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Minimal, open quantum systems that are governed by non-Hermitian Hamiltonians have been
realized across multiple platforms in the past two years. Here we investigate the dynamics of open
systems with Hermitian or anti-Hermitian Hamiltonians, both of which can be implemented in such
platforms. For a single system subject to unitary and thermal dynamics in a periodic manner,
we show that the corresponding Floquet Hamiltonian has a rich phase diagram with numerous
exceptional-point (EP) degeneracy contours. This protocol can be used to realize a quantum Hatano-
Nelson model that is characterized by asymmetric tunneling. For one unitary and one thermal
qubit, we show that the concurrence is maximized at the EP that is controlled by the strength of
Hermitian coupling between them. Surprisingly, the entropy of each qubit is also maximized at
the EP. Our results point to the multifarious phenomenology of systems undergoing unitary and
thermal dynamics.

I. INTRODUCTION

In quantum theory, the dynamics of an isolated sys-
tem are governed by a Hermitian Hamiltonian that gives
rise to a unitary time evolution due to the real eigenval-
ues and orthogonal eigenvectors. However, no quantum
system is truly isolated and open quantum systems are
ubiquitous in nature. Traditionally such open systems
have been described by a trace-preserving, decoherence-
inducing Lindblad equation for the density matrix of the
system. In 1998, Bender and co-workers showcased a
broad class of non-Hermitian Hamiltonians with purely
real spectra for a non-relativistic particle on a line [1].
These Hamiltonians are characterized by invariance un-
der combined parity (P) and time-reversal (T ) transfor-
mations. The ensuing, deep mathematical work [2–4] on
a complex extension of quantum theory [5, 6] soon gave
way to experiments on classical, optical systems [7]. The
latter was engendered by the observation that imaginary
potentials represent gain or loss [8–10], and therefore,
PT -symmetric, non-Hermitian Hamiltonians faithfully
describe open, classical systems with balanced gain and
loss. Over the past decade, classical PT -symmetric sys-
tems have been investigated in coupled waveguides [11],
fiber loops [12], optical resonators [13, 14], acoustics [15],
mechanical oscillators [16], and electrical circuits [17, 18].
In the past two years, these studies have been extended
into the quantum domain with ultracold atoms [19], en-
tangled photons [20], a single NV center [21] and a su-
perconducting qubit [22].

This intense research, particularly on non-Hermitian
systems in the quantum domain, is driven by the unusual
nature of their degeneracies [23]. A prototypical PT -
symmetric Hamiltonian has a purely real spectrum (and
non-orthogonal eigenvectors) when the non-Hermiticity
is small; this is the PT -symmetric region. With increas-
ing non-Hermiticity, the real eigenvalues develop level

attraction [10], become degenerate, and then turn into
complex-conjugate pairs. The region with complex con-
jugate eigenvalues is called the PT -broken region [24].
The transition from PT -symmetric to PT -broken region
occurs at an exceptional point (EP) where the corre-
sponding eigenvectors also coalesce. This EP degener-
acy is distinct from the diabolic-point (DP) degeneracy
of Hermitian Hamiltonians where eigenvalues become de-
generate while corresponding eigenvectors continue to re-
main orthogonal. Since EPs are branch points of Rie-
mann manifolds that represent complex energies, they
are responsible for the enhanced sensing and adiabatic
mode-switch phenomena [25, 26]. Their novel properties
have intensified the efforts to engineer EP landscapes [27–
29] and higher-order EPs in the classical and quantum
domains [30–34] .

