from the fact that 

a detector with limited efficiency does not completely rule 

out the possibility of which-path information being left in 

the environment, as in ordinary attenuation.  

 
 

 

FIG. 12. Visibility of the quantum interference from the Mach-

Zehnder interferometer of Fig. 9 as a function of the detector 

efficiency used in the heralding process. No which-path 

information is left in the environment and the visibility is 100% for 

a perfect detector.  The visibility decreases for limited detection 

efficiency since the possibility of which-path information is not 

completely eliminated in that case.  (Dimensionless units.)   

 

The overall process is still noisy, and we are simply 

heralding on a suitable subset of the output states, which 

eliminates the terms that would have contributed to the 

noise. The ability to eliminate these outcomes, however, is 

depends on the detector efficiency, which in turn has an 

effect on the amount of which-path information lost to the 

environment. 

 

VI. Summary and Conclusions 

 

Ordinary attenuation of an optical quantum state using 

a beam splitter can produce decoherence due to which-path 

information left in the environment.  Noiseless attenuation 

can be achieved using a beam splitter combined with 

heralding on those events in which no photons are present in 

the auxiliary mode (the environment), which eliminates the 

which-path information.  It is interesting that this process 

can reduce the intensity of an optical signal without 

extracting any power from the system [1, 8].   

In this paper, we showed that noiseless attenuators are 

truly “noiseless” in the sense that they do not reduce the 

coherence of the input state. We first considered the case of 

a Schrodinger cat state that has passed through a noiseless 

attenuator.  The Wigner distribution of a cat state has 

characteristic oscillations near the origin that arise from the 

interference of its two constituent coherent states. The 

Wigner distribution also has negative regions which 

demonstrate that the states are nonclassical.  We showed that 

noiseless attenuation maintains both of these properties.  We 

also found similar results for the case of a single-mode 

squeezed vacuum state, where noiseless attenuation 

maintained the width of the Gaussian Wigner distribution.  

Quantum interference effects were investigated more 

directly by considering a Mach-Zehnder interferometer with 

noiseless attenuators in each arm and a two mode-squeezed 

vacuum state for the input. The visibility in the interference 

pattern from coincidence measurements was found to be 

maintained by noiseless attenuation, while it was 

substantially reduced by ordinary attenuation.  Once again, 

this is due to the fact that the heralding process eliminates 

any which-path information left in the environment.   

The effects of limited detection efficiency were also 

investigated.  As might be expected, heralding using a 

detector with limited detection efficiency limits the ability 

of the heralding process to eliminate noise by eliminating 

those states that would leave which-path information in the 

environment. 

These results may be of practical use in quantum 

communications systems based on continuous variables, 

where photon loss will result in the decoherence of 

nonclassical states.  These effects can be reduced by 

noiselessly attenuating the signal before transmission, 

followed by noiseless amplification after transmission [1].  

Our results show that noiseless attenuation can maintain the 

coherence of nonclassical states, but that detector efficiency 

will be an important consideration. 
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Appendix  

 

Some of the details of the calculations outlined in the text 

are presented in this Appendix.  

     We first consider the form of an even Schrödinger cat 

state.  Combining Eqs. (2) and (3) gives 
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 
   (A1) 

Since the even terms are the only ones that contribute, we 

can introduce a new variable / 2,k n  which gives 
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This expression gives the values of the coefficients nc  that 

appear in Eq. (3). Rewriting the number states in terms of 

photon creation operators acting on vacuum gives   
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The cat state of Eq. (A2) passes through a beam splitter 

as illustrated in Fig. 1. We use the beam splitter 

transformation of Eq. (5) to relate the photon creation 

operators in the input mode A to those in the output modes 

A and B, which gives  

                        † † † .ˆˆ ˆin out outt ra bia   (A4) 

We have chosen to represent the photon creation operators 

in modes A and B by 
†â  and 

†b̂  respectively.  Inserting Eq. 

(A4) into Eq. (A3) gives the output state after the beam 

splitter: 
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Using the binomial expansion and then applying the photon 

creation operators to the vacuum state, this can be rewritten 

as 
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Introducing two new variables defined by bn l and 

2an k l  gives 



9 

 

            

   

0
2

0

1
( , )

cosh

!
,

!

a b

a b

n

t

n

n

b

ca a b

n

a b

a

n

t
n n

n n

f n

ir





 



 








 (A7) 

where  ( , ) 1 mod 2.a b a bf n n n n    This gives the final 

state of Eq.(6) where the coefficients given are 
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By setting 0bn  in Eq. (A8) and comparing with the 

coefficients in Eq.(A2) we see that heralding on zero 

photons in mode b would simply give another cat state with 

coherent states of amplitude out t  in mode a. This can 

also be noted by the transformation of the input state 

coefficients, ,nc  to the output ones, .n
nc t  Therefore, the 

Wigner function of the output is 
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 (A9) 

Using the same procedure for an input state consisting 

of the single-mode squeezed vacuum of Eq. (11) instead of 

an even Schrödinger cat state gives a set of coefficients of 

the form  
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 (A10) 

By setting 0bn  in Eq.(A10) and comparing with the 

coefficients in Eq.(13) we see that heralding on zero photons 

in mode b would simply give another squeezed vacuum state 

with the squeezing parameters of the output can be given by 
2tanh tanh ,out t   or alternatively 

       2 2 2 21 1 1 1 .outs s t t s t t         
   

 This can 

also be noted by the transformation of the input state 

coefficients, ,nc  to the output ones, .n
nc t  For a given initial 

,s  ( )outs t is monotonically decreasing function of the 

transmittivity .t  Therefore, Wigner function of the 

attenuated output squeezed vacuum state is 
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 (A11) 

 

Eqs. (A9) and (A11) give analytic results for the case of 

a Schrodinger cat or a single-mode squeezed state incident 

on a beam splitter.  Although a similar calculation could be 

done for the case of a two-mode squeezed vacuum incident 

on a Mach-Zehnder interferometer as in Fig. 9, the analysis 

is more tedious and numerical solutions were used instead. 

If heralding on zero is done using a detector of 

efficiency ,  instead of setting 0bn   we need to use the 

density operator formalism and use the projector  

                        0

0

.ˆ (1 ) b
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    (A12) 

This gives the unnormalized output state 
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 (A13) 

If the input is an even cat state, then for even ( 2 ),bn k   
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and similarly for odd ( 2 1),bn k   
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Using Eqs. (A14) and (A15) in (A13) give the unnormalized 

state  
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where ̂  and ̂  are the normalized density operators for 

even and odd cat states with amplitude t  respectively. This 

simplifies to the normalized output 
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where 
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and 
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The corresponding Wigner function is 
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where, 
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The success probability of the heralding is .p p   It may 

be interesting to note that in this case, the noise remaining in 

the system is simply an odd cat state. In general, for other 

input states, the output heralded with an inefficient detector 

will have a more complicated noise term. 

 


