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Quantized vortices carry the angular momentum in rotating superfluids, and are key to the phe-
nomenon of quantum turbulence. Advances in ultra-cold atom technology enable quantum turbu-
lence to be studied in regimes with both experimental and theoretical control, unlike the original
contexts of superfluid helium experiments. While much work has been performed with bosonic
systems, detailed studies of fermionic quantum turbulence are nascent, despite wide applicability to
other contexts such as rotating neutron stars. In this paper, we present the first large-scale study
of quantum turbulence in rotating fermionic superfluids using an accurate time-dependent density
functional theory (DFT) called the superfluid local density approximation (SLDA). We identify two
different modes of turbulent decay in the dynamical equilibration of a rotating fermionic superfluid,
and contrast these results with a computationally simpler description provided by Gross-Pitaevskii
equation (GPE), which we find can qualitatively reproduce these decay mechanisms if dissipation
is explicitly included. These results demonstrate that dissipation mechanisms intrinsic to fermionic
superfluids play a key role in differentiating fermionic from bosonic turbulence, which manifests by
enhanced damping of Kelvin waves.

I. INTRODUCTION

Quantized vortices are a direct manifestation of super-
fluidity. In rotating systems, they relax into an Abrikosov
lattice [1]. This lattice can be destroyed by external
perturbations, leading to quantum turbulence—complex
non-equilibrium flow with tangled vortices that collide
and reconnect, transferring energy between length scales.
This energy cascade brings the system back towards equi-
librium, giving rise to an effective dissipation at large
scales despite the superfluid nature of the system. Quan-
tum turbulence has been observed in rotating systems
with superfluid 3He [2–5] and 4He experiments [6, 7].
Here, we study this phenomenon in an ultracold atomic
gas of strongly interacting fermions—the unitary Fermi
gas (UFG)—where the ratio of the paring gap to the
Fermi energy ∆/εF ≈ 0.5 attains the largest known
value. As the corresponding coherence length ξ ≈ 1/kF

becomes of the order of the average inter-particle sepa-
ration, the UFG can maintain a high density of vortex
lines in a robust superfluid with a high Landau critical
velocity [8]. These features, in combination with experi-
mental access, make the UFG an ideal platform to study
quantum turbulence in a new regime that cannot be ac-
cessed in superfluid helium or in cold-atom Bose-Einstein
condensates (BECs) [9].
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Direct numerical studies of fermionic quantum tur-
bulence are very challenging. Due to the high vortex-
line density, the mean inter-vortex distance is compa-
rable to the size of the vortex core, precluding the use
of mesoscopic vortex filament models (VFMs) [10]. In-
stead, a microscopic approach is required. For weakly
interacting bosons at T = 0, a time-dependent nonlinear
Schrödinger equation is justified: the Gross-Pitaevskii
equation (GPE) (see e.g. [11]). This is a form of orbital-
free density functional theory (DFT), and generalizations
have been used to model fermionic superfluids [12–18].
While lacking effects related to the Pauli exclusion prin-
ciple, orbital-free simulations of condensate dynamics are
computationally simple and capture many qualitative ef-
fects [16]. We use a carefully tuned form of such gener-
alized method as a baseline for comparison. We refer to
this simply as the GPE in the remainder of this paper.

To account for Pauli exclusion, one must currently
use a fermionic DFT such as the Bogoliubov-de Gennes
(BdG) or Hartree-Fock Bogoliubov (HFB). Here we use
the time-dependent asymmetric superfluid local density
approximation (TDASLDA) [19, 20], a fermionic DFT
carefully validated against experiments and quantum
Monte-Carlo calculations at the few-percent level for
static properties [19–22]. Quantitative validation at the
same level for dynamics is ongoing [23–25], and a motiva-
tion for this paper. The TDASLDA introduces significant
differences from the GPE, correctly accounting for the
filling of fermionic vortex cores with a “normal” compo-
nent [26–28], even at T = 0. The structure of the vortex
core is also sensitive to spin-imbalance [29, 30], which af-
fects its size and generates reversed flow [31]. The spin
imbalance of the system thus provides control over the
amount of the normal component, and modifies the in-
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tensity of dissipative processes. This work advances our
understanding of fermionic superfluidity in the turbulent
regime, with important consequences for superfluids in
cold-atom experiments and neutron stars. In particular,
we investigate mechanisms of turbulent decay. Compar-
ing with the GPE approach provides insight into the role
of fermionic degrees of freedom to the decay process.

II. NUMERICAL SIMULATIONS

We numerically simulate the UFG close to the zero
temperature limit with two fully microscopic approaches:
the TDASLDA with explicit fermionic degrees of free-
dom (orbitals), and the GPE that models the condensate
with a single wavefunction. The TDASLDA allows us to
also study spin-imbalanced systems with unequal num-
bers of spin up (N↑) and spin down (N↓) atoms. This
approach has been applied to a variety of systems, in-
cluding ultra-cold atomic gases [23–25, 32], atomic nu-
clei [33–35] and neutron star crusts [36]. In particular, we
demonstrate [25] that the TDASLDA correctly captures
the dynamics and evolution of topological excitations like
quantized vortices by comparing with experiments.