Here, we investigate the dynamics of bipartite, few-
level systems that undergo coherent, unitary evolution
generated by a Hermitian Hamiltonian H1(t), or a co-
herent, non-unitary evolution generated by a purely anti-
Hermitian Hamiltonian H2(t). Note that the dynamics
with anti-Hermitian Hamiltonian H2 is equivalent to an
imaginary-time or thermal evolution with a Hermitian
Hamiltonian iH2. Neither of the two Hamiltonians alone
supports EP degeneracies. Surprising, we show that
by coupling the two, through temporal modulation (in
a single qubit) or spatial interaction (in two qubits), a
rich landscape of EPs can be engineered. By character-
izing the resultant Floquet Hamiltonian, we show that
the system parameters can be tuned to create the classic
Hatano-Nelson model with asymmetric hopping [35]. Al-
though it is easy to implement in a classical setting, its
quantum realization is challenging, because it requires
dissipators that are quite different from the spontaneous
emission dissipator. Our results show that coupling uni-
tary and thermal dynamics provides a new avenue to
generate PT -symmetric effective Hamiltonians. These
Hamiltonians span the entire range from the standard
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PT dimer with on-site gain and loss to the Hatano Nel-
son model with asymmetric hopping in truly quantum
platforms. In this study, we use a superconducting trans-
mon circuit as a base model where H1(t) is implemented
by a (detuned) Rabi drive, while H2(t)—the “pure gain-
loss term” —corresponds to the post-selected dynamics
where quantum jumps are ignored [20, 22]. However,
our analysis is applicable to broad range of quantum and
semiclassical or purely classical models where the “levels”
represent bosonic modes, and therefore amplification and
depletion is possible.

It is important to keep in mind two points at the outset.
First, we use the standard Dirac inner-product to obtain
expectations values and make experimentally observable
predictions. Under this convention, a system undergoes
non-unitary dynamics in both PT -symmetric and PT -
broken phases. We do not use the “CPT inner-product”
(positive-definite intertwining operator that is valid only
in the PT -symmetric phase), where it generates “unitary”
evolution under a new definition of the adjoint. We also
do not use the “biorthogonal inner-product” that gives
negative or zero norm states. All experimental evidence
to date shows that the nature follows the Dirac inner-
product. We also note that the CPT inner-product can-
not treat the system at the EP or the PT -broken phase –
parameter regimes that are routinely accessed in experi-
ments.

Second is the subtle effect of post-selection in open
quantum systems [20, 22, 33]. Post-selection not only ig-
nores quantum trajectories that undergo quantum jumps
thereby generating a non-Hermitian dynamics in the
Monte Carlo wave-function approach [36]. Additionally,
because the trajectories that are kept are precisely ones
where the excitations do not leave the system, it renor-
malizes the instantaneous density matrix for the system
of interest. Thus, relative weights of the decaying and
non-decaying level in the post-selected manifold of a ther-
mal qubit change with time while the fact that the qubit
is always found in one of these two levels – the density
matrix has unit trace – is guaranteed by post-selection.
We encode this experimental reality by evolving the sys-
tem with a non-Hermitian Hamiltonian and then nor-
malizing the resulting density matrix at every instance
of time.

The plan of the paper is as follows. In Sec. II, we con-
sider a single qubit that is subject to either Hermitian
H1(t) or anti-Hermitian H2(t) Hamiltonians in a periodic
manner with period T . The long-term dynamics of such a
system is governed by the Floquet formalism [27, 37–39].
We present the results for the Floquet PT phase diagram
as a function of the average anti-Hermitian strength and
the Floquet modulation frequency Ω ≡ 2π/T and dis-
cuss their consequences. In Sec. III we show that the
corresponding Floquet Hamiltonian interpolates between
a traditional PT -symmetric dimer model and the classic
Hatano-Nelson model. In Sec. IV, we investigate coher-
ence and entanglement between two qubits, one thermal
and one unitary, as a result of the Hermitian interac-

tion between them. We show that with judicious choice
of parameters, the system can be driven from a product
state to a maximally entangled state, and that the con-
currence of the two-qubit system is maximized at the EP.
We conclude the paper with a brief discussion in Sec. V.

II. SINGLE QUBIT WITH UNITARY OR
THERMAL DYNAMICS

Consider a system with a time-periodic Hamiltonian
H(t) = H(t+ T ) that is defined as follows:

H(t) =

{
H1(t) = H†1(t) 0 ≤ t ≤ τ
H2(t) = −H†2(t) τ ≤ t ≤ T

(1)

where τ ≡ pT and 0 ≤ p ≤ 1. Thus, within a single
period, the system undergoes unitary evolution for time
τ = pT and then an imaginary-time (thermal) evolution
for the rest of the time β ≡ (1− p)T . The corresponding
time evolution operators are defined by (~ = 1)

G(τ) = Te−i
∫ τ
0
H1(t′)dt′ , (2)

