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Achieving an accurate description of fermionic systems typically requires considerably many more
orbitals than fermions. Previous resource analyses of quantum chemistry simulation often failed to
exploit this low fermionic number information in the implementation of Trotter-based approaches
and overestimated the quantum-computer runtime as a result. They also depended on numerical
procedures that are computationally too expensive to scale up to large systems of practical interest.
Here we propose techniques that solve both problems by using various factorized decompositions
of the electronic structure Hamiltonian. We showcase our techniques for the uniform electron gas,
finding substantial (over 100×) improvements in Trotter error for low-filling fraction and pushing to
much higher numbers of orbitals than is possible with existing methods. Finally, we calculate the
T -count to perform phase-estimation on Jellium. In the low-filling regime, we observe improvements
in gate complexity of over 10× compared to the best Trotter-based approach reported to date. We
also report gate counts competitive with qubitization-based approaches for Wigner-Seitz values of
physical interest.

I. Introduction

There is considerable interest in whether quantum computers – both those available at present, and those under
development – can be used to solve problems of scientific and commercial importance. This is particularly evident in
the field of quantum simulation of chemical systems – for recent reviews of progress in this area, we direct the reader
to Refs. [1–3]. Several algorithms have been developed to obtain the eigenstates of chemical systems. These include
variational quantum algorithms [4, 5] that aim to maximise the limited coherence times of currently available hardware.
However, this comes at the cost of introducing heuristic aspects, making it difficult to obtain rigorous performance
guarantees. In contrast, approaches based on quantum phase estimation [6, 7] provide a route to calculate eigenstates
to within a specifiable error, assuming only that we can efficiently prepare approximate eigenstates with sufficiently
high overlap with the true eigenstates.

The resources we allocate to a fault tolerant quantum computation will depend on our ability to bound errors
in the algorithm; the tighter our error estimates, the fewer resources we will require. Several previous works have
estimated the resources required for phase estimation based on product-formula decompositions (also known as Trot-
terization) [8–14]. It was recently shown by Su, Huang and Campbell [15] that knowledge about the number of
fermions present in a chemical system can be exploited to improve the asymptotic performance of Trotterization.
That work introduced an error metric, termed the fermionic seminorm, to bound the Trotter error. This approach
uses knowledge of the number of fermions in the system to offset the dependence of the error on the number of orbitals.
This effect may be particularly important for applications to chemical systems in realistically sized basis sets, which
will need to be large in order to accurately resolve dynamic correlation in the wavefunction. The Su-Huang-Campbell
(SHC) bound aimed to find an analytic bound with the best asymptotic complexity. Here we present complementary
work that also uses the fermionic seminorm with the goal of developing techniques for numerically obtaining bounds
with best performance in practice.

In this work, we introduce three factorized decompositions of the electronic structure Hamiltonian in a plane
wave dual basis, and use these in conjunction with the fermionic seminorm to obtain tighter Trotter error bounds
in practice. Our approach is inspired by prior work using low-rank decompositions to reduce the number of terms
in a Hamiltonian and thereby reduce the gate complexity of quantum algorithms [13, 16–18]. However, our use of
factorized decompositions is purely computational and optimised for tightest error bounds, with no corresponding
change in the execution of the quantum algorithm. A high-level overview of our approach can be found in Section III.

Each of our three factorized decompositions exhibits its own advantage. The spectral decomposition is generally
applicable and extends beyond the plane wave dual basis. The cosine decomposition best exploits fermion number
information and so performs the most effectively in the low-filling fraction regime. The Cholesky decomposition has
the smallest constant factor overhead and so performs best in the medium and half-filling regimes. We discuss these
decompositions in detail and compare the resulting Trotter error bounds in Section IV.

These performance observations are supported by numerical results in Section VI, obtained by applying our approach
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to the uniform electron gas (Jellium) introduced in Section V. In these numerics, we also benchmark against three
prior art bounds: the analytic SHC bound described earlier [15]; the fermionic commutator approach used by Kivlichan
et al [14]; and a similar Pauli commutator approach where there is anecdotal evidence of good performance (see App.
A of Ref. [19]). We report a substantial classical runtime advantage for the calculation of our bounds. The fermionic
and Pauli commutator approaches became intractable to calculate at larger spin-orbital number N , so could not be
computed beyond N ∼ 200, without access to > 100 GB of RAM. In contrast, it took fewer than 6 hours (using a
3.6GHz c5.2xlarge EC2 instance on AWS) to calculate our new bounds on a 512 spin-orbital instance, using < 16 GB
of RAM.

One target problem for Trotter methods has been for phase estimation of the ground state energy of the uniform
electron gas [14]. Using our improved Trotter error bounds for Jellium, we calculate the T -count for this problem
and demonstrate the expected improvements in runtime. We also compare our gate counts to those obtained using
qubitization [20], and find comparable results in some parameter regimes of interest.

We present mathematical preliminaries in Section II that are necessary to understand our factorized decompositions
and their numerical implementations. We conclude the paper in Section VII with a brief summary of our contributions
and a collection of avenues for future work.

II. Preliminaries

A. Fermionic systems and seminorm

The electronic structure Hamiltonian is a widely used model for molecular and material systems where the positions
of the nuclei are considered fixed. In an arbitrary basis of N electronic spin-orbitals, the Hamiltonian can be written
as

H =
∑
pq

hpqa
†
paq +

∑
pqrs

hpqrsa
†
pa
†
qaras, (1)

where as is the fermionic annihilation operator on spin-orbital s and the coefficients hpq and hpqrs are defined by
integrals over the basis functions [21]. Using the plane wave dual basis given by [22], the number of terms is reduced
from O(N4) to O(N2) with the simple form

H =
∑
p,q

Tpqa
†
paq +

∑
p

Upnp +
∑
p 6=q

Vpqnpnq, (2)

which is split into the electron kinetic, electron-nuclei, and electron-electron terms, respectively. The coefficients Tpq,
Up, and Vpq are defined by integrals over the basis functions, as discussed in Section IV.

When simulating time evolution under a Hamiltonian (such as those given above), the error is typically quantified
using the spectral-norm distance between the time evolution operator, and the quantum circuit used to approximate
it. However, it is possible to use knowledge about the initial state to improve the error bound. In Ref. [15] the
fermionic seminorm of an operator X was defined as the maximum transition amplitude of the operator between two
states in the η-electron subspace

||X||η := max|ψη〉,|φη〉| 〈φη|X |ψη〉 |. (3)

We say an operator X is number preserving if X acting on an η-electron state yields some other η-electron state. It
was shown in Ref. [15] that the fermionic seminorm has similar properties to well-known existing norms. For number
preserving operators X, Y , we will make use of the following properties:

• ||X + Y ||η ≤ ||X||η + ||Y ||η (Triangle inequality)

• ||X · Y ||η ≤ ||X||η · ||Y ||η (Hölder inequality)

• ||λX||η = |λ| · ||X||η (for λ ∈ C)

• ||X†||η = ||X||η

• ||UXW ||η = ||X||η (for U,X,W number preserving, U,W unitary)

We remark that it is a seminorm rather than a norm because it can evaluate to zero for some non-zero operators. For
example, for a system with a single fermion, we have ‖npnq‖η=1 = 0 (for p 6= q), but npnq is a nonzero operator.
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B. Prior art in commutator bounds

This work considers Trotter-based approaches to implement the time evolution operator that is used in Hamiltonian

simulation and quantum phase estimation. For a Hamiltonian that can be decomposed as H =
∑M
j=1Hj , a first-order

Trotter decomposition approximates the time evolution operator as

eiHt ≈
M∏
j=1

eitHj =: U1 (4)

and a second-order Trotter decomposition approximates the time evolution operator as

eiHt ≈
( M∏
j=1

e
it
2 Hj

)( 1∏
j=M

e
it
2 Hj

)
=: U2. (5)

It has been shown [14, 23] that this approximation has an error given by

||eiHt − U1|| ≤W1t
2, (6)

||eiHt − U2|| ≤W2t
3, (7)

where W1 and W2 are defined as

W1 :=
1

2

M∑
a=1

∣∣∣∣∣∣∣∣ M∑
b>a

[Hb, Ha]

∣∣∣∣∣∣∣∣, (8)

W2 :=
1

12

M∑
a=1

(∣∣∣∣∣∣∣∣∑
c>a

∑
b>a

[Hc, [Hb, Ha]]

∣∣∣∣∣∣∣∣+
1

2

∣∣∣∣∣∣∣∣∑
b>a

[Ha, [Ha, Hb]]

∣∣∣∣∣∣∣∣), (9)

where ||...|| denotes the operator norm (also known as the spectral norm – i.e. the largest singular value of the
operator).

In practice, it can be difficult to get a tight value for W1/2 because of the complexity in evaluating the operator norm
of a high-dimensional operator such as [Hc, [Hb, Ha]]. As such, in aid of numerical expediency, a further relaxation is
often made. Each nested commutator is expanded in terms of operators Pj with known operator norm ||Pj || = 1 so
that ∑

c>a

∑
b>a

[Hc, [Hb, Ha]] =
∑
j

αjPj (10)

and then one can bound ∣∣∣∣∣∣∣∣∑
c>a

∑
b>a

[Hc, [Hb, Ha]]

∣∣∣∣∣∣∣∣ ≤∑
j

|αj |. (11)

Common choices include choosing Pj as tensor products of Pauli operators, or as fermionic excitation operators (e.g.

Pj = a†j1a
†
j2
a†j3aj4aj5aj6). Throughout, we refer to bounds using these relaxations as the Pauli commutator bound and

Fermionic commutator bound, respectively. For example, Ref. [14] used the Fermionic commutator bound to estimate
the resources for phase estimation in the plane wave dual basis. In our numerical examples, we will benchmark against
these prior art bounds.

Ref. [15] showed the commutator bounds can be tightened in the special case where H is a fermionic Hamiltonian
and every Hj in the Trotter decomposition (Eq. (5)) is number-preserving, so that for second-order Trotter

W2 ≤
1

12

M∑
a=1

(∣∣∣∣∣∣∣∣∑
c>a

∑
b>a

[Hc, [Hb, Ha]]

∣∣∣∣∣∣∣∣
η

+
1

2

∣∣∣∣∣∣∣∣∑
b>a

[Ha, [Ha, Hb]]

∣∣∣∣∣∣∣∣
η

)
. (12)

where the operator norm has been replaced by the tighter fermionic semi-norm. Ref. [15] further considered Hamil-
tonians in the plane wave dual basis (recall Eq. (2)) and a Trotterization where the Hamiltonian is considered as
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containing two terms; Ht =
∑
pq Tpqa

†
paq and Hv =

∑
pq V̄pqnpnq. Ref. [15] derived bounds for arbitrary order

product formulae, with the second-order result

W2 ≤ O(||V̄ ||2max||T ||η3 + ||T ||2||V̄ ||maxη
2), (13)

where || . . . ||max is the max-norm that represents the largest matrix element in absolute value. A key observation is
that the bound depends on η and so captures the expected dependence on the fermion number. The big-O of this
result hides the constant factors that are needed for numerical comparisons. For the case of the plane wave dual basis,
Eq. (12) reduces to a sum of two terms. In Appendix A we have evaluated these terms, which are given by∣∣∣∣[[Ht, Hv], Ht]

∣∣∣∣
η
≤ 4 ·

∣∣∣∣T ∣∣∣∣2 · ∣∣∣∣V̄ ∣∣∣∣
max
· η · (4η + 1), (14)∣∣∣∣[[Ht, Hv], Hv]

∣∣∣∣
η
≤ 12 ·

∣∣∣∣T ∣∣∣∣ · ∣∣∣∣V̄ ∣∣∣∣2
max
· η2 · (2η + 1). (15)

We refer to this as the ‘SHC bound’ throughout.

