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We study the system of strongly interacting spinor bosons in a square lattice subject to the
isotropic Rashba SOC α = β. It supports collinear spin-bond correlated magnetic Y-x phase, a
gapped in-commensurate (IC-) co-planar IC-XY-y phase, a non-coplanar commensurate (C-) 3× 3
Skyrmion crystal phase (SkX). The state at the Abelian point α = β = π/2 is just an AFM state in
a rotated basis. Slightly away from the point, we identify a spurious U(1) symmetry, develop a novel
and non-perturbative method to calculate not only the gap, but also the excitation spectrum due
to the order from quantum disorder (OFQD) mechanism. We construct a symmetry based effective
action to investigate the quantum Lifshitz transition from the Y-x state to the IC-XY-y state and
establish the connection between the phenomenological parameters in the effective action and those
evaluated by the microscopic non-perturbative OFQD analysis in the large S limits. Experimental
implications on cold atoms and some 4d or 5d Kitaev materials are discussed.

1. Introduction. It was well known that ge-
ometric frustrations lead to fantastic quantum, topo-
logical phases and phase transitions in quantum spin
systems1–4. Novel frustrated phenomena in some typical
quantum compass models such as the Kitaev honeycome
lattice model5, 120◦ honeycomb lattice model6–8, and
Heisenberg-Kitaev model9 have also been studied. On
the other forefront, Rashba spin-orbit coupling (SOC) is
ubiquitous in various 2d or layered non-centrosymmetric
magnetic insulators, semi-conductor systems, metals and
superconductors10–17. There were also experimental
advances in generating various kinds of 2D SOC for
charge neutral cold atoms in both continuum and op-
tical lattices18–21. New experimental schemes22–26 were
successfully implemented to create a long-lived SOC gas
of quantum degenerate atoms. These cold atom experi-
ments set-up a very promising platform to observe many-
body phenomena due to the interplay between Rashba
SOC and interaction in optical lattices. It becomes im-
portant to investigate what would be the new quantum
or topological phenomena due to such an interplay.

In this work, we address this outstanding problem by
studying the system of strongly interacting spinor bosons
in a square lattice subject to the 2d Rashba SOC. We find
that the Rashba SOC provides a new class of frustrated
source which leads to novel and rich quantum phenomena
even in a square lattice summarized in the abstract and
Fig.1. Our results can be applied to ongoing and near
future cold atom experiments as soon as the heating is-
sues can be overcame in the strong coupling limit. They
may also shed considerable lights on the un-conventional
magnetic ordered states or putative quantum spin liquid
states in some 4d or 5d Kitaev materials3,4.

The tight-binding Hamiltonian of ( pseudo)-spin 1/2
bosons ( fermions ) hopping in a two-dimensional square
lattice subject to any combination of Rashba and Dres-

selhaus SOC is27–30:

HB = −t
∑

〈ij〉
(b†iσU

σσ′

ij bjσ′ + h.c.) +
U

2

∑

i

(ni − n)2 (1)

where t is the hopping amplitude along the nearest neigh-
bors 〈ij〉, n is taken to be an integer filling, Uii+x̂ = eiασx ,
Uii+ŷ = eiβσy are the non-Abelian gauge fields put on the
two links in a square lattice. U > 0 is the Hubbard onsite
interaction.
In the strong coupling limit U/t ≫ 1, to the order

O(t2/U), we obtain the effective spin s = n/2 Rotated
Ferromagnetic Heisenberg model (RFHM)30:

HR = −J
∑

i

[SiR(x̂, 2α)Si+x̂ + SiR(ŷ, 2β)Si+ŷ] (2)

with J = ±4t2/U > 0 for bosons/fermions, the R(x̂, 2α),
R(ŷ, 2β) are the two SO(3) rotation matrices around
the X and Y spin axis by angle 2α, 2β putting on the
two bonds along x̂, ŷ respectively. Expanding Ui,i+x̂ =
cosα + i sinασx, Ui,i+ŷ = cosβ + i sinβσy in Eq.1, one
can see that at the Abelian point α = β = π/2, the
standard hopping terms vanish, only the spin-flip hop-
ping term ( SOC) survive. As shown in30, at the Abelian
point, Eq.2 is simply the FM Heisenberg model in the

rotated ˜̃SU(2) basis H = −J
∑

ij

~̃̃
Si ·

~̃̃
Sj where

~̃̃
Si =

R(x̂, πn1)R(ŷ, πn2)~Si.
Both Eq.1 and Eq.2 at a generic (α, β) have the trans-

lational, the time reversal T , the three spin-orbital cou-
pled Z2 symmetries Px,Py,Pz symmetries30. Along the
isotropic Rashba limit α = β, the Pz symmetry is en-
larged to the spin-orbital coupled [C4 × C4]D symme-
try around the z axis. In this paper, we focus on
spinor bosons with the isotropic Rashba SOC α = β.
The generic case α 6= β is presented in a separate
publication31.
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FIG. 1. The phase diagram of Eq.2 when α = β+. The

state at α = β = π/2 is just an AFM state in ˜̃SU(2) ba-
sis. When αin < α < π/2, there is a gap opening in the
collinear Y-x phase generated by the order from quantum
disorder (OFQD) mechanism. There is a second order quan-
tum Lifshitz transition (QLT) at α = αin with the dynamic
exponent z = 1, from the Y-x phase to the coplanar IC-
XY-y phase32, then a second one to the C- non-coplanar
3 × 3 SkX phase at α = α33. The relevant numbers are
α0
in ∼ 0.3611π, αin ∼ 0.3526π, α33 ∼ 0.3402π, α−

33 ∼ 0.295π
and the ordering wavevector in the IC-XY-y is π − q0y with
qic ∼ 0.18π < q0y < 0.24π. When α = β−. All the phases
become their corresponding imaging phases related by the
[C4 × C4]D transformation except the 3 × 3 SkX phase is its
own image. So the two corresponding imaging phases can
coexist with any ratio along α = β.

2. The order from quantum disorders: selection of the
quantum ground state: It was shown the 2 × 1 ( Y-
x ) state30,32 is the exact quantum ground state along
the anisotropic line (α = π/2, α < β). Now we investi-
gate the physics along the diagonal line α = β near the
Abelian point α = β = π/2. At the classical level, the
2 × 1 Y-x state Sy = (−1)x ( Fig.2a) is degenerate with
the 1×2 X-y state Sx = (−1)y. In fact, due to a spurious
U(1) symmetry, there is a family of states called 2×2 vor-
tex states in Fig.2c: Si = ((−1)iy cosφ, (−1)ix sinφ, 0)
which are degenerate at the classical level. The order
from quantum disorder (OFQD) mechanism is needed to
find the unique quantum ground state upto the [C4×C4]D
symmetry in this regime. After making suitable rotations
to align the spin quantization axis along the Z axis, we in-
troduce 4 HP bosons a, b, c, d corresponding to the 4 sub-
lattice structure A,B,C,D shown in Fig.2c to perform a
systematic 1/S spin wave expansion33–35 for a generic

(α, β): H = E0 +2JS
[

H2 +
(

1√
S

)

H3+
(

1√
S

)2

H4+ · · ·
]

where E0 = −2NJS2(1 − cos 2α sin2 φ − cos 2β cos2 φ)
is the classical ground state energy, Hn denotes the n-th
polynomial of the boson operators. H2 can be diagonized
by a unitary transformation, followed by a Bogoliubov
transformation as:

H2 = E2 + 2
∑

n,k

ωn(k)α
†
n,kαn,k (3)

where n = 1, 2, 3, 4 is the sum over the 4 branches ( due
to the 4 sublattice A,B,C,D in Fig.2c ) of spin wave
spectrum in the Reduced BZ −π/2 < kx, ky < π/2 and