G(β) = Te−i
∫ T
τ
H2(t′)dt′ , (3)

where T stands for the time-ordered product necessary
when Hamiltonians at different instances of time do not
commute with each other. Since G(τ) is unitary, its
eigenvalues lie on a unit circle and its orthonormal eigen-
vectors span the space. Although H2 is anti-Hermitian,
G(β) = G†(β) is Hermitian, with real eigenvalues and
complete, orthonormal eigenvectors. Thus, neither G(τ)
nor G(β) support EP degeneracies. Since the product
of two unitaries is also a unitary, a Hermitian, time-
dependent protocol with GH = G(τ1)G(τ2) cannot lead
to EP degeneracies. In contrast, a time-evolution oper-
ator GaH = G(β1)G(β2) with non-Hermitian Hamiltoni-
ans may lead to EP degeneracies since the product of
two Hermitian matrices G(β1) and G(β2) is not neces-
sarily Hermitian.

When the system evolves under the Hamiltonian H(t),
its long-time dynamics are governed by the time evolu-
tion operator for one period,

GF (T ) = G(β)G(τ) ≡ e−iTHF , (4)

that, in turn also defines the non-Hermitian Floquet
Hamiltonian HF . In general, GF (T ) is neither uni-
tary nor Hermitian. Therefore its complex eigenval-
ues λα and non-orthogonal (right) eigenvectors |vα〉 can
be tuned to exhibit EP degeneracies. Equivalently, the
Floquet Hamiltonian HF is neither Hermitian nor anti-
Hermitian, and so the fundamental Floquet quasienergies
εα = +i lnλα/T are neither real nor purely imaginary. In
the unfolded-zone scheme, the Floquet quasienergies are
given by εαn = εα+nΩ [37, 38]. These considerations are
valid for general Hamiltonians Hk(t) and thus apply to
classical or quantum systems with arbitrary dimensions.
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FIG. 1. Single qubit with periodic, Hermitian and anti-Hermitian drives: (a) A two-level system evolves under Rabi drive
J(t) for fraction p of the period T and undergoes amplification/depletion with rate γ(t) for the remaining time (1− p)T . The
Floquet dynamics results are solely governed by their temporal averages Jav and γav. (b) The heat-map of IP (γav,Ω) shows
that EP contours, determined by Eq.(10) and shown by solid lines, correspond to its maxima. (c) Magnified view of the EP
contours in the vicinity of five resonances Ωk = 2pJav/k for 1 ≤ k ≤ 5 shows that the linear approximation in Eq.(12)—black,
dashed lines—works well at small gain-loss strengths. The EP contours emerging from Ωn/pJav = 2/(2n− 1) are shown in blue
and those emerging from Ω′

n/pJav = 2/(2n) are shown in red. Note the logarithmic scale on the horizontal axis in (c).

For a single-qubit case, we start with

H1(t) = J(t)σx = PT H1(t)PT , (5)
H2(t) = iγ(t)σz = PT H2(t)PT , (6)

where J(t) and γ(t) are real, arbitrary functions of time.
The schematic for this system is shown in Fig. 1(a). The
antilinear PT operator is given by P = σx and T =
∗ (complex conjugation). The time evolution operators
are then given by G(τ) = exp(−iJavτσx) and G(β) =
exp(+γavβσz) where

Jav =
1

τ

∫ τ

0

J(t′)dt′, (7)

γav =
1

(T − τ)

∫ T

τ

γ(t′)dt′, (8)

denote the temporal averages for the Rabi drive J(t) and
the gain-loss strength γ(t) respectively. The resulting
time evolution operator GF (T ) = G012 + G · σ = Gµσµ
can be evaluated explicitly, where σ = (σx, σy, σz) is a
vector with standard Pauli matrices, σ0 = 12 is the 2-
dimensional identity matrix, and sum over the repeated
index µ ∈ {0, x, y, z} is understood. The Floquet eigen-
values are thus given by λ± = G0 ± |G| with

|G| = i

√
1− cosh2 [(1− p)Tγav] cos2 (pTJav). (9)

It follows that λ±(p, T, γav, Jav) have equal magnitudes
when |G| is purely imaginary. This defines the PT -
symmetric phase of the Floquet HamiltonianHF . On the
other hand, when |G| is purely real, the eigenvalues λ±
have different magnitudes, indicating a PT -broken phase
for the system. The EP contours that separate the PT -
symmetric region from the PT -broken region are given
by |G| = 0, i.e.

cos (pTJav) cosh
[
(1− p)TγEP

av

]
= ±1. (10)

