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Off-resonant error for a driven quantum system refers to interactions due to the input drives
having non-zero spectral overlap with unwanted system transitions. For the cross-resonance gate,
this includes leakage as well as off-diagonal computational interactions that lead to bit-flip error on
the control qubit. In this work, we quantify off-resonant error, with more focus on the less studied
off-diagonal control interactions, for a direct CNOT gate implementation. Our results are based
on numerical simulation of the dynamics, while we demonstrate the connection to time-dependent
Schrieffer-Wolff and Magnus perturbation theories. We present two methods for suppressing such
error terms. First, pulse parameters need to be optimized so that off-resonant transition frequencies
coincide with the local minima due to the pulse spectrum sidebands. Second, we show the advantage
of a Y -DRAG pulse on the control qubit in mitigating off-resonant error. Depending on qubit-qubit
detuning, the proposed methods can improve the average off-resonant error from approximately
10−3 closer to the 10−4 level for a direct CNOT calibration.

I. INTRODUCTION

Cross-resonance (CR) is a microwave-activated two-
qubit gate performed by driving one of the qubits (con-
trol) at the frequency of the other (target) [1, 2]. In
this architecture, superconducting qubits [3–6], typically
fixed-frequency transmons [5], connect via a mediat-
ing bus resonator, resulting in a static qubit-qubit ex-
change interaction. The CR protocol induces various
two-qubit interactions [7–13], with ZX as the dominant
term, through which a CNOT gate can be calibrated.
Simplicity in implementation, resilience to charge and
flux noise, and scalability has made CR architecture the
leading workhorse for current IBM quantum processors
[12, 14, 15].

Improving CR gate fidelity necessitates both an accu-
rate understanding of the effective interactions as well
as precise microwave control. In particular, a multi-
level analysis of the dynamics [7–12] is required for CR
gate implementation with weakly anharmonic transmon
qubits [5]. Higher qubit states can lead to both renor-
malization of interactions in the computational subspace
[8, 11, 12] as well as leakage out of the computational
subspace [10, 16]. Generally, to optimize the coherent
fidelity, we need to maximize the desired ZX term and
minimize unwanted computational and leakage interac-
tions.

There are two main CNOT calibration schemes based
on the CR architecture. The first is an echo sequence
consisting of two CR pulses with flipped amplitude ac-
companied with single-qubit rotations [7, 11, 12, 15]. The
echo removes certain unwanted terms such as the ZI,
ZZ and IX, however, it induces higher-order IY and
IZ error terms [11, 12]. This technique has been used
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to demonstrate a 280 ns echoed CR gate with an av-
erage fidelity of 99.40% [15]. The second main CNOT
calibration is direct, with a single CR pulse [10, 15, 17].
In this calibration, we want no operation on the target
qubit when the control is in state |0c〉, hence canceling
IX + ZX via a separate drive on the target, and a π
rotation on the target when the control is in state |1c〉.
Therefore, the IX term is not an error term anymore,
and CR gate speed is determined by twice the ZX (IX)
term, resulting in a faster gate. Equipped with multiple-
path interference couplers [18] to suppress the static ZZ
term, and using a virtual frame change [19] to cancel out
Stark shifts in software, Ref. [17] demonstrated a 180 ns
gate with 99.77% average gate fidelity.

Schrieffer-Wolff Perturbation Theory (SWPT) [8, 11,
20–27] is a central method in our analytical understand-
ing of effective interactions. SWPT provides effective
models by averaging high-frequency off-resonant pro-
cesses systematically. Through a series of perturbative
frame transformations, the interactions are partitioned
into resonant (effective) and off-resonant categories. The
effective interactions come from processes that connect
states with equal frequency in the rotating frame of the
drive, while off-resonant interactions have a net non-zero
transition frequency. In contrast to the rotating-wave ap-
proximation (RWA), which simply discards off-resonant
terms, SWPT takes them into account by solving for
and storing the relevant frame transformations. Hence,
contributions that are not resonant at a specific order
may lead to resonant interactions via non-trivial higher-
order mixings. The drive scheme, and the corresponding
energy diagram, determines the choice of the effective
frame. For CR, where the drive is resonant with the tar-
get qubit, the effective SWPT frame is block-diagonal
(BD) with respect to the control qubit [8]. Under the
BD approximation, analytical estimates for CR gate pa-
rameters have been derived in Refs. [8, 11] for a constant-
amplitude continuous wave (CW) drive.

In this paper, we study off-resonant error due to inter-
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actions that originate from the CR drive frequency be-
ing detuned from states of the control qubit. The corre-
sponding dominant unwanted transitions are |0c〉 ↔ |1c〉,
|0c〉 ↔ |2c〉 and |1c〉 ↔ |2c〉 (see Fig. 1). Although off-
resonant error is present for a CW drive, there is an in-
tricate interplay with the pulse shape and in particular
the pulse ramps. To model this, we employ numerical
simulations based on Magnus expansion [28–31]. Fur-
thermore, we extend the SWPT formalism for CR [8, 11]
to the time-dependent case and make a connection to
the Magnus method. In particular, the main role of
time-independent and time-dependent perturbations are
to account for how strong the drive amplitude and how
fast (non-adiabatic) the pulse ramps are compared to the
system transition frequencies, respectively. These two ef-
fects are independent in general, however, in the context
of gate calibration, they become related based on a fixed
rotation angle imposed by the intended gate.

Generally, to mitigate off-resonant error, a CR drive
should have minimal spectral content at the unwanted
transition frequencies. Qubit-qubit detuning and an-
harmonicity determine the relative configuration of off-
resonant transitions in the rotating-frame of the drive
[10, 11], where the error due to one or sometimes multi-
ple transitions can be noticeable. We take the standard
square Gaussian pulse, i.e. flat top with Gaussian ramps,
and demonstrate further improvement. The most imme-
diate refinement comes from optimization of the pulse
rise time known as Gaussian shaping [23, 32]. The pulse
ramps should be optimized so that the transition for the
most dominant error type overlaps with one of the local
minima of the pulse sidebands. Moreover, we show addi-
tional improvement by a Y -DRAG [23, 32–34] pulse on
the control qubit. We argue that, in essence, DRAG acts
as an effective filter that can be tuned to notch the error
due to specific off-resonant transitions.

The remainder of this paper is organized as follows. In
Sec. II, we introduce our model for a direct CNOT gate
implementation [10, 17]. In Sec. III, we discuss the the-
ory behind off-resonant error, by relating time-dependent
SWPT to the Magnus method, which extends our earlier
results in Refs. [8, 11]. Furthermore, using numerical sim-
ulation based on Magnus, we quantify the dependence
of off-resonant error on pulse parameters. In Sec. IV,
we demonstrate the advantage of Y -DRAG pulse on the
control qubit in suppressing off-resonant error.

There are five appendices. In Appendix A, we discuss
the derivation of a generalized time-dependent SWPT
to account for the underlying pulse shapes. Using the
SWPT formalism, Appendix B derives effective time-
dependent Hamiltonian terms generalizing Refs. [8, 10,
11]. Appendices C and D provide the effective time evo-
lution operator and the corresponding leading-order non-
BD contributions, respectively. In Appendix E, we de-
rive leading-order estimates for dominant off-resonant er-
ror types, and corresponding DRAG conditions for their
suppression.

FIG. 1. (a) CR gate schematic with separate drives on each
qubit. The drive amplitudes Ωj(t) ≡ Ωjx(t)+ iΩjy(t), j = c, t
are complex-valued to allow for more involved control schemes
like DRAG [23, 32–34]. The drive frequency is set to the
target qubit frequency. (b) Energy diagram in the rotating
frame of the drive under RWA (see Sec. II). The control-target
detuning is denoted by ∆ct ≡ ωc−ωt, and control and target
anharmonicities by αc and αt, respectively.

II. DIRECT CNOT

We consider two coupled transmon qubits [5] with indi-
vidual drives on each qubit. The transmon Hamiltonian
can be approximated in terms of multi-level Kerr oscilla-
tors as

Ĥq ≡
∑
j=c,t

[
ωj b̂
†
j b̂j +

αj
2
b̂†j b̂
†
j b̂j b̂j

]
, (1)

with ωc,t and αc,t denoting the corresponding frequency
and anharmonicity for the control and the target qubits,
respectively. The transmon-transmon exchange interac-
tion takes the approximate form

ĤJ ≡ J
(
b̂†cb̂t + b̂cb̂

†
t

)
, (2)

where J is the effective exchange coupling as a result
of either direct capacitive coupling or mediated coupling
through a common bus resonator [8, 11]. Furthermore,
we consider separate drives on each qubit:

Ĥd(t) ≡
1

2

[
Ω∗c(t)b̂ce

iωdt + Ωc(t)b̂
†
ce
−iωdt

]
+

1

2

[
Ω∗t (t)b̂te

iωdt + Ωt(t)b̂
†
te
−iωdt

]
,

(3)

with frequency ωd, same as the target qubit frequency,
and time-dependent complex-valued pulse amplitudes
Ωc(t) ≡ Ωcx(t) + iΩcy(t) and Ωt(t) ≡ Ωtx(t) + iΩty(t)
(see Fig. 1). The phase of the microwave drive deter-
mines the axis, in the X–Y plane of the target qubit, to
which the drive couples. We set the main CR drive to
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couple to the X quadrature of the target, while the Y
axis can be used for DRAG following the same conven-
tions as single-qubit gates [23, 33, 34]. In our numeri-
cal and perturbative analysis, the system Hamiltonian is
the static part Ĥs ≡ Ĥq + ĤJ , accounting for the CR
eigenstate renormalization due to the exchange interac-
tion (2), and the interaction-frame Hamiltonian is defined

as ĤI(t) ≡ exp(iĤst)Ĥd(t) exp(−iĤst).
In Eqs. (1)–(3), we have adopted a Kerr model for the

qubits, and applied RWA in both drive and exchange
interactions. This RWA neglects terms that oscillate at
approximately twice the target qubit frequency, of the or-
der of 10 GHz, and does not change the physics of the CR
gate qualitatively. In this work, we focus on the domi-
nant error that comes from off-resonant transitions of the
control qubit, with transition frequencies of the order of
100 MHz, and study the dependence on pulse parameters.
A more precise model for the CR gate was discussed in
Ref. [11], accounting also for eigenstate renormalization
due to counter-rotating terms in the Josephson nonlin-
earity.

Tuning a direct CNOT gate [17] requires identity op-
eration on the target qubit when the control is in state
|0c〉 so that ∫ τp

0

dt [ωix(t) + ωzx(t)] = 0 , (4)

and a π rotation around the X axis when the control is
in state |1c〉 as∫ τp

0

dt [ωix(t)− ωzx(t)] = π . (5)

In particular, in our implementation, the cancellation in
Eq. (4) is restricted to all times, i.e. ωix(t) + ωzx(t) ≈ 0,
via the direct resonant drive Ωt(t) on the target qubit.

