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Recent experimental studies have shown that the relaxation time, T1, and the dephasing time,
T2, of superconducting qubits fluctuate considerably over time. Time-varying quantum channel
(TVQC) models have been proposed in order to consider the time varying nature of the parameters
that define qubit decoherence. This dynamic nature of quantum channels causes a degradation of
the performance of quantum error correction codes (QECC) that is portrayed as a flattening of
their error rate curves. In this article, we introduce the concepts of quantum outage probability
and quantum hashing outage probability as asymptotically achievable error rates by a QECC with
quantum rate RQ operating over a TVQC. We derive closed-form expressions for the family of time-
varying amplitude damping channels (TVAD) and study their behaviour for different scenarios. We
quantify the impact of time-variation as a function of the relative variation of T1 around its mean.
We conclude that the performance of QECCs is limited in many cases by the inherent fluctuations
of their decoherence parameters and corroborate that parameter stability is crucial to maintain the
excellent performance observed over static quantum channels.

I. INTRODUCTION

The proneness of quantum information to errors puts
in jeopardy the astonishing potential of quantum tech-
nologies to solve computational problems that cannot be
efficiently processed by classical machines [1–3]. Quan-
tum errors arise due to the loss of coherence experienced
by quantum states as a consequence of their interaction
with the surrounding environment [4]. This phenomenon
is known as environmental decoherence. Quantum er-
ror correction codes (QECC) were conceived as methods
to protect quantum information from the deleterious ef-
fects of decoherence. Such strategies are of paramount
importance to fulfil the potential of quantum technolo-
gies. In consequence, the quantum information commu-
nity has gone above and beyond in its pursuit of QECCs
that exhibit excellent performance and are capable of re-
versing quantum errors while consuming the least pos-
sible amount of resources. Several promising families of
QECCs such as Quantum Reed-Muller codes [5], Quan-
tum Low Density Parity Check codes [6], Quantum Low
Density Generator Matrix codes [7–10], Quantum Con-
volutional Codes [11], Quantum Turbo Codes [12–16],
and Quantum Topological Codes [17, 18] have been con-
structed following this premise.

Accurate mathematical modelling of decoherence ef-
fects is invaluable to construct QECCs that work in real-
istic scenarios. Abstractions that represent the effects of
decoherence on quantum information are known as quan-
tum channels. In the context of density matrices, quan-
tum channels are completely-positive, trace-preserving
(CPTP) linear maps between spaces of operators [4].
Generally, these transformations are described via the
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Choi-Kraus representation as a set of matrices known
as Kraus or error operators. Quantum noise models that
describe decoherence effects experienced by two-level sys-
tems (qubits) in a fairly complete manner depend on the
so-called relaxation time, T1, and on the dephasing time,
T2, [4]. T1 and T2 are experimentally measurable parame-
ters that provide a nexus between the actual qubits that
will be constructed for a quantum processor and the theo-
retical models that are used to describe how these qubits
behave. Previous literature on QECC assumes that T1

and T2 are fixed parameters, implying that the quantum
channels used for noise modelling are static and that their
behaviour does not change over time [4–18].

Recent experimental studies on superconducting
qubits have shown that T1 and T2 are time-variant [19–
25]. The sample data in these studies showed that T1

and T2 can experience time variations of up to 50% of
their mean value and coefficients of variation of approxi-
mately 25%. These results have led to the proposal of the
framework of time-varying quantum channels (TVQC)
[26] as quantum channel models that fluctuate from time-
to-time. This time-varying channel paradigm stands in
contrast to the static approach that has been assumed
previously. The TVQC model [26] is relevant given its
consideration of the dynamic behaviour of experimentally
measured decoherence parameters. Furthermore, it was
shown in [26] that the excellent performance achieved
by the QECCs proposed in the literature is compro-
mised when the time-variations considered for decoher-
ence modelling are significant and the QECCs have a
steep error correction curve. This last result is embodied
by a flattening of the steep error rate curve (as a func-
tion of the noise level) of those QECCs. In consequence,
since the TVQC portrays a more realistic mathemati-
cal abstraction of the quantum noise suffered by super-
conducting qubits when time variations of decoherence
parameters exist, the real error rate of QECCs should
present this flattening effect.
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In this article, we study the asymptotical limits of er-
ror correction for the paradigm of time-varying quantum
channel models. Motivated by the similarity between the
TVQCs and classical slow or block fading scenarios, i.e.,
when the channel remains constant over the duration of
the coded block [26, 27]; we define the quantum out-
age probability of a TVQC as the asymptotically achiev-
able error rate for a QECC with quantum rate RQ that
operates over the aforementioned noise model. Addi-
tionally, we also introduce the concept of the quantum
hashing outage probability to provide an upper bound
on the asymptotically achievable error rate for TVQC
channels whose quantum capacity (of their static coun-
terparts) is unknown, but for which a lower bound known
as the hashing limit exists. Based on the experimen-
tally determined statistical distribution of T1 [19, 26], we
provide closed-form expressions for the known TVQCs:
time-varying amplitude damping channel (TVAD), time-
varying amplitude damping Pauli twirl approximated
channel (TVADPTA) and time-varying amplitude damp-
ing Clifford twirl approximated channel (TVADCTA).
We analyze the quantum outage probability and quan-
tum hashing outage probabilities of the aforementioned
TVQCs for different scenarios. Finally, quantum turbo
codes operating over the considered channels are numer-
ically studied and benchmarked using the derived infor-
mation theoretic limits.