It is also straightforward to show that the Dirac inner
product of Floquet eigenvectors |v±〉 of GF (T ) is given
by IP (γav,Ω) ≡ |〈v+|v−〉| = min(r, 1/r) where

r =
|Gx|[

G2
y +G2

z

]1/2 =

∣∣∣∣ sin(pTJav)

tanh [(1− p)Tγav]

∣∣∣∣ . (11)

The Floquet PT -phase diagram and resultant EP con-
tours are characterized solely in terms of the average Rabi
drive, Eq.(7), and average gain-loss strength, Eq.(8).
They are, therefore, independent of the exact functional
forms and make our results widely applicable. Without
loss of generality, we take Jav > 0 and confine our at-
tention to γav > 0 since the results for negative γav are
obtained from it by symmetry transformations.

Figure 1(b) shows numerically obtained heat-map
of IP as a function of dimensionless loss strength
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(1 − p)γav/pJav and the Floquet modulation frequency
Ω/pJav. (We use the frequency Ω = 2π/T instead
of the modulation period T for ease of comparison
with the literature.) Superimposed on the heat map
are EP contours obtained via Eq.(10) with red corre-
sponding to value +1 and blue corresponding to value
−1. The blue contours emerge from modulation fre-
quencies Ω/pJav = {2, 2/3, 2/5, . . .} and the red con-
tours emerge from Ω/pJav = {2/2, 2/4, 2/6, . . .}. It fol-
lows from Eq.(10) that the PT -broken phase occurs at
vanishingly small values of γav in the neighborhood of
resonances given by Ωk = 2pJav/k where k ≥ 1 is an
integer [19, 27, 39, 40]. It is worth pointing out that
the resonances Ωk along the γav = 0 axis are DP degen-
eracies that terminate the EP contours in the γav > 0
plane. A perturbative expansion in the neighborhood of
the kth resonance shows that the equation for EP lines
that emerge from Ωk with equal and opposite slopes is
given by

γEP
av (∆Ωk) = ± k

2(1− p)
∆Ωk, (12)

where ∆Ωk = Ω − Ωk. Figure 1(c) shows the exact EP
contours, Eq.(10), (red and blue lines) and linear ap-
proximation, Eq.(12), (black dashed lines) in the vicin-
ity of first five resonances. The linear approximation
is valid in a region that algebraically shrinks with in-
creasing resonance index k, i.e. |∆Ωk| � (2/k)pJav. We
also note that the inner product vanishes at resonances
Ωk = 2pJav/k, indicating Dirac-orthogonal eigenvectors
|v±〉. At the resonance Ω = Ωk, the unitary time evo-
lution is trivial, i.e. G(τ) = (−1)k12, and therefore the
one-period time-evolution operator GF (T ) is purely gen-
erated by an anti-Hermitian Hamiltonian.

It also follows from Eq.(10) that when modulation
frequency is close to the node of cosine function, i.e.
Ω ≈ Ω′k ≡ 2pJav/(k + 1/2), the PT -symmetric phase
extends to arbitrarily large values of gain-loss strengths.
A perturbative expansion in the vicinity of the node,
Ω ≈ Ω′k, shows that for (1 − p)γav/pJav � 1, the EP
contour is characterized by

γEP
av (∆Ωk) = − pJav

π(k + 1/2)(1− p)
ln

[
π∆Ω′k
pJav

]
, (13)

where ∆Ω′k = |Ω− Ω′k|. Lastly, the high-frequency limit
of the EP contours in Fig. 1b is obtained most easily from
Eq.(11) where the constraint r = 1 in the limit T → 0
gives

γEP
av (Ω→∞) =

pJav

(1− p)
. (14)

This result is expected because in the high-frequency
limit, the Floquet problem is equivalent to a static prob-
lem with time-averaged Rabi drive pJav and gain-loss
strength (1− p)γav.