III. Improved fermionic seminorm bounds

In this work, we make particular use of the properties of free-fermionic Hamiltonians H(A) :=
∑
i,j Aija

†
iaj . We

refer to A as the coefficient matrix of the free-fermionic Hamiltonian. A free-fermionic Hamiltonian can be efficiently
diagonalised by diagonalising its coefficient matrix. We can then calculate the fermionic seminorm of a free-fermionic
Hamiltonian as

||H(A)||η =
∣∣∣∣∑

i,j

Aija
†
iaj
∣∣∣∣
η

=
∣∣∣∣V (∑

i,j

Aija
†
iaj
)
V −1

∣∣∣∣
η

=
∣∣∣∣∑

k

λkã
†
kãk
∣∣∣∣
η
,

(16)

where V is a unitary matrix that diagonalises the free-fermionic Hamiltonian, and λk are the eigenvalues of the
coefficient matrix A. This expression can be evaluated using Eq. (3) to give

||H(A)||η =
∣∣A∣∣

η
:= max

{
|
∑
λ∈S

λ|; |S| = η, S ⊆ λ(A)

}
. (17)

Here we have defined another seminorm
∣∣ · ∣∣

η
which takes a coefficient matrix A as its argument. We call this the

reduced fermionic semi-norm as the argument is a smaller N -by-N matrix A, rather than the large operator H(A)
that is represented by a 2N -by-2N matrix. The result of Eq. (17) tells us that for free-fermionic operators H(A) the
problem of evaluating the fermionic semi-norm simplifies to the easier problem of evaluating the reduced fermionic
seminorm. Evaluating the reduced fermionic semi-norm takes the set λ(A) of eigenvalues of A and finds the subset
S ⊂ λ(A) with η elements and largest sum in absolute value. If A is Hermitian this is further simplified, as we can
consider the sum of the η largest eigenvalues, and the sum of the η most-negative eigenvalues, and choose the larger
absolute value. Therefore, Eq. (17) can be efficiently computed for Hermitian A.

Another useful property involves the commutator of two free-fermionic Hamiltonians

[H(A), H(B)] = H([A,B]), (18)

itself a free-fermionic Hamiltonian. This has previously been noted and made use of in the context of quantum
simulation in Refs. [10, 24].

Motivated by these properties of free-fermionic Hamiltonians, we consider decomposing the Hamiltonian as

H = H(A) +
∑
l

H(Xl)H(Yl), (19)

where A,Xl, Yl are N ×N coefficient matrices, and N is the number of spin-orbitals considered. Decompositions of
this form have been considered in the context of quantum computing in Refs. [10, 13], where they were obtained by
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Approach Memory Runtime Exploits η � N/2 η = N/2
fermion # rank rank

Fermionic commutator [14] O(N4) O(N6) No 5th/5 2nd/5
Pauli commutator O(N5) O(N6) No – –
SHC bound [15] O(N2) O(N3) Yes 3rd/5 5th/5

Spectral decomp. [This work] O(N2) O(N5) Yes 4th/5 4th/5
Cholesky decomp. [This work] O(N2) O(N5) Partially 2nd/5 1st/5
Cosine decomp. [This work] O(N2) O(N5) Yes 1st/5 3rd/5

TABLE I. A comparison of the different Trotter error bounds considered. The memory and runtime scaling are given for
calculations of the second-order bounds, as outlined in Appendix E. The final two columns rank the second-order data
presented in Figure 1, for a uniform electron gas system with 200 spin-orbitals, and varying electron number. The memory
requirement of the Pauli commutator approach was too severe to carry out this second-order Trotter calculation, though we
will later present first-order Trotter results for this approach.

eigen/Cholesky decompositions of the tensor hpqrs. This yields the Hamiltonian in a ‘single factorised’ form [13, 16, 19].
For example, if we consider the electronic structure Hamiltonian in a Gaussian orbital basis set (described by Eq. (1))
we can apply a spectral decomposition of the tensor hpqrs to write the Hamiltonian in the form (see Appendix B)

H = H(h̃) +

L∑
`=1

λ`H(X`)H(X`) (20)

where L denotes the number of terms in the spectral decomposition, and λ` are the corresponding eigenvalues. We
consider Trotter decompositions with each term Hj in Eq. (4) or Eq. (5) corresponding to some subset of terms from
Eq. (20). We show in Appendix B that we can bound the first-order Trotter error with the commutator bound

W1 ≤
L∑
j=1

(
|λj | ·

∣∣[h̃, Xj ]
∣∣
η
·
∣∣Xj

∣∣
η

)
+ 2

L∑
i=1,j>i

(
|λi| · |λj | ·

∣∣[Xi, Xj ]
∣∣
η
·
∣∣Xi

∣∣
η
·
∣∣Xj

∣∣
η

)
(21)

To obtain this form, we made use of commutator identities such as [A,BC] = [A,B]C + B[A,C] and [AB,CD] =
A[B,C]D + CA[B,D] + [A,C]BD + C[A,D]B. Similar bounds can be obtained for higher-order Trotter formulae,
and in Appendix C we present second-order bounds for the special case of the plane wave dual Hamiltonian.

A similar approach was attempted in Ref. [10], however, that work did not explicitly make use of information about
the number of electrons in the system, and therefore the result is not tight in the low-filling regime. Depending on
the form of hpqrs, other decompositions may be possible. In the following section, we present three decompositions
of the plane wave dual basis Hamiltonian, motivated by its simple form, and the analytic expressions available for
the Hamiltonian coefficients in this basis. We summarise the main features of these decompositions in Table I. Each
of these three decompositions has a particular benefit; the spectral decomposition is the extension of the approach
discussed above (and in Appendix B) to the plane wave dual basis, and so is generally applicable to any orbital
basis. The Cholesky decomposition performs best in the half-filling regime (η = N/2), while the cosine decomposition
performs best in the low-filling regime (η � N/2). All of these bounds are more efficient to compute than the existing
fermionic and Pauli commutator bounds.

IV. Plane wave dual basis decompositions and Trotter error bounds

The plane wave dual basis electronic structure Hamiltonian given by Eq. (2) describes a system with η electrons
in a simulation box of size Ω ∝ Ld, where d is the dimensionality of the system, and L is the number of grid points
along each side of the box. The spin-orbitals are obtained from a discrete Fourier transform of plane waves. These
plane waves are defined by

φ~ν(~r) =

√
1

Ω
ei
~k~ν ·~r ~k~ν =

2π~ν

Ω1/d
~ν ∈

[
−
⌊
L

2

⌋
,

⌊
L

2

⌋)d
∈ Zd, (22)

where N is the number of spin-orbital basis functions used, and ~ν enumerates the N/2 possible distinct momentum
vectors of the system. Note that if L is odd, the interval of ~ν is closed, rather than half-open. The plane wave dual
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basis resembles a smooth approximation to a grid of delta functions. The coefficients in Eq. (2) are given by [22]

Tpq = δσp,σq
∑
~ν

~k2~νcos(~k~ν · (~r~p − ~r~q))
N

Up = −
∑

j,~ν:|~ν|6=0

4πζjcos(~k~ν · (~Rj − ~r~p))
Ω~k2~ν

Vpq =
∑

~ν:|~ν|6=0

2πcos(~k~ν · (~r~p − ~r~q))
Ω~k2~ν

.

(23)

Here, ~r~p is the position of the orbital centroid corresponding to spatial-orbital ~p

~r~p = ~p

(
2Ω

N

) 1
d

~p ∈
[
−
⌊
L

2

⌋
,

⌊
L

2

⌋)d
∈ Zd, (24)

σp is the spin of the pth spin-orbital (here, we have mapped the vector index ~p to an integer value by defining an

ordering for the spin-orbital basis functions), and ~Rj and ζj are the position and charge of the jth nucleus in the
system.

In the plane wave dual basis, the Hamiltonian terms can be partitioned into kinetic and potential terms, respectively

Ht =
∑
p,q

Tpqa
†
paq Hv =

∑
p

Upnp +
∑
p 6=q

Vpqnpnq. (25)

We can approximate the time evolution operator by applying the potential terms (which all commute with each other,
and so induce no Trotter error), implementing a basis change to plane waves, such that the kinetic term becomes
diagonal and can be implemented without Trotter error, and then changing back to the plane wave dual basis (or the
equivalent, but starting in the plane wave basis). The second-order Trotter error for these approaches are given by∥∥∥eitH − ei t2HveitHtei t2Hv∥∥∥

η
≤ t3

12

(∣∣∣∣[[Ht, Hv], Ht]
∣∣∣∣
η

+
1

2

∣∣∣∣[[Ht, Hv], Hv]
∣∣∣∣
η

)
∥∥∥eitH − ei t2HteitHvei t2Ht∥∥∥

η
≤ t3

12

(∣∣∣∣[[Ht, Hv], Hv]
∣∣∣∣
η

+
1

2

∣∣∣∣[[Ht, Hv], Ht]
∣∣∣∣
η

) (26)

The kinetic and electron-nuclei interaction terms are free-fermionic Hamiltonians. This section presents three ways to
decompose the electron-electron interaction term into a sum of products of free-fermionic Hamiltonians such that we
can write Hv = H(U) +

∑
lH(Xl)H(Yl). We use these decompositions, the aforementioned commutator identities,

and the fermionic seminorm properties of free-fermion Hamiltonians to derive expressions for first- and second-order
commutator bounds.

We calculate the first-order bound here, and refer the reader to Appendix C for calculations of the second-order
bounds. The first-order commutator is given by

[Ht, Hv] = [H(T ), H(U) +
∑
l

H(Xl)H(Yl)]

= [H(T ), H(U)] +
∑
l

[H(T ), H(Xl)H(Yl)]
(27)

We can simplify the second term using [A,BC] = [A,B]C +B[A,C] to give

[Ht, Hv] = H([T,U ]) +
∑
l

[H(T ), H(Xl)]H(Yl) +H(Xl)[H(T ), H(Yl)]

= H([T,U ]) +
∑
l

H([T,Xl])H(Yl) +H(Xl)H([T, Yl]).
(28)

Using the triangle and Hölder inequalities, the fermionic seminorm of the first-order commutator is then upper bounded
by

∣∣∣∣[Ht, Hv]
∣∣∣∣
η
≤
∣∣[T,U ]

∣∣
η

+
∑
l

(∣∣[T,Xl]
∣∣
η
·
∣∣Yl∣∣η +

∣∣[T, Yl]∣∣η · ∣∣Xl

∣∣
η

)
. (29)
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A. Chemical potentials

When working in a fixed particle number manifold, we can shift the chemical potential of the problem to try and
reduce the resulting Trotter error bound. This technique has previously been found to be beneficial in simulations of
the Fermi-Hubbard model [24]. We can transform the Hamiltonian to

Hv → Hv + Cη

= H(U) +
∑
p 6=q

Vpqnpnq + C
∑
p

np

= H(U) +
∑
pq

(δpqC + Vpq)npnq (30)

where we have used that n2p = np. This transformation adds a constant C to the diagonal of Vpq.

