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We calculate the energy levels and corresponding eigenstates of an interacting scalar quantum field
theory on a lattice using a continuous-variable version of the quantum imaginary time evolution
algorithm. Only a single qumode is needed for the simulation of the field at each point on the
lattice. Our quantum algorithm avoids the use of non-Gaussian quantum gates and relies, instead,
on detectors projecting onto eigenstates of the photon-number operator. Using Xanadu’s Strawberry
Fields photonic simulator, we obtain results on energy levels that are in very good agreement with
results from exact calculations. We propose an experimental setup that can be realized with existing
technology.a b

I. INTRODUCTION

Quantum fields are fundamental constituents of the
physical world describing quantum many-body systems
of matter at all energy scales, as well as electromag-
netic and gravitational radiation. Quantum-field engi-
neering has enabled unprecedented measurement sensi-
tivities, epitomized by the use of squeezed light to lower
the noise floor of the Laser Interferometer Gravitational-
wave Observatory (LIGO) below the shot noise limit [1].

The encoding of quantum information in continuous-
variable (CV) quantum fields, a.k.a. qumodes (in lieu of
discrete-variable (DV) qubits), has enabled multipartite
entanglement over millions of qumodes. This scale, un-
paralleled in any qubit architecture, defines new horizons
and paradigms for quantum computing, quantum com-
munication, and quantum sensing. Nanophotonic inte-
grated devices based on qumodes have the potential to
define future quantum technology by surpassing the per-
formance of qubit-based Noisy Intermediate-Scale Quan-
tum (NISQ) [2] computing devices.

A natural implementation of qumodes uses quantum
light, which also lends itself to sensing [3–6] and com-
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munication [7, 8]. The coming of age of low-loss, high-
nonlinearity integrated optics paves the way for imple-
menting large-scale, fault-tolerant quantum computing
and communication devices on chip, at room tempera-
ture, and within a few years [9].

Over the last 20 years, since the introduction of the
first quantum algorithm by Deutsch and Jozsa [10],
even though a tremendous amount of DV quantum al-
gorithms has been proposed capable of solving various
problems more efficiently than their classical counter-
parts, there has been far less activity in the develop-
ment of CV quantum computing. Examples of quan-
tum algorithms generalized to CV substrates include the
Deutsch-Jozsa [11] and Grover’s search [12] algorithms,
and more recently the quantum approximate optimiza-
tion algorithm (QAOA) [13] and a CV quantum algo-
rithm for solving linear partial differential equations [14].

There has also been an effort to extend quantum ma-
chine learning algorithms to a CV substrate [15] followed
by the singular value decomposition of nonsparse, low
rank matrices in [16], and topological data analysis [17].
CV quantum neural networks were introduced in [18] and
used in applications such as fraud detection with a CV
classifier, a hybrid classical-quantum auto encoder.

Considering the recent experimental breakthroughs in
CV photonic quantum computing [19] and the develop-
ment of a programmable photonic quantum computer
chip by the Xanadu team [20], it is important to explore
CV quantum algorithms applied to realistic experimental
setups.

Here, we propose a CV quantum imaginary-time evo-
lution (QITE) algorithm which can be used to calculate
the energy levels and corresponding energy eigenstates
of an interacting scalar quantum field theory (QFT) on
a lattice. A QFT for a massive self-interacting scalar
field φ with a φ4 interaction was studied in [21] where it
was shown that quantum algorithms for scattering am-
plitudes provided an exponential speed up over known
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classical algorithms. QFTs were further studied in [22–
24] with DV quantum algorithms and in [25, 26] on a
CV substrate for a φ4 scalar QFT as well as scalar quan-
tum electrodynamics (QED). There is a growing interest
in simulating lattice gauge theories using quantum com-
puters as well [27].

There have been a few alternative approaches. In
Ref. [28], quantum computation of two-dimensional
quantum chromodynamics (QCD) was discussed without
introducing a lattice. A different perspective was offered
in [29] where it was proposed that the noise of NISQ
hardware can be avoided by simulating the dynamics of
QFTs using classical simulators and tools such as Matrix
Product States (MPS).