To understand the emergence of PT -symmetric and
PT -broken phases in the Floquet dynamics, we numer-
ically investigate the evolution of a state |ψ(0)〉 on the

Bloch sphere under the influence of Hamiltonian H(t).
Under the unitary dynamics introduced by J(t)σx, the
state traces (part of a) circle in the y-z plane, whereas un-
der the thermal dynamics introduced by iγ(t)σz, it trav-
els along a meridian toward the north pole. We empah-
size that the post-selection process ensures that the qubit
stays on the Bloch sphere surface. Figure 2(a) shows
the state’s trajectory during unitary (blue) and thermal
(red) evolutions when the system is in the PT -symmetric
phase. We see that the Bloch angles θ(t) and φ(t) un-
dergo fast oscillatory behavior (micromotion), whereas
the PT -symmetric phase is signified by a periodic be-
havior over timescale of several periods. Corresponding
results for a system in the PT -broken phase are shown in
panel (b). Starting with the same initial state, the qubit
trajectory stabilizes in the y-z plane, with rapid (micro-
motion) oscillations in the polar angle θ(t) and strobo-
scopic steady-state behavior. The results presented in
Figs. 2(a)-(b) are representative, and show that the PT -
symmetric or PT -broken regions emerges due to compe-
tition between precession around the x-axis in the unitary
part of the dynamics, and travel along meridians in the
thermal part of the dynamics.

In contrast to the traditionally studied models of peri-
odic Hamiltonian or Lindblad dynamics, our model lever-
ages alternating unitary and thermal evolutions to create
EP contours that, in simple cases, can be analytically de-
termined for arbitrary J(t) and γ(t). That, in turn, al-
lows us to obtain the exact Floquet Hamiltonian HF . In
the following section, we will investigate its the behavior.

III. EFFECTIVE FLOQUET HAMILTONIAN

The Floquet Hamiltonian defined by Eq.(4) is the
static Hamiltonian that generates the same time evolu-
tion as the time-periodic Hamiltonian H(t) only at stro-
boscopic times, i.e. tn = nT . At intermediate times
tn−1 < t < tn, the micromotion generated by H(t)
does not match the dynamics generated by HF . How-
ever, since the micromotion contribution is periodic in
time, the long-term dynamics are purely determined by
the Floquet Hamiltonian, that, in the frequency basis, is
given by HF = H−i∂t [27, 39]. In principle, it is possible
to obtain the Floquet Hamiltonian over the entire param-
eter space as HF = +i lnGF (T )/T . By parameterizing
it as HF = h012 + h · σ = hνσν gives exp(−ih0T ) = ±1
and the following implicit equations for the vector h,

hx
|h|

=
tan (pTJav)

tan(|h|T )
, (15)

hz
|h|

= i
tanh [(1− p)Tγav]

tan(|h|T )
, (16)

hy
|h|

= i
tan (pTJav) tanh [(1− p)Tγav]

tan(|h|T )
. (17)

The constraint of antilinear (PT ) symmetry on the Flo-
quet Hamiltonian implies that the components of h are
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FIG. 2. Qubit trajectory under unitary (blue lines) and thermal (red lines) evolution for a qubit initialized in the state
|ψ(0)〉 = (|+x〉+ |−y〉+ |+z〉) /

√
3. Here | ± x〉 (| ± y〉, | ± z〉) stand for the eigenstates of σx (σy, σz) with eigenvalues ±1

respectively. (a) When (1 − p)γav/pJav = 1.0 and Ω/pJav = 2.5π, the system is in the PT -symmetric state. Starting from
|ψ(0)〉, the system traces a periodic trajectory consisting of precession about the x-axis (unitary dynamics) and motion towards
the north pole along meridians (thermal dynamics). Corresponding evolution of the polar angle θ(t) and azimuthal angle
φ(t) on the Bloch sphere as a function of time measured in the units of T is also shown. (b) When (1 − p)γav/pJav = 1.25
and Ω/pJav = 2.5π, the system is in the PT -broken phase. As a result, the same initial state |ψ(0)〉 reaches a stroboscopic
steady-state in the y-z plane, while the micromotion generates fast oscillations in the polar angle θ(t).

real or imaginary, but not complex. Thus, h · h is a real
(positive, zero, or negative) quantity, and |h| = 0 charac-
terize the EP degeneracies of the Floquet Hamiltonian.

One remarkable feature of our model is that HF rep-
resents a “two-site” system with asymmetric tunneling
as well as on-site gain and loss. It is a combination of
the Hatano-Nelson model (HHN = Aσx + iBσy) and the
PT -symmetric dimer (Hdimer = Aσx + iBσz). The ratio
of these contributions is given by hy/hz = tan(pJavT )
and thus can be arbitrarily varied. Specifically, at
Ωn/pJav = 2/n, the hz-term dominates and gives an
anti-Hermitian Hamiltonian. On the other hand, when
Ω′k/pJav = 2/(k+1/2), the hy-term dominates, and gives
rise to the Hatano-Nelson model with a divergent PT -
symmetry breaking threshold; see Fig. 1(b).

