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Generalized thermalization is a process that occurs in integrable systems in which unitary dy-
namics, e.g., following a quantum quench, results in states in which observables after equilibration
are described by generalized Gibbs ensembles (GGEs). Here we discuss an emergent eigenstate con-
struction that allows one to built emergent local Hamiltonians of which one eigenstate captures the
entire generalized thermalization process following a global quantum quench. Specifically, we study
the emergent eigenstate that describes the quantum dynamics of hard-core bosons in one dimension
(1D) for which the initial state is a density wave and they evolve under a homogeneous Hamiltonian.

Much progresses has been made in the field of nonequi-
librium quantum dynamics in the past two decades [1–5].
One of the focuses in this field has been understanding
how to describe isolated quantum systems after equilibra-
tion. In addition to being of fundamental interest, this
is of relevance to experiments with ultracold quantum
gases [6–15]. Thanks to both experimental and theoreti-
cal studies, we now know that after equilibration observ-
ables in generic (nonintegrable) quantum systems can be
described using traditional ensembles of statistical me-
chanics while in integrable systems they can be described
using generalized Gibbs ensembles [16–23]. This is theo-
retically understood in the context of eigenstate thermal-
ization for generic systems [3, 24–26] and of generalized
eigenstate thermalization for integrable systems [27–29].
The actual dynamics of observables between their initial
values and the equilibrated ones is in general nonuniver-
sal and needs to be studied in a case by case basis.

A different focus in the field of nonequilibrium quan-
tum dynamics has been the realization of exotic states
of matter, specially those that may not be accessible
in equilibrium. This is a topic on which periodic driv-
ing has been the main focus of attention [30], e.g., to
realize nontrivial topological states [31–36]. A special
class of quantum quenches (geometric quenches) has
also been used to created exotic states in strongly in-
teracting one-dimensional bosonic systems. For exam-
ple, to produce dynamical quasicondensation at finite
momentum [37, 38] as well as expanding bosonic gases
with fermionic momentum distributions [39–41]. Sur-
prisingly, the latter far-from-equilibrium states exhibit
power-law correlations and low entanglement typical of
gapless ground states in one dimension. Those states
were recently shown to be eigenstates (and specifically
ground states) of emergent local Hamiltonians [42, 43].

In this work we tackle a question that bridges the
two focuses mentioned above, namely, is it possible for
an eigenstate of an emergent local Hamiltonian to de-
scribe the entire path to (generalized) thermalization
after a global quantum quench? In contrast to the
states generated by geometric quenches in Refs. [37–41],
those that result in (generalized) thermalization exhibit

a rapid growth of entanglement; their entanglement en-
tropy grows linearly in time [44–48]. Since the evolution
time t after the quench enters the emergent Hamiltonian
as a parameter, this means that the desired eigenstate
must have an entanglement entropy that is proportional
to a Hamiltonian parameter.

To introduce the emergent local Hamiltonians, let us
consider a quantum quench (at t = 0) from Hamil-

tonian Ĥ(0) → Ĥf [both local, namely, they are ex-
tensive sums of operators with support on O(1) sites],

for an initial state |ψ0〉 that is an eigenstate of Ĥ(0).

At t > 0, |ψ(t)〉 = exp(−iĤf t)|ψ0〉 is an eigenstate

of M̂(t) = exp(−iĤf t)Ĥ(0) exp(iĤf t) (we set ~ ≡ 1).

M̂(t) is in general highly nonlocal, and can be written as

M̂(t) = Ĥ(0) +

∞∑
n=1

(−it)n

n!
Ĥn , (1)

where Ĥn = [Ĥf , [Ĥf , · · · , [Ĥf , Ĥ(0)]···]] is a nested n-

order commutator. If Ĥn vanishes for n = O(1) then

M̂(t) is a local operator (as per our definition above).

We then call Ĥ(t) ≡ M̂(t) the emergent local Hamilto-
nian, of which |ψ(t)〉 is an eigenstate [42]. In the context
of geometric quenches, in which confining potentials are
turned off, this description has allowed to understand
and characterize low-entanglement far-from-equilibrium
states [42, 43, 49], and emergent Hamiltonians can be
used to speed up quasi-adiabatic transformations [50].