The TDASLDA has the same structure as the com-
monly used BdG equations (here and below we use nat-
ural units where m = ~ = kB = 1)

i
∂

∂t

(
un,↑(r, t)
vn,↓(r, t)

)
=

(
h↑(ni, ν) ∆(ni, ν)
∆∗(ni, ν) −h∗↓(ni, ν)

)(
un,↑(r, t)
vn,↓(r, t)

)
,

(1)
where the single particle Hamiltonian hi and pairing field
∆ depend on the normal ni and anomalous ν densities
(i =↑, ↓)

ni(r, t) =
∑

|En|<Ec

|vn,i(r, t)|2fβ(−En), (2)

ν(r, t) =
∑

|En|<Ec

v∗n,↓(r, t)un,↑(r, t)
fβ(−En)− fβ(En)

2
.

(3)

The densities are parameterized in terms of Bogoliubov
quasi-particle wave functions {vn,i, un,i}. Note that the
contribution from each quasiparticle state of energy |En|
smaller than the cut-off energy Ec is weighted by the
Fermi-Dirac distribution fβ(E) = 1/[exp(βE) + 1] where
β = 1/T . This weighting minimizes the free energy for
static (equilibrium) configurations at temperature T . For
T → 0, the Fermi-Dirac function reduces to a step func-
tion, and only states with positive energy contribute,
as in the standard time-dependent BdG approach. The
Fermi-Dirac weights for T > 0 provide an approximate
way to qualitatively studying finite temperature effects.
This approximation is not controlled – there is no rea-
son to assume that the dynamical thermal effects can be
fully encapsulated by the equilibrium Fermi-Dirac distri-
butions – but one expects that this approximation may
provide insight into finite T effects on dynamics close to

equilibrium. With the exception of one case (Fig. 4(f)),
all simulations discussed here use the T = 0 formalism.
Further details about the TDASLDA are provided in
Appendix A. The implementation is publicly accessible
through the W-SLDA toolkit [37]. Although very suc-
cessful in describing the static properties, the TDSLDA
still needs to be validated quantitatively for dynamical
situations. This validation is challenging as typical ex-
perimental geometries are too large to be directly simu-
lated by the TDSLDA on current computing platforms.

We compare this with the GPE as described in [16],
modeling the superfluid as a BEC of dimers (↑↓) with
Cooper-pair wavefunction Ψ(r, t), mass mD = 2m, dimer
density nD = nF /2 = |Ψ|2. The GPE energy density
gn2

D/2 is replaced by the UFG energy density ξEFG(nF ):

ieiηΨ̇ =

(
−~2∇2

4m
+ 2
(
ξE ′FG(nF ) + V − µF

)
+ ΩL̂z

)
Ψ.

(4)

Here, E ′FG(nF ) is the derivative of the energy density of
the free Fermi gas EFG(nF ) = 3

5εF (nF )nF , εF (nF ) =

~2k2
F /2m is the Fermi energy for a free Fermi gas,

nF = k3
F /3π

2 is the total number density of fermions,
and ξ = 0.373 is the Bertsch parameter. The factor of 2
comes from nF = 2nD: i.e. the dimer chemical potential
µD = 2µF , etc. The GPE lacks any mechanism for dissi-
pating hydrodynamic energy into internal degrees of free-
dom (i.e. one-body dissipation). To account for this, we
introduce a small amount of dissipation by hand through
the phase η ∼ 0.01. The presence of a nonzero imaginary
time component breaks the conservation of particle num-
ber. We restore these by dynamically adjusting the chem-
ical potential µF [Ψ]. Also, the angular momentum Lz is
not conserved, in contrast to TDASLDA calculations. To
fix this, the GPE simulations are performed in a rotating
frame with constant angular velocity Ω. It will be shown,
that with these modifications, the GPE model (4) pro-
vides a qualitatively similar description of the turbulent
phenomena as we see in the fermionic TDASLDA.

We evolve both the TDASLDA and GPE at T = 0 on
3D spatial grids of size 50 × 50 × 100 with lattice spac-

Δ/Δmax                                                                         p(r)0      0.25    0.5    0.75      1                         0      0.12   0.25    0.38   0.5

             GPE                                                 ASLDA
(a)                            (b)                         (c)                         (d)

                                   0%=P                      10%                         20%

FIG. 1. Cross sections of the initial stationary states used
to generate quantum turbulence with the GPE (a) and
ASLDA (b)-(d). Panels show the normalized order parame-
ter |∆(r)|/∆max for various spin polarizations: P = 0 (a)-(b),
P = 10 % (c), and P = 20 % (d). The quarter wedge on the
left of (c) and (d) shows the local polarization p(r).
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ing dx = k−1
F ≈ 0.78 ξ where ξ = kF/π∆ is the BCS

coherence length. The gas is confined with a cylindrical
trapping potential Vext(x

2 + y2) with hard-walls and a
radius 18 dx and periodic along z. We choose the Fermi
momentum of majority spin component kF =

√
2εF =

(6π2n↑)
1/3 ≈ 1 where n↑ is local density of spin-up par-

ticles at the center of the trap. This traps N↑+N↓ ≈ 3500
atoms. For more details related to the simulation process
see Appendix B.