B. Spectral decomposition

In the plane wave dual basis, the electron-electron Coulomb interaction matrix Vpq is real symmetric, and therefore
admits a spectral decomposition

Vpq =
∑
i

λi[vi]p[vi]q. (31)

While Eq. (2) corresponds to defining V with Vpp := 0, we can also use the chemical potential shift outlined above to
set Vpp := C. We factorise the Hamiltonian as

Hv = H(U) +
∑
p,q

Vpqnpnq

= H(U) +
∑
p,q,i

λi[vi]p[vi]qnpnq

= H(U) +
∑
i

λi

(∑
p

[vi]pnp

)(∑
q

[vi]qnq

)
:= H(U) +

∑
i

λiH(vi)H(vi)

(32)

Here, vi are diagonal N ×N coefficient matrices. The first-order bound is given by∣∣∣∣[Ht, Hv]
∣∣∣∣
η
≤
∣∣[T,U ]

∣∣
η

+ 2
∑
i

|λi|
(∣∣[T, vi]∣∣η · ∣∣vi∣∣η) (33)

The second-order bounds are given in Appendix D. This decomposition can be regarded as an instance of the general
approach of spectral decomposing tensors hpqrs and we discuss this further in Appendix B.

C. Cholesky decomposition

We can also consider a Cholesky decomposition of the matrix V . The Cholesky decomposition factorises a positive
(semi)-definite Hermitian matrix into the product of a lower triangular matrix and its Hermitian conjugate, V = LL†.
For the real symmetric matrix Vpq, we first shift the chemical potential to make V positive definite. The Cholesky
decomposition is then given by

Vpq =
∑
i

LpiL
T
iq. (34)

We can then factorise the Hamiltonian as

Hv = H(U) +
∑
pq

Vpqnpnq
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= H(U) +
∑
ipq

LpiL
T
iqnpnq

= H(U) +
∑
i

(∑
p

Lpinp

)(∑
q

Lqinq

)
:= H(U) +

∑
i

H(Li)H(Li) (35)

where Li are diagonal coefficient matrices such that [Li]pq = δpqLqi. The first-order bound is given by

∣∣∣∣[Ht, Hv]
∣∣∣∣
η
≤
∣∣[T,U ]

∣∣
η

+ 2
∑
i

(∣∣[T, Li]∣∣η · ∣∣Li∣∣η) (36)

The second-order bounds are given in Appendix D. As the Cholesky matrix L is lower triangular, the free-fermionic
Hamiltonians H(Li) become increasingly low rank at higher values of i, suggesting that this decomposition may not
fully exploit fermion number.

D. Cosine decomposition

We consider the following decomposition that depends explicitly on the structure of the terms in the matrix Vpq.

We introduce the shorthand ωpν := ~kν · ~rp. Applying the double angle formula to Eq. (23) yields

Vpq =
2π

Ω

∑
ν 6=0

1

|~kν |2
cos(ωpν − ωqν)

=
2π

Ω

∑
ν 6=0

1

|~kν |2

(
cos(ωpν)cos(ωqν) + sin(ωpν)sin(ωqν)

)
.

(37)

We can use this to write∑
p 6=q

Vpqnpnq =
2π

Ω

∑
p

∑
q

∑
ν 6=0

1

|~kν |2

(
cos(ωpν)npcos(ωqν)nq + sin(ωpν)npsin(ωqν)nq

)

− 2π

Ω

∑
p

∑
ν 6=0

1

|~kν |2

(
cos2(ωpν)np + sin2(ωpν)np

)

=
2π

Ω

∑
ν 6=0

1

|~kν |2

(∑
p

cos(ωpν)np

)(∑
q

cos(ωqν)nq

)

+
2π

Ω

∑
ν 6=0

1

|~kν |2

(∑
p

sin(ωpν)np

)(∑
q

sin(ωqν)nq

)
− 2π

Ω

∑
p

∑
ν 6=0

1

|~kν |2
np

(38)

In the fixed electron-number manifold, the final term will only contribute a global phase during Hamiltonian simulation,
and so can be dropped. We can rewrite Hv as

Hv = H(U) +
∑
ν 6=0

H(Cν)H(Cν) +H(Sν)H(Sν), (39)

where Cν and Sν are diagonal N ×N coefficient matrices defined by

[Cν ]ii :=

√
2π

Ω

1

|~kν |
cos(ωiν) [Sν ]ii :=

√
2π

Ω

1

|~kν |
sin(ωiν) (40)

The first-order bound is given by

∣∣∣∣[Ht, Hv]
∣∣∣∣
η
≤
∣∣[T,U ]

∣∣
η

+ 2
∑
ν 6=0

∑
A∈{C,S}

(∣∣[T,Aν ]
∣∣
η
·
∣∣Aν∣∣η) (41)
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The second-order bounds are given in Appendix D. We remark that it is possible to further simplify Eq. (38) to

2π

Ω

∑
ν 6=0

1

|~kν |2

[(∑
p

eiω
p
νnp

)
⊗
(∑

q

e−iω
q
νnq

)]
− 2π

Ω

∑
p

∑
ν 6=0

1

|~kν |2
np. (42)

The more compact form of this decomposition suggests that it may offer a tighter bound. However, the resulting
free-fermionic Hamiltonians

∑
p e
±iωpνnp are non-Hermitian, and so yield operators that are neither Hermitian nor

anti-Hermitian when commuted with the Hermitian kinetic operator. The resulting matrices may not be diagonalis-
able, making it unclear how to efficiently evaluate the fermionic seminorm of the operator. In Table I, we reported
that the cosine decomposition is the top-ranked approach in the low-filling fraction regime.

E. Outlook

In the following sections, we will apply these bounds to the 2D uniform electron gas in a plane wave dual basis
set. The Hamiltonian for this system is given by Eq. (2), but with Up = 0 ∀p. As a result, all of the commutators
containing U can be dropped from the above expressions when considering this system. In the following section, we
provide further background on the uniform electron gas. We then present numerical results comparing the Trotter
error bounds derived above for the uniform electron gas, which form the basis of the rankings assigned in Table I.

V. Uniform electron gas

The uniform electron gas consists of η electrons in a box of size Ω. We are interested in the properties of this
system as it scales to the thermodynamic limit – where η,Ω → ∞, but the electron density ρ = η/Ω stays constant.
At zero temperature, the physics of the system depends only on ρ. It is conventional to define a quantity referred
to as the Wigner-Seitz radius rs, that represents the average distance between electrons in the simulation cell. For a
3D simulation cell, the Wigner-Seitz radius is given by rs = (3/4πρ)1/3 (for a 2D simulation cell, rs =

√
1/πρ). In

order to make the system charge neutral, the electrons are immersed in a uniformly distributed sea of positive charge.
Consequently, the system is often also referred to as ‘Jellium’. The Hamiltonian of the Jellium is given by [25]

H =
∑
i

−∇
2
i

2m
+
∑
i<j

e2

|~ri − ~rj |
− e2η

Ω

∫∫ η∑
i

δ(~r − ~ri)
|~r − ~r′|

d~rd~r′ +
e2η2

2Ω2

∫∫
1

|~r − ~r′|
d~rd~r′ (43)

where the first term represents the kinetic energy of the electrons, the second term describes the Coulomb repulsion of
the electrons, the third term is interaction of the electrons with the uniform charge density of the positive background,
and the final term is the self-interaction of the background charge. The long range nature of the Coulomb interaction
causes divergences in the final two terms as the system scales to the thermodynamic limit. These divergences can
be cancelled with a divergence of the opposite sign that arises in the electron-electron interaction term. The length
scales are typically rescaled to be measured in Bohr radii (~2/me2). When performing calculations on Jellium, we can
either consider the real-space formulation of the problem discussed above, or project the Hamiltonian onto a basis
set.

In addition to acting as a simple model of interacting electrons, the energy density of Jellium is used to parameterize
some of the functionals used in density functional theory [26–28]. Although the behaviour of Jellium is well understood
in the low [29] and high [25, 30, 31] density limits, small energy differences in the intermediate regime lead to difficulty
in resolving competing phases. This has led to unresolved questions about the existence of a superconducting phase
in 2D Jellium [32–34], as well as disagreements on the order of 0.7 mHartree per electron between different density
functional parametrizations at electron densities of interest [35]. While existing computational techniques, such as
quantum Monte Carlo methods, are able to obtain accurate energies of relatively large system sizes, these methods
typically introduce an uncontrolled bias. It is conventional to perform calculations on a succession of system sizes,
which enables extrapolation to the thermodynamic limit. Extrapolation and correction for finite size effects [35–38]
often accounts for a large amount of the uncertainty present in the values estimated [25].

Quantum Monte Carlo (QMC) methods, in particular, variational Monte Carlo (VMC) and diffusion Monte Carlo
(DMC), are the leading techniques for calculating the ground state energy of Jellium. Following the pioneering
calculations of Ceperley and Alder [39, 40], there have been a number of VMC/DMC calculations on both 3D
Jellium [35, 38, 41, 42] and 2D Jellium [43–47] (see Ref. [48] for a review of QMC calculations). Both VMC and
DMC are typically performed in real-space, and have been applied to systems with on the order of 103 electrons [25].
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However, these methods are particularly susceptible to the fermion sign problem. This is typically mitigated by fixing
the nodal points of the wavefunction to those of the trial wavefunction. Although this fixed node approximation is
believed to work well for the uniform electron gas [45], it introduces an uncontrolled bias that is not systematically
improvable. While techniques can be used to mitigate this error, DMC energies for high density (rs ≤ 5) electron
gases are thought to possess an error of around 1 mHartree per electron (the fixed node error is believed to be smaller
at larger rs values) [35, 49]. State-of-the-art DMC calculations require on the order of 102 CPU core hours [50].

Calculations have also been performed using full configuration interaction quantum Monte Carlo (FCIQMC) [51],
which evolves a population of random walkers using update rules that effectively propagate the wavefunction in
imaginary time. FCIQMC is applied to systems that have been projected onto a basis set (typically plane waves
for Jellium calculations). While this projection appears to mitigate the fermionic sign problem, it introduces a basis
set error that must be eliminated by extrapolation to the continuum limit [52]. The basis set error decays as 1/N ,
although this may be improved using explicitly correlated methods [53]. FCIQMC formally scales exponentially with
the system size, but can in practice achieve bias-free results for small, weakly correlated Jellium systems (e.g. 19
electrons at rs = 1 [35]). The approach is also practical for larger system sizes at high densities; producing more
accurate results than DMC in 54 electron systems with rs ≤ 1 [50]. Modern FCIQMC methods require around
103−105 CPU core hours (depending on the value of rs investigated) [49, 50]. As rs increases, the correlation present
in the system becomes large, which makes FCIQMC methods too costly to converge [49, 50].