CV quantum algorithms for QFTs have important ad-
vantages over their DV counterparts. Their implemen-
tation generally relies on optical elements which operate
at room temperature. Moreover, while DV algorithms
need a whole register of qubits, only a single qumode is
needed at each point on the lattice to simulate the field
at that point. However, CV quantum algorithms that
have been proposed so far involve non-Gaussian quan-
tum gates which are hard to implement with existing
technology [30–33]. Here, we avoid the introduction of
non-Gaussian gates by employing a CV adaptation of
the QITE algorithm making use of detectors projecting
onto eigenstates of the photon number operator which is
readily available technology.

Imaginary-time evolution has been extensively used in
studying quantum many-body systems as a useful tool
for various tasks, such as the calculation of the ground
state energy and the creation of finite-temperature states.
Evolution in imaginary time τ is implemented with the
non-unitary operator U(τ) = e−τH whereH is the Hamil-
tonian of the system of interest. Starting with an initial
state that has non-zero overlap with the ground state of
the system, the evolved state convergences to the ground
state in the limit τ → ∞. Excited states can also be
reached with an appropriate choice of initial state (one
that is orthogonal to the ground state). The calcula-
tion of the energy spectrum of a many-body quantum
system is a daunting yet important task as it provides
important information about the system. As the number
of particles increases, the calculation becomes exponen-
tially harder. Then it becomes imperative to employ the
quantum version of the imaginary-time evolution algo-
rithm as it outperforms its classical counterpart.

Simulating the imaginary-time evolution on a quantum
computer is not straightforward because U(τ) is a non-
unitary operator. Various approaches to the implemen-
tation of U(τ) have been proposed. A variational version
of QITE was proposed in [34] in which the Wick-rotated
Schrödinger equation was solved for parameterized states
and a classical optimization loop was used to estimate the
parameters for the ground state of molecular Hydrogen
and the LiH molecule. Although this method offers shal-
low quantum circuits, the classical optimization of the
parameters becomes prohibitive as the number of parti-

cles in the system grows. Motta et al. [35] proposed a
QITE algorithm that did not require classical optimiza-
tion or an ancilla qubit. They expressed the Hamiltonian
in terms of local terms and used Trotterization to imple-
ment U(τ). Then the non-unitary evolution operator for
a small imaginary-time interval was approximated by a
unitary operator which was expressed in terms of Pauli
spin operators with coefficients calculated from measure-
ments on quantum hardware. The problem with this
method is that the number of measurements grows expo-
nentially with the system size and the quantum circuit
becomes longer with each QITE step making it hard to
implement on NISQ devices. Various attempts to bypass
this problem have been made [36–42].

We implement the QITE algorithm by approximating
the non-unitary evolution operator with a Gaussian op-
erator, U(τ) ≈ e−τA, where A is a Hermitian operator
and a function of one of the two quadratures, q. After
Trotterization, the Ansatz A is determined at each step
in a manner similar to the DV approach in [35]. The non-
unitary Gaussian operator e−τA is realized with the aid
of ancilla qumodes. Only a single ancilla is needed at each
step regardless of the size of the system. As the number
of steps increases, the length of the quantum circuit does
not increase indefinitely, unlike in the DV case, because
the contributions to the Gaussian operator A at each
QITE step commute with each other. Thus the quantum
circuit only involves a finite number of parameters which
are determined by quantum measurements at each QITE
step. Thus, we avoid the use of non-Gaussian elements
and rely on quantum measurements that involve detec-
tors projecting onto photon-number eigenstates. We ex-
plain how our quantum algorithm can be realized with
existing technology.

Our discussion is organized as follows. In Section II,
we review the discretization of the massive φ4 self-
interacting scalar QFT. In Section III we discuss the
details of our CV quantum algorithm. In Section IV,
we discuss our results using Xanadu’s Strawberry Fields
CV photonic quantum simulator [43, 44] and show that
they are in agreement with exact results. Henceforth, we
will refer to this simulator as the photonic simulator for
short. We also outline an experimental realization of the
quantum circuit with existing technology. We present
our conclusions and outlook in Section V.

II. THE MODEL

For definiteness, we concentrate on the simplest QFT
describing a massive self-interacting scalar field in one
spatial dimension with a quartic interaction. Our results
can be generalized to more complicated QFTs, including
gauge theories that describe elementary particle interac-
tions.