Here, ωσjσk(t) ≡ (1/2)Tr{ĤCR,eff(t) (σ̂j ⊗ σ̂k)}, j, k ∈
{i, x, y, z}, are effective Hamiltonian terms defined over
the dressed two-qubit Pauli operators. For notation sim-
plicity, we use Î ≡ σ̂i, X̂ ≡ σ̂x, Ŷ ≡ σ̂y, Ẑ ≡ σ̂z and
drop the explicit tensor product for two-qubit Pauli op-
erators, e.g. ẐX̂ ≡ σ̂z ⊗ σ̂x. Time-dependent SWPT
provides reasonable estimates for the effective gate pa-
rameters (see Appendices A and B). In particular, based
on Eq. (4), the main cancellation tone on the target is
found as

Ωtx(t) =
J

∆ct
Ωcx(t)− αcJ

2∆3
ct(2∆ct + αc)

Ω3
cx(t) +O

(
Ω5
cx

)
,

(6)

while for CNOT calibration [Eq. (5)] the main pulse
should satisfy approximately

2αcJ

∆ct(∆ct + αc)
Ωcx[τp − s1(τr)]

− (9∆3
ct + 15∆2

ctαc + 11∆ctα
2
c + 3α3

c)α
2
cJ

∆3
ct(∆ct + αc)3(2∆ct + αc)(2∆ct + 3αc)

× Ω3
cx[τp − s3(τr)] +O

(
Ω5
cx

)
= π .

(7)

FIG. 2. Schematic of the BD subspace shown in solid black,
subspace corresponding to coupling between computational
and leakage in dashed-dotted black, and non-BD computa-
tional subspace in red dotted lines. We are particularly inter-
ested in characterizing the error due to non-BD interactions
of the form σ̂x ⊗ σ̂k or σ̂y ⊗ σ̂k for k = i, x, y, z.

Equations (6)–(7) provide a useful initial guess for drive
parameters and facilitate more involved numerical opti-
mization. We also find non-adiabatic corrections to the
effective gate parameters in terms of the pulse deriva-
tives, e.g. terms proportional to JΩ̇2

cx(t)Ωcx(t) in ωix(t)
and ωzx(t) (see Appendix B). Here, τp and τr denote the
gate and the rise times, respectively. Moreover, sn(τr)
characterizes the reduced area under the curve during the
ramps, compared to a square pulse, for the nth power of
the pulse shape. In our simulations, we use the common
square Gaussian pulse [15, 17].

Coherent error, compared to an ideal CNOT, can be
traced back to the two aforementioned categories of in-
teractions. Resonant (effective) error arises from faulty
resonant rotations, terms like IX (IY ) and ZX (ZY ),
or static and dynamic frequency shifts of the qubits, like
IZ, ZI and ZZ terms. Static ZZ can in principle be
substantially suppressed via tunable [35–38], opposite-
anharmonicity [39, 40] and multiple-path [17, 18, 41–44]
couplers, and also via auxiliary AC Stark tones (siZZle)
on the qubits [45, 46]. Furthermore, Stark shifts can
be removed effectively through a virtual frame change in
software [17, 19]. In the following, we explore the physics
of off-resonant error.

III. OFF-RESONANT ERROR

Generally, a non-zero overlap of the drive spectrum
with an unwanted off-resonant system transition can
cause error. For a direct CNOT calibration, the dom-
inant off-resonant error types are bit-flip and leakage
on the control qubit [10] (see Fig. 2). Unlike resonant
error, which can be approximately modeled via time-
independent methods accounting only for constant am-
plitude drive [8, 10, 11], off-resonant error exhibits sub-
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Probability Type Time-domain Frequency-domain

|0c〉 → |1c〉 (1) non-BD ≈ 1
4

∣∣∣ ∫ τp0
dt′Ωc(t

′)ei∆ctt
′
∣∣∣2 ≈ 1

4

∣∣∣ +∞∫
−∞

dω′

2π
Ω̃c(ω

′)
ω′+∆ct

[
ei(ω

′+∆ct)τp − 1
] ∣∣∣2

|0c〉 → |2c〉 (2) Leakage
≈ 1

32

∣∣∣ ∫ τp0
dt′
∫ t′

0
dt′′Ωc(t

′)Ωc(t
′′)[

ei(∆ct+αc)t
′
ei∆ctt

′′
− ei∆ctt

′
ei(∆ct+αc)t

′′
] ∣∣∣2

≈ 1
32

∣∣∣ +∞∫
−∞

+∞∫
−∞

dω′

2π
dω′′

2π
αcΩ̃c(ω

′)Ω̃c(ω
′′)

(ω′′+∆ct+αc)(ω′′+∆ct)[
ei(ω
′+ω′′+2∆ct+αc)τp−1

]
ω′+ω′′+2∆ct+αc

∣∣∣2
|1c〉 → |2c〉 (3) Leakage ≈ 1

2

∣∣∣ ∫ τp0
dt′Ωc(t

′)ei(∆ct+αc)t
′
∣∣∣2 ≈ 1

2

∣∣∣ +∞∫
−∞

dω′

2π
Ω̃c(ω

′)
ω′+∆ct+αc

[
ei(ω

′+∆ct+αc]τp − 1
]∣∣∣2

TABLE I. Summary of dominant off-resonant error types and leading-order overlap integrals in time and frequency domains.
The estimates are based on a reduced model of an off-resonantly driven transmon qubit equivalent to vertical ladders in Fig. 1
(see also Appendix E). In particular, single-photon transitions are enhanced when there is large overlap with the sideband
photons of the pulse, i.e. at ω′ = −∆ct and ω′ = −(∆ct +αc) for type 1 and type 3, respectively. The two-photon transition is
enhanced due to simultaneous overlap with two sidebands such that ω′+ω′′ = −(2∆ct +αc). Proximity to frequency collisions
at ∆ct = 0, −αc/2, −αc enhances the corresponding overlap as the transitions are excited by closer-to-center and hence
stronger spectrum sidebands. For strong drive amplitude, comparable to the transition frequencies, more precise estimates can
be obtained by exponentiation of the Magnus generator, compared to the perturbative expansion used in this table.

tle interplay with the pulse shapes and requires more
involved time-dependent methods, such as generalized
time-dependent SWPT [11, 23] and Magnus [28–30], dis-
cussed in the following.

A. Theory

The time evolution operator for the CR gate is

ÛI(τp, 0) ≡ T exp

[
−i
∫ τp

0

dt′ĤI(t′)
]
, (8)

where ĤI(t) is the drive Hamiltonian (3), expressed in

the interaction frame with respect to Ĥs, T is the time-
ordering operator and τp is the gate time. One standard
approach for computing Eq. (8) is the Magnus method
[28–30], which solves perturbatively for the generator of

time evolution operator as ÛI(τp, 0) ≡ exp[−iK̂(τp, 0)].
Up to the second order one finds

K̂1(τp, 0) =

∫ τp

0

dt′ĤI(t′) , (9a)

K̂2(τp, 0) = − i
2

∫ τp

0

dt′
∫ t′

0

dt′′[ĤI(t′), ĤI(t′′)] . (9b)

The Magnus method computes the two interaction cat-
egories, resonant and off-resonant, altogether. Time-
dependent SWPT, however, separates the two by com-
puting an effective resonant Hamiltonian as

ĤI,eff(t) ≡ Û†SW(t)
[
ĤI(t)− i∂t

]
ÛSW(t) , (10)

using the frame transformation ÛSW(t) ≡ exp[−iĜ(t)].
Similar to the Magnus expansion, we can solve for the
generator Ĝ(t) and the effective Hamiltonian ĤI,eff(t)
perturbatively [8, 11, 21, 23–26] (see Appendices A

and B). Therefore, SWPT is a method for implementing
systematic RWA: through a perturbative frame transfor-
mation we obtain effective models with resonant interac-
tion terms, however, the information about off-resonant
processes is stored in ÛSW(t) and hence we can recon-
struct the overall time evolution operator as (see Appen-
dices C and D)

ÛI(τp, 0) = ÛSW(τp)ÛI,eff(τp, 0)Û†SW(0) . (11)

Equation (11) is the bridge between time-dependent
Magnus and SWPT formalisms.

According to Eq. (11), the overall time evolution is
in principle invariant of the frame choice. However, in
practice, any perturbative treatment of ÛSW(t) breaks
the invariance. The choice for an efficient frame depends
on the drive scheme and the quantities we intend to com-
pute. For CR, to compute an effective Hamiltonian with
resonant interactions, the SW frame is BD with respect
to the control qubit [8, 11] so as to capture resonant X
and Y target rotations (see Fig. 2). Hence, the SW frame

transformation ÛSW(t) encodes the details of off-resonant
processes and non-BD interactions in particular.

Generally, analytical modeling of time-dependent er-
ror requires precise and hence very involved symbolic
computer algebra as discussed in the Appendices. We
base our analysis primarily on the numerical simulation,
while using perturbation theory to corroborate various
trends of off-resonant error. For instance, the leading-
order perturbative estimate for the probability amplitude
of |0c〉 → |1c〉, with time-dependent coupling Ωc(t)/2 and
detuning ∆ct, over time interval [0, τp] reads (see Ap-
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FIG. 3. (a) Decomposition of the perturbative overlap prob-
ability based on Eq. (12) into overlap with a square Gaussian
pulse in Eq. (13), overlap with just the Gaussian ramps (con-
nected), and overlap with just the flat part as a function of
τr = 2σr for fixed Ω/(2π) = 20 MHz, ∆ct/(2π) = 50 MHz and
τp = 200 ns. The distinct overlaps add at the level of complex
probability amplitude, hence there is significant interference
between separate parts of the pulse. The comparison confirms
the crucial role of smooth ramps in reducing the error. (b)
Comparison of overlap probability between square Gaussian,
for the same parameters as in (a) and fixed τr = 2σr = 26 ns
[an optimal value in panel (a)], and a square pulse with the
same τp as a function of τp. The results exhibit a periodic
dependence on τp with period 2π/∆ct.

pendix E)

− i
∫ τp

0

dt′
Ωc(t

′)

2
ei∆ctt

′

=−
∫ ∞
−∞

dω′

2π

Ω̃c(ω
′)

2(ω′ + ∆ct)

[
ei(ω

′+∆ct)τp − 1
]

=−

{ ∞∑
n=0

[
1

∆ct

(
i

∆ct

d

dt′

)n
Ωc(t

′)

2

]
ei∆ctt

′

}∣∣∣∣∣
τp

0

.

(12)

The first line in Eq. (12) is an example of a time-
domain overlap integral between the pulse and transition
frequency ∆ct. The second line shows the frequency-
domain representation, with pulse Fourier transform
Ω̃c(ω

′), where a single sideband photon provides the en-
ergy to excite the transition. From design perspective,
this suggests that mitigating the error requires filtering
(notching) the pulse spectrum at ω′ = −∆ct. Lastly,
assuming that the pulse is differentiable up to arbitrary
orders at the boundaries, the third line shows the spec-
tral overlap in terms of the pulse time derivatives through
adiabatic expansion, and suggests that DRAG [23, 33] is
a natural leading-order solution for engineering spectral
content (see Appendix E). Similarly, higher-order expan-
sions in Magnus and SWPT describe probability ampli-
tudes of multi-level off-resonant transitions as processes
in which multiple sideband photons provide the total en-
ergy for the transition (see the 2nd row in Table I).