Calculations can be made more challenging by considering the system at non-zero temperature, which acts as a
model for the interiors of stars and planets, or for laser-ignited plasma used in fusion experiments [54, 55]. Alterna-
tively, we can consider additional interactions, such as spin-orbit coupling [56].

The uniform electron gas has previously been identified as a candidate system for quantum phase estimation [22] due
to the desire to seek accurate, bias-free ground state energies. Existing resource estimates for applying phase estimation
to Jellium [14, 20] project the Jellium Hamiltonian onto the plane wave dual basis, and so can be directly compared
with FCIQMC methods. As discussed above, these calculations must first be extrapolated to the basis set limit,
before extrapolation to the thermodynamic limit is performed. Previous estimates [14, 20] have only considered the
quantum resources required for phase estimation at half-filling (η = N/2). However, the most challenging calculation
performed in a realistic study will be that with the largest computationally feasible η value, subject to the constraint
that N � η. Without this constraint, it will not be possible to perform an accurate extrapolation to the continuum
limit. In this work, we explicitly consider this regime of interest, and make use of the fermionic seminorm bounds
presented in Section IV to reduce estimates of the Trotter error bound, compared to the state-of-the-art [14].

VI. Numerical results

A. Trotter error comparison

We have numerically evaluated the Trotter error bounds derived in Section IV for 2D uniform electron gas systems
with up to 49 electrons in 512 plane wave dual spin-orbitals. These calculations were performed as outlined in
Appendix E, with the help of subroutines present in OpenFermion [57], an electronic structure package for quantum
computational chemistry.

In Figure 1 we plot the first (W1) and second (W2) order commutator bounds for the Hamiltonian decompositions
discussed in this work. We consider a simulation cell resolved with 200 spin-orbitals, and vary the number of electrons
in the cell. The Wigner-Seitz radius is set to rs = 5. We fix the electron density, such that the volume of the
simulation cell increases proportionally with the number of electrons considered. As the cell volume increases, the
Hamiltonian coefficients decrease in magnitude. This effect will contribute to a reduction of the commutator bound.
However, increasing the number of electrons in the system also increases the number of eigenvalues considered when
taking the fermionic seminorm of the relevant free-fermionic coefficient matrices. This effect increases the commutator
bound. The competition between these effects can lead to non-trivial behaviour as the number of electrons is varied
– this is particularly evident for the spectral and cosine decomposition bounds. These are the decompositions that
maximally exploit the fermionic seminorm, leading to their improved behaviour in the low-filling regime. In contrast,
the Pauli and Fermionic commutator bounds receive no benefit from decreasing fermion number η. However, we see
that these bounds, as well as our Cholesky bound (which only makes partial use of the fermionic seminorm) perform
well close to half-filling, due to their sensitive dependence on the Hamiltonian coefficients. Although it is masked by
the log-scale used in the plots, we observe that for a fixed number of spin-orbitals ||T || ∝ 1/η and ||V ||max ∈ O(1),
so the first-order SHC bound is proportional to η, and the second-order SHC bound is proportional to η2. While
the SHC bound exploits the fermionic seminorm, it does not fully exploit the reduction in Hamiltonian coefficient
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FIG. 1. First (left) and second (right) order commutator bounds for a 2D uniform electron gas system with rs = 5, resolved with
200 spin-orbitals. The electronic density is kept fixed, such that the volume of the simulation cell increases with the number of
electrons considered, which alters the Hamiltonian coefficients. This effect competes with the electron number-dependence of
the fermionic seminorm to determine the resulting error bounds. For the Cholesky decomposition the chemical potential was
shifted by the minimum value that ensured V was positive definite.

magnitudes at high-filling fractions.

In Figure 2 we again plot the first and second-order commutator bounds, but here keep the fermion number fixed at
η = 49 (as well as fixing rs = 5, and the cell volume) and instead vary the number of spin-orbitals used. The second-
order Pauli and Fermionic commutator bounds were only calculated up to 128 and 288 spin-orbitals, respectively, as
the memory required for these calculations was prohibitive beyond this point. We have extrapolated the performance
of the second-order Pauli bounds to larger N values, as described in Appendix F. Performing simulations with a fixed
number of electrons, while increasing the number of spin-orbitals, would enable us to perform extrapolation to the
basis-set limit. We observe that close to half-filling, the Cholesky and Pauli bounds outperform all others considered.
However, the cosine decomposition performs best in the low-filling fraction regime, due to its increased exploitation
of the fermionic seminorm.

B. Phase estimation resource estimates

In this section, we discuss the resources required for performing Trotter-based phase estimation on the uniform
electron gas systems discussed in the previous section. Our cost estimates focus on the number of logical qubits and
T & Toffoli gates required (as these are the dominant factors in surface code-based resource estimates), and neglect
the costs of Clifford gates. Our approach closely follows that of Ref. [14], with an improved use of Hamming weight
phasing (HWP) [24].

We distribute the total budget for error in energy estimation (δ = ∆PE + ∆TS + ∆syn) roughly as follows: 33%
to Trotter error ∆TS ; 66% to phase estimation error ∆PE ; and 1% to rotation synthesis error ∆syn. In practice, we
numerically optimise the error budget allocated to rotation synthesis error, but the optimal choice only differs slightly

from 1%. With this split of the error budget, one finds [14, 24] that we need NPE = Õ(W
1/2
2 /δ3/2) (the tilde in our

Õ notation denotes that logarithmic factors have been suppressed and also hides constant factors) Trotter steps. As

we outline in Appendix G, each Trotter step can be implemented with Õ(N2) non-Clifford gates for an N spin-orbital

problem. Therefore, the total algorithm complexity is Õ(N2W
1/2
2 /δ3/2) where W2 contains some dependence on N

and η. The primary focus of our work has been to tighten the values of W2 and we expect a factor C reduction in
W2 will lead to a corresponding factor C1/2 runtime improvement.
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FIG. 2. First (left) and second (right) order commutator bounds for a 2D uniform electron gas system with rs = 5, and 49
electrons, as a function of the number of spin-orbitals used to resolve the system. Fermionic and Pauli commutator bounds
could not be calculated for all datapoints, due to the large memory requirements of those approaches. The ‘projected Pauli
bounds’ were obtained as described in Appendix F. For the Cholesky decomposition the chemical potential was shifted by the
minimum value that ensured V was positive definite.

We numerically count the non-Clifford resources for a range of different rs, η, and N values, as shown in Table II.
We consider an architecture that distills T gates as its non-Clifford resource. We compare the gate counts obtained by
our Trotter-based approach to those obtained using the Trotter-based approach of Ref. [14] (which used the fermionic
commutator bound on the Trotter error) and those obtained using the qubitization-based method of Ref. [20]. We
consider an extensive error bound δ = 1 mHartree per electron, consistent with leading classical approaches [35, 49, 50].
It is too memory intensive to calculate the fermionic commutator (‘FC’) bounds for 16 × 16 systems, showing the
limitations of the prior art.

Comparing the gate counts obtained using our novel Trotter error bounds to those obtained using the existing
fermionic commutator bound, we observe a reduction in T count by a factor of between 2.3−12.7×. This improvement
is more pronounced at lower filling fractions, demonstrating the anticipated benefit of using the fermionic seminorm.
The largest of these improvements stems from a reduction in Trotter error by a factor of 150 for η = 10, N = 288, rs =
10. In the high accuracy regime of 49 electrons in ∼ 1000 spin-orbitals, we would expect our bounds to provide an
order-of-magnitude improvement over the prior art as this would be similar to the improvements showcased by our
η = 10, N = 288 results.

Comparing our results to those of qubitization, we see that qubitization consistently (for rs = 5, 10) achieves a lower
T count for the systems considered, by a factor of 2− 11×. This comes at a cost of using 5− 7× more ancilla qubits.
We show in Appendix H that for 2D Jellium at large rs values, the cost of qubitization is roughly independent of rs
(when N, η are fixed). In contrast, the cost of our Trotter-based approach scales as 1/rs. These scalings are evident
in Table. II. As such, the Trotter-based approach will be the more suitable method for calculations probing the phase
diagram of 2D Jellium, which target rs ≥ 20 [47]. In contrast, qubitization will likely perform better for the warm,
dense phase (rs < 1 [54, 55]). Our Trotter-based approach also scales less efficiently with target error than qubitization
(δ−3/2 vs δ−1), and so the advantage of qubitization will also decrease if the target error in our calculations is loosened.

As a final caveat, this analysis assumes that we can prepare the main register in the desired energy eigenstate. If
we are only able to prepare a state with overlap γ < 1, then the circuit depth required is increased by a factor of
1/γ. For the sake of comparison with prior art, we assume that γ = 1, but note that it is an open question whether
an eigenstate with sufficient overlap can be prepared [11, 58, 59]. It will be necessary to repeat the phase estimation
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Filling fraction Size Our best FC Qubitization
rs η η/2LXLY LX × LY NT + 4Ntof NT + 4Ntof NT + 4Ntof Anc.
5 49 0.10 16 × 16 2.2× 1011 No data 2.0× 1010 105
5 49 0.17 12×12 3.2× 1010 8.8× 1010 3.5× 109 96
5 49 0.19 16×8 1.7× 1010 4.8× 1010 2.5× 109 94
5 49 0.38 8×8 1.3× 109 3.0× 109 3.2× 108 83
10 10 0.02 16×16 3.4× 1011 No data 9.6× 1010 112
10 10 0.03 12×12 8.6× 1010 1.1× 1012 1.7× 1010 103
10 10 0.04 16×8 5.4× 1010 6.2× 1011 1.2× 1010 101
10 10 0.08 8×8 8.1× 109 3.9× 1010 1.6× 109 90
10 49 0.10 16×16 1.1× 1011 No data 2.0× 1010 105
10 49 0.17 12×12 1.6× 1010 4.3× 1010 3.5× 109 96
10 49 0.19 16×8 8.6× 109 2.4× 1010 2.5× 109 94
10 49 0.38 8×8 6.5× 108 1.5× 109 3.2× 108 83

TABLE II. A comparison of resource estimates for phase estimation of Jellium, using three different methods. We consider an
energy error budget of δ = 1 mHa per electron. ‘Our best’ refers to the Trotter-based phase estimation considered in this work,
using our best bound for the Trotter error. ‘FC’ refers to the Trotter-based phase estimation considered in Ref. [14], which uses
the fermionic commutator bound for the Trotter error. The fermionic commutator (FC) bounds are too memory intensive to
be calculated for the 16×16 systems. In both Trotter methods, 16 additional qubits are used (14 for Hamming weight phasing,
one for phase estimation, and one for gate synthesis). ‘Qubitization’ refers to the post-Trotter approach considered in Ref. [20]
(which we discuss in Appendix H). Four T gates can be used to implement a Toffoli gate, so the total aggregated T count for
the algorithm is NT + 4Ntof .

process a number of times, to ascertain that phase estimation has found the desired eigenstate. One can also consider
other methods of phase estimation, such as that of Ref. [60], which requires an increased number of repetitions of the
algorithm, but that has coherent circuit depth independent of γ.