E2(φ) =
∑

k,n[ωn(k)−(1−cos 2α sin2 φ−cos 2β cos2 φ)/2]
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FIG. 2. The Collinear, spiral, vortex and non-coplanar states
in Fig.1. (a) The 2 × 1 ( Y-x ) state Sy = (−1)x (b) The
spin direction at the lattice sites x = 1, 2, 3, 4 of the 4 × 1
spiral state. The inset shows the spin axis for the collinear
and spiral states. (c) The classically degenerate family of ( 2
in , 2 out ) 2 × 2 vortex state. (d) The 3 × 3 non-coplanar
skyrmion crystal ( SkX ) state with non-vanishing skyrmion

density ~Si · ~Sj × ~Sk 6= 0 happens near α = β = π/3 which is
the most frustrated regime in the Wilson loop30. The inset
shows the spin axis for the 2× 2 vortex and 3× 3 SkX states.

is the 1/S quantum correction to the ground-state energy.
We first look at E0 near the Abelian point α = β =

π/2. If α > β, it picks the Y-x state30 with φ = π/2.
If α < β, it picks the X-y state with φ = 0. Set-
ting α = β, E0 = −2NJS2(1 − cos 2α) becomes φ in-
dependent, indicating the classical degenerate family of
states characterized by the angle φ along the whole di-
agonal line α = β. Fortunately, the quantum correction
E2(φ) =

∑

k,n[ωn(k, φ) − sin2 α] does depend on φ. As

shown in Fig.3a, E2(φ) reach its minimum at φ = 0 ( X-y
state ) or φ = π/2 ( Y-x state) which is related to each
other by the [C4 × C4]D symmetry. Expanding E2(φ)
around one of its minima φ = 0:

E2(φ) = E0
2 +

1

2
Bφ2 + κφ4 + · · · (4)

where one can identify the coefficient B(α) plotted in the
Fig.3b. The OFQD selection of the Y-x or X-y state at
α = β shows that there is a direct first order transition
from the Y-x state to the X-y state, so at α = β, there
is any mixture of the Y-x and X-y state in Fig.1.
Taking the Y-x state as the ground state, plugging φ =

π/2 into Eq.3, we find it supports the Cπ magnons30,32

at k = (0, π) + q. They condense along the diagonal line

arccos(1/
√
6) ≤ α ≤ π/2 with the gapless relativistic

dispersion:

ω−0(q) =
√

v2xq
2
x + v2yq

2
y (5)

where vx = cos(α)/2, vy = cos(α)
√

1− 6 cos2(α)/2.
Obviously, both velocities vanish at the Abelian point

α = β = π/2 dictated by the hidden ˜̃SU(2) symme-
try. Moving away from the Abelian point, vx keeps in-
creasing, but vy increases first, reaches a maximum, then

decreases, vanishes at α0
ic = arccos(1/

√
6) ∼ 0.36614π,
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indicating a possible quantum Lifshitz transition (QLT).
As to be shown below, the gapless magnon mode in Eq.5
is just a spurious Goldstone mode due to the spontaneous
breaking of the spurious U(1) symmetry.

0.2π 0.4π 0.6π 0.8π 1.0π

-1.10

-1.05

-1.00

0.0
φ

E2

α=β=0.45π

(a)

-0.90X10-4

-0.95

0.1π 0.2π 0.3π 0.4π 0.5π0.0π
0

2

4

6

8X10-3

B

(b)

α=β

1.0

0.5

A

0.0

1.5

2.0

FIG. 3. The order from the quantum disorder (OFQD) and
the gap opening on the spurious gapless mode in the Y-x state
in Fig.1. (a) The quantum correction E2(φ) to the ground-
state energy picks up Y-x at φ = 0 or X-y at φ = π/2 as the
ground state which is related to each other by the [C4 ×C4]D
symmetry. (b) The classical coefficient A(α)/J labeled by the
left axis ( the green line on the left ) and the quantum one
B(α)/J labeled by the right axis ( the red line on the right ).
Both vanish at the Abelian point α = β = π/2 as ∼ (π/2−α)2

and are monotonically increasing function when moving away
from the Abelian point. The Dashed line is located at α0

in ∼

0.3661π where the Y-x state becomes unstable at the linear
spin wave order. After incorporating the gap opening, the
α0
in is shifted to a smaller value αin ∼ 0.3526π. The gap ∆B

in Eq.7 keeps increasing when moving away from the Abelian
point α = β = π/2.