To study the QFT on a quantum computer, we
discretize the system in space with coordinate x =
0, 1, . . . , L − 1 where L is the length of the spatial di-
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mension in units in which the lattice spacing is a = 1.
The Hamiltonian for a massive scalar field φ(x) with a
quartic interaction term is

H =

L−1∑
x=0

[
1

2
π2(x) +

1

2
[∇φ(x)]

2
+
m2

0

2
φ2(x) +

λ

4!
φ4(x)

]
,

(1)
where m0 is the bare mass of the scalar field, λ is the in-
teraction strength, and π(x) is the conjugate momentum
obeying the commutation relations

[φ(x), π(x′)] = iδxx′ . (2)

The scalar field and its conjugate momentum can be ex-
pressed in terms of creation and annihilation operators
obeying commutation relations

[
a(k), a†(k′)

]
= δkk′ as

φ(x) =
1√
L

L−1∑
k=0

1√
2ω(k)

[
a†(k)e−2πikx/L + h.c.

]
, (3)

π(x) =
i√
L

L−1∑
k=0

√
ω(k)

2

[
a†(k)e−2πikx/L − h.c.

]
(4)

where

ω(k) =

√
m2 + 4 sin2 πk

L
. (5)

The mass parameter m is arbitrary as long as m2 > 0.
One may choose m = m0, but this is often not possible
in physically interesting cases in which m2

0 < 0. If m
is chosen as the physical mass parameter, m = mphys

(notice that in an interacting system mphys 6= m0, due
to quantum effects), then in the continuum limit, ω(k) is
the energy of a relativistic particle of momentum 2πk

L . No
physical quantities depend on the choice of m, although
spurious dependencies enter if one simulates the system
with qubits due to the truncation of the Hilbert space.
This is not an issue with CV quantum algorithms.

Having chosen m, we define the mass counter term δm
by m2 = m2

0 + δm. The Hamiltonian splits into a non-
interacting (H0) and interacting (HI) piece,

H = H0 +HI (6)

where

H0 =
1

2

L−1∑
x=0

[
π2(x) + [∇φ(x)]

2
+m2φ2(x)

]
,

HI =

L−1∑
x=0

[
−δm

2
φ2(x) + gφ4(x)

]
.

(7)

The non-interacting Hamiltonian is diagonal in the mo-
mentum representation,

H0 =
∑
k

ω(k)

(
a†(k)a(k) +

1

2

)
(8)

whereas the interaction part is diagonal in the position
representation.

For the CV quantum calculation, it is convenient to
work with the quadratures

q(k) =
1√
2

[
a†(k) + a(k)

]
, p(k) =

i√
2

[
a†(k)− a(k)

]
(9)

in terms of which the non-interacting Hamiltonian reads

H0 =
∑
k

ω(k)

2

[
p2(k) + q2(k)

]
. (10)

Its ground state can be written as

|Ω0〉 = |0〉0 ⊗ |0〉1 ⊗ · · · ⊗ |0〉L−1 , 〈q|Ω0〉 =
1

πL/4
e−q

2/2

(11)
where q = (q(0), . . . , q(L − 1)). It has zero energy, by
design.

Alternatively, we can work with the quadratures in
the position representation, φ(x), π(x). The two sets of
quadratures are related to each other by a Bogoliubov
transformation that can be implemented with beam split-
ters and squeezers,

φ(x) =
1√
L

L−1∑
k=0

1√
ω(k)

[
q(k) cos

2πkx

L
− p(k) sin

2πkx

L

]
,

π(x) =
1√
L

L−1∑
k=0

√
ω(k)

[
p(k) cos

2πkx

L
+ q(k) sin

2πkx

L

]
.(12)

III. CV QUANTUM ALGORITHM

In this section, we introduce our CV quantum algo-
rithm for the calculation of energy levels and correspond-
ing eigenstates of the scalar QFT.