It is important to note that off-resonant error is not
caused only by the pulse ramps and is present for a
constant-amplitude drive. This can be seen from Eq. (12)
where a constant pulse with amplitude Ω and duration
τp results in error probability of (Ω/∆ct)

2 sin2(∆ctτp/2),

which has a period of 2π/∆ct in τp. Smoother ramps,
however, bring additional non-trivial derivative contri-
butions that modify and in particular mitigate the error.
To see this, consider the standard square Gaussian pulse
defined as

ΩSG(t) ≡



Ω e
− (t−τr)2

2σ2
r −e

−
τ2
r

2σ2
r

1−e
−
τ2
r

2σ2
r

, 0 < t < τr

Ω , τr < t < τp − τr

Ω e
−

[t−(τp−τr)]2

2σ2
r −e

−
τ2
r

2σ2
r

1−e
−
τ2
r

2σ2
r

, τp − τr < t < τp

(13)

with ramps comprised of a truncated Gaussian with rise
time τr, standard deviation σr and a total flat time of
τp−2τr. Based on the first line of Eq. (12), contributions
from different parts of the pulse, i.e. the ramps and the
flat part, add with complex amplitude and can create
constructive/destructive interference. This is shown in
Fig. 3, where we see that the overlap probability with
square Gaussian lies almost in between the individual
overlap probabilities due to just the ramps or just the
flat part. In particular, the overlap due to the flat part
is orders of magnitude higher than the overall overlap
with square Gaussian pulse, demonstrating the benefit
of smooth ramps in reducing off-resonant error.

Given that CR gate operates typically in the near-
detuned straddling regime (|∆ct| < |αc|), the off-resonant
error comprises of three dominant types involving the fol-
lowing transitions on the control qubit: (1) |0c〉 → |1c〉
with single-photon transition frequency ∆ct, (2) |0c〉 →
|2c〉 with two-photon transition frequency 2∆ct +αc and
(3) |1c〉 → |2c〉 with single-photon transition frequency
∆ct +αc (see Table I). Depending on qubit-qubit detun-
ing, and proximity to the underlying frequency collisions
at ∆ct = 0, −αc/2, −αc [10, 11], each error type can be-
come the most dominant. For instance, type 1 (non-BD)
error is dominant for qubit pairs with relatively small de-
tuning where |∆ct| � |∆ct+αc/2| and |∆ct| � |∆ct+αc|.
In the following, we analyze these dominant off-resonant
error types numerically.

B. Simulation

For the numerical integration, we employ a Magnus
solver based on the following discretization of Eqs. (9a)–
(9b) [31]:

ÛI(tj + h, tj) = exp
[
− i

∑
n=1,2

K̂n(tj + h, tj)
]
, (14a)

K̂1(tj + h, tj) ≡
h

2

[
ĤI(tj + c1h) + ĤI(tj + c2h)

]
,

(14b)

K̂2(tj + h, tj) ≡ −i
√

3h2

12
[ĤI(tj + c2h), ĤI(tj + c1h)] ,

(14c)
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FIG. 4. Numerical dependence of off-resonant error on τr =
2σr based on the square Gaussian pulse of Eq. (13) with
fixed gate time τp = 200 ns. System parameters are set as
J/(2π) = 3.5, ωt/(2π) = 5000, αc/(2π) = αt/(2π) = −340
MHz, while varying control qubit freuqency for detunings
∆ct/(2π) = 50, 100, 150 and 200 MHz. The corresponding
static ZZ terms are apprximatley 147.2, 157.7, 178.8 and
220.4 KHz, respectively. The drive amplitudes Ωcx and Ωtx
are adjusted according to the approximate conditions (6)–(7)
to calibrate a CNOT gate. (a)–(d) Decomposition of error
into individual transitions for initial state set to |00〉 as a
point of comparison. Legends use the shorthand notation
Pmn→pq ≡ | 〈pq| ÛI(τp, 0) |mn〉 |2. (e) Average population er-
ror in Eq. (15) calculated using the four computational states.

for an infinitesimal time evolution between tj and tj +h,

where h is the time step, and c1 ≡ 1/2 +
√

3/6 and

c2 ≡ 1/2−
√

3/6 denote the relative position of the aux-
iliary midpoints with respect to tj . The coefficients in
Eq. (14a)–(14c) are chosen such that the contribution

from K̂3(tj +h, tj) is canceled, hence the numerical error
is O(h4) [31]. One important advantage of a numerical
solver based on the matrix exponentiation of the Magnus
expansion [Eq. (14a)] is that it preserves the unitarity of
the time evolution operator at any arbitrary truncation
order.

FIG. 5. (a) Normalized Fourier transform of the square Gaus-
sian pulse (13) for τp = 200 ns and τr = 2σr = 26 ns. (b)
Analytical reconstruction of the |0c〉 → |1c〉 error as a func-
tion of τr based on the first row of Table I. Compared to
Fig. 3(a), the drive is adjusted at each τr for an approximate
CNOT calibration.

For the CR simulation, we keep 5 and 3 levels for the
control and the target qubits, respectively. The main
CR pulse, applied on the X axis of the control qubit,
is taken to be the square Gaussian in Eq. (13). Drive
amplitudes on the control and the target qubits should
then be calibrated according to Eqs. (4)–(5). Here, we
use the perturbative conditions (6)–(7) to expedite the
numerical computation.

Figure 4 shows the behavior of off-resonant error as
a function of pulse rise time τr for sample detunings
∆ct/(2π) = 50, 100, 150, 200 MHz, and αc/(2π) =
αt/(2π) = −340 MHz. First, depending on the close-
ness to the three collision types in Sec. III A, we ob-
serve a crossover where either non-BD error or leakage
become dominant [Figs. 4(a)–4(d)]. For instance, for
∆ct/(2π) = 50 MHz, the non-BD error is almost four
orders of magnitude larger than leakage, due to proxim-
ity to a type 1 collision. Second, there are favorable local
minima of the off-resonant error, as a function of τr, due
to overlap of the underlying transition frequency with a
dip in the sidebands of the pulse spectrum. In Fig. 4(e),
we show average population error defined as

Ēpop ≡ 1− 1

4

∑
j,k=0,1

∣∣∣〈j, k| Û†CNOTÛI(τp, 0) |j, k〉
∣∣∣2 . (15)

We use this measure intentionally to reflect the behavior
of off-resonant error more clearly, instead of the overall
average error [47, 48] that contains phase error due to
Stark shifts and ZZ. In particular, the average popula-
tion error follows similar local minima as a function of
τr that is dominated by one, or a combination of multi-
ple collision types. Based on Fig. 4(e), possible optimal
choices of τr for ∆ct/(2π) = 50, 100, 150 and 200 MHz are
approximately 26, 13, 19 and 14 ns, respectively. More-
over, the case of ∆ct/(2π) = 100 MHz leads to the small-
est off-resonant error due to being comparably furthest
from the three collisions.

To connect the simulation results to the analytical
overlap integrals of Table I, note that Fourier transform
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of square Gaussian consists of an overall tail, with rela-
tively wide sidebands in frequency, whose spectral width
is primarily determined by the risetime τr, and a series of
narrower sidebands with widths determined by interplay
between the overall gate time τp and flat time τp − 2τr
[see Fig. 5(a)]. Increasing τr, on the one hand, shrinks the
overall spectral width and suppresses the error in general.
However, to reach the same CR rotation angle, a stronger
drive is needed. Up to the leading order, one- and two-
photon off-resonant errors are O(Ω2

cx) and O(Ω4
cx), re-

spectively. Therefore, for each parameter set, we expect
distinct sweet spots for off-resonant error in terms of τr.
We took a closer look into the case of ∆ct/(2π) = 50
MHz in Fig. 5. First, Fourier transform of Eq. (13) for
τp = 200 ns and τr = 26 ns exhibits a sideband dip at
ω/(2π) = 50 MHz justifying why this choice is suitable
for suppressing non-BD error in Fig. 4(a). Moreover, we
used the leading-order analytical estimate for |0c〉 → |1c〉
in Table I to reconstruct the dependence on τr. We find
that the position of local minima agree approximately be-
tween the numerical and leading-order analytical results
in Figs. 4(a) and 5(b).

IV. DRAG

Local minima of the square Gaussian sidebands act
as an intrinsic filter for off-resonant transitions as shown
in Figs. 4–5. An ideal frequency composition of a CR
pulse should have minimal frequency overlap with the
aforementioned three collision types, and possibly higher-
order transitions for stronger drive. This can in principle
be achieved by applying a band-stop filter to the input
pulse as

Ω̃c(ω) = T (ω)Ω̃SG(ω) , (16)

where the transfer function T (ω) should notch every un-
wanted off-resonant transition (see Fig. 6). It is typically
challenging to design a practical band-stop filter in hard-
ware with sufficiently high quality factor.

Here, we explore the application of a DRAG pulse on
the control qubit that results in an effective notch filter.
In a leading-order Y -DRAG solution, we augment the
square Gaussian, on the X axis of the control qubit, with
the derivative on the Y axis as [23, 33]

Ωcx(t) = ΩSG(t) , (17a)

Ωcy(t) =
1

∆D
Ω̇SG(t) , (17b)

with ∆D as the DRAG parameter. Hence, the overall
pulse on the control qubit takes the form Ωc(t) = Ωcx(t)+
iΩcy(t), and given that ∂t ↔ iω, the effective DRAG
transfer function reads

TD(ω) = 1− ω/∆D . (18)

Note that the optimal choice for ∆D depends on the CR
gate frequency allocation. In particular, due to multi-
ple collision possibilities, tuning the DRAG coefficient to

FIG. 6. Schematic transfer function of an ideal band-stop
filter that mitigates off-resonant error by notching every indi-
vidual collision versus a first-order DRAG solution of the form
Ωcy(t) = (1/∆D)Ω̇cx(t) and corresponding transfer function
TD(ω) = 1 − ω/∆D. The frequency allocation here is for a
case where non-BD error is most detrimental, i.e. ∆ct > 0
is the smallest transition frequency in absolute value. The
idea, however, remains the same for other allocations, while
the optimal DRAG parameter ∆D varies.

mitigate a near-collision scenario can in principle cause
the error due to other transitions to grow. Hence, first-
order DRAG is not necessarily the optimal pulse shaping
technique for CR gates, or systems with multiple col-
lisions, as also pointed out in Ref. [34] for single-qubit
gates with spectator qubits. This being said, we demon-
strate noticeable improvement, especially for a qubit pair
close to a type 1 (non-BD) collision.