VII. Discussion

We have demonstrated a substantial benefit of our approach to calculating Trotter errors, both in terms of tightness
of the bound and the classical runtime and memory complexity. We have primarily focused on second-order Trotter
in the plane wave dual basis, but our techniques naturally generalize. For more compact basis sets, fewer orbitals are
required, but the Hamiltonian contains O(N4) terms instead of O(N2). In such a compact basis set, the spectral and
Cholesky decompositions are still applicable [13], but it is unclear whether an analogue of the cosine decomposition
could be used to obtain an even tighter bound in the low-filling fraction regime. Fourth-order Trotter may produce
results competitive with those here [23, 61], if 54 ·W4 < W 2

2 , and a similarly low-overhead compilation of the Trotter
circuit can be found. While the methods introduced in this work apply straightforwardly to higher-order Trotter,
calculating the fourth-order bounds would require time scaling as O(N7), making it a potentially costly endeavour.

While this work has focused on the performance of Trotter methods, so-called post-Trotter methods [20, 62–
66] are known to have superior asymptotic performance with respect to target error. These methods have also
leveraged Hamiltonian factorizations to reduce costs [16–18]. Trotter methods often possess good constant prefactors
in the runtime and require few additional ancilla qubits, compared to post-Trotter methods. As such, it has been
proposed [14, 24] that Trotter methods could perform better at some tasks in the pre-asymptotic regime. The gate
counts presented in Sec. VI B show that our Trotter approach can be competitive with post-Trotter methods like
qubitization, in some regimes of interest, and will even use fewer gates than qubitization for large enough Wigner-
Seitz radius. It is currently unclear whether second quantized post-Trotter methods can similarly exploit low-filling
fractions, which appears to strengthen the case for Trotter methods in this regime. Working in first quantization, one
could certainly exploit low-filling fractions, but quantum algorithms would need to be substantially modified to work
in this setting [67, 68].
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A. SHC bounds

We consider simulating the following class of interacting electrons

H = Ht +Hv :=
∑
j,k

Tj,ka
†
jak +

∑
l,m

Vl,mnlnm, (A1)

where a†j and ak are the fermionic creation and annihilation operators, nl are the occupation-number operators, T and
V are coefficient matrices, and the summation is over N spin orbitals. We seek to bound the fermionic seminorm of
the nested commutators [Ht, [Ht, Hv]] and [Hv, [Hv, Ht]].

We know from [Ref. [15], Eq. (60)] that

[Ht, Hv] =
∑
j,k,m

Tj,kVk,ma
†
jnmak +

∑
j,k

Tj,kVk,ka
†
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jnlak
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∑
j,k
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†
jak −
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j,k,l

Tj,kVl,ja
†
jnlak.

(A2)

Applying [Ref. [15], Eq. (77)], we get the following expansion
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†
j′

nlak −
∑
j,k,m

Tj,kVj,m

∑
j′,k′

δk′,jTj′,k′a
†
j′

nmak

−
∑
j,k

Tj,kVj,j

∑
j′,k′

δk′,jTj′,k′a
†
j′

 ak −
∑
j,k,l

Tj,kVl,j

∑
j′,k′

δk′,jTj′,k′a
†
j′

nlak

−
∑
j,k,m

Tj,kVk,ma
†
jnm

∑
j′,k′

Tj′,k′δj′,kak′

−∑
j,k

Tj,kVk,ka
†
j

∑
j′,k′

Tj′,k′δj′,kak′


−
∑
j,k,l

Tj,kVl,ka
†
jnl

∑
j′,k′

Tj′,k′δj′,kak′

+
∑
j,k,m

Tj,kVj,ma
†
jnm

∑
j′,k′

Tj′,k′δj′,kak′


+
∑
j,k

Tj,kVj,ja
†
j

∑
j′,k′

Tj′,k′δj′,kak′

+
∑
j,k,l

Tj,kVl,ja
†
jnl

∑
j′,k′

Tj′,k′δj′,kak′
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https://doi.org/https://doi.org/10.1038/s41534-018-0071-5
https://doi.org/10.1103/PhysRevLett.121.010501
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+
∑
j,k,m

Tj,kVk,ma
†
j

∑
j′,k′

Tj′,k′δk′,ma
†
j′ak′

 ak +
∑
j,k,l

Tj,kVl,ka
†
j

∑
j′,k′

Tj′,k′δk′,la
†
j′ak′

 ak

−
∑
j,k,m

Tj,kVj,ma
†
j

∑
j′,k′

Tj′,k′δk′,ma
†
j′ak′

 ak −
∑
j,k,l

Tj,kVl,ja
†
j

∑
j′,k′

Tj′,k′δk′,la
†
j′ak′

 ak

−
∑
j,k,m

Tj,kVk,ma
†
j

∑
j′,k′

Tj′,k′δj′,ma
†
j′ak′

 ak −
∑
j,k,l

Tj,kVl,ka
†
j

∑
j′,k′

Tj′,k′δj′,la
†
j′ak′

 ak

+
∑
j,k,m

Tj,kVj,ma
†
j

∑
j′,k′

Tj′,k′δj′,ma
†
j′ak′

 ak +
∑
j,k,l

Tj,kVl,ja
†
j

∑
j′,k′

Tj′,k′δj′,la
†
j′ak′

 ak, (A4)

which implies through [Ref. [15], Proposition 10]

‖[Ht, [Ht, Hv]]‖η ≤ ‖T‖
2
η ‖V ‖max η + ‖T‖2 η ‖V ‖max + ‖T‖2 η ‖V ‖max η

+ ‖T‖2 η ‖V ‖max η + ‖T‖2 η ‖V ‖max + ‖T‖2 η ‖V ‖max η

+ ‖T‖2 η ‖V ‖max η + ‖T‖2 η ‖V ‖max + ‖T‖2 η ‖V ‖max η

+ ‖T‖2 η ‖V ‖max η + ‖T‖2 η ‖V ‖max + ‖T‖2 η ‖V ‖max η

+ (‖T‖ η)
2 ‖V ‖max + (‖T‖ η)

2 ‖V ‖max

+ (‖T‖ η)
2 ‖V ‖max + (‖T‖ η)

2 ‖V ‖max

+ (‖T‖ η)
2 ‖V ‖max + (‖T‖ η)

2 ‖V ‖max

+ (‖T‖ η)
2 ‖V ‖max + (‖T‖ η)

2 ‖V ‖max

≤ 16 ‖T‖2 ‖V ‖max η
2 + 4 ‖T‖2 ‖V ‖max η.

(A5)

Similarly, we have from [Ref. [15], Eq. (78)]

[Hv, [Ht, Hv]] (A6)

=
∑
j,k,m

Tj,kVk,ma
†
j

∑
l′,m′

Vl′,m′δm′,jnl′

nmak +
∑
j,k

Tj,kVk,ka
†
j

∑
l′,m′

Vl′,m′δm′,jnl′

 ak

+
∑
j,k,l

Tj,kVl,ka
†
j

∑
l′,m′

Vl′,m′δm′,jnl′

nlak −
∑
j,k,m

Tj,kVj,ma
†
j

∑
l′,m′

Vl′,m′δm′,jnl′

nmak

−
∑
j,k

Tj,kVj,ja
†
j

∑
l′,m′

Vl′,m′δm′,jnl′

 ak −
∑
j,k,l

Tj,kVl,ja
†
j

∑
l′,m′

Vl′,m′δm′,jnl′

nlak

+
∑
j,k,m

Tj,kVk,ma
†
j

∑
l′,m′

Vl′,m′δl′,jnm′

nmak +
∑
j,k

Tj,kVk,ka
†
j

∑
l′,m′

Vl′,m′δl′,jnm′

 ak

+
∑
j,k,l

Tj,kVl,ka
†
j

∑
l′,m′

Vl′,m′δl′,jnm′

nlak −
∑
j,k,m

Tj,kVj,ma
†
j

∑
l′,m′

Vl′,m′δl′,jnm′

nmak

−
∑
j,k

Tj,kVj,ja
†
j

∑
l′,m′

Vl′,m′δl′,jnm′

 ak −
∑
j,k,l

Tj,kVl,ja
†
j

∑
l′,m′

Vl′,m′δl′,jnm′

nlak

+
∑
j,k,m

Tj,kVk,ma
†
j

∑
l′,m′

Vl′,m′δm′,jδl′,j

nmak +
∑
j,k

Tj,kVk,ka
†
j

∑
l′,m′

Vl′,m′δm′,jδl′,j

 ak
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+
∑
j,k,l

Tj,kVl,ka
†
j

∑
l′,m′

Vl′,m′δm′,jδl′,j

nlak −
∑
j,k,m

Tj,kVj,ma
†
j

∑
l′,m′

Vl′,m′δm′,jδl′,j

nmak

−
∑
j,k

Tj,kVj,ja
†
j

∑
l′,m′

Vl′,m′δm′,jδl′,j

 ak −
∑
j,k,l

Tj,kVl,ja
†
j

∑
l′,m′

Vl′,m′δm′,jδl′,j

nlak

−
∑
j,k,m

Tj,kVk,ma
†
jnm

∑
l′,m′

Vl′,m′δm′,knl′

 ak −
∑
j,k

Tj,kVk,ka
†
j

∑
l′,m′

Vl′,m′δm′,knl′

 ak

−
∑
j,k,l

Tj,kVl,ka
†
jnl

∑
l′,m′

Vl′,m′δm′,knl′

 ak +
∑
j,k,m

Tj,kVj,ma
†
jnm

∑
l′,m′

Vl′,m′δm′,knl′

 ak

+
∑
j,k

Tj,kVj,ja
†
j

∑
l′,m′

Vl′,m′δm′,knl′

 ak +
∑
j,k,l

Tj,kVl,ja
†
jnl

∑
l′,m′

Vl′,m′δm′,knl′

 ak

−
∑
j,k,m

Tj,kVk,ma
†
jnm

∑
l′,m′

Vl′,m′δl′,knm′

 ak −
∑
j,k

Tj,kVk,ka
†
j

∑
l′,m′

Vl′,m′δl′,knm′

 ak

−
∑
j,k,l

Tj,kVl,ka
†
jnl

∑
l′,m′

Vl′,m′δl′,knm′

 ak +
∑
j,k,m

Tj,kVj,ma
†
jnm

∑
l′,m′

Vl′,m′δl′,knm′

 ak

+
∑
j,k

Tj,kVj,ja
†
j

∑
l′,m′

Vl′,m′δl′,knm′

 ak +
∑
j,k,l

Tj,kVl,ja
†
jnl

∑
l′,m′

Vl′,m′δl′,knm′

 ak

−
∑
j,k,m

Tj,kVk,ma
†
jnm

∑
l′,m′

Vl′,m′δm′,kδl′,k

 ak −
∑
j,k

Tj,kVk,ka
†
j

∑
l′,m′

Vl′,m′δm′,kδl′,k

 ak

−
∑
j,k,l

Tj,kVl,ka
†
jnl

∑
l′,m′

Vl′,m′δm′,kδl′,k

 ak +
∑
j,k,m

Tj,kVj,ma
†
jnm

∑
l′,m′

Vl′,m′δm′,kδl′,k

 ak

+
∑
j,k

Tj,kVj,ja
†
j

∑
l′,m′

Vl′,m′δm′,kδl′,k

 ak +
∑
j,k,l

Tj,kVl,ja
†
jnl

∑
l′,m′

Vl′,m′δm′,kδl′,k

 ak, (A7)

which implies

‖[Hv, [Ht, Hv]]‖η ≤ 24 ‖T‖ ‖V ‖2max η
3 + 12 ‖T‖ ‖V ‖2max η

2. (A8)