A. Ground state

We start by introducing a CV version of the QITE
algorithm. We choose the initial state (11),

|Ψ[0]〉 = |Ω0〉 (13)

and obtain the estimate of the ground-state energy of H,

E[0] = 〈Ψ[0]|H|Ψ[0]〉 . (14)

The imaginary-time evolution operator can be factored
into small (Trotter) steps,

e−τH = (e−∆τH)n , (15)

where τ = n∆τ . We wish to approximate each step that
involves non-Gaussian operations with an operator that
can be efficiently computed with a CV quantum algo-
rithm. To describe the iterative process, suppose that
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after s− 1 steps, we arrive at the state |Ψ[s− 1]〉. In the
sth step, we evolve this state in small imaginary time,
∆τ . The evolved state is

|Ψs(∆τ)〉 ≡ e−∆τH |Ψ[s− 1]〉
‖e−∆τH |Ψ[s− 1]〉‖

. (16)

To approximate this non-Gaussian state, we introduce
the sth step Gaussian Ansatz,

|Ψ[s]〉 =
e−∆τ

∑
k γs(k)q2(k)/2|Ψ[s− 1]〉

‖e−∆τ
∑

k γs(k)q2(k)/2|Ψ[s− 1]〉‖
(17)

and choose the parameters γs(k) (k = 0, . . . , L− 1) that
minimize the distance ‖|Ψ[s]〉 − |Ψs(∆τ)〉‖ at first order
in ∆τ . We obtain

‖|Ψ[s]〉 − |Ψs(∆τ)〉‖2 ≈ (∆τ)2
∑
k

Xs(k) + const. (18)

where

Xs(k) =
1

4
(〈q4(k)〉 − 〈q2(k)〉2)γ2

s (k)

−
(
〈q2(k)H〉 − 〈q2(k)〉〈H〉

)
γs(k)

(19)

with all expectation values calculated with respect to
|Ψ[s − 1]〉. The distance is minimized for the choice of
paramaters

γs(k) = 2
〈q2(k)H〉 − 〈q2(k)〉〈H〉
〈q4(k)〉 − 〈q2(k)〉2

. (20)

These parameters can be calculated at each step from
expectation values obtained from CV quantum hardware.
Thus, the state starting with (11) after s QITE steps (17)
is a squeezed state [45],

〈q|Ψ[s]〉 ∝ ⊗
L−1∏
k=0

e−
q2(k)

2 σ2
s(k) , σ2

s(k) = 1+∆τ

s∑
s′=1

γs′(k) ,

(21)
and can be realized on a CV substrate with single-mode
squeezers of respective squeezing parameters rs(k) =
log σs(k).

Although the above method leads to fast convergence
in the QFT considered here, for completeness we present
an alternate method that can be applied to a general
choice of initial state, since more complex initial states
may be needed for convergence in more complicated sys-
tems. Starting from an unspecified initial state |Ψ[0]〉,
we introduce an ancillary qumode in the vacuum state
|0〉anc. Then we apply the controlled-addition (CX) gate
(a Gaussian),

CX(Γs(k)) = eiΓs(k)panc⊗q(k) (22)

where Γs(k) ∈ R is a parameter to be determined.
CX(Γ) is a two-mode gate that can be decomposed into
single-mode squeezers (S) and beam splitters (B) as

CX(Γ) = B
(π

2
+ θ, 0

)
(S(r, 0)⊗ S(−r, 0))B(θ, 0)

(23)

where sin 2θ = − 1
cosh r , sinh r = −Γ

2 , and r is a squeezing
parameter.

After the implementation of the CX gate, the state
becomes entangled:

CX(Γs(k))|Ψ[0]〉|0〉anc =

∫
dLqΨ[0](q)|q〉|Γs(k)q(k)〉anc .

(24)
We then measure the ancilla qumode with a photon de-
tector. If the detector detects no photon, the state col-
lapses to (unnormalized)

anc〈0|CX(Γs(k))|Ψ[0]〉|0〉anc ∝ e−Γ2
s(k)q2(k)/2|Ψ[0]〉 .

(25)
We repeat the above process with different parameters
for all modes and arrive at the (unnormalized) state

e−
∑

k Γ2
s(k)q2(k)/2|Ψ[0]〉 . (26)

This matches the desired state |Ψ[s]〉 with the choice of
parameters determining the CX gate,

Γ2
s(k) = ∆τ

s∑
s′=1

γs′(k) . (27)

Next, we discuss the quantum computation of the pa-
rameters γs(k). They are given in terms of expectation
values of even powers of the quadratures for the various
modes in the state |Ψ[s− 1]〉 obtained after s− 1 QITE
steps.