We first discuss how to derive analytical conditions for
the DRAG parameter to suppress individual collisions in
Table I (see Appendix E). The derivation here is in terms
of the leading-order Magnus term, hence slightly distinct
from Refs. [23, 33], but reaches similar solutions. For
instance, applying adiabatic expansion on the |0c〉 → |1c〉
transition probability gives

P|0c〉→|1c〉 ≈
1

4

∣∣∣∣∫ τp

0

dt′Ωc(t
′)ei∆ctt

′
∣∣∣∣2

=
1

4

∣∣∣∣∣{
∞∑
n=0

[ 1

∆ct

( i

∆ct

d

dt′

)n
Ωc(t

′)
]
ei∆ctt

′
}∣∣∣τp

0

∣∣∣∣∣
2

.

(19)

Replacing the Y -DRAG ansatz (17a)–(17b) into the 2nd
line of Eq. (19) results

P|0c〉→|1c〉 =
(1 + λ01)2

4∆4
ct

[
Ω̇2

SG(τp) + Ω̇2
SG(0)

−2 cos(∆ctτp)Ω̇SG(τp)Ω̇SG(0)
]

+O
(

Ω̈2
SG

)
,

(20)

with normalized DRAG parameter λ01 ≡ ∆ct/∆D.
Higher-order terms are given in Appendix E, where
we find that the dependence on Ω̈2

SG is also propor-
tional to (1 + λ01)2. Therefore, setting λ01 = −1, i.e.

Ωcy(t) = −(1/∆ct)Ω̇SG(t), removes non-BD error up to

terms of O(
...
Ω

2
SG). Similarly, the leading-order DRAG

solution for suppressing type 3 error |1c〉 → |2c〉 reads
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FIG. 7. Distinct off-resonant error types and average popu-
lation error as a function of DRAG coefficient 1/∆D for the
same system parameters as in Fig. 4. The rise time in each
case is adopted from the optimal values in Fig. 4(e) to quantify
further improvement by DRAG. The numbers in blue show
the average population error at the optimal DRAG parameter
for each case. We note that using DRAG alone, without ramp
optimization, e.g. for fixed τr = 20 ns, results in comparable
but slightly less improvement in the average population error
for each case.

∆D = −(∆ct + αc). Two-photon leakage is, however,
more involved as the leading-order Magnus term appears
as a two-time overlap integral (Table I and Appendix E).
Inserting ansatz (17a)–(17b) results in a fourth-order
polynomial in 1/∆D. Intuitively, we expect the opti-
mal DRAG parameter to be approximately set accord-
ing to half of the two-photon transition frequency, i.e.
∆D ≈ −(∆ct + αc/2).

The above analytical DRAG solutions are based on an
off-resonantly driven but isolated transmon qubit, while
there are in principle O(JΩt) corrections. Moreover,
DRAG correcting for one error type may increase the
other (see Fig. 6). Therefore, we resort to a numeri-
cal sweep of the DRAG parameter in order to minimize
the average population error. Figure 7 shows Ēpop along
with the three off-resonant error types as a function of
1/∆D, with τr set to the optimal value based on ramp
optimization in Fig. 4(e). We see that depending on ∆ct,
there is a trade off between optimal ∆D for individual
error types as expected from analytics. For instance, the
50 MHz detuned pair in Fig. 7(a) is mainly limited by
non-BD error without DRAG. Adding DRAG is benefi-
cial in suppressing non-BD error, but increases the leak-
age to state |2c〉. The optimal DRAG parameter is then
determined by a balance between the two mechanisms.
Lastly, sweeping drive amplitude (gate time) in Fig. 8

FIG. 8. Average population error as a function of (a) drive
amplitude, and (b) gate time, for the ∆ct/(2π) = 50 MHz case
and DRAG parameter set from the optimal value in Fig. 7(a)
as ∆D/(2π) = −5.287 MHz. Drive parameters Ωcx, Ωtx and
τp are set according to the approximate conditions (6)–(7)
to calibrate a CNOT gate. The DRAG correction results in
an approximate improvement of the average population error
from 1.72× 10−3 down to 4.53× 10−4.

shows partial improvement of the average error with a
just a slightly slower gate of 246 ns. Altogether, with
Gaussian shaping and Y-DRAG, the average population
error for case (a) can be suppressed down to 4.53×10−4.
For pairs close to the type 2 collision, however, the inter-
play between different transitions is more involved and
there is less improvement.

We note that resorting to the proposed pulse shap-
ing techniques becomes more pertinent given the on-
going improvements in the coherence times of fixed-
frequency transmon qubits. For instance, ibmq peekskill
[49] demonstrates on average T1,avg ≈ 266.14 µs and
T2,avg ≈ 256.61 µs across the device, with the longest
measured coherence times of T1,max ≈ 453.13 µs and
T2,max ≈ 663.59 µs. Running a τp = 246 ns direct
CNOT gate results in an average incoherent error of
Ēincoh ≈

∑
j=c,t[(1/5)(τp/T1j,avg) + (2/5)(τp/T2j,avg)] ≈

1.13 × 10−3. Therefore, the improvements from ramp
optimization and DRAG can be partially observed. To
distinguish the full extent of the improvements demon-
strated in Fig. (8), the minimum required coherence
times are T1j ' 650 µs and T2j ' 650 µs for j = c, t.

V. CONCLUSION

Current calibrations of a CNOT gate using a CR ar-
chitecture are premised on a BD form for effective inter-
actions. In this work, we characterized off-resonant CR
interactions, specifically non-BD contributions, as a po-
tential source of coherent error, and illustrated its inter-
play with control pulse shapes. Time-dependent SW and
Magnus perturbations reveal that off-resonant error oc-
curs due to spectral overlap between the pulse and three
unwanted off-resonant transitions on the control qubit,
denoted as type 1–type 3. Non-BD error is enhanced for
pairs in proximity of type 1, while leakage is increased
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close to type 2–type 3 transitions.
To suppress such error terms, the pulse spectrum

should have minimal content at the underlying transi-
tions. The most immediate solution lies in optimal fre-
quency allocation, i.e. simultaneously maximizing all off-
resonant transition frequencies. This requires very pre-
cise fabrication of fixed-frequency transmons, where laser
annealing [50, 51] has shown promising improvement. As
a more active measure, optimal control techniques can
effectively reduce the collision bounds, and allow work-
ing with CR pairs in closer proximity to the unwanted
transitions. To this aim, we demonstrated promising im-
provement using two complimentary methods of ramp
optimization and Y-DRAG on the control qubit, using a
square Gaussian pulse shape. These methods come with
little additional cost, i.e. small enhancement of leakage,
and are preferable especially since they do not increase
the total gate time. More involved optimal pulse shaping
is a subject of future research. Our initial experiments
on IBM CR processors confirm the benefit of pulse ramp
optimization and DRAG on the average error obtained
from two-qubit randomized benchmarking [48, 52]. The
experimental results will be presented in a subsequent
work.
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Appendix A: Time-dependent SWPT

Here, we review the main results of a generalized
time-dependent SWPT formalism [11]. We demonstrate
the connection between time-dependent and independent
perturbation through adiabatic expansion, in which effec-
tive terms depend on both the input pulse shapes as well
as higher-order time derivatives. Furthermore, we discuss
how time-dependent SWPT and the Magnus expansion
are related through a frame transformation.

Consider a driven quantum system with time-
dependent Hamiltonian

Ĥs(t) = Ĥ0 + λĤint(t) , (A1)

where Ĥ0 is the zeroth-order system Hamiltonian, Ĥint(t)
denotes the time-dependent perturbation and λ is an
auxiliary expansion parameter that facilitates the book-
keeping of perturbative corrections. Moving to the inter-
action frame with respect to Ĥ0 we find

λĤI(t) ≡ eiĤ0t
[
λĤint(t)

]
e−iĤ0t , (A2)

which simplifies the perturbation theory in what follows.

The idea behind SWPT is to average out high-
frequency off-resonant processes to come up with effec-
tive resonant interactions. Formally, this is equivalent to
applying a unitary SW transformation to Eq. (A2) as

ĤI,eff(t) ≡ Û†SW(t)
[
λĤI(t)− i∂t

]
ÛSW(t) , (A3)

where ÛSW(t) ≡ exp[−iĜ(t)], Ĝ(t) is the unknown SW

generator and ĤI,eff(t) is the effective Hamiltonian of in-
terest. To obtain perturbative solutions, we first perform
a series expansion of Ĝ(t) and ĤI,eff(t) in terms of λ as

Ĝ(t) =
∞∑
λ=1

λnĜn(t) , (A4a)

ĤI,eff(t) =

∞∑
λ=1

λnĤ(n)
I,eff(t) . (A4b)

Collecting equal powers of λ and enforcing the frame
change at any arbitrary order, we find [11]

O(λ) :

 Ĥ(1)
I,eff = B

(
ĤI
)
,

˙̂
G1 = N

(
ĤI
)
,

(A5a)

O(λ2) :

 Ĥ(2)
I,eff = B

(
i[Ĝ1, ĤI ]− i/2[Ĝ1,

˙̂
G1]
)
,

˙̂
G2 = N

(
i[Ĝ1, ĤI ]− i/2[Ĝ1,

˙̂
G1]
)
,

(A5b)

O(λ3) :



Ĥ(3)
I,eff = B

(
− (i/2)[Ĝ1,

˙̂
G2]− i/2[Ĝ2,

˙̂
G1]

+ 1/6[Ĝ1, [Ĝ1,
˙̂
G1]] + i[Ĝ2, ĤI ]

− 1/2[Ĝ1, [Ĝ1, ĤI ]]
)
,

˙̂
G3 = N

(
− i/2[Ĝ1,

˙̂
G2]− i/2[Ĝ2,

˙̂
G1]

+ 1/6[Ĝ1, [Ĝ1,
˙̂
G1]] + i[Ĝ2, ĤI ]

− 1/2[Ĝ1, [Ĝ1, ĤI ]]
)
,

(A5c)
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O(λ4) :



Ĥ(4)
I,eff = B

(
− i/2[Ĝ1,

˙̂
G3]− i/2[Ĝ2,

˙̂
G2]

− i/2[Ĝ3,
˙̂
G1] + 1/6[Ĝ1, [Ĝ1,

˙̂
G2]]

+ 1/6[Ĝ1, [Ĝ2,
˙̂
G1]] + 1/6[Ĝ2, [Ĝ1,

˙̂
G1]]

+ i/24[Ĝ1, [Ĝ1, [Ĝ1,
˙̂
G1]] + i[Ĝ3, ĤI ]

− 1/2[Ĝ1, [Ĝ2, ĤI ]]− 1/2[Ĝ2, [Ĝ1, ĤI ]]
− i/6[Ĝ1, [Ĝ1, [Ĝ1, ĤI ]]]

)
,

˙̂
G4 = N

(
− i/2[Ĝ1,

˙̂
G3]− i/2[Ĝ2,

˙̂
G2]

− i/2[Ĝ3,
˙̂
G1] + 1/6[Ĝ1, [Ĝ1,

˙̂
G2]]

+ 1/6[Ĝ1, [Ĝ2,
˙̂
G1]] + 1/6[Ĝ2, [Ĝ1,

˙̂
G1]]

+ i/24[Ĝ1, [Ĝ1, [Ĝ1,
˙̂
G1]] + i[Ĝ3, ĤI ]

− 1/2[Ĝ1, [Ĝ2, ĤI ]]− 1/2[Ĝ2, [Ĝ1, ĤI ]]
− i/6[Ĝ1, [Ĝ1, [Ĝ1, ĤI ]]]

)
.