Further insight is gained when we move along the
EP contours defined by Eq.(10) or equivalently |h| =
0. Since the Hamiltonian satisfies the equation (HF −
h012)2 = 0, the power series expansion for the time-
evolution operator terminates at first order, i.e. GF (T ) =
± [12 − ih · σT ]. Therefore, the Floquet Hamiltonian
simplifies to

hx(γav) =
1

T
sinh[(1− p)γavT ] = −hx(−γav), (18)

hy(γav) =
i

T
tanh[(1− p)γavT ] = −hy(−γav), (19)

hz(γav) = Thxhy = +hz(−γav). (20)

Another remarkable feature of the Floquet model is
that the DP degeneracies at γav = 0,Ω = Ωk are
continuously connected to the EP degeneracies of the
non-Hermitian Floquet problem. At any point along
the EP contour, the norm of a generic state |ψ(tn)〉 =
GF (T )n|ψ(0)〉 grows quadratically with time tn; however,
as one approaches the DP degeneracies on the γav = 0

axis, the evolution is unitary and the norm is preserved.
This “proximity to the DP” [41] can be characterized by
eigenvalues Λ± of the Hermitian, positive-definite opera-
tor G†F (T )GF (T ). They are given by

Λ± = exp [±2(1− p)Tγav] . (21)

Evidently, as one approaches a DP degeneracy along the
Ω axis, Λ± → 1 as is expected for a unitary time evolu-
tion.

IV. ENTANGLEMENT BETWEEN THERMAL
AND UNITARY QUBITS

In previous sections, we have considered a single qubit
that undergoes unitary and thermal evolutions in a peri-
odic manner. In this section, we consider the dynamics of
two qubits, one unitary and one thermal, that are coupled
by a Hermitian interaction, Fig. 3(a). When the qubits
do not interact, the unitary qubit has a constant entropy
and its density matrix undergoes precession within the
Bloch sphere at a constant radius. In contrast, the ther-
mal qubit’s entropy decreases as its density matrix moves
along a meridian radially outward and toward the north
pole on the Bloch sphere. In the presence of interaction,
the two qubit Hamiltonian H2 is given by

H2 = J12 ⊗ σx + iγσz ⊗ 12 + kxσx ⊗ σx, (22)

εk = ±J ±
√
k2
x − γ2 = ±J ±∆, (23)

where εk denote its four eigenvalues. The Hamiltonian
H2 is commutes with the PT -operator where P = σx⊗σx
and T is given by complex conjugation. It follows that
the eigenvalues are complex for kx ≤ γ with a second-
order EP at γ = kx. The PT -symmetric phase with
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FIG. 3. Two coupled qubits. (a) A unitary qubit with Rabi drive Jσx is coupled to a thermal qubit with Hamiltonian iγσz by a
Hermitian interaction with strength kx. When uncoupled, the system is in the PT -broken phase due to the thermal qubit. (b)
Eigenvalues εk of H2 as a function of γ/kx show a second-order EP at γ = kx. (c) With initial state |00〉, the concurrence C(t)
is periodic when γ/kx = 0.75 (red solid), saturates to its maximum value of unity at the EP (blue dashed), and is suppressed
from its maximum at γ = 1.25kx (black dot-dashed). (d) Starting from a Bell state, |ψ2(0)〉 = (|00〉+ |11〉)/

√
2, similar behavior

is observed. For (c)-(d), kx/J = 2. (e) Starting from a maximally-mixed two-qubit state, St(t) reaches zero when kx = 0 (black
dot-dashed). With increasing kx, St(t) reaches maximum at the EP, kx = γ = 1.5J (blue solid), and then becomes oscillatory
when kx = 1.6J (red solid). (f) The unitary qubit entropy Su(t) also shows clear signature of the EP at kx = γ = 1.5J . The
normalized time is measured in units of Jt.

purely real eigenvalues emerges when the Hermitian cou-
pling strength kx exceeds γ. Figure 3(b) shows the real
and imaginary parts of the eigenvalues εk as a function of
non-Hermiticity γ for a Rabi-drive strength J = 0.5kx.