B. Spectral decompositions

Here we review how a general electronic structure Hamiltonian can be factorised using spectral decompositions,
with slight modifications allowing Cholesky decompositions to be used. If the Hamiltonian is given in the form

H =
∑
pqrs

hpqrsa
†
pa
†
qaras, (B1)

then we first use the fermionic anti-commutation rules to rewrite it in “chemist notation” as follows

H = −
∑
pqrs

hpqrsa
†
pa
†
qasar, (B2)

= −
∑
pqrs

hpqrsa
†
p(δq,s − asa†q)ar (B3)
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We split H into H = H ′ −H0, where

H ′ =
∑
pqrs

hpqrsa
†
pasa

†
qar =

∑
pqrs

hprsqa
†
paqa

†
ras =

∑
pqrs

Vpqrsa
†
paqa

†
ras (B4)

H0 =
∑
pqrs

hpqrsa
†
parδq,s, (B5)

where in H ′ we have changed variables so that s → q → r → s and introduced Vpqrs := hprsq. Since H0 is free
fermionic, we aim to find a factorization of H ′. We define a matrix V(pq),(sr) = Vpqrs with composite indices (pq) and
(sr) so that

H ′ =
∑

(pq),(sr)

V(pq),(sr)a
†
paqa

†
ras. (B6)

Hermiticity of H ′ entails we can always choose V(pq),(sr) to be Hermitian so that V(pq),(sr) = V ∗(sr),(pq). Indeed, if

V(pq),(sr) is not initially Hermitian, we can always map V(pq),(sr) → (1/2)(V(pq),(sr) + V ∗(sr),(pq)) and confirm that this

transformation results in the same Hermitian H ′. Therefore, we can diagonalize the matrix with elements V(pq),(sr)
so that

Vpqrs = V(pq),(sr) =
∑
`

upq,`λ`u
∗
sr,`, (B7)

where λ` are real eigenvalues and ui,j are matrix elements of a unitary U . Substituting this into the expressions for
H ′ we get

H ′ =

L∑
`=1

λ`

(∑
pq

upq,`a
†
paq

)(∑
sr

u∗sr,`a
†
ras

)
(B8)

We define L` :=
∑
pq upq,`a

†
paq which is the first bracketed factor above. Notice that by changing dummy variables

in the summation p → s and q → r we also have L` =
∑
sr usr,`a

†
sar. Taking the Hermitian conjugate, we have

L†` =
∑
sr u
∗
sr,`a

†
ras, which corresponds to the second bracketed factor in Eq. (B8). Therefore,

H ′ =

L∑
`=1

λ`L`L†` (B9)

where L` is free-fermionic with coefficient matrix X` with matrix elements [X`]p,q = upq,`. Therefore, L` = H(X`)

and L†` = H(X†` ). Therefore,

H = −H0 +

L∑
`=1

λ`H(X`)H(X†` ). (B10)

Computing the fermionic seminorm is significantly easier for H(A) with Hermitian A. In general, the individual

factors H(X`) and H(X†` ) might not be Hermitian, even though the full Eq. (B10) is Hermitian. There are two
possible solutions to enforce Hermiticity of the factors.

Following Sec IV. A of [10], we can always decompose X` in terms of a Hermitian and skew-Hermitian part
X` = A` + iB` so that A` and B` are Hermitian. Then for each ` term we have

H(X`)H(X†` ) = (H(A`) + iH(B`))(H(A`)− iH(B`)) (B11)

= H(A`)
2 − i[H(A`), H(B`)] +H(B`)

2

= H(A`)
2 −H(i[A`, B`]) +H(B`)

2. (B12)

The term −H(i[A`, B`]) is free-fermionic and Hermitian and so can be added to the free-fermionic part H0. The full
expression for H therefore will have 2L terms of the form H(A`)

2 or H(B`)
2.

The above approach is fully general, but results in a doubling of the number of terms in the summation. In some
cases, we can directly ensure Hermiticity of H(X`) without any increase in the number of terms. Here we expand on
the discussion given in [13, 16] but warn the reader that [13] contains notational errors. When the basis set used for the
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fermionic orbitals is real-valued (such as for Gaussian basis sets or the plane wave dual basis), then the Hamiltonian
constants Vpqrs are real-valued and have an 8-fold symmetry [13] so that

Vpqrs = Vsrqp = Vpqsr = Vqprs = Vqpsr = Vrsqp = Vrspq = Vsrpq (B13)

Recall that in the original decomposition for Vpqrs we had Eq. (B7). Since the V(pq),(sr) matrix is real and Hermitian,
it is therefore diagonalizable by an orthogonal transformation. Since matrix elements of orthogonal transforms are
real, we have u∗rs,` = urs,` and so

Vpqrs =
∑
`

λ`upq,`usr,` (B14)

Next, we will show that we can always map X` → (X` +X†` )/2 and verify that the new decomposition gives the same

total Hamiltonian. The transformation X` → (X` +X†` )/2 maps upq,` → (upq,` + u∗qp,`)/2 = (upq,` + uqp,`)/2 and so

Vpqrs → (1/4)
∑
`

λ`(upq,` + uqp,`)(usr,` + urs,`) (B15)

= (1/4)(Vpqrs + Vqprs + Vpqsr + Vqpsr) (B16)

Using the 8-fold symmetry of Eq. (B13), we have that the Hamiltonian is unchanged under this transform. Note
that this approach is essentially a proof that for real-valued orbitals, the skew-Hermitian components can be made to
vanish.

For a Hamiltonian spectrally decomposed as described above as

H = H(h̃) +

L∑
`=1

λ`H(X`)H(X`) (B17)

we consider a Trotter decomposition where each term in the product formula implements evolution under one of
the terms H(h̃) or λ`H(X`)H(X`). The first-order commutator bound on the Trotter error is given by (defining

Hi=0 := H(h̃), Hi>0 := λiH(Xi)H(Xi))

W1 =
1

2

L∑
i=0

∣∣∣∣∣∣∣∣∑
j>i

[Hi, Hj ]

∣∣∣∣∣∣∣∣
η

(B18)

=
1

2

∣∣∣∣∣∣∣∣ L∑
j=1

λj [H(h̃), H(Xj)H(Xj)]

∣∣∣∣∣∣∣∣
η

+
1

2

L∑
i=1

∣∣∣∣∣∣∣∣ L∑
j>i

λiλj [H(Xi)H(Xi), H(Xj)H(Xj)]

∣∣∣∣∣∣∣∣
η

The first term can be expanded using [A,BC] = [A,B]C +B[A,C]

λj [H(h̃), H(Xj)H(Xj)] = λj
(
[H(h̃), H(Xj)]H(Xj) +H(Xj)[H(h̃), H(Xj)]

)
= λj

(
H([h̃, Xj ])H(Xj) +H(Xj)H([h̃, Xj ])

)
. (B19)

Applying the triangle inequality and Hölder inequality, the bound on the fermionic seminorm of the first term is given
by ∣∣∣∣∣∣∣∣ L∑

j=1

λj [H(h̃), H(Xj)H(Xj)]

∣∣∣∣∣∣∣∣
η

≤ 2
∑
j

|λj | ·
∣∣[h̃, Xj ]

∣∣
η
·
∣∣Xj

∣∣
η
. (B20)

The second term can be expanded using [AB,CD] = A[B,C]D + CA[B,D] + [A,C]BD + C[A,D]B

λiλj [H(Xi)H(Xi), H(Xj)H(Xj)] = λiλj

(
H(Xi)H([Xi, Xj ])H(Xj)

+H(Xj)H(Xi)H([Xi, Xj ]) (B21)

+H([Xi, Xj ])H(Xi)H(Xj)

+H(Xj)H([Xi, Xj ])H(Xi)

)
.
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Applying the triangle inequality and Hölder inequality, the bound on the fermionic seminorm of the second term is
given by

L∑
i=1

∣∣∣∣∣∣∣∣∑
j>i

λiλj [H(Xi)H(Xi), H(Xj)H(Xj)]

∣∣∣∣∣∣∣∣
η

≤ 4

L∑
i=1,j>i

|λi| · |λj | ·
∣∣[Xi, Xj ]

∣∣
η
·
∣∣Xi

∣∣
η
·
∣∣Xj

∣∣
η
. (B22)

Thus

W1 ≤
L∑
j=1

(
|λj | ·

∣∣[h̃, Xj ]
∣∣
η
·
∣∣Xj

∣∣
η

)
+ 2

L∑
i=1,j>i

(
|λi| · |λj | ·

∣∣[Xi, Xj ]
∣∣
η
·
∣∣Xi

∣∣
η
·
∣∣Xj

∣∣
η

)
. (B23)

This proves Eq. (21) in the main text.
Lastly, we discuss how the above decompositions are related to the spectral decomposition used in section IV B. For

the relevant special case of the plane wave dual basis (which is a basis of real orbitals) we have V(pq),(sr) = Vpsδp,qδs,r.
In other words, Vps is simply the nonzero sub-block of V(pq),(sr). As such, it is equivalent to diagonalize the smaller
matrix Vps.

C. Second-order Trotter error bounds

We consider the second-order commutator bounds for a plane wave dual basis Hamiltonian decomposed as H =
Ht+Hv, with Ht = H(T ), and Hv = H(U)+

∑
lH(Xl)H(Yl). As shown in the main text, the first-order commutator

is given by

[Ht, Hv] = H([T,U ]) +
∑
l

H([T,Xl])H(Yl) +H(Xl)H([T, Yl]). (C1)

The first second-order commutator [[Ht, Hv], Ht] is given by

[[Ht, Hv], Ht] =

[
H([T,U ]) +

∑
l

H([T,Xl])H(Yl) +H(Xl)H([T, Yl]) , H(T )

]
=H([[T,U ], T ])

+
∑
l

(
[H([T,Xl])H(Yl), H(T )] + [H(Xl)H([T, Yl]), H(T )]

)
=H([[T,U ], T ]) +

∑
l

(
H([T,Xl])H([Yl, T ]) +H([[T,Xl], T ])H(Yl)

+H(Xl)H([[T, Yl], T ]) +H([Xl, T ])H([T, Yl])

)
.

(C2)

The fermionic seminorm of this expression is bounded by

∣∣∣∣[[Ht, Hv], Ht]
∣∣∣∣
η
≤
∣∣[[T,U ], T ]

∣∣
η

+
∑
l

(
2
∣∣[T,Xl]

∣∣
η
·
∣∣[Yl, T ]

∣∣
η

+
∣∣[[T,Xl], T ]

∣∣
η
·
∣∣Yl∣∣η

+
∣∣Xl

∣∣
η
·
∣∣[[T, Yl], T ]

∣∣
η

)
.

