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Dissipative systems often exhibit wavelength-dependent loss rates. One prominent example is
Rydberg polaritons formed by electromagnetically-induced transparency, which have long been a
leading candidate for studying the physics of interacting photons and also hold promise as a platform
for quantum information. In this system, dissipation is in the form of quantum diffusion, i.e.,
proportional to k2 (k being the wavevector) and vanishing at long wavelengths as k → 0. Here, we
show that one-dimensional condensates subject to this type of loss are unstable to long-wavelength
density fluctuations in an unusual manner: after a prolonged period in which the condensate appears
to relax to a uniform state, local depleted regions quickly form and spread ballistically throughout the
system. We connect this behavior to the leading-order equation for the nearly-uniform condensate—
a dispersive analogue to the Kardar-Parisi-Zhang (KPZ) equation—which develops singularities in
finite time. Furthermore, we show that the wavefronts of the depleted regions are described by
purely dissipative solitons within a pair of hydrodynamic equations, with no counterpart in lossless
condensates. We close by discussing conditions under which such singularities and the resulting
solitons can be physically realized.

Dissipative systems are typically described by a con-
stant dissipation rate, yet many physical platforms are
instead subject to momentum-dependent losses. A
prominent example is Rydberg systems, which have re-
ceived much interest as a platform for quantum non-
linear optics [1–3] and quantum information process-
ing/simulation [4–12]. The polaritons that form un-
der the condition of electromagnetically-induced trans-
parency (EIT) [13–15] undergo quantum diffusion, i.e., a
one-body loss rate Γk ∝ k2 [2]. A similar form of dissipa-
tion occurs in bosonic atoms driven by two coherent laser
beams [14]. This type of loss can be realized in arrays
of microwave resonators as well by coupling the cavity
modes to qubits [16, 17].

In a many-body system, momentum-dependent loss
can have drastic consequences, from dissipatively sta-
bilizing condensates [18] to producing exotic critical or
correlated states [17, 19–21]. These advances notwith-
standing, many consequences of momentum-dependent
loss remain undiscovered.

In this paper, we investigate a driven-dissipative con-
densate in 1D subject to one-body loss Γk ∼ λk2. We
show that when perturbed from uniformity, this system
exhibits a striking instability, best demonstrated by the
example in Fig. 1. Shown is the density profile of a con-
densate as a function of time, obtained by numerical sim-
ulation of the Gross-Pitaevskii equation (details to be
explained below). The condensate initially has a slight
localized excess of particles. The excess density begins
to spread throughout the system, and the condensate
appears to relax to a uniform state. However, after a
significant delay, the density quickly drops to zero in cer-
tain regions, forming fronts which move ballistically and
eventually consume the entire condensate.

We show that the onset of instability can be attributed
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FIG. 1. (Top) Time evolution of a small Gaussian density
perturbation. (Bottom) Snapshots of the density profile (nor-
malized by the initial density ρ0) at the times indicated by
the dashed white lines in the top panel. Simulation parame-
ters are the dissipation strength λ = 2.0, height of the initial
Gaussian h = 0.1, its width w = 15ξ, the spatial discretiza-
tion ∆x = 0.2ξ, and the time step ∆t = 0.1τ . ξ and τ define
the coherence length/time scales.
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to the long-wavelength equation for the phase of the
nearly-uniform condensate. Whereas driven-dissipative
condensates with k-independent loss are typically de-
scribed by the Kardar-Parisi-Zhang (KPZ) equation [22–
26], a well-known nonlinear diffusion equation, here we
find an analogous nonlinear wave equation which we refer
to as “dispersive KPZ”. Little is known about the disper-
sive KPZ equation, at least in the physics literature, but
a surprising feature of the latter is that generic solutions
diverge in finite time [27]. We show that this singularity
corresponds to the sudden depletion of the condensate.

The dynamics following formation of the depleted re-
gions can no longer be described by dispersive KPZ, for
which solutions simply do not exist beyond the singular-
ity time. We thus derive a more general pair of hydro-
dynamic equations, and identify soliton solutions which
accurately describe the shape and motion of the fronts
seen in Fig. 1. As will be clear, these solitons are ex-
clusive to dissipative condensates, and in fact, their core
size diverges in the limit of vanishing dissipation, λ→ 0.