To generate the quantum turbulence, we start from
a self-consistent configuration of 14 vortices in a lat-
tice that is stationary in a frame rotating with an-
gular velocity Ω = −0.05εF . In Fig. 1 we present
the solutions for systems with global polarization P =
(N↑ − N↓)/(N↑ + N↓) = 0 %, 10 % and 20 %. The ex-
cess spin component accumulates in the vortex cores,
changing their size. The maximum local spin polariza-
tion p(r) =

(
n↑(r) − n↓(r)

)
/
(
n↑(r) + n↓(r)

)
is 40 % to

45 % in the P = 10 % case. Further increase of the spin
imbalance alters the lattice structure, as seen already in
the case of P = 20 %. For inhomogeneous systems, as are
commonly studied experimental, physical phase separa-
tion seems to dominate, separating superfluid and nor-
mal phases, and frustrating the possibility of polarized
superfluid states. This has been observed for rotating
spin-imbalanced and strongly-interacting Fermi gas [39],
and was confirmed by ASLDA simulations [40]. Thus,
despite the possibility of polarized superfluid phases, we
expect spin imbalance to be a good qualitative probe of
the number of unpaired particles, especially when turbu-
lent dynamics create inhomogeneities. For completeness,
in Fig. 1 (a) we display also the initial state obtained by
the GPE method. We observe very good agreement when
comparing to ASLDA solution for the spin-symmetric
system.

We dynamically perturb this vortex lattice by imprint-
ing four dark solitons in planes approximately perpendic-
ular to the vortices, but with slight tilts to break trans-
lation invariance, and imprint a π phase shift between
each domain. Due to snaking instabilities, these solitons
decay [41, 42], producing new vortices that destabilize
the lattice and lead to a vortex tangle.

In Fig. 2 we show selected snapshots from the
TDASLDA simulation for spin-symmetric system (P =
0) that demonstrate the full life cycle of the vortex tan-
gle. This is characterized by two stages: the genera-
tion and subsequent decay of the vortex tangle. During
generation, energy from the imprinted solitons is trans-
ferred to hydrodynamic flow, increasing the total length
L of the vortex lines. Once the maximum vortex length
is reached, the decay process starts and vortex energy
is transferred into various internal excitations, including
phonons. This “decay” is mediated by vortex dynam-
ics, reconnections, and crossings. These allow the sys-
tem to relax back to a simple vortex lattice embedded
in an excited superfluid. After the phase imprinting pro-
cedure (t > 0), the total energy Etot, particle number
N , and z component of the angular momentum Lz are

formally conserved. Numerically, however, the discrete
lattice breaks the axial symmetry and Lz is only approx-
imately conserved to an accuracy of about 1 %.

III. ROTATING QUANTUM TURBULENCE

We analyze the total vortex length L(t) and test the
hypothesis that the decay is described by the model

dL(t)

dt
= −α

(
L(t)− L∞

)1+ε
, (5)

where L∞ is the equilibrium length of the vortices in
the lowest-energy state with fixed angular momentum.
Details related to the extraction process of vortex lines
are described in Appendix C. Vinen turbulence has ε =
1 [43]. For our geometry, L∞ = 12L0 where L0 is the
length of our cylinder: i.e. the ground state contains
12 vortices. Note that choosing an appropriate value of
L∞ in this model can be problematic as, dynamically,
small systems can get stuck in meta-stable states. This
is demonstrated by the initial states in Fig. 1 which have
L(0)/L0 = 14 vortices.

Our results are shown in Fig. 3. The vortex tangle
grows until tmax ≈ 100ε−1

F , taking slightly longer with
increasing imbalance P > 0. We attribute this to the
enhanced stability of dark solitons in spin-imbalanced
Fermi systems [25, 44, 45]. From here, we notice two
distinct regimes of decay correlated with #b(t), the num-
ber of vortices touching the boundary of the trap. For
t < tb ≈ 250ε−1

F , the number of boundary touches #b(t)
decreases, while for t > tb it remains relatively constant.
We thus perform three fits to the model (5) (see Ap-
pendix D and accompanying code [46] for details). We
first characterize the size of the fluctuations by calcu-
lating a local variance σ2(t) such that the χ2(t) ≈ 1
when fitting segments of length ∆t ≈ 100ε−1

F with cu-
bic polynomials. Using these variances, we perform a
least-squares fit to the full data for t > tmax fixing ε = 1
and L∞ = 12L0 to obtain a reference Lfit(t). The resid-
uals δL(t) = L(t)− Lfit(t), shown in the lower four pan-
els, demonstrate the qualitative change in behavior at
tb. We then individually fit t < tb with free parameters
ε = ε0 and L∞, and refit t > tb with fixed ε = 1 and
L∞ = 12L0. These fits are shown as thin solid lines in
the corresponding residual plots with the best fit value
ε0 inset. This two-component model generally improves
the fit, lowering the reduced χ2

r by a factor of two to
four compared with the single-component model Lfit(t).
While the limited size of our system precludes a quan-
titative extraction of the parameters, it establishes the
qualitatively different behavior of these two regimes.