(C3)

The other second-order commutator [[Ht, Hv], Hv] is given by

[[Ht, Hv], Hv] =

[
H([T,U ]) +

∑
l

H([T,Xl])H(Yl) +H(Xl)H([T, Yl]) ,

H(U) +
∑
m

H(Xm)H(Ym)

]
= H([[T,U ], U ]) + t1 + t2 + t3 + t4 + t5

(C4)
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where

t1 =
∑
l

[
H([T,Xl])H(Yl), H(U)

]
(C5)

t2 =
∑
l

[
H(Xl)H([T, Yl]), H(U)

]
(C6)

t3 =
∑
m

[
H([T,U ]), H(Xm)H(Ym)

]
(C7)

t4 =
∑
l,m

[
H([T,Xl])H(Yl), H(Xm)H(Ym)

]
(C8)

t5 =
∑
l,m

[
H(Xl)H([T, Yl]), H(Xm)H(Ym)

]
. (C9)

We evaluate these terms separately:

t1 =
∑
l

H([T,Xl])H([Yl, U ]) +H([[T,Xl], U ])H(Yl) (C10)

t2 =
∑
l

H(Xl)H([[T, Yl], U ]) +H([Xl, U ])H([T, Yl]) (C11)

t3 =
∑
m

H([[T,U ], Xm])H(Ym) +H(Xm)H([[T,U ], Ym]) (C12)

t4 =
∑
l,m

H([T,Xl])H([Yl, Xm])H(Ym) +H([[T,Xl], Xm])H(Yl)H(Ym) (C13)

+H(Xm)H([T,Xl])H([Yl, Ym]) +H(Xm)H([[T,Xl], Ym]H(Yl)

t5 =
∑
l,m

H(Xl)H([[T, Yl], Xm])H(Ym) +H([Xl, Xm])H([T, Yl])H(Ym) (C14)

+H(Xm)H(Xl)H([[T, Yl], Ym]) +H(Xm)H([Xl, Ym])H([T, Yl])

Note that the 4th term of t4 can be combined with the 1st term of t5 was follows∑
l,m

H(Xm)H([[T,Xl], Ym]H(Yl) +H(Xl)H([[T, Yl], Xm])H(Ym)

=
∑
l,m

H(Xm)H([[T,Xl], Ym]H(Yl) +H(Xm)H([[T, Ym], Xl])H(Yl)

=
∑
l,m

H(Xm) {H([[T,Xl], Ym] + [[T, Ym], Xl])}H(Yl) (C15)

We can then bound the fermionic seminorm of the commutator (ignoring eq. (C15)) by

∣∣∣∣[[Ht, Hv], Hv]
∣∣∣∣
η
≤
∣∣[[T,U ], U ]

∣∣
η

+
∑
l

(∣∣[T,Xl]
∣∣
η
·
∣∣[Yl, U ]

∣∣
η

+
∣∣[[T,Xl], U ]

∣∣
η
·
∣∣Yl∣∣η

+
∣∣Xl

∣∣
η
·
∣∣[[T, Yl], U ]

∣∣
η

+
∣∣[Xl, U ]

∣∣
η
·
∣∣[T, Yl]∣∣η

+
∣∣[[T,U ], Xl]

∣∣
η
·
∣∣Yl∣∣η +

∣∣[[T,U ], Yl]
∣∣
η
·
∣∣Xl

∣∣
η

)
+
∑
l,m

(∣∣[T,Xl]
∣∣
η
·
∣∣[Yl, Xm]

∣∣
η
·
∣∣Ym∣∣η +

∣∣[[T,Xl], Xm]
∣∣
η
·
∣∣Yl∣∣η · ∣∣Ym∣∣η

+
∣∣Xm

∣∣
η
·
∣∣[T,Xl]

∣∣
η
·
∣∣[Yl, Ym]

∣∣
η

+
∣∣Xm
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η
·
∣∣[[T,Xl], Ym]

∣∣
η
·
∣∣Yl∣∣η

+
∣∣Xl

∣∣
η
·
∣∣[[T, Yl], Xm]

∣∣
η
·
∣∣Ym∣∣η +

∣∣[Xl, Xm]
∣∣
η
·
∣∣[T, Yl]∣∣η · ∣∣Ym∣∣η



24

+
∣∣Xm

∣∣
η
·
∣∣Xl

∣∣
η
·
∣∣[[T, Yl], Ym]

∣∣
η

+
∣∣Xm

∣∣
η
·
∣∣[Xl, Ym]

∣∣
η
·
∣∣[T, Yl∣∣η) (C16)

And using the simplification of eq. (C15) we get∣∣∣∣[[Ht, Hv], Hv]
∣∣∣∣
η
≤
∣∣[[T,U ], U ]

∣∣
η

+
∑
l

(∣∣[T,Xl]
∣∣
η
·
∣∣[Yl, U ]

∣∣
η

+
∣∣[[T,Xl], U ]

∣∣
η
·
∣∣Yl∣∣η

+
∣∣Xl

∣∣
η
·
∣∣[[T, Yl], U ]

∣∣
η

+
∣∣[Xl, U ]

∣∣
η
·
∣∣[T, Yl]∣∣η

+
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∣∣
η
·
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∣∣
η
·
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∣∣
η

)
+
∑
l,m

(∣∣[T,Xl]
∣∣
η
·
∣∣[Yl, Xm]

∣∣
η
·
∣∣Ym∣∣η +

∣∣[[T,Xl], Xm]
∣∣
η
·
∣∣Yl∣∣η · ∣∣Ym∣∣η

+
∣∣Xm

∣∣
η
·
∣∣[T,Xl]

∣∣
η
·
∣∣[Yl, Ym]
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η

+
∣∣[Xl, Xm]

∣∣
η
·
∣∣[T, Yl]∣∣η · ∣∣Ym∣∣η

+
∣∣Xm

∣∣
η
·
∣∣Xl

∣∣
η
·
∣∣[[T, Yl], Ym]

∣∣
η

+
∣∣Xm

∣∣
η
·
∣∣[Xl, Ym]

∣∣
η
·
∣∣[T, Yl∣∣η

+
∣∣Xl

∣∣
η

{∣∣[[T, Yl], Xm] + [[T,Xm], Yl]
∣∣
η

} ∣∣Ym∣∣η). (C17)

D. Second-order commutator bounds for plane wave dual decompositions

In this Appendix, we apply the formulae for the second-order commutator bound for a general decomposition to
the decompositions introduced in the main text.

Comparing the spectral decomposition in the main text to Eq. (C3), Eq. (C16), we observe that Xi := λivi, Yi := vi
and note that [Xi, Xj ] = [Yi, Yj ] = [Xi, Yj ] = 0 ∀ i, j. The second-order commutator bounds are then given by

∣∣∣∣[[Ht, Hv], Ht]
∣∣∣∣
η
≤
∣∣[[T,U ], T ]

∣∣
η

+ 2
∑
i

|λi|
(∣∣[[T, vi], T ]

∣∣
η
·
∣∣vi∣∣η +

∣∣[T, vi]∣∣2η) (D1)

∣∣∣∣[[Ht, Hv], Hv]
∣∣∣∣
η

(D2)

≤
∣∣[[T,U ], U ]

∣∣
η

+ 2
∑
i

|λi|
(∣∣[T, vi]∣∣η · ∣∣[vi, U ]

∣∣
η

+
∣∣[[T, vi], U ]

∣∣
η
·
∣∣vi∣∣η +

∣∣[[T,U ], vi]
∣∣
η
·
∣∣vi∣∣η)

+ 4
∑
i,j

|λi||λj |
(∣∣[[T, vi], vj ]∣∣η · ∣∣vi∣∣η · ∣∣vj∣∣η).

Comparing the Cholesky decomposition in the main text to Eq. (C3), Eq. (C16), we observe that Xi := Li, Yi := Li
and note that [Xi, Xj ] = [Yi, Yj ] = [Xi, Yj ] = 0 ∀ i, j. The second-order commutator bounds are then given by

∣∣∣∣[[Ht, Hv], Ht]
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η
≤
∣∣[[T,U ], T ]

∣∣
η

+ 2
∑
i

(∣∣[[T, Li], T ]
∣∣
η
·
∣∣Li∣∣η +

∣∣[T, Li]∣∣2η) (D3)

∣∣∣∣[[Ht, Hv], Hv]
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η

(D4)

≤
∣∣[[T,U ], U ]

∣∣
η

+ 2
∑
i

(∣∣[T, Li]∣∣η · ∣∣[Li, U ]
∣∣
η

+
∣∣[[T, Li], U ]

∣∣
η
·
∣∣Li∣∣η +

∣∣[[T,U ], Li]
∣∣
η
·
∣∣Li∣∣η)
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+ 4
∑
i,j

(∣∣[[T, Li], Lj ]∣∣η · ∣∣Li∣∣η · ∣∣Lj∣∣η).

Comparing the cosine decomposition in the main text to Eq. (C3), Eq. (C16), we observe that H(Xq)H(Yq) :=
H(Aν)H(Aν) such that Aν ∈ {Cν , Sν}. Because these are diagonal matrices, all of the commutators between different
X matrices, different Y matrices, and between X and Y matrices vanish. The resulting commutator bounds are given
by

∣∣∣∣[[Ht, Hv], Ht]
∣∣∣∣
η
≤
∣∣[[T,U ], T ]

∣∣
η

+ 2
∑
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∣∣
η
·
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∣∣2
η

)
(D5)
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(∣∣[[T,A], B]
∣∣
η
·
∣∣A∣∣

η
·
∣∣B∣∣

η

)
.

(D6)

E. Bound computation details

In this section we outline how the commutator bounds discussed in the main text were calculated. For the case
of the first-order Fermionic commutator bounds, we must evaluate

∑
i,j

∑
p,q[Tija

†
iaj , Vpqnpnq]. Commutators where

p, q are both distinct from i, j trivially commute, leading to O(N3) distinct commutators to store. As a result, the
time cost for the algorithm is O(N4) and the memory cost is O(N3). For the second-order bounds, there are O(N4)
terms to store, and the algorithm has time cost O(N6). We store the resulting commutators, collect like terms, and
then apply the triangle inequality to the sum.

Pauli commutators can be evaluated in a similar manner. After evaluating the fermionic commutators to calculate
the error operator, we apply the Jordan-Wigner transform to obtain the error operator written as a sum of tensor
products of Pauli operators. Local fermionic operators are mapped to O(N)-local Jordan-Wigner operators, which
increases the memory required by a factor of O(N).

The cosine, Cholesky, and spectral bounds can be calculated by storing in memory the O(N) diagonal N × N
coefficient matrices, leading to a memory cost of O(N2) if only storing the diagonal elements. The calculation
of
∣∣∣∣[[Ht, Hv], Hv]

∣∣∣∣
η

requires O(N2) loop passes, where the dominant costs in each pass are multiplication and

diagonalization of the coefficient matrices. These operations have a cost of approximately O(N3). As a result, the
time cost of the algorithm is approximately O(N5).

F. Projected Pauli bounds

The high memory requirements of the Pauli commutator bound make it impractical to calculate WPauli
2 for N ≥ 128.