II. TIME-VARYING QUANTUM CHANNELS

The time-varying quantum channel model [26] has
been recently proposed with the purpose of including the
time fluctuations that are inherent in the decoherence pa-
rameters of superconducting qubits [19, 21, 22]. In [26],
several superconducting qubit scenarios were considered
depending on the influence of T1 and T2 on the deco-
herence effects experienced by these qubits. The time-
varying amplitude damping (TVAD) channel was pro-
posed for qubits whose pure dephasing rates are negli-
gible (T1-limited) and the time-varying combined ampli-
tude and phase damping channels (TVAPD) were pro-
posed for qubits that have pure dephasing channels that
require attention (T1 ≈ T2 and T2-dominated scenarios).
In this work we will focus on the asymptotical limits for
the TVAD channel.

The experimental analysis presented in [19, 26] shows
that T1(t, ω) can be modeled by a wide-sense stationary
(WSS) random process of mean µT1 and standard de-
viation σT1 with a stochastic coherence time, Tc, which
is in the order of minutes. Since the processing times
for quantum algorithms and error correction rounds,
talgo, are in the order of microseconds [26], talgo � Tc,
it is reasonable to assume that the process T1(t, ω) re-
mains constant during the execution of the algorithm. In
other words, T1(ω, t) can be modeled as a random vari-
able (t = 0 has been selected without loss of general-
ity due to the fact that the process is WS stationary.)

T1(ω) = T1(t, ω)|t=0, ∀t ∈ [0,T],T << Tc. Given that the
random process T1(t, ω) is assumed to be Gaussian, the
random variable T1(ω) will also be Gaussian with dis-
tribution N(µT1, σ

2
T1
). However, since any realization of

T1(ω) should always be positive, T1 must be modeled as a
truncated Gaussian random variable in the region [0,∞].
Therefore, the probability density function of T1(ω) is
modeled as

fT1 (t1) =


1

σT1

√
2π

e

−
(t1−µT1

)2

2σ2
T1

1−Q
( µT1
σT1

) if t1 ≥ 0

0 if t1 < 0

, (1)

where in the above expression, Q(·) is the Q-function de-
fined as

Q(x) =
1
√

2π

∫ ∞

x

e−
x2

2 dx. (2)

A. Time-varying amplitude damping channels

The amplitude damping channel is a fairly complete
model for describing the decoherence effects suffered by
superconducting qubits [4]. To be more specific, it accu-
rately models the quantum noise experienced by qubits
that are said to be T1-limited. In consequence, the time-
varying amplitude damping (TVAD) channel was pro-
posed in [26]. The Kraus operators for the TVAD chan-
nel for T1-limited superconducting qubits are given by

E0 =

(
1 0

0
√

1 − γ(t, ω)

)
, E1 =

(
0

√
γ(t, ω)

0 0

)
, (3)

where the damping parameter WSS random process,
γ(t, ω), is related to the relaxation WSS random process,
T1(t, ω), as

γ(t, ω) = 1 − e−
talgo
T1(t,ω) . (4)

B. Time-varying twirl approximated channels

As comprehensive as amplitude damping channels are,
they cannot be efficiently implemented in classical com-
puters when the number of qubits starts to grow. This
limitation made the research community consider the
use of approximated channels that are efficiently im-
plementable in the classical domain and that maintain
enough information about quantum noise. Twirling is
an extensively used method in quantum information the-
ory to study the average effect of general quantum noise
models via their mapping to more symmetric versions of
themselves [28, 29]. Moreover, it is known that any cor-
rectable code for a twirled channel is a correctable code
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for the original channel up to an additional unitary cor-
rection [4].

As a consequence, Pauli twirl approximated channels
(PTA) and Clifford twirl approximated channels (CTA)
have been widely used in the context of quantum error
correction [4, 28, 29]. These approximated channels be-
long to the family of Pauli channels. Since they fulfill the
Gottesman-Knill theorem [30], they can be simulated ap-
propriately on classical machines [4].

Since the TVAD channel model is fairly successful
in describing T1-limited superconducting qubits [31, 32],
the time-varying amplitude damping Pauli twirl approx-
imated channel (TVADPTA) and the time-varying am-
plitude damping Clifford twirl approximated channel
(TVADCTA) were proposed in [26]. More precisely, when
Pauli twirling a TVAD channel with Kraus operators in
(3), the resulting TVADPTA has the following Kraus op-
erators:

{
√

pI(γ)I,
√

px(γ)X,
√

py(γ)Y,
√

pz(γ)Z}, (5)

with
∑

k∈{I,x,y,z} pk(γ) = 1, and

px(γ) = py(γ) =
γ(t, ω)

4
and pz(γ) =

(
1−
√

1−γ(t,ω)

2

)2
. (6)

Notice that the TVADPTA exhibits some degree of
asymmetry (Asymmetry refers to the fact that there is a
mismatch between errors of type Z and errors of type X
and Y. Asymmetry is quantified by the so-called asym-
metry parameter α = pz/px [10, 16, 28]).

On the other hand, when Clifford twirling a TVAD
channel, the resulting Kraus operators for the TVAD-
CTA are those defined in (5), with

pI(γ) =
(
1+
√

1−γ(t,ω)

2

)2
, and pk(γ) =

1−pI(γ)
3 , (7)

where k ∈ {x, y, z}. Note that the TVADCTA channels
belong to the sub-family of Pauli channels known as de-
polarizing channels, since the additional symplectic twirl
performed on the Pauli twirl in order to obtain the Clif-
ford twirl symmetrizes the error distribution, which re-
sults in px = py = pz [4, 29].