3. Order from quantum disorder (OFQD): the gap
opening and the spectrum: By using the spin coher-
ent state path integral formulation1,2,33, we will evaluate
the gap at the minimum (0, π) of the Cπ magnons in

the ˜̃SU(2) basis30. A general uniform state at ~q = 0 in

the ˜̃SU(2) basis can be taken as a Ferromagnetic (FM)
state with the polar angle (θ, φ). After transforming

back to the original basis by using ˜̃S1 = Rz(π)S1,
˜̃S2 =

Ry(π)S2,
˜̃S3 = Rx(π)S3,

˜̃S4 = S4, it leads to a 2 × 2
state characterized by the two angles θ and φ. Along
the diagonal line, its classical energy becomes H0 =
J [−2 sin2 α − 2 cos2 α sin2 θ] which is, as expected, φ in-
dependent. Any deviation from the Abelian point picks
up the XY plane with θ = π/2. So it reduces to the
2 × 2 vortex state shown in Fig.2c. Expanding around
the minimum H0 = J [−2 sin2 α+ 2 cos2 α(θ − π

2 )
2 + · · · ]

gives the stiffness A = 2J cos2 α shown in Fig.3b. Using
the spin coherent state analysis, we can write down the
quantum spin action at ~q = 0:

L(~q = 0) = iS cos θ∂τφ+
1

2
S2A(θ−π/2)2+

1

2
SBφ2 (6)

where we put back the spin S, the first term is the spin
Berry phase term, A ∼ (π/2 − α)2 and B ∼ (π/2 − α)2

are from the classical analysis and the OFQD analysis
Eqn.4 respectively. Eqn.6 leads to the gap

∆B =
√
SAB ∝

√
S (7)

which is beyond any 1/S expansion, so non-perturbative.
In fact, there are also corrections from the cubic H3 and
quartic H4 terms in the spin wave expansion listed above
Eqn.3, but they only contribute to order of 1 which is
subleading to the

√
S order in the 1/S expansion33–35.

As shown in Fig.3b, both A and B are monotonically in-
creasing along the diagonal line, so the gap also increase.
Plugging their values at α = α0

in = arccos(1/
√
6), Tak-

ing A/J = 1/3, B/J ≈ 8 × 10−3 and S = 1/2, we find
the maximum gap near the quantum Lifshitz transition
∆B/J ∼ 0.036.
In the SM136, we develop a new systematic non-

perturbative scheme to evaluate not only the mass gap
Eq.7, but also the whole spectrum:

ω−(qx, qy) =
√

∆2
B + v2xq

2
x + v2yq

2
y + u2q4y + · · · (8)

where v2y = a(α0
in−α) changes sign at α = α0

in. From the

gap vanishing condition37 ( See also Eq.10 ) at the IC-
wave-vectors qic = ±(∆B/u)

1/2, one can see the QLT is
shifted to αic = α0

in − 2u∆B/a. Plugging in the values
of ∆B and u, we find qic ∼ 0.18π. The shift is so small
that αic ∼ 0.3526π remains larger than α33 ∼ 0.3402π (
to be defined in Sec.5 ) shown in Fig.1. So there must be
an IC- phase intervening between the Y-x state and the
3× 3 state when α33 < α < αic in Fig.1.
4. The Quantum Lifshitz transition (QLT) from the