(A5d)

In Eqs. (A5a)–(A5d), B(•) and N (•) represent pro-
jections onto the desired frame, in which effective inter-
actions are resonant, and the rest of the Hilbert space,
respectively. For our CR model in Eqs. (1)–(3), and un-
der a CW drive, B (•) is equivalent to keeping contribu-
tions in the BD frame shown in Fig. 2. To generalize for
a pulsed drive, we adopt the same definition of the BD
frame as the CW case. The time dependence due to the
pulse shape then appears as overlap integrals between the
system transition frequencies and the pulse shape. The
overlap integrals can also be related to the time deriva-
tives of the pulse through an adiabatic expansion as dis-
cussed in the following. More generally, Ref. [26] argues
that obtaining the effective resonant interactions for a
CW drive corresponds to separating the zero-frequency
part of the right-hand side of Eqs. (A5a)–(A5d) at each
order in perturbation by time averaging.

Note that in solving the operator-valued ODEs (A5a)–

(A5d), the initial conditions for Ĝn(t) appear as free pa-
rameters, where different choices here correspond to dis-
tinct frames. The goal of SWPT is to reach a desired form
for the effective Hamiltonian by removing off-resonant in-
teractions. Therefore, the homogeneous solution is not of
interest and the natural choice is to solve for the partic-
ular solution, obtained by the indefinite integral of the
right hand side at each order. The indefinite integral
is consistent with the fact that in SWPT we are inter-
ested in effective Hamiltonian rates, while effective rota-
tion angles can be obtained after this step using a definite
integral over the pulse duration. To explain this point,
we show the explicit expression for the effective Hamil-
tonian up to the second order. According to Eq. (A5a),
the lowest-order generator should be set as

Ĝ1(t) =

∫ t

dt′N
(
ĤI(t′)

)
. (A6)

Replacing solution (A6) into the second-order expres-

sion (A5b) results

Ĥ(2)
I,eff(t) = B

(
i

[∫ t

dt′N
(
ĤI(t′)

)
, ĤI(t)

])
− B

(
i

2

[∫ t

dt′N
(
ĤI(t′)

)
,N
(
ĤI(t)

)])
,

(A7)

which can be understood as possible mixings between
the interaction Hamiltonian at time t and t′. Higher-
order solutions account for more complex time corre-
lations. In the limiting case where B(ĤI) = 0, and

hence N (ĤI) = ĤI , Eq. (A7) simplifies to Ĥ(2)
I,eff(t) =

B( i2 [
∫ t
dt′ĤI(t′), ĤI(t)]) as in Ref. [11].

It is importat to note that, for any driven quantum
system, the dynamics is determined by the overall time
evolution operator and hence is independent of our frame
choice. Therefore, we need to map the effective unitary
operator back to the interaction frame. This step is com-
monly neglected in SWPT, but is crucial in capturing
the error of our effective model due to off-resonant pro-
cesses. Given that the interaction and the effective frame
wavefunctions are related as |ΨI(t)〉 = ÛSW(t) |ΨI,eff(t)〉
we find

ÛI(t, t0) = ÛSW(t)ÛI,eff(t, t0)Û†SW(t0) , (A8)

where ÛI,eff(t, t0) is given in terms of the effective Hamil-

tonian ĤI,eff(t) as

ÛI,eff(t, t0) = T exp

[
−i
∫ t

t0

dt′ĤI,eff(t′)

]
. (A9)

Furthermore, the SW transformation in Eq. (A8) can be
computed by either a matrix exponentiation of the per-
turbative solution for Ĝ, which is norm-preserving, or by
a perturbative expansion of the exponential as

ÛSW = Î − iĜ1 − iĜ2 −
1

2
Ĝ2

1

− iĜ3 −
1

2

(
Ĝ1Ĝ2 + Ĝ2Ĝ1

)
+
i

6
Ĝ3

1

− iĜ4 −
1

2
(Ĝ1Ĝ3 + Ĝ3Ĝ1)− Ĝ2

2

+
i

6

(
Ĝ2

1Ĝ2 + Ĝ1Ĝ2Ĝ1 + Ĝ2Ĝ
2
1

)
+

1

24
Ĝ4

1 +O(λ5) .

(A10)

Time-dependent SWPT provides the means to also
quantify adiabaticity, and importantly, in the limit of
adiabatic response, the results agree with those found
from time-independent perturbation. In particular, con-

sider a generic correction
∫ t
dt′Ω(t′) exp[i∆(t−t′)], which

is a form that derives from Eq. (A7). Here, Ω(t) denotes
the time-dependent drive amplitude with an intrinsic rise
time τr, and ∆ is the transition frequency for the un-
derlying physical process. Adiabatic response is ensured
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when the transition frequency is much larger than the
pulse spectral width, i.e. ∆ � 1/τr. However, we can
quantify adiabaticity by expanding in orders of 1/(∆·τr),
which appears naturally in terms of the time derivatives
of the pulse as∫ t

dt′Ω(t′)ei∆(t−t′) =
Ω(t)

−i∆
− Ω̇(t)

(−i∆)2
+ · · ·

=

∞∑
n=0

(−1)n

(−i∆)n+1

dnΩ(t)

dtn
.

(A11)

The right hand side of Eq. (A11) is computed via inte-
gration by parts. Keeping the first term in the adiabatic
expansion (A11) agrees with the time-independent per-
turbation theory, while higher-order terms capture the
transient effects during pulse ramps.

Lastly, we note that the idea behind time-dependent
SWPT and Magnus expansion are similar, where a per-
turbative expansion is made in terms of the generator
(logarithm) of unitary operators. The two methods can
be related to one another as

ÛI(t, t0) ≡ e−iK̂(t,t0) = e−iĜ(t)ÛI,eff(t, t0)eiĜ(t0) (A12)

where K̂(t, t0) is the Magnus generator. The main dis-
tinction is that Magnus solves for the overall time evolu-
tion operator directly, without partitioning into resonant
and off-resonant sectors.

In summary, we have demonstrated the application of
time-dependent SWPT for computing an effective Hamil-
tonian for a driven quantum system. This method is ca-
pable of accounting for the renormalization of effective
Hamiltonian terms due to control pulse shapes, and also
the corresponding off-resonant error.

Appendix B: Effective CR Hamiltonian

Here, we apply the time-dependent SWPT of Ap-
pendix A to the CR model in Eqs. (1)–(3) and provide
expressions for the effective gate parameters. Our time-
dependent results agree with and provide a natural ex-
tension of the time-independent effective CR terms given
in Refs. [8, 10, 11].

For CR gates, the drive frequency is resonant with the
target qubit leading to Rabi oscillations around the X or
Y axis of the target. Therefore, the frame in which the
effective terms are resonant is BD with respect to the
control qubit (see Fig. 2). Once the effective Hamiltonian
is obtained in the extended Hilbert space, we read off the
CR gate parameters as

ĤCR,eff(t) ≡
∑

m,n=i,x,y,z

1

2
ωσmσn(t)σ̂m ⊗ σ̂n , (B1a)

ωσmσn(t) ≡ 1

2
Tr
(

(σ̂m ⊗ σ̂n) ĤI,eff(t)
)
, (B1b)

where the order is control ⊗ target. In the BD frame, the
effective Hamiltonian consists of IX, IY , ZX, ZY , IZ,

ZI and ZZ terms. In the following, we provide expres-
sions in powers of the drive amplitudes Ωc(t) and Ωt(t).

1. Zeroth order

Up to the zeroth order, we find an effective static ZZ
term as

ω(0)
zz (t) =

(
1

∆ct − αt
− 1

∆ct + αc

)
J2 +O

(
J4
)
, (B2)

as a result of level repulsion between states |11〉 ↔ |02〉
and |11〉 ↔ |20〉.

2. First order

Up to the first order, we find corrections to the IX,
IY , ZX and ZY terms as

ω
(1)
ix (t) = Ωtx(t)− J

∆ct + αc
Ωcx(t) , (B3a)

ω
(1)
iy (t) = Ωty(t)− J

∆ct + αc
Ωcy(t) , (B3b)

ω(1)
zx (t) =

(
J

∆ct + αc
− J

∆ct

)
Ωcx(t) , (B3c)

ω(1)
zy (t) =

(
J

∆ct + αc
− J

∆ct

)
Ωcy(t) . (B3d)

In particular, IX and IY depend directly on the resonant
target drive, while the dependence on the control drive
is indirect and mediated through states |10〉 and |20〉,
resulting in transition frequencies ∆ct and ∆ct + αc (see
Fig. 1).

3. Second order

Up to the second order in drive amplitudes, there are
corrections to the diagonal components ZI, IZ and ZZ,
proportional to Ω2

cx + Ω2
cy, J2(Ω2

cx + Ω2
cy), J(ΩcxΩtx +

ΩcyΩty), ΩcxΩ̇cy − ΩcyΩ̇cx, J2(ΩcxΩ̇cy − ΩcyΩ̇cx) and

J(ΩtxΩ̇cy − ΩtyΩ̇cx). For simplicity, we have performed
the adiabtic expansion (A11) up to the leading order in
the pulse derivative. For instance, the expression for

ω
(2)
zi (t) reads

ω
(2)
zi (t) = C

(2)
zi,1

[
Ω2
cx(t) + Ω2

cy(t)
]

+ C
(2)
zi,2J

2
[
Ω2
cx(t) + Ω2

cy(t)
]

+ C
(2)
zi,3J [Ωtx(t)Ωcx(t) + Ωty(t)Ωcy(t)]

+ C
(2)
zi,4

[
Ωcx(t)Ω̇cy(t)− Ωcy(t)Ω̇cx(t)

]
+ C

(2)
zi,5J

2
[
Ωcx(t)Ω̇cy(t)− Ωcy(t)Ω̇cx(t)

]
+ C

(2)
zi,6J

[
Ωtx(t)Ω̇cy(t)− Ωty(t)Ω̇cx(t)

]
,

(B4a)
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where C
(2)
zi,1 to C

(2)
zi,6 are the corresponding coefficients

given in the following. Similar expressions for ω
(2)
iz (t)

and ω
(2)
zz (t) follow.