We denote as pADPTA(γ) and pADCTA(γ) the probability
mass functions for the ADPTA and ADCTA channels
defined by (6) and (7), respectively.

Note that since the Kraus operators of all the discussed
quantum channels are a function of the relaxation time
stochastic process, T1(t, ω), they will be constant for the
coherence time and are obtained by the realizations of
the probability distribution in (1).

III. QUANTUM CAPACITY

The quantum capacity is the maximum rate at which
quantum information can be communicated/corrected

over many independent uses of a noisy quantum chan-
nel. In other words, the concept of the quantum capacity
establishes the quantum rate1, RQ, limit for which reli-
able (i.e., with a vanishing error rate) quantum communi-
cation/correction is asymptotically possible. Note that,
traditionally, the concept of quantum channel capacity is
understood in the context of quantum communications.
In the realm of communication, it is convenient to think
of a sender (Alice) who wants to relay qubits to a receiver
(Bob). For memory or processing devices, Alice and Bob
simply label the input and output. In this way, the noise
suffered by qubits due to decoherence can be thought as
the transmission of the information through a “virtual”
noisy channel [33]. Hence, we can also apply the con-
cept of quantum channel capacity to this framework by
defining it as the maximum achievable rate by QEC that
can make the stored or processed quantum information
errorless. It is within this framework that we discuss the
concept of the quantum capacity in this article.

The definition of quantum capacity CQ(N) is similar
to its classical analogue, that is, the supremum of all
achievable quantum rates for a noise channel N [34].
The following theorem, often referred to as the Lloyd-
Shor-Devetak (LSD) theorem, relates quantum channel
capacity with the regularized coherent information of the
channel [34, 35].

Theorem 1 (LSD capacity). The quantum capacity
CQ(N) of a quantum channel N is equal to the regularized
coherent information of the channel

CQ(N) = Qreg(N), (8)

where

Qreg(N) = lim
n→∞

1

n
Qcoh(N

⊗n). (9)

The channel coherent information Qcoh(N) is defined as

Qcoh(N) = max
ρ
(S(N(ρ)) − S(ρE)), (10)

where S is the von Neumann entropy and S(ρE) measures
how much information the environment has.

For general channels, there is no closed-form analytical
expression of the quantum capacity given in theorem 1.
However, the AD channel and its twirl approximations
have either closed-form expressions or bounds for their
LSD capacities.

1 The quantum coding rate, RQ, of an [[n, k]] quantum code is
measured in terms of the number of qubits transmitted per chan-
nel use, i.e. we have RQ = k/n, where this means that k logical
qubits are encoded per n physical qubits. A rate RQ is said to
be achievable for a quantum channel, N, if there exits a sequence
of [[n, k]] quantum codes such that the probability of error of the
codes goes to zero as n→∞ [34].
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A. Static amplitude damping channel

The quantum capacity of an AD channel with damping
parameter γ ∈ [0, 1] is equal to [34, 35]

CQ(γ) = max
ξ ∈[0,1]

H2((1 − γ)ξ) −H2(γξ), (11)

whenever γ ∈ [0, 1/2], and zero for γ ∈ [1/2, 1]. H2(x) is
the binary entropy.

B. Static Pauli channels

An expression for the quantum capacity of the widely
used Pauli channels remains unknown [4, 34]. However,
a lower bound that can be achieved by stabilizer codes,
the hashing bound, CH, [34] is known. The reason why
the quantum capacity of a Pauli channel can be higher
than the hashing bound, i.e. CQ ≥ CH, is the degenerate
nature of quantum codes [36, 37], which arises from the
fact that several distinct channel errors affect quantum
states in an indistinguishable manner.

The hashing bound for a Pauli channel defined by the
probability mass function p = (pI, px, py, pz) is given by
[34]

CH(p) = 1 −H2(p). (12)

H2(p) = −
∑

j pj log2(pj) is the entropy in bits of a discrete
random variable with probability mass function given by
p.

Equation (12) speaks towards the general hashing
bound of the whole family of Pauli channels. Sub-families
of Pauli channels of special interest are the ones obtained
by Pn- and C⊗n1 -twirling the AD channel [4, 26, 28, 29].
The families of Pauli channels obtained by such opera-
tions are denominated the AD Pauli twirl approximated
(ADPTA) channel and the AD Clifford twirl approxi-
mated (ADCTA) channel, which is a depolarizing chan-
nel (since px = py = pz). The parameters px, py, pz are
themselves functions of the relaxation time, T1, due to
the fact that they are approximated by the T1-dependent
AD channel.

IV. QUANTUM OUTAGE PROBABILITY

The TVQC model proposed in [26] clearly resembles
the paradigm of classical block fading [27]. This occurs
because the stochastic processes that define the dynamic
behaviour of the relaxation and dephasing times are con-
sidered to be constant for the codeword length, since the
processing times are much smaller than the coherence
times of such processes [19, 26]. Also, it is considered
that all qubits in the codeword are affected equally by
the noise [26]. This is reminiscent of classical block fad-
ing scenarios in which the channel gain, h, is considered
to be constant for the codeword length [27]. We use this

connection with the classical domain to develop the in-
formation theoretical concepts for TVQCs.