For 〈q2n(k)〉 (n = 1, 2, . . . ), we work as follows. We
introduce an ancillary mode in the vacuum state, |0〉anc,
and apply the CX gate,

CX(η)|Ψ[s−1]〉|0〉anc =

∫
dLqΨ[s−1](q)|q〉 |ηq(k)〉anc .

(28)
Then we measure the photon number in the ancillary
mode. If the measurement outcome is nanc = 0, the
state is projected onto

anc〈0|CX(η)|Ψ[s−1]〉|0〉anc = e−η
2q2(k)/4|Ψ[s−1]〉 . (29)

The probability of this outcome is

P0(k) =
∥∥∥e−η2q2(k)/4|Ψ[s− 1]〉

∥∥∥2

= 〈Ψ[s− 1]|e−η
2q2(k)/2|Ψ[s− 1]〉 .

(30)

Therefore, we managed to express the expectation value

〈e−η2q2(k)/2〉 as the probability P0(k) of a measurement
outcome projecting the ancillary mode onto a photon-
number eigenstate. By varying η, we obtain the expec-
tation value of any even power 〈q2n(k)〉,

〈q2n(k)〉 = (−2)n
dn

d(η2)n
P0(k)

∣∣∣∣
η=0

. (31)

By repeating this process for a second mode, we obtain all
expectation values of the form 〈q2n(k)q2n′

(k′)〉, and simi-
larly for products involving more modes. To calculate the
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derivatives on CV quantum hardware, a finite-differences
method can be used. One may also use the parameter
shift rule for CVs discussed in [46]. In each case, the cir-
cuit is repeatedly run with different CX gate parameters
to obtain the gradient or higher-order derivatives of the
physical quantities of interest.

We obtain expectation values involving the p-
quadrature by following the above procedure with CX
replaced by the CZ gate,

CZ(Γ) = eiΓqanc⊗q (32)

These results can be used to calculate all expectation
values in (20) and therefore yield γs(k). We also obtain
the energy at each step converging to the ground-state of
the system.

B. Mass gap

The above method may also be used to compute min-
imum energies of states with an odd number of excita-
tions. There are L such states corresponding to the L
qumodes in the system. To obtain each of these energies,
we may start from the state

|Ω(k)〉 ∝ q(k)|Ω0〉 , 〈q|Ω(k)〉 ∝ q(k)e−q
2/2 , (33)

where k = 0, 1, . . . , L − 1 which has energy ω(k) in the
non-interacting system. Notice that all these states are
orthogonal to the ground state and form an orthonormal
set (〈Ω0|Ω(k)〉 = 0, and 〈Ω(k)|Ω(k′)〉 = δkk′). Therefore,
the QITE algorithm is expected to converge to differ-
ent energy levels of the system if we choose one of these
states corresponding to single-particle states of momen-
tum 2πk

L . By momentum conservation, there can be no
transitions between these states as well as between one
of these states and the ground state. This is confirmed
by an explicit calculation showing that transition ampli-
tudes vanish (〈Ω0|H|Ω(k)〉 = 0, and 〈Ω(k)|H|Ω(k′)〉 = 0
if k′ 6= k).

To calculate the mass gap, apart from the ground-
state energy E0, we need the first-excited-state energy
E1. Then the mass gap is mphys = E1−E0. To calculate
E1, we apply the same QITE algorithm we outlined above
for the ground-state energy E0, except that we choose
|Ω(0)〉 as the initial state. It is orthogonal to the ground
state and has energy ω(0) = m in the non-interacting
system. Thus, we initialize the QITE algorithm with the
state

〈q|Ψ[0]〉 ∝ q(0)e−q
2/2 (34)

Following the same procedure as before, we adopt the
Ansatz (17) at the s − 1 QITE step and obtain the ex-
pression (20) for the parameters γs(k). To create the
state |Ψ[s]〉, we start with the even state |Ω0〉 and intro-
duce an ancilla qumode in the vacuum state. Then we
apply the CX gate (22), thus obtaining the entangled

state (24). Then we measure the photon number in the
ancilla qumode, but unlike in the case of the ground-state
energy, for k = 0, we project onto the single-photon state.
Thus, instead of (26), we obtain the (unnormalized) state

q(0)e−
∑

k Γ2
s(k)q2(k)/2|Ω0〉 . (35)

with the choice of parameters given by (27) for the de-
sired state. This state approximates the first excited
state of the system.