For the Stark shift on the control qubit, the coefficients
are found as

C
(2)
zi,1 =

1

2(∆ct + αc)
− 1

2∆ct
, (B5a)

C
(2)
zi,2 = − 1

4αc∆2
ct

+
1

αc (αc + ∆ct) 2
− 3

4αc (2αc + ∆ct) 2

+
1

α2
c∆ct

− 2

α2
c (αc + ∆ct)

− 3

α2
c (2αc + ∆ct)

− 4

α2
c (αc + 2∆ct)

+
12

α2
c (3αc + 2∆ct)

+
1

αt (αc + ∆ct − αt) 2
− 1

αcαt (∆ct − αt)

+
1

αcαt (αc + ∆ct − αt)
,

(B5b)

C
(2)
zi,3 =

αc
2∆ctαt (αc + ∆ct)

, (B5c)

C
(2)
zi,4 =

1

2∆2
ct

− 1

2(∆ct + αc)2
, (B5d)

C
(2)
zi,5 =

6

α3
c (αc + ∆ct)

− 9

2α3
c (2αc + ∆ct)

− 1

2α2
c (αc + ∆ct) 2

− 3

4α2
c (2αc + ∆ct) 2

+
4

α2
c (αc + 2∆ct) 2

− 12

α2
c (3αc + 2∆ct) 2

− 3

2α3
c∆ct

+
1

4α2
c∆

2
ct

+
1

αcα2
t (∆ct − αt)

− 1

αcα2
t (αc + ∆ct − αt)

− 1

α2
t (αc + ∆ct − αt) 2

,

(B5e)

C
(2)
zi,6 = −α

2
c∆ct + αc∆

2
ct + 2αc∆ctαt + α2

cαt
2∆2

ctα
2
t (αc + ∆ct) 2

. (B5f)

For Stark shift on the target qubit, i.e. the IZ term,
the coefficients read

C
(2)
iz,1 = 0 , (B6a)

C
(2)
iz,2 =

1

4αc∆2
ct

+
1

2αc (αc + ∆ct) 2
− 3

4αc (2αc + ∆ct) 2

− 1

α2
c∆ct

− 4

α2
c (αc + ∆ct)

− 3

α2
c (2αc + ∆ct)

+
4

α2
c (αc + 2∆ct)

+
12

α2
c (3αc + 2∆ct)

+
1

αt (αc + ∆ct − αt) 2
− 1

αcαt (∆ct − αt)

+
1

αcαt (αc + ∆ct − αt)
+

1

2αt (∆ct − αt) 2
,

(B6b)

C
(2)
iz,3 = − ∆ct + αc + αt

2αt (αc + ∆ct) 2
, (B6c)

C
(2)
iz,4 = 0 , (B6d)

C
(2)
iz,5 =

3

α3
c (αc + ∆ct)

− 9

2α3
c (2αc + ∆ct)

− 1

α2
c (αc + ∆ct) 2

− 3

4α2
c (2αc + ∆ct) 2

− 4

α2
c (αc + 2∆ct) 2

− 12

α2
c (3αc + 2∆ct) 2

+
3

2α3
c∆ct

− 1

4α2
c∆

2
ct

+
1

αcα2
t (∆ct − αt)

− 1

αcα2
t (αc + ∆ct − αt)

− 1

2α2
t (∆ct − αt) 2

− 1

α2
t (αc + ∆ct − αt) 2

,

(B6e)

C
(2)
iz,6 =

α2
c + 2αc∆ct + αcαt + ∆2

ct + ∆ctαt + α2
t

2α2
t (αc + ∆ct) 3

.

(B6f)

Similarly, for the dynamic ZZ term, the coefficients
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read

C
(2)
zz,1 = 0 , (B7a)

C
(2)
zz,2 =

1

4αc∆2
ct

− 1

αc (αc + ∆ct) 2
+

3

4αc (2αc + ∆ct) 2

− 1

α2
c∆ct

+
2

α2
c (αc + ∆ct)

+
3

α2
c (2αc + ∆ct)

+
4

α2
c (αc + 2∆ct)

− 12

α2
c (3αc + 2∆ct)

− 1

αt (αc + ∆ct − αt) 2
+

1

αcαt (∆ct − αt)

− 1

αcαt (αc + ∆ct − αt)
,

(B7b)

C
(2)
zz,3 = −α

2
c∆ct + αc∆

2
ct + 2αc∆ctαt + α2

cαt
2∆2

ctαt (αc + ∆ct) 2
, (B7c)

C
(2)
zz,4 = 0 , (B7d)

C
(2)
zz,5 = − 6

α3
c (αc + ∆ct)

+
9

2α3
c (2αc + ∆ct)

+
1

2α2
c (αc + ∆ct) 2

+
3

4α2
c (2αc + ∆ct) 2

− 4

α2
c (αc + 2∆ct) 2

+
12

α2
c (3αc + 2∆ct) 2

+
3

2α3
c∆ct

− 1

4α2
c∆

2
ct

− 1

αcα2
t (∆ct − αt)

+
1

αcα2
t (αc + ∆ct − αt)

+
1

α2
t (αc + ∆ct − αt) 2

,

(B7e)

C
(2)
zz,6 = − 1

2 (αc + ∆ct) 3
− 1

2αt (αc + ∆ct) 2

− 1

2α2
t (αc + ∆ct)

+
1

2∆3
ct

+
1

2∆2
ctαt

+
1

2∆ctα2
t

.

(B7f)

4. Third order

Up to the third order in drive amplitudes, we find cor-
rections to the IX, IY , ZX and ZY terms. Here, there
are numerous contributions and, for brevity, we quote
certain dominant corrections to e.g. the IX as

ω
(3)
ix (t) = C

(3)
ix,1J

[
Ω2
cx(t) + Ω2

cy(t)
]

Ωcx(t)

+ C
(3)
ix,2JΩ̇2

cx(t)Ωcx(t)

+ C
(3)
ix,3JΩ̇2

cy(t)Ωcx(t) .

(B8)

Expressions for the ZX, IY , and ZY terms have a similar
form.

The coefficients for the IX term are

C
(3)
ix,1 =

αc∆ct

(αc + ∆ct) 3 (αc + 2∆ct) (3αc + 2∆ct)
, (B9a)

C
(3)
ix,2 = − 1

(αc + ∆ct) 5
+

1

2αc (αc + ∆ct) 4

+
1

12α2
c∆

3
ct

− 5

24α2
c (αc + ∆ct) 3

− 1

3α3
c∆

2
ct

− 71

24α3
c (αc + ∆ct) 2

+
2

3α3
c (αc + 2∆ct) 2

− 12

α3
c (3αc + 2∆ct) 2

+
103

8α4
c (αc + ∆ct)

+
9

8α4
c∆ct

− 4

α4
c (αc + 2∆ct)

− 24

α4
c (3αc + 2∆ct)

(B9b)

C
(3)
ix,3 =

αc (4αc + 7∆ct)

24∆2
ct (αc + ∆ct) 3 (αc + 2∆ct) 2

, (B9c)

and for the ZX term are

C
(3)
zx,1 =

α2
c

(
3α3

c + 11α2
c∆ct + 15αc∆

2
ct + 9∆3

ct

)
2∆3

ct (αc + ∆ct) 3 (αc + 2∆ct) (3αc + 2∆ct)
,

(B10a)

C
(3)
zx,2 =

1

(αc + ∆ct) 5
+

1

2αc∆4
ct

− 1

2αc (αc + ∆ct) 4

− 1

2α2
c∆

3
ct

+
3

8α2
c (αc + ∆ct) 3

+
1

4α3
c∆

2
ct

+
29

8α3
c (αc + ∆ct) 2

− 2

α3
c (αc + 2∆ct) 2

+
12

α3
c (3αc + 2∆ct) 2

+
5

8α4
c∆ct

− 85

8α4
c (αc + ∆ct)

− 4

α4
c (αc + 2∆ct)

+
24

α4
c (3αc + 2∆ct)

− 1

2∆5
ct

,

(B10b)

C
(3)
zx,3 = −

αc
(
2α2

c + 8αc∆ct + 7∆2
ct

)
8∆3

ct (αc + ∆ct) 3 (αc + 2∆ct) 2
. (B10c)

5. Fourth order

There are multitude of corrections up to the fourth
order. Among those, here, we quote the most dominant
contribution to the control qubit Stark shift as

ω
(4)
zi (t) ≡

(
3α5

c + 11α4
c∆ct + 15α3

c∆
2
ct + 9α2

c∆
3
ct

)
8∆3

ct (αc + ∆ct)
3

(αc + 2∆ct) (3αc + 2∆ct)

×
[
Ω2
cx(t) + Ω2

cy(t)
]2

.

(B11)

Accounting for Eq. (B11), on top of the first line of
Eq. (B4a), becomes important at stronger CR drive
which suppresses the Stark shift in magnitude [see also
Fig. (3c) of Ref. [11]].
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In summary, our time-dependent formalism captures
the previously known expressions for the gate param-
eters, e.g. Eq. (B5a) for ZI, Eq. (B9a) for IX and
Eq. (B10a) for ZX, while also quantifying non-adiabatic
response in terms of the derivatives of underlying pulse
shapes.

Appendix C: Effective CR time evolution operator

Here, we calculate the effective time evolution operator
for the CR gate as

ÛCR,eff(t, 0) = T exp

[
−i
∫ t

0

dt′ĤCR,eff(t′)

]
, (C1)

where ĤCR,eff(t) is the effective BD Hamiltonian in Ap-
pendix B. In general, time-dependent corrections in the
effective terms due to pulse ramps do not commute, hence
explicit time-ordering is needed. For simplicity, however,
we keep the leading order in the adiabatic expansion
which corresponds to the constant mid-part of the pulses.
The resulting approximate expressions are helpful for de-
signing specific gate calibrations and reverse engineering
the required drive scheme [11, 12].

In the control=|0〉 subspace, the |00〉 〈00|, |00〉 〈01|,
|01〉 〈00| and |01〉 〈01| components of ÛCR,eff(t, 0) are
found respectively as

e−
1
2 iωzit

[
ω+ cos

(
ω+t

2

)
− i (ωiz + ωzz) sin

(
ω+t

2

)]
ω+

,

(C2a)

−
e−

1
2 iωzit [i(ωix + ωzx) + (ωiy + ωzy)] sin

(
ω+t

2

)
ω+

,

(C2b)

−
e−

1
2 iωzit [i(ωix + ωzx)− (ωiy + ωzy)] sin

(
ω+t

2

)
ω+

,

(C2c)

e−
1
2 iωzit

[
ω+ cos

(
ω+t

2

)
+ i (ωiz + ωzz) sin

(
ω+t

2

)]
ω+

,

(C2d)

where ω± are collective CR frequencies [11, 12] defined
as

ω± ≡
[
(ωix ± ωzx)2 + (ωiy ± ωzy)2 + (ωiz ± ωzz)2

]1/2
.

(C3)

Similarly, in the control=|1〉 subspace, the |10〉 〈10|,
|10〉 〈11|, |11〉 〈10| and |11〉 〈11| components of

ÛCR,eff(t, 0) read

e
1
2 iωzit

[
ω− cos

(
ω−t

2

)
− i (ωiz − ωzz) sin

(
ω−t

2

)]
ω−

,

(C4a)

−
e

1
2 iωzit [i(ωix − ωzx) + (ωiy − ωzy)] sin

(
ω−t

2

)
ω−

,

(C4b)

−
e

1
2 iωzit [i(ωix − ωzx)− (ωiy − ωzy)] sin

(
ω−t

2

)
ω−

,

(C4c)

e
1
2 iωzit

[
ω− cos

(
ω−t

2

)
+ i (ωiz − ωzz) sin

(
ω−t

2

)]
ω−

.