A. Classical outage probability for the block fading
additive Gaussian noise channel

Under slow fading conditions, the channel gain of an
Aditive White Gaussian Noise (AWGN) channel, which
is generally modeled as a WSS random process α(t, ω),
varies slowly with respect to the time duration of a code-
word. In these situations, the value of the channel gain
during the transmission of a codeword can be considered
to be approximately constant and given by a realization
of the random variable α(ω). Therefore, the block fading
channel can be reduced to an AWGN channel where the
received signal-to-noise (SNR) ratio is a random variable
|α(ω)|2SNR. Consequently, the channel capacity also be-
comes the random variable C(ω) = log2(1 + |α(ω)|

2SNR)
with bits per channel use serving as the measuring units.
Note that by the Shannon channel coding theorem, given
an encoding rate R bits per channel use, reliable commu-
nication will be possible if the realization of the channel
capacity C(ω) is larger than R. On the other hand, when
C < R communication with low probability of error is
not possible. The probability that communications fail
when transmitting a codeword with rate R is called out-
age probability and is given by [27]

pout(R, SNR) = P({ω ∈ Ω : C(ω) < R})

= P({ω ∈ Ω : log2(1 + |α(ω)|
2SNR) < R}).

(13)

The outage probability will depend on the probability
distribution of the channel gain random variable, α(ω).
For the widely used Rayleigh fading model, for which
the channel gain follows a circularly symmetric complex
normal distribution, CN(0, 1), the outage probability can
be shown to be equal to [27]

pout(R, SNR) = 1 − e
−(2R−1)
SNR . (14)

B. Quantum outage probability

Based on the similarity with the classical block fad-
ing scenario, we can assume that each of the realizations
of the qubit relaxation and dephasing times, T1 and T2,
will result in a realization of the time-varying quantum
channel in consideration, and consequently, in a specific
value for the quantum channel capacity, CQ qubits per
channel use. Similar to classical coding, if the realization
of the decoherence parameters leads to a channel capac-
ity lower that the quantum coding rate, RQ qubits per
channel use, then the quantum bit error rate (QBER)
will not vanish asymptotically with the blocklength, in-
dependently of the selected QECC. Thus, we can state
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that for such realizations the channel will be in outage.
Therefore, we define

pQout(RQ) = P({ω ∈ Ω : CQ(ω) < RQ}), (15)

as the quantum outage probability.

In other words, with probability pQ
out(RQ), the capacity

of the channel CQ(ω) will be lower than the rate of the
code, and thus, the error rate will not vanish asymptoti-

cally. Conversely, with probability 1 − pQout(RQ), reliable
quantum correction will be possible. Thus, the quantum
outage probability will be the asymptotically achievable
error rate for quantum error correction when the rate is
RQ.

V. COMPUTATION OF THE QUANTUM
OUTAGE PROBABILITY FOR THE FAMILY OF

TIME-VARYING AMPLITUDE DAMPING
CHANNELS

Next, we derive the quantum outage probability for
the family of TVAD channels in Theorem 2 [26] and we
provide a closed-form expression for this quantity when
the TVAD is considered. In addition, we define the quan-

tum hashing outage probability as a bound of pQ
out for the

twirl aproximated TVAD Pauli channels, as their exact
LSD capacities are not known.

A. Outage probability for the time-varying
amplitude damping channel

It is important to define a set of specific concepts be-
fore Theorem 2 is introduced. It is clear from expression
(11), that the quantum capacity CQ of the AD channel
is a monotonically decreasing function of the damping
parameter, γ. Therefore, there will be a unique γ∗(RQ)

that makes the value of the channel capacity CQ equal to
RQ, i.e., CQ(γ

∗(RQ)) = RQ. That is to say,

CQ(γ
∗(RQ)) = RQ ⇔ γ∗(RQ) = C−1Q (RQ). (16)

We will refer to γ∗(RQ) as the noise limit. Notice that
codes with rates RQ cannot operate reliably for channels
noisier than the noise limit, where by noisier we mean
that the channel has a higher value of the damping pa-
rameter, γ (note that γ describes how intense the ampli-
tude damping effects are).

Additionally, from (4) we define the critical relaxation
time T∗1 (RQ, talgo) as

T∗1 (RQ, talgo) =
−talgo

ln (1 − γ∗(RQ))
, (17)

which is a function of the algorithm time talgo. In order to
perform accurate comparisons of quantum channels with
different mean relaxation times, µT1 , we rewrite the criti-
cal time as a function of the damping parameter, γ, that

the AD channel exhibits when its static version is consid-
ered (This is similar to the normalization done in [26], as
the damping rate is a function of the algorithm time and
the relaxation time). Note that if the calculations were
done as a function of the algorithm time, the compari-
son between qubits with different mean relaxation times
would not be ideal since for a fixed talgo, higher values
of µT1 result in lower values of γ and thus, lower channel
noise. It is obvious that longer mean relaxation times are
more favorable for computing applications, as they allow
for longer algorithm times. However, we are interested
in calculating the quantum outage probability versus the
noise level of the channel, i.e, we want to know how much
noise a qubit is able to tolerate. Consequently, we obtain
the time that the quantum algorithm would require to
reach a noise level γ for the static AD channel as [4]

talgo = −µT1 ln (1 − γ). (18)

This way, the critical relaxation time in (17) is a func-
tion of the damping parameter γ associated to the static
AD channel as

T∗1 (RQ, γ) =
µT1 ln(1 − γ)

ln(1 − γ∗(RQ))
. (19)

Finally, the coefficient of variation, cv, was shown in
[26] to be the most relevant parameter to describe how
much the variations of T1 influence the error correcting
performance of QECCs. The coefficient of variation of a
random variable is a standardized measure of dispersion
of a probability distribution and it is defined as

cv =
σ

µ
, (20)

where σ is the standard deviation of the random variable
and µ is its mean. This parameter measures the extent
to which realizations of a random variable can deviate
from its mean.