This qualitative behavior seems to be largely insen-
sitive to the spin imbalance of the system. This sug-
gests that the dynamics in this regime are only weakly
affected by the internal structure of vortices, which de-
pends strongly on the spin polarization as seen in Fig. 1.
The initial decay is accelerated by reconnections close
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FIG. 2. Time evolution of spin-balanced (P = 0) turbulence with the TDASLDA after imprinting four dark solitons at negative
times with δϕ = π phase shifts across each. Frames are isosurfaces of constant order parameter |∆(r|) at various dimensionless
times tεF . (See [38] for movies.) For t ≥ 0, the system evolves freely, conserving total energy, particle number, and angular
momentum Lz. The two stages of increasing (generation) and decreasing (decay) vortex length are indicated.

to the boundary that expel vortex segments from the
system, which may explain the values of ε0 which differ
from that expected for Vinen turbulence [47]. A partic-
ularly large event of this type in the P = 10 % simu-
lation at t ≈ tb ≈ 250ε−1

F is shown in the insets a.-c.,
and is responsible for the localized increase in the de-
cay rate. Qualitatively similar results were obtained for
simulations of rotating 3He [2], where vortex reconnec-
tions and annihilations were facilitated by the boundary.
In the second regime of the decay, reconnection events
are rare, taking place mainly in the bulk. These recon-
nections generate Kelvin waves that propagate along the
vortex lines and dissipate into phonons.

Comparing the P = 0 TDASLDA data with the GPE
shows that the latter can be tuned to give the same
qualitative features, including the initial generation of
turbulence, followed by two decay regimes. To ob-
tain such behavior, however, the dissipation parameter
η ≈ 0.01− 0.02 must be tuned appropriately to mock up
the missing one and two-body decay mechanisms built
into the TDASLDA which convert hydrodynamic energy
into internal energy. Also, we maintain the correct value
of the angular momentum by simulating in a co-rotating
frame with angular velocity Ω matching the initial state.
The main quantitative difference is that the GPE initially
produces more vortices than the TDASLDA, and has a
different initial decay exponent ε0. This deserves further
attention, and likely results from the crude mechanism
of modeling dissipation with the phase η. Nevertheless,
the subsequent turbulent decay is quite similar to that of
the TDASLDA.

IV. ANALYSIS OF KELVIN WAVES

To provide deeper insight about the decay, we have
extracted averaged spectrum of the Kelvin waves (KW)

n(k, t) =
1

Nvor.(t)

Nvor.(t)∑
l=1

(
|w̃l(k, t)|2 + |w̃l(−k, t)|2

)
(6)

where w̃i is Fourier transform of l-th vortex parameter-
ized as wl(x, t) = xl(z, t) + iyl(z, t) [50, 51]. We consider
only vortices stretching over the whole cylinder, periodic
in z, the number Nvor.(t) of which varies in time. Fig. 4
(a)-(c) shows the spectra of decaying turbulence for three
times. The first, for t . tb ≈ 250ε−1

F , shows a spectrum
that approximately follows the dependence derived for a
weak KW cascade [48, 49] with reconnection events trig-
gering the KW cascade along the vortex lines. As an
example, we show an extracted pair of vortices that are
about to reconnect (d) and the corresponding KW spec-
trum of these two lines (e). This we find as a generic fea-
ture, present both in TDASLDA and GPE calculations.
Namely, KW spectra of reconnecting vortices is always
close to n(k) ∼ k−11/3 (or ∼ k−17/5), see Appendix E
for more details. We emphasize, as shown in panel (e),
that the accuracy of our data does not allow us to dis-
tinguish between the k−11/3 = k−3.67 spectrum of L’vov
& Nazarenko [48] and the k−17/5 = k−3.4 spectrum of
Kozik & Svistunov [49]. In the other panels, we compare
spectra only with L’vov & Nazarenko prediction, since
this one is favored by GPE calculations [50, 51]. For
GPE simulations we observe decay of the spectrum that
maintains the overall shape – see inset in panel (c) – as
expected if an energy cascade is present. In contrast, the
spectrum in the fermionic simulations decays inhomoge-
neously. In particular, we find that the TDASLDA sim-
ulations have an extra suppression for wavelengths with
k < 2π/l where l is the inter-vortex spacing as compared
with the GPE simulations.
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FIG. 3. Top panel: Time evolution of the total vortex line
length L(t)/L0 normalized to the length of the cylinder with
thin curves Lfit corresponding to best-fits with the model (5)
fixing both ε = 1 and L∞ = 12L0. Second panel: Number
#b(t) of vortices touching the boundary of the trap, which de-
cays until time tb shown as dashed vertical lines, after which
it remains relatively constant. Bottom four panels: δL(t)/L0

where δL = L(t) − Lfit(t) for the GPE, and the TDASLDA
with spin-imbalance P ∈ {0 %, 10 %, 20 %} respectively. The
thin curves in these figures correspond to the second set of fits
to the model (5) for t > tb with fixed L∞ = 12L0 and ε = 1,
and for t < tb without constraints. The best fit exponent
ε0 in the latter region is displayed. Typical configurations of
the unpolarized vortex tangle for two stages of the decay are
shown in the top right insets A and B. Frames a. to c. on
the right correspond to a rapid decrease in vortex length seen
for P = 10 %, showing isosurface contours of constant |∆(r)|
and thin (red) vortex lines found by our vortex detection al-
gorithm (the algorithm is described in Appendix C).