C. Excited states

The states |Ψ[s]〉 found in the course of implementing
QITE can be used to extract information about the ex-
cited states of the system via the QLanczos algorithm. It
should be noted that one obtains states in different sec-
tors of the Fock space depending on the choice of initial
state, e.g., the ground state |Ω0〉 or one of the single-
particle states |Ω(k)〉 of the free system.

To illustrate the QLanczos algorithm, let us select two
states obtained via QITE, |Ψ[s1]〉 and |Ψ[s2]〉, where s2−
s1 is an even number. We then find the 2×2 Hamiltonian
which is the restriction of H in the subspace (Krylov
space) spanned by the chosen QITE states,

Hij = 〈Ψ[si]|H|Ψ[sj ]〉 , i, j = 1, 2 . (36)

We also calculate the overlap matrix

Tij = 〈Ψ[si]|Ψ[sj ]〉 , i, j = 1, 2 . (37)

We obtain estimates of the energies of the ground and
2nd excited state by solving the generalized eigenvalue
equation

Hx = ET x (38)

and estimates of the corresponding eigenstates from the
corresponding eigenvectors x(E),

Ψ[E] = x1(E)Ψ[s1] + x2(E)Ψ[s2] . (39)

The matrix elements Hij and Tij can be deduced in the
course of the QITE algorithm. The state |Ψ[s]〉 is an
approximation to the state

|Ψ[s]〉 ≈ cse−s∆τH |Ψ[0]〉 ≈ cs
cs−1

e−∆τH |Ψ[s− 1]〉 (40)

where cs is a normalization constant, and(
cs
cs−1

)−2

= 〈Ψ[s− 1]|e−2∆τH |Ψ[s− 1]〉 (41)

Therefore, the normalization constants can be calculated
recursively, starting with c0 = 1. We need 〈e−2∆τH〉 ≈
1− 2∆τ〈H〉, which is found in the QITE algorithm.

The matrix elements are obtained from QITE using

T11 = T22 = 1 , T12 = T21 =
cs1cs2
cs̄

, s̄ =
s1 + s2

2
(42)
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and

Hii = 〈Ψ[si]|H|Ψ[si]〉 , H12 = T12〈Ψ[s̄]|H|Ψ[s̄]〉 . (43)

For higher excited states, we need to consider a higher-
dimensional Krylov space spanned by a subset of QITE
states |Ψ[s]〉.

IV. SIMULATION RESULTS AND
EXPERIMENTAL REALIZATION

In this section, we present our photonic simulator re-
sults for the calculation of ground and excited state en-
ergies in φ4 self-interacting massive scalar quantum field
theory using our CV QITE algorithm. The quantum cir-
cuits depicted in Figure 1 create approximations to the
ground and first-excited states, respectively, as outlined
above. Even though these figures are for L = 1-point
case the generalization to L-point case is straightforward.
These circuits can be easily simulated with photonic sim-
ulator where the required states, Gaussian gates, and
measurement tools are readily available. They can also
be realized experimentally with existing technology.

measure

measuremeasure

(a)

(b)

FIG. 1. (a) The quantum circuit for the implementation of
QITE steps starting from the initial state |Ω0〉 (Eq. (11) for
L=1). The squeezer S(rs) applied on the vacuum state im-
plements the s-th step of the algorithm. A CX(θη, rη) gate
and a photon detector measuring the vacuum state on the
ancilla qumode with probability P0 is used to calculate the
expectation values of the 〈q2n(k)〉 quadrature of Eq. (31). (b)
The quantum circuit for the implementation of QITE steps
starting from an odd initial state |Ω(k)〉 (Eq. (33)) for L=1.
A CX(θe, re) gate and a photon detector measuring the sin-
gle photon state on the ancilla qumode, project on the state
|Ω(k)〉.Note that the CX(θ, r) gates are decomposed into the
beamsplitters and single mode squeezers in the figures.