At this point, we are ready to introduce the theorem
that provides the quantum outage probability for TVAD
channels that consider the qubits of [19, 26].

Theorem 2 (TVAD quantum outage probability). The
quantum outage probability for the time-varying ampli-
tude damping channels associated to the damping param-
eter, γ ∈ [0, 1 − e−1], is equal to

pQout(RQ, γ) = 1 −
Q

(
1

cv(T1)

[
ln(1−γ)

ln(1−γ∗(RQ))
− 1

] )
1 −Q

(
1

cv(T1)

) , (21)

where Q(·) is the Q-function, cv(T1) is the coefficient of
variation of T1 (20), γ∗(RQ) is the noise limit, µT1 is the
mean relaxation time and σT1 is the standard deviation
of the relaxation time.

Proof. In order to compute the outage probability

pQout(RQ, γ), we use the fact of the decreasing monotonic-
ity of CQ and T1 with respect to γ. This implies that
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the events {ω ∈ Ω : CQ(γ(ω)) < RQ}, {ω ∈ Ω : γ(ω) <
γ∗(RQ)} and {ω ∈ Ω : T1(ω) < T∗1 (RQ, γ)} are all the same.
Therefore,

pQout(RQ, γ) = P({ω ∈ Ω : CQ(ω) < RQ})

= P({ω ∈ Ω : T1(ω) < T∗1 (RQ, γ)}).
(22)

Next, we compute (22) based on the fact that the ran-
dom variable T1(ω) is modelled by the probability density
function in equation (1) [26].

The outage probability of the TVAD channel can be
calculated as

pQ
out(RQ, γ) = P({ω ∈ Ω : T1(ω) < T∗1 (RQ, γ)})

=

∫ T ∗1 (RQ,γ)

−∞

fT1 (t1)dt1

=

∫ T ∗1 (RQ,γ)

0

1

σT1
√

2π

e
−
(t1−µT1

)2

2σ2
T1

1 −Q
(
µT1
σT1

) dt1

=
1

1 −Q
(
µT1
σT1

) ©«
∫ T ∗1 (RQ,γ)

−∞

1

σT1
√

2π
e
−
(t1−µT1

)2

2σ2
T1 dt1

−

∫ 0

−∞

1

σT1
√

2π
e
−
(t1−µT1

)2

2σ2
T1 dt1

ª®¬
=

1

1 −Q
(
µT1
σT1

) ©«
∫ T ∗1 (RQ,γ)−µT1

σT1

−∞

1
√

2π
e−

η2

2 dη

−

∫ −µT1
σT1

−∞

1
√

2π
e−

η2

2 dη

)
=

1

1 −Q
(
µT1
σT1

) ©«1 −

∫ ∞

T ∗
1
(RQ,γ)−µT1
σT1

1
√

2π
e−

η2

2 dη

−

∫ ∞

µT1
σT1

1
√

2π
e−

η2

2 dηª®¬
=

1 −Q
(
T ∗1 (RQ,γ)−µT1

σT1

)
−Q

(
µT1
σT1

)
1 −Q

(
µT1
σT1

)
= 1 −

Q
(
T ∗1 (RQ,γ)−µT1

σT1

)
1 −Q

(
µT1
σT1

)
= 1 −

Q
(
µT1
σT1

[
ln(1−γ)

ln(1−γ∗(RQ))
− 1

] )
1 −Q

(
µT1
σT1

)
= 1 −

Q
(

1
cv(T1)

[
ln(1−γ)

ln(1−γ∗(RQ))
− 1

] )
1 −Q

(
1

cv(T1)

) ,

(23)

as we wanted to prove.
It can be seen that the quantum outage probability as

a function of the damping parameter γ does not depend
on the absolute value of the mean relaxation time, but on
the coefficient of variation of T1. This way, we decouple
the time-varying effects from the fact that longer mean
relaxation times admit longer quantum algorithm pro-
cessing times. Consequently, we present a result agnostic
to the impact that longer coherence times have and we
can provide conclusions for all superconducting qubits.

To finish, one needs to make sure that under the nor-
malization done, the maximum value that talgo can take
is still much lower than the coherence time Tc of the ran-
dom process T1(t, ω), which is of order of minutes [19].
Considering algorithm times longer than the mean relax-
ation time makes no sense since for such timeframe the
qubit is in equilibrium state with high probability, and,
therefore, it is useless as a resource. Additionally, the
value of the mean relaxation time is in the order of mi-
croseconds for superconducting qubits [26], and so taking
tmax
algo = µT1 for our theorem makes sense. Such algorithm

time is associated to the value γ = 1 − e−1, so the quan-
tum outage probability defined here is valid for the range
γ ∈ [0, 1 − e−1].