Y-x phase to IC-XY-y phase: Here we construct an ef-
fective action in terms of the pseudo-Goldstone mode φ
to describe the quantum Lifshitz transition. This is a
symmetry based phenomenological approach which is in-
dependent of the 1/S expansion in the previous sections.
Inside the Y-x phase along the diagonal line α = β, after
integrating out the massive conjugate variable θ − π/2,
we reach the following effective GL action in the con-
tinuum limit consistent with all the symmetries of the
microscopic Hamiltonian Eq.2

LY−x[φ] =
1

2A
(∂τφ)

2 + v2x(∂xφ)
2 + v2y(∂yφ)

2 + u2(∂2
yφ)

2

+
1

2
Bφ2 + κφ4 + · · · (9)

In general, it is difficult to evaluate the values of the
phenomenological parameters in Eq.9. However, in the
large S limit and away from the QLT point, they can be
evaluated by the microscopic calculations in the previous
sections. Indeed, by contrasting Eq.9 with Eq.6,7,8, one
can see A is from a classical contribution, B and κ are the
effective potential Eq.4 generated from the OFQD mech-
anism. Notably, the coefficient v2y = a(α − α0

in) tuned

by the SOC changes sign at α = α0
in. These matches

between the microscopic calculations in a large S limit
and the symmetry based effective action ensures the non-
perturbative OFQD calculation in Sec.3 is indeed correct.
It is physically more transparent to re-write Eq.9 in

the momentum space:

L[φ]Y −x,D = φ(−ωn,−qx,−qy)[ω
2
n/A+ v2xq

2
x + u2(q2y − q2ic)

2

+ ∆]φ(ωn, qx, qy) + κφ4 + · · · (10)
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where ∆ = ∆2
B − a2

4u2 (α− α0
in)

2 is the tuning parameter
of the QLT.
The spin can be expressed in terms of the order pa-

rameter φ when using the shift φ → φ+ π/2 and setting
φ small.

Si ∼ (−(−1)iyφ, (−1)ix , 0) (11)

So we conclude that when ∆ > 0, 〈φ〉 = 0, it is inside
the Y-x phase. When ∆ < 0, then

〈φ〉 = P0 cos(qicy + φ0) (12)

where P0, φ0 need to be fixed by the 4th order κ term.
Substituting it into Eq.11 shows that the system is in
the IC-XY-y phase32. The smallness of 〈φ〉 justifies the
expansion in Eq.4. The transition from the Y-x to the IC-
state is a quantum Lifshitz transition with the dynamic
exponent z = 1. All the quantum critical scalings will
be evaluated in31 by 1/N expansion and 4− ǫ expansion
with ǫ = 1.
5. The 3 × 3 non-coplanar SkX phase: Near α =

β = π/3, it is natural to take a 3 × 3 ansatz: S(ix,iy) =
S(ix+3m,iy+3n) with m,n ∈ Z. We estimate its classical
ground-state energy by minimizing E3×3({φi, θi}0≤i≤9)
over its 18 variables. Along the diagonal line (α = β),
as long as α is not too small, the minimization of E3×3

always leads to the 3 × 3 SkX state which respects the
[C4 × C4]D symmetry ( Fig.2d ). The total spin in the
3 × 3 unit cell is Sunit =

∑

i Si = (0, 0, 4 × 10−3) which
has exact vanishing Sx, Sy components, but still a small
non-vanishing Sz component.
Comparing the classical ground energy of the 3×3 SkX

with that of the Y-x state EY −x = −2J sin2 α leads to
a putative first order transition between the two states
at α33 ≈ 0.340188π which is smaller than αic ∼ 0.3526π
( Fig.1 ). So a putative direct first order transition be-
tween the Y-x state and the 3 × 3 SkX splits into two
second order QLTs with z = 1 with the IC-XY-y phase
intervening between them in Fig.1. When approaching
α = β from the anisotropic line (α = π/2, β) from the
right31, we find α = α33 lies on the constant contour
line of the C-IC magnons (0, k0y) at k0y ∼ π − 0.24π. So