The energy expectation value obtained at each QITE
step is plotted in Fig. 2 as a function of imaginary time
for the single-point lattice, L = 1, a toy model. We
compare the values obtained from the photonic simulator
to exact analytic calculations for strength of interaction
λ = 4.8, cutoff for the Hilbert space dimension in the
photonic simulator ncutoff = 20, and CX gate parameter

η = 0.1. Starting the CV QITE algorithm with initial
state |Ψ[0]〉 = |Ω0〉, the energy expectation values are
seen to converge to the ground state energy. Due to the
cutoff in the Hilbert space dimension needed due to the
limitations of the photonic simulator, there is a 1.75%
error in the ground state energy.

Using the approach discussed in Section III B, the mass
gap ∆gap is plotted as a function of imaginary time in
the inset of Fig. 2 comparing photonic simulator results
with exact values. Convergence of the mass gap to its
theoretical value is observed. There is a 0.59% error in
the mass gap obtained from the photonic simulator.

0 0.4 0.8
0.1

0.12

0.14

0.16

0 0.4 0.8
1.3

1.4

1.5

1.6

Theoretical Simulator Exact
Theoretical Simulator Exact

FIG. 2. Energy expectation value as a function of imaginary
time obtained using photonic simulator and compared with
theoretical values for the single lattice point toy model (L =
1). Convergence to the ground state energy for λ = 4.8 is
observed with cutoff dimension ncutoff = 10 and CX gate
parameter η = 0.1 starting with initial state |Ψ[0]〉 = |Ω0〉.
The inset figure demonstrates the convergence of the mass
gap, ∆gap, i.e. the difference between ground and first excited
state energies, to its exact value as a function of imaginary
time.

As discussed above, by choosing one of the odd wave-
functions |Ω(k)〉 (Eq. (33)) as initial state, the QITE al-
gorithm approximates excited states of the system. The
quantum algorithm in this case relies on the experimen-
tal setup depicted in Fig. 1 (b) which can also be real-
ized experimentally with existing technology. In Fig. 3,
we demonstrate the convergence of the energy expecta-
tion values to the ground, first excited, and third excited
state energies, starting with initial states |Ω0〉, |Ω(0)〉,
and |Ω(1)〉, respectively, for the case of two lattice points
(L = 2). We used photonic simulator to obtain the simu-
lator results. The parameters used were m2 = 0.1, λ = 1,
and η = 0.1. We ran the CV quantum circuit in Fig. 1 (a)
at each QITE step for initial state |Ω0〉, and the one in
Fig. 1 (b) for initial states |Ω(k)〉 (k = 0, 1). The calcula-
tion of the various terms contributing to the parameters
γs(k) (Eq. (20)) require additional measurements which
were done with the aid of quantum circuits depicted in
Fig. 1. In these calculations we only used the contribu-
tions coming from γs(0) since it is the most contributing
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0 0.4 0.8 1.2 1.6
3.35

3.4
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3rd E.S.E.

0 0.4 0.8 1.2 1.6 2
1.25

1.3

1.35

1.4

Theoretical
G.S.E.

FIG. 3. Energy expectation values as a function of imaginary time obtained with photonic simulator and compared with
analytic values for L = 2 lattice points. The convergence to the ground state (left panel), first excited state (middle panel),
and third excited state (right panel) energies were obtained with initial states |Ψ[0]〉 = |Ω0〉, |Ψ[0]〉 = |Ω(0)〉, |Ψ[0]〉 = |Ω(1)〉,
respectively. Here, |Ω0〉 is the ground state of the free system (Eq. (11)) and |Ω(k)〉 denotes the single-particle excited states
(Eq. (33)). The parameters used are λ = 1, m2

0 = 0.1. We chose cutoff dimension of Hilbert space in the photonic simulator
ncutoff = 10.