Dissipative Gross-Pitaevskii equation.—We consider a
one-dimensional gas of particles with contact interactions
and single-body loss Γk ∼ λk2. Formally, the system is
described by the quantum master equation (~ = 1)

∂tρ = −i
(
Ĥeffρ− ρĤ†eff

)
+

∫
dx

λ

m
(∂xψ̂)ρ(∂xψ̂

†), (1)

Ĥeff =

∫
dx

[
1− iλ

2m
(∂xψ̂

†)(∂xψ̂) + Uψ̂†2ψ̂2

]
, (2)

where ρ is the density matrix of the system and ψ̂†(x)
creates a bosonic particle at position x. Here m is the
mass and U > 0 governs the strength of interactions.

Following the standard procedure, e.g., as in Refs. [28,
29], we first derive the semiclassical equation of motion
for the condensate wavefunction ψ(x), valid at large den-
sities ρ0 � mU . While it would clearly be ideal to go be-
yond this weakly-interacting limit, we shall find that the
semiclassical behavior is already quite rich. The equation
of motion is

i∂tψ +
1− iλ

2m
∂2
xψ − 2U

∣∣ψ∣∣2ψ = 0. (3)

Equation (3) is quite similar to the standard Gross-
Pitaevskii (GP) equation, with the only difference being
that the coefficient of the kinetic term is complex. There-
fore, any spatial variation of the wavefunction leads to
dissipation. We shall focus on the dynamics of a nearly-
uniform condensate. For concreteness, we use initial con-
ditions of the form

ψ(x, 0) =
√
ρ0

(
1 + he−

x2

w2

) 1
2

. (4)

We have confirmed that the conclusions of this paper hold
for other initial conditions as well (sinusoidal perturba-
tions, random density/phase fluctuations, etc.).

The natural length scale of Eq. (3) is the healing length

ξ ≡
√

1/mUρ0, and the natural time scale is τ ≡ mξ2.
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FIG. 2. Demonstration of the scaling form for the singularity
time τsing. The solid line is a power-law z−2, drawn for com-
parison. τsing is plotted for Gaussian density perturbations
of various heights h and widths w (see the inset), and var-
ious dissipation strengths λ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.
System size is L = 10000ξ.

The remaining dimensionless parameters are the dissipa-
tion strength λ, the magnitude of the density perturba-
tion h, and the width of the density perturbation w/ξ.

Fig. 1, showcased earlier, displays a representative sim-
ulation of Eq. (3) using the initial profile in Eq. (4). The
behavior is highly non-trivial—a prolonged period dur-
ing which the condensate is nearly uniform is followed by
the sudden appearance and subsequent spread of fully
depleted regions. We refer to the sudden depletion as a
“singularity”. While the density profile is strictly ana-
lytic as a function of time, the long-wavelength equation
derived below exhibits a genuine singularity which acts
as a precursor to the condensate depletion.

For concreteness, let us define τsing as the time when
ρ(x, t) ≡ |ψ(x, t)|2 first drops below ρ0/2 at some posi-
tion x, i.e., the first time at which minxρ(x, t) < ρ0/2.
Figure 2 plots τsing for multiple choices of λ and initial
conditions. A clear scaling form is seen:

τsing(λ,w, h)

τ
∼ w

ξ
F
(
λwh

ξ

)
, (5)

where the scaling function appears to fall off as F(z) ∼
z−2 for z . 1. Such algebraic dependence implies
that the underlying instability is fundamentally dif-
ferent from nucleation, where a metastable state tun-
nels into a true equilibrium state, for which the decay
rate would be exponentially suppressed at small fluctu-
ations/perturbations. The instability reported here is
governed by a different mechanism that follows from the
long-wavelength description of the condensate.
Dispersive KPZ equation.—To derive the long-

wavelength effective equation for the nearly-uniform con-
densate, starting from Eq. (3), we: i) write ψ(x, t) =√
ρ0 + ∆ρ(x, t)eiθ(x,t), assuming ∆ρ� ρ0; and ii) retain

only the terms in the GP equation which are both lowest-
order in ∆ρ/ρ0 and most relevant at long wavelengths.
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FIG. 3. Comparison of solution to GP equation (red lines)
against solutions to approximate equations for time evolution
of a Gaussian density perturbation. Times are indicated in
each panel. (Upper three) Comparison to dispersive KPZ,
shown in blue. (Bottom) Comparison to soliton given by
Eqs. (13) and (14), shown in green, with the constant z0 cho-
sen to match the center of the front. Simulation details: dis-
sipation strength is λ = 0.4, height of the initial Gaussian is
h = 0.05, width is w = 200ξ, spatial step size is ∆x = 0.2ξ,
temporal step size is ∆t = 0.1τ .