To explore the low-k damping, we evolve in isolation
from the remaining turbulence and phonons, the two-
vortex configuration shown in Fig. 4 (d) for t ≈ 400ε−1

F .
We start from a moment where the reconnection event
injects energy into the Kelvin waves. As the simulations
proceed there are no more reconnection events, which
are necessary ingredient for transfering energy from large
to small scales. Surprisingly, both the TDASLDA and
GPE show the same resulting spectrum (f) without any
long-wavelength suppression. The spectra decay only for
k & 2π/l where the KW cascade operates. However, if
we repeat these simulations with the TDASLDA at a fi-
nite temperature T = 0.3Tc, a suppression for low-k is
seen, similar to that seen in the turbulence scenario from
panel (c). In formulations like Vortex Filament Model
or two-fluid Hall-Vinen-Bekarevich-Khalatnikov hydro-

(a) (b)

(c)

(e) (f)(d)

reconnection 
point

FIG. 4. Kelvin waves spectra n(k) at three times in
TDASLDA (spin symmetric and spin polarized) and GPE
simulations (a)-(c). Vertical dashed lines indicate the wave
vectors of the two characteristic length scales: the mean inter-
vortex distance (l), and the coherence length (ξ). The di-
agonal dotted line indicates the power-law spectrum associ-
ated with the wave-turbulence [48]. Insets in panel (c) show
how the spectrum of the GPE (top right) and spin-symmetric
TDASLDA (bottom left) change from times t = 210/εF to
t = 660/εF . Lower panels show a configuration of two vortex
lines about to reconnect (d), their initial spectra (e) com-
pared with predictions of L’vov & Nazarenko [48] (dotted)
and Kozik & Svistunov [49] (dashed), and the spectra (f) af-
ter evolving for t = 400ε−1

F with the TDASLDA at both zero
and finite temperature, and with the GPE.

dynamics, the inclusion of temperature effects is linked
with the mutual friction. This suggests that various exci-
tations (like phonons) in the original T = 0 simulations of
turbulence may act as a thermal reservoir, inducing more
normal component in the TDASLDA that can dampen
dynamics at low-k. Indeed, we have checked that the
amount of energy injected by the phase imprinting pro-
cedure is sufficient to heat up the gas up to T = 0.5Tc (see
Fig. 5 from Appendix B). Similar KW damping is seen in
vortex filament models coupled to a normal component
(mutual friction), even for weak couplings [52–54]. The
TDASLDA thus provides a fully self-consistent micro-
scopic calculation where similar phenomenon is observed.
In contrast, the GPE, which has no normal component,
does not show the corresponding damping.

V. CONCLUSIONS

We have simulated dynamical quantum turbulence in
a trapped rotating unitary Fermi gas with a microscopic
density functional theory (DFT) called the TDASLDA,
and identified two regimes of decay: one dominated by
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vortex reconnections near the boundary of the system,
and the other dominated by decaying Kelvin waves. The
overall decay pattern can be reproduced by a computa-
tionally simpler orbital-free DFT similar to the GPE used
to study bosonic superfluids by introducing an appropri-
ately tuned dissipation while manually conserving par-
ticle number and angular momentum. Unlike the GPE,
however, the TDASLDA requires no phenomenological
parameters, hence is able to make predictions concerning
the turbulent dynamics. In particular, the results sug-
gest that the TDASLDA accounts for effects related to
presence of a normal component, manifested by damping
of the Kelvin waves. Thus, the TDASLDA may pro-
vide a parameter-free self-consistent microscopic theory
to study phenomena like mutual friction between super-
fluid and normal components.

The TDASLDA also allows us to study the effects of
spin imbalance, which significantly alters the structure
of vortices, but, surprisingly, does not significantly alter
the turbulent dynamics. The procedures used to generate
turbulence are compatible with experimental capabilities,
paving the way for experiments to address some of the
outstanding challenges in the field of quantum turbulence
raised in [55]. In particular we have demonstrated a new
mechanism for generating turbulence in an exotic system
with tunable interactions by imprinting solitons that gen-
erates turbulence both in the bulk and near the bound-
aries. We also demonstrate the inclusion of beyond mean-
field effects through an empirically established DFT that
includes induced Hartree term absent in the traditional
mean-field BdG approach. Interestingly, the TDASLDA
develops quantum turbulence without the need for any
additional dissipation, unlike the GPE, providing insight
into the microscopic mechanism for vortex tangle genera-
tion discussed in [55]. This provides a means for calibrat-
ing simpler GPE-like theories which may be crucial for
understanding quantum turbulence in complex systems
such as neutron stars.

While certainly not a complete description of dynamics
in the unitary Fermi gas, the TDASLDA seems to incor-
porate many of the most important ingredients needed
to understand fermionic quantum turbulence. We hope
these results encourage experimentalists to study sim-
ilar dynamics, providing quantitative validation of the
TDASLDA. This quantitative validation is crucial for us-
ing similar theories to study quantum turbulence in neu-
tron stars where experimental validation is impossible.
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Appendix A: ASLDA functional

The structure of the ASLDA functional reads:

EASLDA = α↑(p)
τ↑
2

+ α↓(p)
τ↓
2

+ β(p)(n↑ + n↓)
5/3

+
γ(p)

(n↑ + n↓)1/3
ν∗ν +

∑
i=↑,↓

[1− αi(p)]
j2
i

2ni
. (A1)

where normal ni and anomalous ν densities are defined
via Eqs. (2) and (3), while

τi(r) =
∑

|En|<Ec

|∇vn,i(r)|2fβ(−En), (A2)

ji(r) =
∑

|En|<Ec

Im[vn,i(r)∇v∗n,i(r)]fβ(−En), (A3)

stands for the kinetic and current densities respectively.
The coupling constants αi, β and γ are polynomial func-
tions of the local polarization of the gas p = (n↑ −
n↓)/(n↑ + n↓). The polynomials coefficients have been
adjusted to quantum Monte Carlo results for both spin-
balanced and spin-imbalanced unitary Fermi gas, see [19]
for details related to the fitting procedure.