B. Quantum hashing outage probability for the
time-varying twirl approximated channels

Because the analytical expression for the LSD capac-
ity of Pauli channels is not known, the quantum outage
probability for this family of approximated channels can-
not be calculated. Nevertheless, by means of the hashing
bound, we define the quantum hashing outage probabil-
ity for Pauli channels as

pH
out(RQ) = P({ω ∈ Ω : CH(ω) < RQ}). (24)

Note that the quantum hashing outage probability will
be an upper bound on the actual quantum outage prob-
ability of time-varying Pauli channels, since the hashing
limit is a lower bound of the LSD capacity. This way,
events that exceed the hashing bound will be more likely
than the events that exceed the LSD capacity, which

means that pH
out(RQ) ≥ pQ

out(RQ). Consequently, pHout(RQ)

is an upper bound of interest for benchmarking the be-
haviour of the TV Pauli channels.

It is important to realise that the Hashing bound (12)

CH(p(γ)) = 1 +
∑

k∈{I,x,y,z}

pk(γ) log2 pk(γ) = 1 −H2(p(γ))

(25)
for the twirled approximated channels of the AD channel
with the probability distributions given in (6) and (7), is
a monotonic decreasing function of the damping proba-
bility γ. This is justified by the fact that, as γ ∈ [0, 1]
increases, the values of px, py, pz in either (6) or (7) also
increase. This results in the uncertainty of the discrete
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random variables associated to each of these distribu-
tions, and consequently their corresponding entropy val-
ues, becoming higher. Therefore, as for the AD channel,
we define the noise limit for these Pauli channels as the
unique value of the damping parameter, γ∗T(RQ), such
that:

1 − CH(p(γ
∗
T(RQ)) = RQ ⇔ γ∗T(RQ) = C−1H (1 − RQ). (26)

From (4), the critical relaxation time (note that we have
added the subindex T to indicate we are twirling the AD
channel) is

T∗1,T(RQ, talgo) =
−talgo

ln(1 − γ∗T(RQ))
, (27)

where the probability mass function p in (26) should be
taken as pADPTA or pADCTA when considering the twirled
ADPTA or ADCTA channels, respectively. Similarly to
the TVAD channel, we can write the critical relaxation
time as a function of the damping parameter

T∗1,T(RQ, γ) =
µT1 ln(1 − γ)

ln(1 − γ∗T(RQ))
. (28)

The following corollary yields the hashing outage prob-
ability of the twirled TVADPTA and TVADCTA Pauli
channels for the qubits studied in [19, 26].

Corollary 1 (Quantum hashing outage probability).
The quantum hashing outage probability for the time-
varying twirled approximated channels associated to the
damping parameter, γ ∈ [0, 1 − e−1], is equal to

pHout(RQ, γ) = 1 −
Q

(
1

cv(T1)

[
ln(1−γ)

ln(1−γ∗T(RQ))
− 1

] )
1 −Q

(
1

cv(T1)

) , (29)

where Q(·) is the Q-function, cv(T1) is the coefficient of
variation of T1 given in (20), γ∗T(RQ) is the noise limit
that depends on the considered twirled approximation, µT1
is the mean relaxation time, and σT1 is the standard de-
viation of the relaxation time.

Proof. In order to compute the hashing outage probabil-
ity pHout(RQ, γ), we use the fact of the decreasing mono-
tonicity of CH and T1 with respect to γ. This implies
that the events {ω ∈ Ω : CH(ω) < RQ}, {ω ∈ Ω : γ(ω) <
γ∗T(RQ)} and {ω ∈ Ω : T1(ω) < T∗1,T(RQ, γ)} are all same.
Therefore,

pHout(RQ, γ) = P({ω ∈ Ω : CH(ω) < RQ}) =

P({ω ∈ Ω : T1(ω) < T∗1,T(RQ, γ)}
(30)

Thus, the hashing outage corresponds to events where
the realization of the relaxation time is lower than the
critical relaxation time.

From this point, the calculation of the quantum hash-
ing outage probability is the same as in the proof of The-
orem 2, since equation (30) is the same as (22).

Note that even though the final expression is the same
as the one of Theorem 2, the noise limit value is calcu-
lated in a different manner, which means that the results
are different for each of the TV channels.

C. Numerical simulations

By using the results derived previously, we now discuss
the behaviour of the quantum outage probability and the
quantum hashing outage probability. Following the rea-
soning of [26], we will compare scenarios described by
different coefficients of variation of the random variable
T1. For the analysis conducted in this section, we con-
sider the following values of the coefficient of variation;
cv(T1) = {1, 10, 15, 20, 25}%.

1. Quantum outage probability of the TVAD channel

Figure 1 plots the quantum outage probability versus
the damping parameter, 10−3 ≤ γ ≤ 0.6, for a quantum
rate RQ = 1/9, and for all the coefficients of variation of
the relaxation time random variable.
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FIG. 1: Quantum outage probability of the
TVAD channel. The metric is calculated for TVADs
with cv(T1) = {1, 10, 15, 20, 25}% and for a quantum rate

of RQ = 1/9.

Figure 1 further cements the conclusions derived in
[26], as it shows that the impact of the fluctuations of
the decoherence parameters can be accurately quantified
by the coefficient of variation of T1 (note that in [26] this
was true if the waterfall region was steep enough). No-
tice that when the coefficient of variation is very low,
i.e. cv(T1) = 1%, the quantum outage probability of the
TVAD channel almost coincides with the quantum ca-
pacity (represented herein by the noise limit, γ∗). Con-
sequently, QECCs operating over TVQCs that present
low coefficients of variation will behave asymptotically
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in a similar manner to static channels. Nevertheless, in-
creasing the variability of the relaxation time around the
mean causes the outage probability to diverge from the
static capacity. In this case, the asymptotical bounds
flatten and the achievable error rate of QECCs operat-
ing over TVQCs does not vanish. Therefore, the higher
cv(T1) is, the worse the achievable error rate will be.