The dynamics of the two qubit system is given by

ρ2(t) =
G2(t)ρ2(0)G†2(t)

Tr
[
G2(t)ρ2(0)G†2(t)

] (24)

where ρ2(t) is the normalized two-qubit density matrix
and G2(t) = exp(−iH2t) is the non-unitary time evo-
lution operator. This normalization reflects the exper-
imental reality that post-selection only keeps quantum
trajectories where, by ignoring quantum jumps, the trace
of the two-particle density matrix is maintained. We
emphasize that this normalization occurs in both PT -
symmetric or PT -broken phases, and is not related to
the norm-conserving CPT evolution for two qubits in the
PT -symmetric phase [42]. To investigate the entangle-
ment between the two qubits, we calculate the Wootter’s
concurrence [43, 44] C(t) = max{0, c1 − c2 − c3 − c4}
where ck(t) are the eigenvalues, in decreasing order, of
the positive-semidefinite matrix

R(t) = [ρ2(t)(σy ⊗ σy)ρ∗2(t)(σy ⊗ σy)]
1/2

. (25)

We also obtain the individual qubit entropies Su,t =
Tr [ρu,t log2 ρu,t] where ρu(t) = Trtρ2(t) is the reduced
density matrix for the unitary qubit and ρt(t) = Truρ2(t)
is the reduced density matrix for the thermal qubit.

Figure 3(c) shows the development of concurrence be-
tween two qubits that are initialized in respective ground
states, i.e. |ψ2(0)〉 = |00〉 and are strongly coupled,
i.e. kx = 2J . When γ/kx = 0.75 (red solid), the sys-
tem is in the PT -symmetric phase and C(t) shows a
periodic behavior that reaches unity, thereby indicating
maximally entangled qubits. At the EP γ = kx (blue
dashed), the C(t) saturates to the maximum value of
unity, thereby indicating that the two qubits approach
a maximally entangled steady state. In the PT -broken
regime, γ = 1.25kx (black dot-dashed), the concurrence
reaches a lower steady-state value indicating reduced en-
tanglement. Corresponding results for a system starting
in an initial state |ψ2(0)〉 = (|00〉 + |11〉)/

√
2 are shown

in Fig. 3(d). Once again, we find the concurrence reaches
steady-state value of unity at the EP (blue dashed).

These results can be analytically obtained in certain
parameter ranges. For two-qubit, pure states with time-
dependent, normalized coefficients |φ2(t)〉 = a00(t)|00〉+
a01(t)|01〉 + a10(t)|10〉 + a11(t)|11〉, it is straightforward
to show [44] that the concurrence is given by C(t) =
2|a00a11− a10a01|. We first obtain the non-unitary time-
evolution operator as

G2(t) =
sin(∆t)

∆

 CA+ −iSA+ −kxS −ikxC
−iSA+ CA+ −ikxC −kxS
−kxS −ikxC CA− −iSA−
−ikxC −kxS −iSA− CA−


(26)
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where C = cos(Jt), S = sin(Jt), and A± = ∆ cot(∆t)±γ.
Note that the diverging nature of A± in the limit t → 0
is compensated by the vanishing prefactor sin(∆t) in
Eq.(26), and gives G2(t → 0) = 14. In the PT -
symmetric phase ∆ =

√
k2
x − γ2 is real and gives rise

to the oscillatory behavior. In the PT -broken phase it is
purely imaginary, and gives rise to steady-state values for
the normalized density matrix. The time-evolution oper-
ator G2(t) remains continuous across the PT transition,
and thus, the results at the EP (∆ = 0) are obtained by
taking the limit ∆→ 0 of the expressions in Eq.(26).

Using the time-evolution operator, it is straightforward
to show that the time-dependence concurrence for an ini-
tial state |ψ2(0)〉 = |00〉 is given by

C(t) =

∣∣∣∣∣ 2kx [∆ cot(∆t) + γ]

k2
x + [∆ cot(∆t) + γ]

2

∣∣∣∣∣ ≤ 1. (27)

It follows that when ∆ > 0 is real, the initially uncorre-
lated qubits become periodically maximally entangled,
C = 1, with period given by T∆ = π/(2∆). It also
reaches zero when A+ = ∆ cot(∆t) + γ is either zero
or diverges. At the exceptional point γ = kx, the con-
currence is given by

C(t) =

∣∣∣∣ 2γt(1 + γt)

(γt)2 + (1 + γt)2

∣∣∣∣ (28)

and approaches unity at times γt � 1. When the sys-
tem is in the PT -broken phase, ∆ is purely imaginary
and the term ∆ cot(∆t)→ |∆| at long times. Therefore,
when γ > kx, the long-time, steady-state concurrence is
suppressed from its unity value at the EP and is given
by Css = kx/γ < 1. Similar analysis for a symmetric Bell
state as initial state gives the results in Fig. 3(d).