(C4d)

According to Eq. (C2a)–(C4d), to calibrate a direct
CNOT gate based on cross-resonance, we set ωix(t) +
ωzx(t) = 0 and tune

∫ τp
0
dt′[ωix(t′) − ωzx(t′)] = π as a

π pulse. These conditions along with perturbative esti-
mates for gate parameters in Appendix B lead to the ap-
proximate calibration conditions (6) and (7) of the main
text.

Alternatively, we can express the effective uni-
tary in the two-qubit Pauli basis as ueff,σmσn(t, 0) ≡
(1/4) Tr

{
(σ̂m ⊗ σ̂n)ÛCR,eff(t, 0)

}
. The Pauli decompo-

sition reads

ueff,ii(t, 0) =
1

2

[
e

1
2 iωzit cos

(
ω−t

2

)
+e−

1
2 iωzit cos

(
ω+t

2

)]
,

(C5a)

ueff,ix(t, 0) = −i

ω+(ωix − ωzx)e
1
2 iωzit sin

(
ω−t

2

)
2ω+ω−

+
ω−(ωix + ωzx)e−

1
2 iωzit sin

(
ω+t

2

)
2ω+ω−

 ,

(C5b)

ueff,iy(t, 0) = −i

ω+(ωiy − ωzy)e
1
2 iωzit sin

(
ω−t

2

)
2ω+ω−

+
ω−(ωiy + ωzy)e−

1
2 iωzit sin

(
ω+t

2

)
2ω+ω−

 ,

(C5c)
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ueff,iz(t, 0) = −i

ω+(ωiz − ωzz)e
1
2 iωzit sin

(
ω−t

2

)
2ω+ω−

+
ω−(ωiz + ωzz)e

− 1
2 iωzit sin

(
ω+t

2

)
2ω+ω−

 ,

(C5d)

ueff,zi(t, 0) =
1

2

[
e−

1
2 iωzit cos

(
ω+t

2

)
−e 1

2 iωzit cos

(
ω−t

2

)]
,

(C5e)

ueff,zx(t, 0) = i

ω+(ωix − ωzx)e
1
2 iωzit sin

(
ω−t

2

)
2ω+ω−

−
ω−(ωix + ωzx)e−

1
2 iωzit sin

(
ω+t

2

)
2ω+ω−

 ,

(C5f)

ueff,zy(t, 0) = i

ω+(ωiy − ωzy)e
1
2 iωzit sin

(
ω−t

2

)
2ω+ω−

−
ω−(ωiy + ωzy)e−

1
2 iωzit sin

(
ω+t

2

)
2ω+ω−

 ,

(C5g)

ueff,zz(t, 0) = i

ω+(ωiz − ωzz)e
1
2 iωzit sin

(
ω−t

2

)
2ω+ω−

−
ω−(ωiz + ωzz)e

− 1
2 iωzit sin

(
ω+t

2

)
2ω+ω−

 .

(C5h)

In summary, based on Eqs. (C2a)–(C5h), the time evo-
lution operator in the BD frame consists of beatings be-
tween three CR frequencies: ω+, ω− and ωzi.

Appendix D: Non-BD terms in overall time
evolution operator

The BD decomposition of the effective time evolution
operator, found in Appendix C, contains only the effec-
tive interactions. As discussed in Appendix A, we can
also quantify the off-resonant contributions by mapping
the effective unitary operator back to the initial interac-
tion frame as

ÛI(t, 0) = ÛSW(t)ÛI,eff(t, 0)Û†SW(0) . (D1)

We then read off ÛCR(t, 0) as the projection of ÛI(t, 0)
onto the computational subspace. Upon the frame trans-
formation (D1), both the effective BD and non-BD sub-

spaces of ÛI(t, 0) are renormalized, while the corrections
to the BD subspace are higher-order. Here, we provide
the lowest-order adiabatic expressions for the non-BD el-
ements of ÛCR(t, 0).

We begin with the lowest-order expression for the XI
element of ÛCR(t, 0) as

uxi(t, 0) =
Ω∗c(0) + e−i∆cttΩ∗c(t)

4∆ct
e

1
2 iωzit cos

(
ω−t

2

)
− Ωc(0) + ei∆cttΩc(t)

4∆ct
e−

1
2 iωzit cos

(
ω+t

2

)
+ i

Ω̇∗c(0)− e−i∆cttΩ̇∗c(t)

4∆2
ct

e
1
2 iωzit cos

(
ω−t

2

)
+ i

Ω̇c(0)− ei∆cttΩ̇c(t)

4∆2
ct

e−
1
2 iωzit cos

(
ω+t

2

)
,

(D2)

truncated up to the first-order derivative Ω̇c(t). Com-
pared to the BD part of the time evolution, there exist
faster oscillations in terms of qubit-qubit detuning ∆ct

on top of effective slower oscillations characterized by
ωzi and ω±. Given that the drive amplitude is set to
zero at t = 0, τp, we find that the XI error at t = τp is
determined by the last two-terms as

uxi(τp, 0) = i
Ω̇∗c(0)− e−i∆ctτpΩ̇∗c(τp)

4∆2
ct

e
1
2 iωziτp cos

(ω−τp
2

)
+ i

Ω̇c(0)− ei∆ctτpΩ̇c(τp)

4∆2
ct

e−
1
2 iωziτp cos

(ω+τp
2

)
.

(D3)

Based on Eq. (D3), the lowest-order XI error is deter-

mined by Ω̇c(t)|t=0,τp/∆
2
ct and can be mitigated by (i)

larger qubit-qubit detuning and (ii) smoother ramps.

Similar expressions can be obtained for other non-BD
components. For instance, the XX, XY , and XZ com-
ponents of ÛCR(τp, 0) read

uxx(τp, 0) =
(ωix − ωzx)

[
Ω̇∗c(0)− e−i∆ctτ Ω̇∗c(τp)

]
4∆2

ctω−

× e 1
2 iωziτ sin

(ω−τp
2

)
+

(ωix + ωzx)
[
Ω̇c(0)− ei∆ctτpΩ̇c(τp)

]
4∆2

ctω+

× e− 1
2 iωziτp sin

(ω+τp
2

)
,

(D4)
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uxy(τp, 0) =
(ωiy − ωzy)

[
Ω̇∗c(0)− e−i∆ctτpΩ̇∗c(τp)

]
4∆2

ctω−

× e 1
2 iωziτp sin

(ω−τp
2

)
+

(ωiy + ωzy)
[
Ω̇c(0)− ei∆ctτpΩ̇c(τp)

]
4∆2

ctω+

× e− 1
2 iωziτp sin

(ω+τp
2

)
,

(D5)

uxz(τp, 0) =
(ωiz − ωzz)

[
Ω̇∗c(0)− e−i∆ctτpΩ̇∗c(τp)

]
4∆2

ctω−

× e 1
2 iωziτp sin

(ω−τp
2

)
+

(ωiz + ωzz)
[
Ω̇c(0)− ei∆ctτpΩ̇c(τp)

]
4∆2

ctω+

× e− 1
2 iωziτ sin

(ω+τp
2

)
.

(D6)

Furthermore, the Y I, Y X, Y Y and Y Z components of
ÛCR(τp, 0) read

uyi(τp, 0) =
Ω̇∗c(0) + e−i∆ctτpΩ̇∗c(τp)

4∆2
ct

e
1
2 iωziτp cos

(ω−τp
2

)
− Ω̇c(0) + ei∆ctτpΩ̇c(τp)

4∆2
ct

e−
1
2 iωziτp cos

(ω+τp
2

)
,

(D7)

uyx(τp, 0) = −i
(ωix − ωzx)

[
Ω̇∗c(0) + e−i∆ctτpΩ̇∗c(τp)

]
4∆2

ctω−

× e 1
2 iωziτp sin

(ω−τp
2

)
+ i

(ωix + ωzx)
[
Ω̇c(0) + ei∆ctτpΩ̇c(τp)

]
4∆2

ctω+

× e− 1
2 iωziτp sin

(ω+τp
2

)
,

(D8)

uyy(τp, 0) = −i
(ωiy − ωzy)

[
Ω̇∗c(0) + e−i∆ctτ Ω̇∗c(τp)

]
4∆2

ctω−

× e 1
2 iωziτ sin

(ω−τp
2

)
+ i

(ωiy + ωzy)
[
Ω̇c(0) + ei∆ctτ Ω̇c(τp)

]
4∆2

ctω+

× e− 1
2 iωziτp sin

(ω+τp
2

)
,

(D9)

uyz(τp, 0) = −i
(ωiz − ωzz)

[
Ω̇∗c(0) + e−i∆ctτpΩ̇∗c(τp)

]
4∆2

ctω−

× e 1
2 iωziτp sin

(ω−τp
2

)
+ i

(ωiz + ωzz)
[
Ω̇c(0) + ei∆ctτ Ω̇c(τp)

]
4∆2

ctω+

× e− 1
2 iωziτp sin

(ω+τp
2

)
.

(D10)

Equations (D3)–(D10) are the main results of this ap-
pendix. They provide the leading-order correction, i.e.
up to the first-order derivative of the pulse, to the non-
BD subspace of the time evolution operator. Impor-
tantly, on top of the effective frequencies that appear in
the BD subspace, characterized by ω± and ωzi, there ex-
ists higher-frequency oscillation in the non-BD subspace
that is set by the qubit-qubit detuning ∆ct.

Appendix E: Off-resonantly driven transmon

In this appendix, we consider an off-resonantly driven
transmon qubit as a simpler model that still captures the
main physics of off-resonant error on the control qubit.
In comparison to the energy diagram in Fig. 1, this corre-
sponds to one of the vertical ladders consisting of the con-
trol qubit states. First, in Sec. E 1, we derive the leading-
order overlap integrals presented in Table I. Second, in
Sec. E 2, we derive leading-order analytical DRAG solu-
tions that minimize each specific error type.

1. Derivation of overlap integrals

In the rotating frame of the drive, the system and drive
Hamiltonian for an off-resonantly driven transmon can be
approximated using a Kerr model as

Ĥq ≡ ∆cdb̂
†
cb̂c +

αc
2
b̂†cb̂
†
cb̂cb̂c , (E1)

Ĥd(t) ≡
1

2

[
Ω∗c(t)b̂c + Ωc(t)b̂

†
c

]
, (E2)

where ∆cd ≡ ωc − ωd is the qubit-drive detuning. The
interaction-frame Hamiltonian is then found as

ĤI(t) ≡ eiĤqtĤd(t)e−iĤqt

=

d∑
nc=1

[√
nc
2

Ωc(t)e
i∆ndt |nc〉 〈nc − 1|+ H.c.