The term in the functional that depends on the cur-
rents ji introduces significant cost to the computation.
This term is responsible for maintaining Galilean invari-
ance of the ASLDA theory. Since the effective mass was
found to be consistent with the bare mass to within 10%
for a large range of polarizations, in the calculations we
set αi = 1. Therefore, the particular form of the func-
tional used in this paper simplifies to:

Eα=1 =
1

2
(τ↑+ τ↓) +β(p)(n↑+n↓)

5/3 +
γ

(n↑ + n↓)1/3
ν∗ν.

(A4)
The TDASLDA equations are obtained from the condi-
tion of extremal action,

S =

∫ t1

t0

(
〈0(t)|i d

dt
|0(t)〉 − E(t)

)
dt, (A5)
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with respect to variation of Bogoliubov quasi-particle
wave functions, where |0(t)〉 denotes the quasiparticle
vacuum at time t and E(t) is the total energy

E(t) =

∫ Eα=1(r, t) +
∑
i=↑,↓

Vi(r, t)ni(r, t)

 dr. (A6)

Vi is the external potential, described later. The result-
ing equations of motion are given by Eq. (1), where the
single-particle Hamiltonian and pairing potentials take,
respectively, the following forms:

hi(r, t) = −1

2
∇2 +

∂Eα=1(r, t)

∂ni
+ Vi(r, t)− µi, (A7)

∆(r, t) = −∂Eα=1(r, t)

∂ν∗
. (A8)

Note, that the pairing coupling constant γ entering the
equation for ∆(r, t) is subject of regularization proce-
dure as described in [19]. The chemical potentials µi are
meaningful only in the static case of Eq. (1), i.e. when
i ∂∂t → En, where they are adjusted to fix the particle
number Ni. The spin reversed components of the quasi-
particle wavefunctions are obtained via the symmetry re-
lation un,↑ → v∗n,↑, vn,↓ → u∗n,↓ and En → −En.

For time integration, we used a 5th order Adams-
Bashforth-Moulton (predictor-corrector) scheme. The
integration time step ∆t was taken to be ∆t Emax =
0.035, where Emax = π2/2dx2 is estimation of the max-
imum energy that can be resolved on employed spatial
lattice with spacing dx.

Appendix B: Simulations details

1. Generation of the initial state

The initial state for the simulations is obtained as
a solution of static ASLDA equations, which are ob-
tained from Eq. (1) as stationary solutions: vi(r, t) =
exp(−iEt)vi(r), ui(r, t) = exp(−iEt)ui(r). The external
potential has the form (distances are expressed in lattice
units dx):

Vtrap(x, y) = 5εF


0, ρ 6 17.5,

s(ρ− 17.5, 7.5), 17.5 < ρ < 25,

1 ρ > 25,

(B1)

where ρ =
√
x2 + y2 is the distance from the symmetry

z-axis and s denotes the switching function

s(x,w) =
1

2
+

1

2
tanh

[
tan

(πx
w
− π

2

)]
, (B2)

which smoothly rises from 0 to 1 over distance w. Since
the trapping potential does not depend on z the quasi-
particle wave functions acquire generic form ϕ(r) →
ϕ(x, y)eikzz and 3D static problem effectively reduces to

2D problem which needs to be solved for each quantum
number kz.

To start with solution containing the vortex lattice,
the ASLDA equations were solved in rotating frame by
changing the single particle Hamiltonian (A7):

hi(r)→ hi(r)− ΩLz, (B3)

where Lz = −ix ∂
∂y + iy ∂

∂x is z-th component of the an-

gular momentum operator. The ASLDA equations were
solved self-consistently. Note, the generated state used
as starting point for the time-dependent runs does not
correspond to the absolute lowest energy state. It corre-
sponds to one of excited states, but still stationary. In
Fig. 5 (a) we show the lowest energy state under imposed
constraints.

2. Dynamical generation of the turbulent state

The turbulent state is generated dynamically by ap-
plying time-dependent external potential:

V (r, t) = Vtrap(x, y) + Vknives(r, t) + Vimpr.(r, t). (B4)

A potential Vknives is used to separate the gas into seg-
ments, see the first panel of Fig. 2 in the main article:

Vknives(r, t) =

K∑
k=1

A(t) exp

(
− (z − zk(x, y))2

2σ2

)
. (B5)

Here K denotes the number of knives (we did simulations
for K = 2 and 4) and zk is position of a given knife
potential:

zk(x, y) = k
Nz
K

+ r1x+ r2y, (B6)

where r1 and r2 are randomly selected small numbers
(r � 1). Thus, the knives are evenly distributed along z
axis with spacing Nz

K and each of them is independently
tilted with respect to xy plane. The random tilts break
periodic symmetry along z direction. The width of the
knife potential was taken σ ≈ 2dx. The time-dependent
amplitude of knives potential was changing in the follow-
ing way (see Fig. 5):

1. we start simulations with A = 0 and gradually raise
it up to value Amax = 2.5εF in the time interval
∆trise ≈ 150ε−1

F ,

2. next, we keep the amplitude at fixed value for time
interval ≈ 100ε−1

F

3. finally, in short time interval ∆toff ≈ 10ε−1
F we

turn-off the knives.