0.18π < q0y < 0.24π in the IC-XY-y phase α33 < α < αin

(Fig.1).
6. Possible experimental implications: The heating is-

sue has been well under control in the weak coupling limit
in recent cold atom experiments18–20,22–26,38. So various
exotic magnetic superfluid phenomena can be observed
in the current cold atom experiments. However, it gets
worse as the coupling increases. The RFHM Eq.2 can
only be reached in the strong coupling limit. So the rich
magnetic Mott phenomena discovered in this manuscript
can be observed only after the heating issue can be re-
solved in the strong coupling limit. Now, we turn its
qualitative applications in the strongly correlated 4d or
5d materials with strong SOC.
Naively, due to its microscopic bosonic nature, the

RFHM Eq.2 may not be useful to describe the magnetism

in various materials with SOC. However, the RFHM
can be expanded30 as Heisenberg-Kitaev (or Compass)-
Dzyaloshinskii-Moriya (DM)39 form:

HR =
∑

〈ij〉
JH ~Si · ~Sj +

∑

〈ij〉a
JKSa

i S
a
j +

∑

〈ij〉a
JDâ · ~Si × ~Sj

(13)
where â = x̂, ŷ and JH = cos 2α, JK = 2 sin2 α, JD =
sin 2α. One can estimate their separate numerical values
near the in-commensurate phase ( IC-XY-y ) α = α0

in =
arccos 1√

6
in Fig.1: the Heisenberg term JH ∼ −2/3

is AFM, the Kitaev term JK ∼ 5/3 is FM, the DM

term JD ∼
√
5/3. So the model becomes a domi-

nant FM Kitaev term plus a small AFM Heisenberg
term and a small DM term. This is indeed the case in
the so called 5d Kitaev materials such as A2IrO3 with
A = Na2, Li2 or more recent 4d materials α − RuCl3.
So far, only a Zig-Zag phase or an IC- phase were ob-
served experimentally40,41, no quantum spin liquids5,9

have been found.
7. Discussions: It is instructive to contrast the

Quantum phenomena achieved here by the analytic per-
turbative and non-perturbative methods with those re-
sults achieved by classical Monte-Carlo simulations in the
two earlier works28,29. The authors in28,29 did classical
Monte-Carlo simulations using the representation Eq.13
on a small finite size system. These two numerical papers
did not have the concepts of the frustrations due to the
Rashba SOC. Ref.28 found the classical 2× 1, 3× 3 SkX
and 4 × 1 states in Fig.1. It also found a Ferromagnetic
(FM) state near the orgigin α = β = 0. Ref.29 found
the classical 2× 2 vortex, 3 × 3 SkX and 4 × 1 states in
Fig.1. Our work study the quantum effects on the RFHM
Eq.2 analytically . In Sec.2, we found the 2 × 2 vor-
tex is classically degenerate with the Y-x and X-y state,
but the ” order form quantum disorder” (OFQD) mech-
anism picks up either Y-x and X-y state as the quantum
ground state. In Sec.3, we also evaluated the excitation
spectrums corrected by the mechanism. This anlysis also
leads to the instability of the Y-x ( or X-y ) state to the
IC-SkX phase. In Sec.4, we constructed an effective ac-
tion to describe the quantum Lifshitz transition (QLT)
with the dynamic exponent z = 1 in Fig.1 and also iden-
tify the spin-orbital structure of the IC-SkX phase. Of
course, it would be impossible to detect the quantum IC-
SkX phase by any classical Monte-Carlo simualations at
any finite size system, let alone to study the QLT. Only
by the controlled, non-perturabative analytical calcula-
tions, one can show there must be an in-commensurate
phase intervening between the collinear Y-x phase and
the non-coplanar 3× 3 SkX phase. Of course, the quan-
tum model Eq.2 presents very serious sign problem to
quantum Monte-Carlo simulation. So the classical clas-
sical Monte-Carlo simualations used in28,29 can not be
extended to study the novel quantum and topological
phenomena address in this work.
As alerted above, the second term in Eq.13 is a