]
,

(E3)

with level-dependent detuning ∆nd ≡ ∆cd + (nc − 1)αc
and level cut-off d. Assuming the detuning lies in the
straddling regime, and in the drive range relevant to CR,
the leakage to levels beyond the second excited state is
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typically negligible. Hence, a three-level model is suffi-
cient for quantifying leading-order transition probabili-
ties |0c〉 → |1c〉, |0c〉 → |2c〉 and |1c〉 → |2c〉.

To solve for the time evolution operator, and the re-
sulting overlap integrals, we follow the Magnus method
up to the second order, while the same result can also
be obtained via time-dependent SWPT. A perturbative
expansion of the time evolution operator ÛI(τp, 0) ≡
exp[−iK̂(τp, 0)] in terms of the generator K̂(τp, 0) yields

ÛI(τp, 0) = Î − iK̂1(τp, 0)

− iK̂2(τp, 0)− 1

2
K̂2

1 (τp, 0) +O(Ĥ3
I) ,

(E4a)

where K̂1(τp, 0) and K̂2(τp, 0) read [30]

K̂1(τp, 0) =

∫ τp

0

dt′ĤI(t′) , (E4b)

K̂2(τp, 0) = − i
2

∫ τp

0

dt′
∫ t′

0

dt′′[ĤI(t′), ĤI(t′′)] . (E4c)

In Eq. (E4a), first-order (single-photon) transitions occur

via −iK̂1(τp, 0), while 2nd order (two-photon) transitions

occur via both −iK̂2(τp, 0) and −(1/2)K̂2
1 (τp, 0). The

two contributions up to the 2nd order, however, describe
different physical processes: −(1/2)K̂2

1 (τp, 0) quantifies
a two-photon spectral overlap as a product of individ-
ual single-photon overlaps, while −iK̂2(τp, 0) quantifies
a two-time (two-frequency) spectral overlap as shown in
the following.

We begin by single-photon transitions. The transition
probability of |0c〉 → |1c〉 is found as

P|0c〉→|1c〉 =
∣∣∣〈1c| ÛI(τp, 0) |0c〉

∣∣∣2
=
∣∣∣−i 〈1c| K̂1(τp, 0) |0c〉+O(Ĥ3

I)
∣∣∣2

=

∣∣∣∣−i ∫ τp

0

dt′ 〈1c| ĤI(t′) |0c〉+O(Ĥ3
I)

∣∣∣∣2
(E5)

Replacing 〈1c| ĤI(t′) |0c〉 = (1/2)Ωc(t
′)ei∆cdt

′
from

Eq. (E3) gives

P|0c〉→|1c〉 ≈
1

4

∣∣∣∣∫ τp

0

dt′Ωc(t
′)ei∆cdt

′
∣∣∣∣2

=
1

4

∣∣∣∣∣
∫ +∞

−∞

dω′

2π

Ω̃c(ω
′)

ω′ + ∆cd

[
ei(ω

′+∆cd)τp − 1
]∣∣∣∣∣

2

.

(E6)

Equation (E6) is the leading-order measure for non-BD
error in the CR gate. It shows that the transition is
run by a sideband photon as a result of spectral overlap
between the pulse and qubit-drive detuning. Similarly,

the transition probability of |1c〉 → |2c〉 reads

P|1c〉→|2c〉 ≈
1

2

∣∣∣∣∫ τp

0

dt′Ωc(t
′)ei(∆cd+αc)t

′
∣∣∣∣2

=
1

2

∣∣∣∣∣
∫ +∞

−∞

dω′

2π

Ω̃c(ω
′)

ω′ + ∆cd + αc

[
ei(ω

′+∆cd+αc)τp − 1
]∣∣∣∣∣

2

,

(E7)

where the distinct prefactor and transition frequency
come from 〈2c| ĤI(t′) |1c〉 = (

√
2/2)Ωc(t

′)ei(∆cd+αc)t
′
.

Two-photon transition probability |0c〉 → |2c〉 is ob-
tained as

P|0c〉→|2c〉 =
∣∣∣〈2c| ÛI(τp, 0) |0c〉

∣∣∣2
=
∣∣∣− 1

2
〈2c| K̂2

1 (τp, 0) |0c〉

− i 〈2c| K̂2(τp, 0) |0c〉+O(Ĥ3
I)
∣∣∣2 ,

(E8)

where contributions from − 1
2K̂

2
1 (τp, 0) and −iK̂2(τp, 0)

read

−1

2
〈2c| K̂2

1 (τp, 0) |0c〉 = −
√

2

8

[∫ τp

0

dt′Ωc(t
′)ei∆cdt

′
]

×
[∫ τp

0

dt′Ωc(t
′)ei(∆cd+αc)t

′
]
,

(E9)

−i 〈2c| K̂2(τp, 0) |0c〉 = −
√

2

8

∫ τp

0

dt′
∫ t′

0

dt′′Ωc(t
′)Ωc(t

′′)[
ei(∆ct+αc)t

′
ei∆ctt

′′
− ei∆ctt

′
ei(∆cd+αc)t

′′
]
.

(E10)

Equation (E9) is a product of simultaneous overlaps with
∆cd and ∆cd + αc. Depending on frequency allocation,
either one or both overlaps are small and hence their
product cannot grow too large. However, Eq. (E10) con-
tains higher-order correlations leading to spectral overlap
with the |0c〉 → |2c〉 transition frequency 2∆cd + αc:

P|0c〉→|2c〉 ≈
1

32

∣∣∣∣∣∣
+∞∫
−∞

+∞∫
−∞

dω′

2π

dω′′

2π
αcΩ̃c(ω

′)Ω̃c(ω
′′)

[
ei(ω

′+ω′′+2∆ct+αc)τp − 1
]

(ω′′ + ∆ct + αc)(ω′′ + ∆ct)(ω′ + ω′′ + 2∆ct + αc)

∣∣∣∣∣∣
2

.

(E11)

Equation (E11) is an approximate form for the frequency-
domain representation of Eq. (E10). Here, where we kept
only the dominant two-photon contribution in which the
transition is excited by two sideband photons with total
energy ω′+ω′′ = −(2∆cd+αc). The overlap grows when
the two-photon gap is small, i.e. close to the collision at
∆cd = −αc/2.
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2. Derivation of DRAG conditions

We next derive leading-order DRAG solutions to sup-
press single-photon transitions discussed in Eqs. (E6)
and (E7). The derivation here is slightly distinct com-
pared to Refs. [23, 33] and done in two consecutive steps:
we first perform perturbative expansion in the drive am-
plitude Ωc(t) and then an adiabatic expansion in 1

∆
d
dt

allowing for more flexibility. Nevertheless, we recover
the solution in Ref. [33] as a special case.

To this aim, we consider the following leading-order
Y -DRAG ansatz

Ωc(t) = ΩSG(t) +
i

∆D
Ω̇SG(t) , (E12)

where the DRAG coefficient ∆D needs to be determined
such that a specific off-resonant overlap is suppressed.

Here, the main pulse is taken as square Gaussian, but
the DRAG condition is in principle independent of this
choice. Performing an adiabtic expansion on |0c〉 → |1c〉
probability in Eq. (E6) results in

P|0c〉→|1c〉 ≈
1

4

∣∣∣∣∫ τp

0

dt′Ωc(t
′)ei∆cdt

′
∣∣∣∣2

=
1

4

∣∣∣∣∣{
∞∑
n=0

[ 1

∆cd

( i

∆cd

d

dt′

)n
Ωc(t

′)
]
ei∆cdt

′
}∣∣∣τp

0

∣∣∣∣∣
2

.

(E13)

We then substitute the DRAG ansatz (E12) into
Eq. (E13) and read off contributions at t = 0, τp as a
measure for off-resonant error. In terms of the normal-
ized DRAG parameter λ01 ≡ ∆cd/∆D, and given that
ΩSG(0) = ΩSG(τp) = 0, we find

P|0c〉→|1c〉 =
(1 + λ01)2

4∆4
cd

[
Ω̇2

SG(τp) + Ω̇2
SG(0)− 2 cos(∆cdτp)Ω̇SG(τp)Ω̇SG(0)

]
+

(1 + λ01)2

4∆6
cd

[
Ω̈2

SG(τp) + Ω̈2
SG(0)− 2 cos(∆cdτp)Ω̈SG(τp)Ω̈SG(0)

]
+
λ2

01

4∆8
cd

[...
Ω

2
SG(τp) +

...
Ω

2
SG(0)− 2 cos(∆cdτp)

...
ΩSG(τp)

...
ΩSG(0)

]
−λ01(1 + λ01)

2∆6
cd

[...
ΩSG(τp)Ω̇SG(τp) +

...
ΩSG(0)Ω̇SG(0)

− cos(∆cdτp)
...
ΩSG(τp)Ω̇SG(0)− cos(∆cdτp)

...
ΩSG(0)Ω̇SG(τp)

]
+O

(
d4

dt4
ΩSG(t)

∣∣∣
t=0,τp

)
.

(E14)

Based on Eq. (E14), up to the leading order, the optimal
DRAG parameter λ01 is determined as the roots of a 2nd
order polynomal, whose coefficients are generally deter-
mined by the pulse spectrum (derivatives), gate time τp
and the transition frequency ∆cd. A special solution,
however, is found as λ01 = −1, i.e. ∆D = −∆ct, which
sets the 1st, 2nd and the 4th term in Eq. (E14) to zero
resulting in residual error in terms of

...
ΩSG(t) as

[...
Ω

2
SG(τp) +

...
Ω

2
SG(0)− 2 cos(∆cdτp)

...
ΩSG(τp)

...
ΩSG(0)

]
4∆8

cd

.

(E15)

This DRAG choice corresponds to X and Y control
pulses Ωcx(t) = ΩSG(t) and Ωcy(t) = −(1/∆cd)Ω̇SG(t).

Adiabatic expansion of the |1c〉 → |2c〉 transition prob-

ability has a similar form:

P|1c〉→|2c〉 ≈
1

2

∣∣∣∣∫ τp

0

dt′Ωc(t
′)ei(∆cd+αc)t

′
∣∣∣∣2

=
1

2

∣∣∣∣∣{
∞∑
n=0

[ 1

∆cd + αc

( i

∆cd + αc

d

dt′

)n
Ωc(t

′)
]

×ei(∆cd+αc)t
′
}∣∣∣τp

0

∣∣∣∣∣
2

,

(E16)

where the transition frequency is replaced by ∆cd+αc. In
terms of λ12 ≡ (∆cd + αc)/∆D, the derivative expansion
takes the same form as in Eq. (E14) and a possible DRAG
solution is Ωcx(t) = ΩSG(t) and Ωcy(t) = −1/(∆cd +

αc)Ω̇SG(t). In the resonant scenario where ∆cd = 0, this
solution recovers that of Ref. [33] for single-qubit gates.

We note that the same method of adiabatic expan-
sion can also be applied to the |0c〉 → |2c〉 probability
in Eqs. (E8)–(E10). However, the computation is much
more involved, and the leading-order DRAG condition is
determined as the roots of a fourth-order polynomial in
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1/∆D. Therefore, we resort to numerical optimization as discussed in Sec. IV and Fig. 7.
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