The calculation is given in the Supplemental Material
(SM) [30]. The end result is

1

c2
∂2
t θ = ∂2

xθ + λ(∂xθ)
2, (6)

with c ≡
√

2ξ/τ being a velocity scale that character-
izes the “speed of sound”. The density variation in turn
comes out to be ∆ρ = −(ρ0τ/2)∂tθ.

Equation (6) is quite similar to the (noiseless) KPZ
equation which has emerged in generic dissipative con-
densates [22–25], except for the second time derivative
on the left-hand side, which results in a wave-like equa-
tion with c defining a causal “light cone” [27]. Being a
nonlinear wave equation, we refer to Eq. (6) as the “dis-
persive KPZ” equation. Much less is known about dis-
persive KPZ than its diffusive counterpart [31–34], but

one established result is that under certain conditions,
solutions to the dispersive KPZ equation—as well as a
larger class of nonlinear hyperbolic equations—diverge
in finite time [27]. On physical grounds, this is due to
the absence of any damping term such as ∂tθ which could
counteract the nonlinear growth. We have confirmed this
divergence through numerical simulation of Eq. (6).

Figure 3 compares the solution of dispersive KPZ to
the solution of the GP equation for a representative ex-
ample. We see that: i) the two agree extremely well for as
long as ∆ρ/ρ0 is everywhere small; and ii) development
of the singularity in dispersive KPZ coincides with the
depletion of the condensate. For this reason, we equate
the singularity time with τsing [35].

The scaling form of τsing given in Eq. (5) then follows
from the scaling of solutions to dispersive KPZ. Suppose
that, just as in the simulations above, initially θ(x, 0) = 0
and ∆ρ(x, 0) = −ρ0τ2 ∂tθ(x, 0) is of the form

∆ρ(x, 0) =
ρ0h

2
G
( x
w

)
, (7)

for some dimensionless function G(y). Defining y ≡ x/w,
s ≡ tc/w, φ(y, s) ≡ λθ(x, t), the dispersive KPZ equation
together with the initial conditions can be written as

∂2
sφ = ∂2

yφ+ (∂yφ)2,

φ(y, 0) = 0, ∂sφ(y, 0) = −λwh√
2ξ
G(y).

(8)

The only dimensionless parameter here is λwh/ξ, hence
the scaling form in Eq. (5). This gives further evidence
for the applicability of dispersive KPZ [36].

Unfortunately, the dispersive KPZ equation does not
have a general analytic solution (although a solvable spe-
cial case is given in the SM [30]). Thus let us briefly
discuss an analogous but simpler equation that exhibits
similar features:

∂tθ̃ = ∂xθ̃ + λθ̃2, (9)

which, in dimensionless coordinates, describes a left-
moving wave with an additional nonlinear term (with

θ̃ roughly mimicking ∂xθ [37]). It is trivial to solve this
equation by transforming to the frame moving alongside
the wave: along the path x(t) = x0 − t, Eq. (9) simply

becomes dθ̃/dt = λθ̃2. Thus the general solution is

θ̃(x0 − t, t) =
θ̃0

1− λθ̃0t
, (10)

where θ̃0 ≡ θ̃(x0, 0). We see that, unless θ̃(x0, 0) is every-

where negative, θ̃(x, t) will diverge in finite time, regard-
less of the precise shape of the initial condition. The same
phenomenon occurs in the setting of the dispersive KPZ
equation. Note that this behavior is much more drastic
than a linear instability, where the amplitude would grow
exponentially but nonetheless be finite at any finite time.
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Hydrodynamic equations.—For times greater than
τsing, the dispersive KPZ equation clearly cannot de-
scribe the evolution of the condensate. Thus we derive a
pair of hydrodynamic equations which no longer assume
∆ρ � ρ0, only requiring that the relevant length and
time scales still be larger than ξ and τ , respectively. We
follow the standard procedure for quantum fluids by de-
scribing the wavefunction in terms of the density ρ(x, t)
and velocity field v(x, t) ≡ ∂xθ(x, t)/m [38, 39]. The re-
sulting hydrodynamic equations become (see the SM for
details [30])