The time when we start to turn-off knife potentials is
indicated as t = 0.

The phase imprint is realized by turning on for some
time interval ∆timpr. the external potential Vimpr.. This



8

|Δ|/ε
F

T/T
c
=0.51, E/E

ffg
=0.747

|Δ|/ε
F

T/T
c
=0, E/E

ffg
=0.65

(a)                                     (b)                                                           (c)
0.0        0.25      0.50 0.0        0.25      0.50

|Δ|/ε
F

40 

30 

20 

10 

0  
0     10    20    30    40

40 

30 

20 

10 

0  
0     10    20    30    40

FIG. 5. Middle panel (b): Time evolution of the total energy (expressed in units of free Fermi gas energy Effg = 3
5
NεF ) in

simulations for P = 0% where turbulence is generated by introducing 4 knives and imprinting phase difference is π. In panel
(a) we show order parameter distribution of the lowest energy state derived from static calculations at T=0, while in panel (c)
we present the same quantity resulting from the same static calculations but with increased temperature to T = 0.51Tc. Note
that the time-dependent runs start from a slightly excited state with 14 rather than 12 vortices and E ≈ 0.68Effg corresponding
to the configuration shown in Fig. 1 of the main text.

is a constant potential applied only to selected segments
of the cloud, indicated by yellow boxes on Fig. (2). The
pairing field is proportional to the anomalous density ν ∼∑
n v
∗
n,↓un,↑ and it evolves as ∆ = e2iµt|∆| where µ is the

chemical potential. For segments that are subject of the
phase imprinting potential we have ∆ = e2i(µ−U0)t|∆|,
where U0 is strength of the potential. Consequently, after
time ∆timpr. the phase for imprinted segments gets an
extra shift δϕ = 2U0∆timpr.. The strengh of the potential
U0 is adjusted to introduce the requested phase difference
δϕ within a time interval ∆timpr.εF ≈ 75.

In Fig. 5 (b) we show a representative graph showing
the total energy change for different stages of the state
preparation (t < 0) and subsequently for the evolution
(t > 0) which is subject of observation. The stages re-
lated to applying the knives, phase imprinting, and re-
moving knives are clearly visible. We also checked that
the main properties of the tangle evolution do not depend
on values of ∆timpr. and ∆trise.

Finally, we compare the time-evolved energy of the sys-
tem to the ground state energy with the same conserved
quantities: particle number, polarization, and angular
momentum Lz. This difference reflects the amount of en-
ergy injected by the preparation procedure, see Fig. 5 (b).
We expect that, after sufficiently long evolution, the sys-
tem will reach an new equilibrium state with the injected
energy distributed in phonons and internal degrees of
freedom, effectively establishing a sort of thermal equilib-
rium. To estimate the effective temperature of this equi-
librium state, we perform a static finite-temperature cal-
culation, thermally populating the single-particle states
so that the energy matches the total injected energy in
our T = 0 dynamical simulation, again at fixed parti-

cle number, polarization, and angular momentum. To
obtain the same energy in a stationary thermodynamic
state, we find that we need to set T = 0.51Tc (where
|∆(0)|/kBTc = 1.76) (see panel (c)). It is currently not
known how to precisely relate these two systems—the dy-
namical equilibrium established in our T = 0 simulations
and the static T = 0.51Tc thermodynamic ensemble—but
this gives a qualitative estimate of the effective temper-
atures realized in these simulations.

3. GPE simulations

To generate the initial state for the GPE simulations,
we set our lattice spacing as described in the main text
and the chemical potential µF = ξεF in the same ex-
ternal potential in Eq. (B1). The trap holds ≈ 3700
particles. Then we imprint 14 vortices in the same ap-
proximate pattern as seen in the ASLDA initial state,
and minimize the state with fixed number of particles in
a rotating frame with Ω = −0.05εF to get a solution of
the GPE similar to that of ASLDA with P=0% in 2D.
This solution is then used to populate the 3D state with
periodic boundary condition in z-direction. The initial
state that we generate in this process is similar to ASLDA
initial state, with a couple of small differences in the ar-
rangement of the vortices and number of particles. These
differences does not modify the qualitative physics.

Next, we evolve the 3D state using Eq. (4) to dynam-
ically generate turbulence following the same procedure
described in the previous section. Then we evolve the
turbulent state with different dissipation parameters to
study the life cycle of the state. To get the best matching
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FIG. 6. Visualization of main part of the vortex detection
algorithm: steps 2.(a) and 2.(b), see text for more details.
Color map encodes the phase pattern of the order parameter
ϕ = arg(∆).

with TDASLDA results we find that η ∼ 0.01 should be
used.

Appendix C: Vortex detection algorithm

The vortex detection algorithm is based on the mod-
ification of the procedure presented in Ref. [56]. The
algorithm consists of the following steps:

1. For a given spatial point rg (initial guess) we eval-
uate pseudovorticity ωps(rg) = ∇× j(r)|r=rg

and
create plane M that is normal (perpendicular) to
the evaluated ωps(rg) vector. It is assumed that
the guess point is located close to the vortex core.