The previous discussion indicates that the coefficient of
variability of the random variable T1(ω) can be used to de-
scribe the effect that decoherence parameter time fluctu-
ations will produce on the aymptotical limits of QECCs.
These results also speak towards the importance of qubit
construction and cooldown: if optimized correctly, the
fluctuations relative to the mean will be mild, and the
outage scenarios will be significantly less frequent. Nat-
urally, it is desirable for qubits to exhibit long mean co-
herence times T1 so that algorithms with longer lifespans
can be handled appropriately. However, aside from seek-
ing to increase the coherence time of qubits, it is clear
that minimizing the dispersion of this parameter will be
critical if these qubits are to be reliable [26].
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FIG. 2: Quantum outage probability of the
TVAD channel for different quantum rates. The

considered quantum rates are
RQ ∈ {1/49, 1/9, 1/4, 1/3, 1/2}. We plot the quantum

outage probability for cv(T1) = {10, 25}%. The quantum
capacities (noise limits, γ∗) for the static quantum

channels are also represented.

Let us now discuss how the quantum rate affects
the quantum outage probability. Once more, Figure
2 shows the quantum outage probability for cv(T1) =

{10, 25}%, but it now considers different quantum rates
RQ ∈ {1/49, 1/9, 1/4, 1/3, 1/2}. As expected, the results
portrayed in this figure show that increasing the rate

leads to an increase of pQout(RQ, γ), although the shape
of the curves remains similar to scenarios with the same
coefficient of variation. The main takeaway is that, al-
though increasing the rate of an error correction code

reduces the overall resource consumption, this occurs at
the expense of a degradation in the asymptotical error
correction performance. It is important to mention that
this degradation does not occur because there is higher
sensitivity to time fluctuations at higher rates. Further
inspection of figure 2 reveals that the noise limits for
each rate change as expected, and that the outage prob-
abilities behave similarly according to those noise limits.
Thus, similarly to classical coding, the quantum rate does
indeed impact the quantum outage probability, but not
due to a higher sensitvity to time-variance. Furthermore,
similar to what happens in static channels, there is trade-
off between resource consumption and how demanding
(in terms of noise) the quantum channel is.

2. Quantum hashing outage probability of the time-varying
twirl approximated channels

We continue by comparing the outage of the TVAD
channel and its twirled approximated channels. Fig-
ure 3 plots the hashing outage probability results of the
TVADPTA and TVADCTA channels. Note that the x-
axis is still γ, despite the fact that the defining parameter
for the TVADPTA and TVADCTA channels is p. How-
ever, the γ associated to a given p can be obtained eas-
ily [4], which is necessary to perform comparisons with
the TVAD channel. The quantum outage capacities of
the TVAD channel from figure 1 are also shown. Note
that the hashing outage probabilities for the ADPTA and
ADCTA channels are worse than the quantum outage
probability of the TVAD channel, since the noise lim-
its for those channels are lower than the one for the
TVAD. This means that the hashing outage probabili-
ties of the twirled channels are worse because their noise
limits are worse, and not because they are more sensi-
tive to time-fluctuations. This is analogous to the pre-
vious explanation on the difference between the values

of pQout for QECCs with different quantum rates operat-
ing over the TVAD channel. Also note that even though
the hashing outage probabilities for these approximated
channels are higher than the quantum outage probability
for the TVAD, one can not conclude that the actual quan-
tum outage probability for these twirled channels will be
worse than the one for the AD channel (recall that the
hashing outage probability provides an upper bound on
the actual outage probability).

VI. QECCS OPERATING OVER TVQCS AND
QUANTUM OUTAGE PROBABILITY

To finish our discussion on the quantum outage proba-
bility, we study the performance of a quantum turbo code
of rate RQ = 1/9 [16] when operating under TVQC mod-
els of decoherence [26] and we use the results obtained
in the previous section for the quantum outage proba-
bility to benchmark its performance. Quantum turbo
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FIG. 3: Quantum outage and hashing outage
probabilities for TVAD, TVADPTA and

TVADCTA when RQ = 1/9. The noise limits are:
γ∗AD = 0.432, γ∗ADPTA = 0.3354 and γ∗ADCTA = 0.3065.

codes have shown excellent error correction capabilities
achieving a performance less than 1 dB away from their
corresponding hashing bounds. In addition, they encode
quantum information with a long blocklength (n = 9000
physical qubits for the quantum turbo code considered
here), making them interesting to be benchmarked us-
ing the aymptotical limits (n → ∞) derived here. Since
the depolarizing channel model is the most popular er-
ror model when it comes to studying the performance of
QECC families in the literature [4], we will also follow
this trend herein. We consider the ADCTA depolarizing
channel as the static channel of interest and the TVAD-
CTA as its time-varying version. Considering that these
decoherence models belong to the family of Pauli chan-
nels, the information theoretical benchmarks that will
be considered are the hashing bound and the quantum
hashing outage probability. The time-varying channels
that we consider are the ones associated to the QA C5
(cv(T1) ≈ 26%) and QA C6 (cv(T1) ≈ 22%) superconduct-
ing qubit scenarios of [19]. We select these scenarios in
order to portray the performance that error correction
codes would exhibit when operating on real hardware
that exhibits time fluctuations [19, 26].