Lastly, we consider the dynamics of the purity of
each qubit as a function of the coupling kx between
them. When the two qubits are initially in the maxi-
mally mixed state, i.e. ρ2(0) = 14/4, Fig. 3(e) shows
that, at kx = 0, (black dot-dashed) the thermal qubit
entropy St(t) starts at unity and decreases to zero at
long times. This is becuase the thermal qubit approaches
the pure state at the north pole, thereby monotonically
decreasing its entropy. With increasing kx ≤ γ, St(t)
decreases and then reaches a steady-state value that
rises to unity at the exceptional point kx = γ = 1.5J
(blue dashed). Past the EP, when kx = 1.6J > γ,
the entropy shows oscillations bounded between 0 and
1 that are characteristic of the PT -symmetric phase (red
solid). The reduced density matrix of the unitary qubit,
on the other hand, remains maximally mixed irrespec-
tive of kx value and therefore Su(t) = 1. Figure 3(f)
shows the entropy Su(t) for an initial two-qubit state
ρ2(0) = 0.2514 + 0.1912⊗σz + 0.23σz⊗12 + 0.19σz⊗σz.
When kx = 0 (black dot-dashed), the entropy of the uni-
tary qubit remains constant with time as is expected.
As kx increases, Su(t) rises and reaches unity at the EP,
kx = γ = 1.5J (blue dashed). For kx = 1.6J > γ, it

shows oscillatory behavior (red solid). These trends, too,
can be analytically understood by using the exact time-
evolution operator, Eq.(26). It is interesting that the
entropy of the interacting unitary qubit is always higher
than its constant value in the absence of interaction with
the thermal qubit.

V. DISCUSSION

Recent progress on non-Hermitian, minimal quantum
systems [19–22] and unitary quantum simulators that can
implement non-unitary and Lindblad dynamics [45, 46]
makes the interplay between unitary and thermal dynam-
ics possible. In this article, we investigated this inter-
play through two models. For a single qubit that pe-
riodically undergoes thermal and unitary evolutions, we
have shown that the resultant dynamics has a rich Flo-
quet structure with numerous EP contours that separate
PT -symmetric and PT -broken regions. By characteriz-
ing the corresponding Floquet Hamiltonian HF , we have
shown that this protocol can be used to realize the classic
Hatano-Nelson model in a minimal, quantum platform.
Although the Hamiltonian HHN is unitarily equivalent to
the PT -dimer Hamiltonian, the latter is easily realized
through post-selection in the presence of spontaneous-
emission dissipator [22]. In contrast, realizing the former
has been challenging since it requires bath-engineering
new dissipators that, after post-selection, will give rise
to a σy-term in the anti-Hermitian part of the effective
Hamiltonian. In the second model, we have studied the
restoration of PT -symmetry, indicated by a periodic be-
havior, that emerges when a thermal qubit is moderately
or strongly coupled to a unitary qubit. In this case,
we have shown that the entanglement between the two
qubits is maximized at the EP, just as the each qubit
shows maximal entropy as well.

The analysis presented here applies to higher-
dimensional systems as well. When higher-dimensional
representations of SU(2)—qutrits, qudits—are consid-
ered, results in Sec. II remain valid with higher-order EP
contours [33, 34]. They also remain qualitatively same
for other Hermitian couplings Kµνσµ ⊗ σν between the
unitary and thermal qubits. It is experimentally more
challenging to construct bipartite systems where one un-
dergoes unitary evolution while the second has only ther-
mal dynamics. However, our results show that such sys-
tems offer entangled steady-states, something that is not
possible in purely Hermitian dynamics. A complete char-
acterization of HF generated from the interplay of ther-
mal and unitary dynamics will enable the engineering of
arbitrary non-Hermitian Hamiltonians in truly quantum
systems.
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