∂tρ+ ∂x
(
ρv
)

= −λmρv2, (11)

∂tv + v∂xv = −2U

m
∂xρ. (12)

Equation (11) is the analogue of the continuity equation,
with the additional feature that the density is depleted
in regions of nonzero velocity. Equation (12) is the stan-
dard Euler equation for an incompressible fluid, with the
pressure given by P (ρ) = Uρ2 [hence the right-hand side
can be written as −(mρ)−1∂xP (ρ)] [39].

One can confirm by direct substitution that the above
equations admit soliton solutions—ρ(x, t) = ρ(x − ut),
v(x, t) = v(x− ut)—for any velocity u such that |u| ≥ c
(c being defined as before). Supersonic solitons are likely
unstable, therefore we focus on the case u = c, where the
soliton moves rightward at the speed of sound. In terms
of z ≡ x− ct, we obtain [30]

ρ(z)

ρ0
= 1 +

v(z)

c
− v(z)2

2c2
,

v(z)

c
= f−1

[√2λ

3ξ
(z0 − z)

]
,

(13)
where z0 is a constant which fixes the center of the soliton
and f−1 is the inverse of the function

f(y) = log (−y)− 2
√

3 + 3

6
log (
√

3− 1 + y)

+
2
√

3− 3

6
log (
√

3 + 1− y).

(14)

Note that the density ρ approaches ρ0 as z → ∞, while
it vanishes as z → −∞. The fronts observed in our simu-
lations of the GP equation agree well with Eq. (13) (the
left-moving fronts are easily related to the above by sym-
metry). A representative comparison is shown in the bot-
tom panel of Fig. 3.

These solitons are quite different from those in the
dissipation-free GP equation [ρ ∼ ρ0 tanh2 (z/

√
2ξ)] [38].

Most importantly, the dissipative solitons have a core size
ξ/λ (as opposed to simply ξ), which diverges in the limit
of vanishing dissipation, λ → 0. This is consistent with
the fact that these solitons originate from an instability
which occurs only in the presence of quantum diffusion.

Physical realizations.—Let us briefly comment on po-
tential physical realizations of this phenomenon. As
noted above, one possible platform is Rydberg po-
laritons via electromagnetically-induced transparency
(EIT), formed when an incoming photon hybridizes with

a long-lived Rydberg state through a lossy intermediate
state [4, 40, 41]. At precisely zero momentum, the polari-
ton is a superposition of Rydberg state and photon with
exactly zero amplitude on the lossy state, and hence is es-
sentially lossless. The deviation from resonance at small
but finite k leads to the k2 loss and results in a diffusion-
like term [2]. Furthermore, at low energies, we can ne-
glect scattering into other modes, leaving Eq. (2) as the
effective many-body Hamiltonian.

While the interaction between polaritons is generically
complex-valued as well, we have confirmed that it is pos-
sible to tune microscopic parameters so that the effective
two-body loss rate vanishes while the one-body (k2) loss
remains significant; see the SM [30]. Thus the insta-
bility reported here may be observable in Rydberg po-
lariton systems, although the parameter regime in which
τsing � τ (where the “singularity” is sharpest) would ne-
cessitate a long atomic medium. Running-wave cavities
may provide a feasible alternative to the long free-space
lengths.

An alternate realization could come from a 1D cloud
of bosonic atoms driven by two coherent lasers under
EIT condition. With one beam orthogonal to the atomic
gas and the other parallel, detuning (proportional to the
atomic wave vector k) due to the Doppler shift leads to
diffusion-like dynamics [14]. In order to ensure that the
contact interaction does not itself cause losses, one would
have to properly choose the states involved and tune in-
teractions, e.g., with a magnetic field [42]. Finally, micro-
cavity arrays [18, 43] provide another platform where k2

loss can be realized [16, 17]. However, it may be challeng-
ing to engineer coherent interactions and diffusive terms
simultaneously.