Monte Carlo computer simulations have been carried
out to estimate the performance for the different scenar-
ios presented in the paper. Each round (i.e., transmitted
block) of the numerical simulation is performed by gener-
ating an n-qubit Pauli operator, calculating its associated
syndrome, and finally running the decoding algorithm.
Once the logical error is estimated, it is compared with
the logical error associated to the physical channel error
in order to decide if the decoding round was success-
ful. The operational figure of merit used to evaluate the
performance of these quantum error correction schemes

is the Word Error Rate (WER), which is the probability
that at least one qubit of the received block is incorrectly
decoded.

The number of transmitted blocks Nblocks needed to
empirically estimate WER (by Monte Carlo simulation),
is given by the following rule of thumb [38]:

Nblocks =
100

WER
. (31)

Under the assumption that the observed error events are
independent, the above number of blocks will guarantee
that the unknown value of WER will be inside the confi-
dent interval (0.8 ˆWER, 1.25 ˆWER) with probability 0.95,
where ˆWER refers to the empirically estimated value of
WER based on Nblocks.

Figure 4 shows the performance curves for the quan-
tum turbo codes studied in [16, 26] operating over the
static and TV channels. Here we use p instead of γ, since
the depolarizing channel is considered (calculating the
depolarizing probability of a CTA associated to a value
of γ is trivial). This code has rate RQ = 1/9, a block
length of 1000 qubits, and is decoded using the turbo de-
coding algorithm presented in [12, 13], which combines
two Soft-In Soft-Out (SISO) decoders. From this fig-
ure, it can be observed that the performance degrada-
tion for the quantum turbo code when the channel is the
TVADCTA rather than the static ADCTA begins at the
waterfall region and becomes more prominent as the de-
polarizing probability decreases. For example, for a de-
polarizing probability p ≈ 0.12, the Word Error Rate,
WER, of the quantum turbo code operating over the
static channel is within the range of WER ≈ 10−2, but
for that same p, it increases an order of magnitude to
WER ≈ 10−1 when operating over the TV channel sce-
nario QA C6. This WER deviation increases almost four
orders of magnitude when the depolarizing probability
decreases to p ≈ 0.1 for the same superconducting qubit
scenarios. Thus, as concluded in [26], the fluctuations of
the relaxation time of the superconducting qubits sub-
stantially worsen the error correcting capabilites of the
QECCs.

Figure 4 also shows the quantum hashing outage prob-
ability pHout(RQ, p), derived in section V B. Note that the
quantum hashing outage probability is an upper bound
on the asymptotically achievable WER. We know from
the previous section that the coefficient of variation of
the relaxation time yields insight on how flat the hash-
ing outage probability becomes. Notice that the super-
conducting qubits of scenario QA C5 (cv(T1) ≈ 26%) are
more affected by time-variations than the ones of scenario
QA C6 (cv(T1) ≈ 22%).

To quantify the distance to the hashing outage bound,
we use a similar metric to the one proposed in [10], which
measures the distance in dBs between the performance
of a code and the hashing outage at a given WER = χ:

δout(@χ) = 10 log

(
p(pHout = χ)

p(WERcode = χ)

)
. (32)
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FIG. 4: Performance of the quantum turbo code
from [16, 26]. The quantum turbo code operates over
the static ADCTA channel and the TVADCTA channel
for scenarios QA C5 and QA C6 [19, 26]. The quantum

error correction code has rate RQ = 1/9 and encodes
blocks of 1000 logical qubits into 9000 physical qubits.

The hashing bound and the hashing outage
probabilities are also plotted.

For example, the 1/9 quantum turbo code is
δout(@10−3) ≈ 1.75 dB away from the hashing outage for
the QA C5 scenario and δout(@10−3) ≈ 1.67 dB away for
the QA C6 scenario.

VII. CONCLUSION

In this paper, we have introduced the concept of quan-
tum outage probability as the asymptotically achiev-
able error rate for quantum error correction when time-
varying quantum channels are considered. Additionally,
we have also introduced the quantum hashing outage
probability as an upper bound on the quantum outage
probability when Pauli channels are considered, since the
actual quantum capacity of these channels is not known.
We have provided closed-form expressions of these prob-
abilities for the TVAD, TVADPTA and the TVADCTA
channels. We have also studied the behaviour of the
RQ = 1/9 quantum turbo code from [16, 26] and bench-
marked its performance using the hashing outage prob-
ability. We have concluded that the time-variations ex-

perienced by the relaxation times do affect the perfor-
mance of QECCs in a significant manner when the er-
ror rate curve is steep enough [26], and that those TV
effects should be taken into account when optimizing
code construction. The information theoretical analy-
sis presented in this work is essential to benchmark the
behaviour of quantum error correction codes in TV sce-
narios. Similar studies for the quantum outage probabil-
ity of the more general time-varying combined amplitude
and phase damping channel will be considered in future
work, as this will be critical in order to have a complete
tableau of the information theoretical limits of error cor-
rection for superconducting qubits with pure dephasing
channels.

In summary, it is clear that the time-varying nature of
the decoherence parameters will have a significant impact
on the performance of future QECCs that will be used to
protect quantum information. We have found, based on
the results shown throughout this paper, that the quan-
tum outage probability is a function of the coefficient of
variation of T1 and that it increases as cv(T1) increases.
Therefore, to improve the error correction capabilities of
quantum codes in TVQCs it is important to experimen-
tally look for qubits that, not only have a large mean
relaxation time, but that also exhibit a low standard de-
viation relaxation time. In this way, the error correction
potential of QECCs under time varying conditions will
approach those found for static channels.
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