However, it is evident from Fig. 2 that the Pauli bounds appear to be only a constant factor better than the fermionic
commutator bounds. As a result, we can estimate the Pauli commutator bounds for larger N values, using the
available fermionic commutator datapoints. We wish to predict WPauli

2 at N = 162, 200, 242, 288, which for 49
electrons, corresponds to a filling fraction of 0.302, 0.245, 0.202, 0.170, respectively. In Fig. 3, we plot the ratio
between the second-order fermionic commutator bound WFerm

2 , and WPauli
2 , for a range of N values, varying the

number of electrons such that the filling fraction is kept approximately constant. We observe that as the number of
orbitals used increases, the ratio gradually increases. The ratio decreases as the filling fraction decreases. As a result,
we assume that at N = 162, 200, 242, 288, the Pauli bound outperforms the fermionic bound by roughly a factor of 8.
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Approach Analytic runtime Empirical runtime
O(Nα) O(Nα)

Fermionic commutator [14] 6 3.61
SHC bound [15] 3 2.95

Spectral decomp. [This work] 5 3.76
Cholesky decomp. [This work] 5 3.79
Cosine decomp. [This work] 5 3.35

TABLE III. A comparison between the analytic and empirical runtime scalings of the methods used in this work to calculate
second-order Trotter bounds. Empirical scalings were determined from numerical simulations performed on a system with 49
electrons in 98 – 512 spin-orbitals (98 – 200 spin-orbitals for the fermionic bound). The time taken, T , was fitted to the function
T = kNα to determine the empirical runtime scalings. We attribute the impressive empirical performance of the fermionic
commutator bound scaling to a highly optimised implementation present in OpenFermion [57]. However, we note that this
approach is still limited by the large memory requirement of the fermionic commutator bound.

20 30 40 50 60 70 80 90 100
Number of spin orbitals

7.5

7.6

7.7

7.8

7.9

W
F 2

/
W

P 2

Filling fraction 0.302
Filling fraction 0.245
Filling fraction 0.202
Filling fraction 0.170

FIG. 3. The ratio between the second-order fermionic commutator bound WF
2 and the second-order Pauli commutator bound

WP
2 , as a function of the number of spin-orbitals used, for a homogeneous electron gas system with rs = 5. The number of

electrons in each calculation is varied, in order to match the specified filling fraction as closely as possible.

G. Phase estimation resource costs

We first discuss the resources used to implement a single Trotter step of time evolution. When the number of Trotter
steps is large, the difference in gate count per Trotter step between implementing ei

t
2HveitHtei

t
2Hv and ei

t
2HteitHvei

t
2Ht

is negligible. The final term of each Trotter step can be merged with the first term of the next, so that each Trotter
step contains one implementation of eiHt and one of eiHv . The difference in total gate count between these two
approaches is thus determined by the difference in Trotter error of the orderings.
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For the uniform electron gas, Hv =
∑
p 6=q Vpqnpnq contains N(N − 1)/2 terms, and so can be implemented by

an equivalent number of arbitrary angle Z rotations. However, the translational invariance of Jellium leads many of
these rotations to be of the same angle. As discussed in Ref. [14], these rotations can be implemented via HWP in
groups of size N/2. In practice, we counted the multiplicity of the terms in Vpq, and used HWP to reduce the number
of arbitrary rotations required. This contributes an O(N2 log(ε−1)) gate complexity to each Trotter step. Low and
Wiebe [69] proposed an alternative approach that would need only O(N log(N) log(ε−1)) gates, but with a significant
constant factor overhead that makes it more expensive in the regime considered here.

Changing from the plane wave dual to the plane wave basis can be accomplished using either the fermionic fast
Fourier transform (FFFT, when the lattice sides are a power of two) [14, 22, 70, 71], or using Givens rotation
circuits [72, 73]. These approaches have similar costs for Jellium [14]. The FFFT has a recursive structure, and
requires L

2 log2(L) non-Clifford gates when applied to L qubits. The FFFT must be applied multiple times when
changing the basis of a grid in multiple dimensions. For a Lx × Ly spinful lattice, we require 2Lx applications of the
FFFT on Ly qubits, and 2Ly applications of the FFFT on Lx qubits (for a d-dimensional spinful lattice of side L,
we require 2dLd−1 applications of the FFFT) [14]. Ref. [14] determined that implementing the FFFT requires 26 T
gates for 8 qubits, and 81 T gates for 16 qubits. Givens rotations can be used to perform a single-particle orbital basis
change, regardless of whether the number of orbitals considered is a power of 2. We follow the approach outlined
in Ref. [14]. A single Givens rotation requires two non-Clifford gates, in the form of two arbitrary rotations (by the

same angle). A basis change on M qubits requires
(
M
2

)
Givens rotations. As with the FFFT, we perform the Givens

rotations a number of times to change basis in multiple dimensions. For an Lx × Ly spinful lattice, we require 2Lx
implementations of the basis change on Ly qubits, and 2Ly implementations of the basis change on Lx qubits. For

the former case (with corresponding changes for the latter), we require 2Lx × 2×
(
Ly
2

)
arbitrary rotations. These

can be parallelised into
(
Ly
2

)
groups of size 4Lx. The T/Toffoli cost of implementing these arbitrary rotations can be

reduced using Hamming weight phasing.

Rotating into the plane wave basis diagonalises the kinetic operator, enabling us to implement it with N arbitrary
rotations in the worst case. As it is efficient to classically diagonalise the kinetic coefficient matrix Tpq, we can
determine the multiplicity of each eigenvalue, and then use HWP to reduce the number of arbitrary rotations required.
Overall, implementing this contributes a cost O(N log(N) log(ε−1)) per Trotter step.

To perform phase estimation we must implement not just a circuit approximating eiHt, but a circuit that approxi-
mates eiHt controlled on the state of an ancillary register. We can implement a controlled arbitrary rotation at double
the cost of the un-controlled operation [74]. However, Ref. [72] introduced an approach known as directionally con-
trolled phase estimation, that reduces the cost of controlled time evolution to be the same as the uncontrolled circuit,
when implemented with symmetric product formulae (this approach was elaborated upon further in Refs. [12, 14]).
The key insight is that one instance of U2(t) can be used to implement [|0〉a 〈0|a ⊗ U2(−t) + |1〉a 〈1|a ⊗ U2(t)], which
for the purposes of phase estimation is equivalent to performing [|0〉a 〈0|a ⊗ I + |1〉a 〈1|a ⊗ U2(2t)]. In addition to
halving the number of arbitrary rotations required, this optimization effectively doubles the time duration used for
phase estimation. We use an adaptive variant of phase estimation that uses a single ancilla qubit [75]. As discussed
in Ref. [14], this approach uses NPE applications of directionally controlled phase estimation to learn the energy
eigenvalue to a root mean squared error of

∆PE ≈
0.76π

NPEt
. (G1)

We note that this formula includes the reduction from t→ 2t due to the use of directionally controlled phase estimation.
The Trotter error contributes an error ∆TS = Wt2 where W is the commutator bound constant. A third source of
error of error are synthesis errors ∆syn = O(log(NR/ε)) where NR is the number of arbitrary Z axis rotations in the
algorithm. We distribute errors between these three sources using the approach outlined in Appendix F of Ref. [24].

H. Comparison to Qubitization

The approaches presented in this work for performing Trotter-based phase estimation of systems in a plane wave
dual basis can be compared to the approach introduced in Ref. [20], which considered a qubitization-based approach to
phase estimation. This approach divides the Hamiltonian into a linear combination of unitary operators H =

∑
a haHa

(with Ha unitary, e.g. Pauli strings), and uses circuits to ‘block encode’ H in a subspace of a Hilbert space enlarged
by additional ancilla qubits [76]. By repeating the block encoding procedure, one can perform a quantum walk, the
eigenvalues of which are related to the eigenvalues of the Hamiltonian, without approximation errors [77, 78]. One
can then perform phase estimation directly on this walk operation [77, 78]. The T cost of this qubitization approach
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Filling Error Aggregated
fraction Size constant Tof gates T gates T count

rs η η/2LXLY LX × LY W2 Ntof NT NT + 4Ntof

5 49 0.10 16 × 16 2.89× 104 9.7× 109 1.8× 1011 2.2× 1011

5 49 0.17 12×12 5.18× 103 1.5× 109 2.6× 1010 3.2× 1010

5 49 0.19 16×8 3.44× 103 8.4× 108 1.4× 1010 1.7× 1010

5 49 0.38 8×8 356 6.8× 107 1.1× 109 1.3× 109

10 10 0.02 16×16 604 1.6× 1010 2.8× 1011 3.4× 1011

10 10 0.03 12×12 290 3.9× 109 7.0× 1010 8.6× 1010

10 10 0.04 16×8 262 2.5× 109 4.4× 1010 5.4× 1010

10 10 0.08 8×8 103 3.9× 108 6.6× 109 8.1× 109

10 49 0.10 16×16 7.20× 103 4.8× 109 8.6× 1010 1.1× 1011

10 49 0.17 12×12 1.29× 103 7.6× 108 1.3× 1010 1.6× 1010

10 49 0.19 16×8 857 4.2× 108 6.9× 109 8.6× 109

10 49 0.38 8×8 89 3.4× 107 5.1× 108 6.5× 108

TABLE IV. Resource estimates for phase estimation of Jellium. We consider an energy error budget of δ = 1 mHa per electron.
The ‘Error constant’ is obtained using the most performant of the bounds introduced in this work, for each system (this is
either the Cholesky or cosine decomposition for all datapoints shown). We use 16 additional qubits (14 for Hamming weight
phasing, one for phase estimation, and one for gate synthesis). Four T gates can be used to implement a Toffoli gate, so the
total aggregated T count for the algorithm is NT + 4Ntof .

for Jellium is given by Eq.(54) in Ref. [20] as

24
√

2πλN

δ
(H1)

where for a Hamiltonian written as H =
∑
a haHa (with ||Ha|| = 1), λ =

∑
a |ha|, N is the number of spin-orbitals,

and δ is the target energy error. The number of logical ancilla qubits required is given by Eq.(55) of Ref. [20]

log2

(
4
√

2πλ3N5

δ3

)
. (H2)

It is interesting to consider how the gate count scales as a function of rs. We have that for Jellium, λ = λt + λv. For
a dim-d system, we can see directly from the Hamiltonian coefficients in Eq.(23) (using that Ω ∝ ηrds) that

λt ∼
1

η2/dr2s
(H3)

λv ∼ η
2
d−1r2−ds (H4)

In these expressions we have implicitly assumed that N is held constant. As a result, in 2D λ scales as O(η−1r−2s ) +
O(1). This can be contrasted with our second-order Trotter approach. We have that

W2 ∼ ||[[Ht, Hv], Ht]||+ ||[[Ht, Hv], Hv]||
< λ2tλv + λtλ

2
v

∼ O(η−(2/d+1)r−(2+d)s ) +O(η(2/d−2)r2−2ds ) (H5)

For d = 2, W2 = O(η−2r−4s ) +O(η−1r−2s ). We note that this bound on the Trotter error may be very loose (in terms
of the scaling with the number of electrons), as it does not use commutativity of terms in the Hamiltonian or the
fermionic seminorm (c.f. Eq. 13).

If we fix η,N and vary rs, we see that for d = 2 and large rs, the cost of qubitization is independent of rs, while
our Trotter-based approach scales as O(r−1s ). Thus, the cost of Trotter-based approaches in 2D reduce as the value
of rs is increased, while the cost of qubitization is roughly independent of rs. This is evident in the results presented
in Table II.
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