Conclusion.—We have shown that 1D driven-
dissipative condensates for which quantum diffusion is
the dominant source of dissipation suffer from a peculiar
instability to local density perturbations. The conden-
sate relaxes towards uniform density until a time τsing—
much larger than the natural timescale τ—after which
certain regions quickly deplete and form fronts which
then spread throughout the condensate. We have traced
this behavior to the long-wavelength effective equation
for the phase of the condensate, a nonlinear wave equa-
tion which we refer to as the “dispersive KPZ” equation.
Solutions to dispersive KPZ can diverge at finite times,
and we have observed that the singularity in the long-
wavelength description coincides with depletion of the
condensate. We have further derived a pair of hydrody-
namic equations for the condensate that accurately de-
scribe the dynamics even beyond the onset of instability.
Interestingly, the fronts are described by non-standard
soliton solutions that emerge solely due to dissipation.

From a mathematical perspective, it has long been
known that the solutions to nonlinear wave equations can
diverge, or more generally become nonanalytic [44, 45].
It is interesting to note that whereas the divergence
is often seen as an unphysical mathematical pathol-
ogy, here it corresponds to a genuine physical phe-
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nomenon. Coincidentally, Ref. [27] even comments:
“there is, to our knowledge, no direct application of
[dispersive KPZ] to a physical problem”. The situa-
tion discussed here—condensates undergoing quantum
diffusion—provides such an application, the first such to
our knowledge.

Many directions for future work remain. First of all,
even though some steps of our analysis were tailored to
the specific problem at hand (a necessity when study-
ing nonlinear equations), others can be applied in a va-
riety of contexts. We fully expect that the underlying
phenomenon of rapid instabilities tied to singularities in
the long-wavelength effective equations can be found in
a much wider class of systems. At the very least, one can
derive analogous equations in higher dimensions, and it
would be interesting to examine their possible singulari-
ties as well.

Furthermore, whereas the traditional solitons and hy-
drodynamic behavior of condensates have been well-
studied [38, 39, 46], we have only scratched the surface
of the present equations. For example, it would be in-
teresting to study a gas of dissipative solitons similar to
their counterpart in exciton-polariton condensates [47–
50]. A pumping mechanism would be required to main-
tain a nontrivial steady state, but the resulting physics
could be quite rich and is worth investigation.

It is also desirable to go beyond the semiclassical limit
and investigate the strongly-interacting quantum regime.
Although extremely difficult in general, a step in this

direction would be to include noise terms in Eqs. (3)
and (6) [28, 29]. Most studies of the traditional KPZ
equation do include a noise term, as it is the competition
between noise and nonlinearity which leads to novel scal-
ing properties [51, 52], and so it is natural to ask whether
dispersive KPZ has its own distinct scaling behavior. An-
other motivation comes from the fact that scattering pro-
cesses (not included in the semiclassical treatment) can
lead to alternate types of momentum-dependent dissi-
pation, e.g., Beliaev damping [53, 54]. Finally, further
scrutiny of different physical realizations is worthwhile.
While we have intentionally kept our analysis theoretical
and abstract, more systematic investigations are needed
to assess the feasibility of any specific implementation.
Acknowledgments.—The authors would like to thank

J. V. Porto for informative discussions. This research
was performed while C.L.B. held an NRC Research As-
sociateship award at the National Institute of Stan-
dards and Technology. P.B. and A.V.G. acknowledge
funding by the AFOSR, AFOSR MURI, DoE ASCR
Quantum Testbed Pathfinder program (award No. DE-
SC0019040), U.S. Department of Energy Award No. DE-
SC0019449, DoE ASCR Accelerated Research in Quan-
tum Computing program (award No. DE-SC0020312),
NSF PFCQC program, and ARO MURI. M.M. acknowl-
edges support from NSF under Grant No. DMR-1912799,
the Air Force Office of Scientific Research (AFOSR) un-
der award number FA9550-20-1-0073 as well as the start-
up funding from Michigan State University.

[1] A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl,
and M. D. Lukin, Photon-photon interactions via Ryd-
berg blockade, Phys. Rev. Lett. 107, 133602 (2011).

[2] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth,
A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić,
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