to the convergence of the energy expectation value. For
this reason, the generalization of the quantum circuit to
L = 2-point case is just repetition of circuit in Fig. 1
except an initial squeezer in the second qumode. We
calculated the derivatives needed (Eq. (31)) using the
differential quadrature method [47]. We evaluated the
probability P0 using parameters η2

i ∈ [0, 0.1, 0.2, 0.3, 0.4],
which means even spacing η2

i+1 − η2
i = 0.1. It should be

noted that the calculation of high-order derivatives re-
quires very good precision in the parameters of the CX
gate (Eq. (23)) i.e. the squeezing parameter r and the
beam splitter angle θ, as well the measured probability
P0(k) (Eq. (30)). In Fig. 5, we show the relative uncer-

tainty ∆d3
d3

in the value of the third derivative d3 = d3P0

d(η2)3

(as it is the highest order derivative in our calculations
and thus the most difficult to experimentally implement)
in terms of the uncertainty on the squeezing parameter
r, for even and optimized sample spacing η2

i+1 − η2
i val-

ues. Although we observe a sensitivity in the calculated
value of the third derivative, we still achieve low relative
uncertainty with reasonable sample spacing which can
be further reduced by selecting appropriately optimized,
unevenly spaced samples η2

i .

Fig. 4 depicts the mass gap for the two-point lattice
model (L = 2) with parameters m2

0 = −0.1, δm = 0.2,
λ = 1. It converges rapidly to the expected value. How-
ever, as discussed above, the convergence of the energy
expectation value is sensitive to the spacing value cho-
sen for the derivative calculations. In Figures 3 and 4,
we chose even spacing with spacing value 0.1. This re-
sulted in a nice convergence in the ground state and third
excited state energy plots. However, there was a slight
increase in the first excited state energy plot after around
β = 0.9 and in Fig. 4, after β = 2. This increase does
not occur when smaller spacing values are used. How-
ever, one needs to keep in mind that there is a limitation
to the experimental squeezing parameter values. The
spacing value we use requires squeezing of less than 10

0 0.4 0.8 1.2 1.6 2
0.4

0.5

0.6

0.7

0.8
Simulator
Theoretical
Exact

Loading [MathJax]/extensions/MathMenu.js
FIG. 4. Mass gap values as a function of imaginary time
obtained with photonic simulator and compared with analytic
values for L = 2 lattice points. The parameters used are
λ = 1, m2

0 = −0.1, δm = 0.2.

dB which is experimentally reasonable. To obtain better
convergence, one needs higher squeezing.

V. CONCLUSION

In this work, we developed a CV QITE algorithm to
calculate the ground- and excited-state energies of a φ4

scalar QFT on a one-dimensional spatial lattice. Unlike
with DV quantum computing, where a register of qubits
is needed at each lattice point and the Hilbert space is
truncated, only a single qumode at each lattice point
was needed. The algorithm required ancilla qumodes for
its implementation. The ancilla qumodes did not add
a significant overhead as their number was comparable
to the number of qumodes needed for the system. Our
CV quantum algorithm avoided the use of non-Gaussian
gates which are technologically challenging to implement.
It only relied on Gaussian operators and measurements
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FIG. 5. Relative uncertainty in the value of the third deriva-
tive in terms of the imprecision ∆r on the squeezing param-
eter in the CX gate (Eq. (23)).

projecting onto photon number eigenstates. Therefore,
it can be implemented with existing technology. Figure
1 shows the CV quantum circuits involved.

We implemented our algorithm in simple cases of lat-
tices with L = 1 (toy model) and L = 2 points using

Xanadu’s Strawberry Fields photonic quantum simula-
tor. We observed convergence of energy expectation val-
ues to the ground- and excited-state energies depending
on the choice of initial state, |Ω0〉 (Eq. (11)) and |Ω(k)〉
(Eq. (33)), respectively. Higher energy levels can also be
reached by using the states derived in CV QITE as input
to a CV version of the QLanczos algorithm.

Our results provide the basis for the development of
CV quantum algorithms that rely on Gaussian operators
and photonic measurements which can be implemented
with existing technology. Our method can be extended
to QFTs such as gauge theories that describe elemen-
tary particle interactions and the states derived with our
CV QITE algorithm can be used for the calculation of
various physical quantities of interest, such as scattering
amplitudes. Work in this direction is in progress.
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