quantum compass model in a square lattice instead
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of the Kitaev model in a honeycomb lattice. In or-
der to have quantitative impacts on the 3d or 4d Ki-
taev materials40,41, it is important to extend the results
achieved here in a square lattice to a honeycomb lattice

with 3 SOC parameters α, β, γ.
We thank Wei Ku for the hospitality during our visit

at T D Lee institute. We acknowledge AFOSR FA9550-
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28 J. Radić, A. Di Ciolo, K. Sun, and V. Galitski, Exotic

Quantum Spin Models in Spin-Orbit-Coupled Mott Insula-

tors, Phys. Rev. Lett. 109, 085303 (2012);
29 W. S. Cole, S. Zhang, A. Paramekanti, and N. Trivedi,

Bose-Hubbard Models with Synthetic Spin-Orbit Coupling:

Mott Insulators, Spin Textures, and Superfluidity, Phys.
Rev. Lett. 109, 085302 (2012).

30 Fadi Sun, Jinwu Ye, Wu-Ming Liu, Quantum magnetism of
spinor bosons in optical lattices with synthetic non-Abelian
gauge fields, Phys. Rev. A 92, 043609 (2015).

31 Fadi Sun and Jinwu Ye, Two classes of organization
principle: quantum/topological phase transitions meet
complete/in-complete devil staircases and their experimen-
tal realizations, arXiv:1603.00451, in preparation.

32 Here we still use the same notation used in30. In the Y-
(π, 0) called Y-x state, the first letter indicates the spin
polarization, the second letter indicates the (π, 0) orbital
order. Along the anisotropic line (α = π/2, β), it supports
three kinds of magnons C0, IC and Cπ with their min-
imum at (0, 0), (0,±k0

y) and (0, π) respectively. The IC-
XY-y phase means IC- in the spin XY plane with the IC-
momentum along the y axis.

33 Murthy, G., Arovas, D. & Auerbach, A. Superfluids and
supersolids on frustrated two-dimensional lattices. Phys.

Rev. B 55, 3104 (1997).



6

34 R. T. Scalettar, G. G. Batrouni, A. P. Kampf, and G.
T. Zimanyi, Simultaneous diagonal and off-diagonal order

in the Bose-Hubbard Hamiltonian, Phys. Rev. B 51, 8467
(1995).

35 Jun-ichi Igarashi, 1/S expansion for thermodynamic quan-
tities in a two-dimensional Heisenberg antiferromagnet at
zero temperature, Phys. Rev. B 46, 10763-10771 (1992);
Jun-ichi Igarashi and Tatsuya Nagao, 1/S-expansion study
of spin waves in a two-dimensional Heisenberg antiferro-
magnet, Phys. Rev. B 72, 014403 (2005).

36 See the supplementary material for the derivation of the
complete excitation spectrum Eq.8 due to the OFQD phe-
nomena.

37 Longhua Jiang and Jinwu Ye, Lattice structures of Larkin-

Ovchinnikov-Fulde - Ferrell (LOFF) state, Phys. Rev. B
76, 184104 (2007).

38 Gong, M. et al. Dzyaloshinskii-Moriya Interaction and Spi-
ral Order in Spin-orbit Coupled Optical Lattices. Sci. Rep.
5, 10050, 2015.

39 I. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958); T.
Moriya, Phys. Rev. 120, 91 (1960).

40 A. Biffin, et.al, Noncoplanar and Counterrotating Incom-
mensurate Magnetic Order Stabilized by Kitaev Interac-
tions in Li 2 IrO 3, Phys. Rev. Lett. 113, 197201

41 A. Biffin, et. al , Unconventional magnetic order on the
hyperhoneycomb Kitaev lattice in ?Li2IrO3: Full solution
via magnetic resonant x-ray diffraction, Phys. Rev. B 90,
205116 ( 2014 )