2. Within the plane M we search for point around
which the phase of the order parameter ∆ rotates
by 2π. The phase is sampled for k = 8 points uni-
formly distributed on a circle with radius R con-
structed around point rg. Initial value of the circle
radius is 0.75dx. Next, the vortex core is searched
by repeatedly applying operations:

(a) the radius of the circle is decreasing with step
dR = 0.05dx until the phase pattern along the
circle looses the winding property, see panel
(a) of Fig. 6;

(b) position of the circle is shifting rg + dr → rg
in such a way to restore the expected phase
pattern, see panel (b) of Fig. 6.

The points (a)-(b) are executed until the radius
reaches value R = 0.05dx which sets accuracy of
the vortex location detection. The center of the
circle is assigned to the vortex position rv.

3. For the vortex core position rv the pseudovorticity
is recalculated ωps(rv) = ∇ × j(r)|r=rv

and new

guess point is created: rg = rv + dx
3

ωps(rv)
|ωps(rv)| .

The points 1−3 are executed till the reconstructed vortex
line either touches boundaries or creates closed loop. The

first guess point for each line is located by analyzing the
phase pattern for lattice plates.

The procedure described above was used to obtain vor-
tex lines’ positions for TDASLDA and GPE simulations
after every δtεF = 1. Such time resolution guarantees
that in co-rotating frame the ending of each vortex line
lies sufficiently close (we assumed distance of 1.5dx) to
the same vortex line ending in the previous time step,
which allows for temporal tracking of vortices. We use
abrupt changes of vortex ends positions between two con-
secutive time frames as indicator of reconnection, anni-
hilation or tearing of vortices.

Having extracted vortex lines, following quantities
were analyzed:

• The total length of vortices L(t): This is calculated
as a sum of distances between consecutive points
lying on distinct vortex lines. (The points are given
by the detection algorithm.)

• Number of ends of vortices touching the boundary
#b(t): This is extracted as vortex ends lying suf-
ficiently close (2dx) to isosurface of low density at
the boundary of the system.

• Number of vortices NV (t): The vortex lines can
be distinguished based on the mutual distance be-
tween pairs of the points given by the detection
algorithm with the periodic boundary condition
along z-axis being taken into account.

Appendix D: Vortex length decay model

We present the details of our analysis of the vortex
length data. To describe the two regimes of decay we
use a two component fit using the model presented in
the main text. In order to compute the derivatives of the
data we needed to perform smoothing of the data. In
Fig. 7, we present the results obtained from using differ-
ent window size for the smoothing filter, as there is no
obvious choice. We used a window length which preserves
the dominant long term trends.

Appendix E: Vortex reconnections as trigger of
Kelvin-wave cascade

The analysis of Kelvin waves clearly demonstrate that
emergence of the spectra compatible with the wave tur-
bulence cascade n(k) ∼ k−11/3 (or ∼ k−17/5) is due to
vortex reconnections. Namely, we find as generic fea-
ture (present both in SLDA and GPE calculations) that
each reconnection event populates the crossing lines with
the corresponding spectra. In Fig. 8 we show spectra of
each individual vortex lines for two selected moments in
time, where the reconnection takes place. It is clearly
seen that the reconnecting vortices are attributed with
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FIG. 7. Modeling the decay of the vortex length L(t). Top row: Vortex length ∆L(t)/L0 as in Fig. 3 of the main paper with
the standard deviations σ(t) used as weights in the fits. Bottom row: −dL(t)/dt as a function of (L− L∞)/L∞. This should
be linear if the model (1) from the main text is satisfied. The solid black line is a one-component best fit to the entire set of
data t > tmax with ε = 1 (Vinen turbulence) and L∞ = 12L0 (ground state shown in Fig. 5 (a)). The black dashed lines are
the best two-component fits to the regions t < tb with free ε0 and L∞ as parameters, and then for t > tb with constrained ε = 1
and L∞ = 12L0. The colored curves correspond to numerically computed derivatives of the actual data after smoothing with a
Savitzky-Golay filter of length N . We compute σ(t) by performing a least-squares fit of the data in segments of length N = 101
to a third-order polynomial, and adjust the standard deviation σ(t) (dotted lines in the upper panels) over each interval so that
χ2 = 1 for these fits. This gives an estimate for the size of the numerical fluctuations. The choice of window size is not unique,
but N = 101 does a reasonable job of smoothing over dynamical features, while still preserving the dominant long-term trends.
Our results change little with N ∈ {51, 75, 101, 151}. To explore this analysis and for code to reproduce this figure, please see
[46].

FIG. 8. KW spectra of individual vortices for two selected moments in time, corresponding to the vortex reconnection event.
Vortices that undergo the reconnections are marked by (bold) red and blue lines. The results are obtained by means of
TDASLDA method for spin-symmetric (left) and spin-imbalanced (right) systems. As the generic feature, we find that the
reconnections populate vortices with the spectra which is compatible with KW cascade spectra, marked by the dotted line. In
insets, we show corresponding vortex lines configuration, with highlighted vortices that undergo the reconnection.
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spectra compatible with the KW spectra. Note that, in
Figs 4 (a)-(c) we present averaged spectra over all lines.
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