Our interest here are global quenches that produce
highly entangled far-from-equilibrium states. We focus
on 1D lattice systems with open boundary conditions (see
Ref. [51] for results for periodic boundary conditions), as
described by the hard-core boson Hamiltonian:

Ĥ = −J
L/2−1∑

l=−L/2+1

(b̂†l b̂l+1 + H.c.) + V

L/2∑
l=−L/2+1

(−1)lb†l b̂l ,

(2)

where b̂†l (b̂l) are the boson creation (annihilation) oper-

ators at site l (they satisfy b̂†l b̂
†
l = b̂lb̂l = 0), J (V ) is

the hopping (local alternating potential) strength, and L
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(even) is the number of lattice sites. We set J ≡ 1, and
the lattice spacing a ≡ 1, in what follows. The initial
state |ψ0〉 for our quenches is taken to be the ground

state of Ĥi = Ĥ(V � 1) [odd (even) sites occupied
(empty), see Fig. 1(a)] and the time evolution is stud-

ied under Ĥf = Ĥ(V = 0). Dynamics of density-wave
states like the one considered here have been studied in
experiments with ultracold quantum gases in optical lat-
tices [8, 52, 53], as well as theoretically [54–56]. We note
that |ψ0〉 for V →∞ is a highly excited eigenstate of

Ĥ(0) =

L/2∑
l=−L/2+1

l b̂†l b̂l , (3)

so our quench Ĥi → Ĥf starting from the ground state
of Ĥi is equivalent to the quench Ĥ(0) → Ĥf starting
from a highly excited eigenstate of Ĥ(0). (See Ref. [51]

for a discussion of other choices of Ĥ(0), e.g., with l2.)

Mapping hard-core bosons onto spinless fermions b̂l =

eiπ
∑

m<l ĉ
†
mĉm ĉl [57], one can reformulate this problem

in the language of spinless fermions with initial Hamil-

tonian Ĥ
(0)
SF =

∑
l l ĉ
†
l ĉl and final Hamiltonian Ĥf

SF =

−
∑
l (ĉ
†
l ĉl+1 + H.c.). For those two Hamiltonians one

can show that M̂(t) = Ĥ(t) + B̂(t), with an emergent
Hamiltonian of the form [42]

Ĥ(t) =

L/2∑
l=−L/2+1

l ĉ†l ĉl − t
L/2−1∑

l=−L/2+1

(iĉ†l+1ĉl + H.c.), (4)

in which the second term is the product of the time t
after the quench and the particle-current operator, and

B̂(t) =
∑∞
n=2

(−it)n
n! B̂n. The operators B̂n are one-

particle operators whose support grows from the open
boundaries of our chains linearly with n [42, 51].

We define |Ψt〉 to be the many-body eigenstate of Ĥ(t)
that corresponds to |ψ0〉 at t = 0, which we can track
as t changes because we know its eigenenergy and its oc-
cupied single-particle eigenstates. The corrections to the
overlap |〈Ψt|ψ(t)〉| that occur because of the “boundary

operator” B̂(t) were shown to be exponentially small (in
L) for extensive times (in L) for initial states of interest
for geometric quenches [42]. This is not the case for our
initial density-wave state, nor for other initial states of in-
terest to the question of (generalized) thermalization, so
one may think that |Ψt〉 is of no use for problems involv-
ing large entanglement production. Remarkably, because
of the finite speed of propagation of information from the
boundaries, |Ψt〉 provides exact predictions for the expec-
tation values of observables in the bulk of large systems.
With that in mind, we mostly focus on observables that
have support on the central s sites of the lattice, namely,
with j ∈ jS = {−s/2 + 1, ..., s/2}, as indicated by the
shaded region in Fig. 1(a).

Quantum dynamics. We first study the von Neumann
entanglement entropy SHalf(t) for a bipartition of the sys-
tem into two halves, see Fig. 1(b). We calculate SHalf(t)
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FIG. 1. (a) Sketch of our initial density-wave state, which is
a product state with odd sites occupied (blue dots) and even
sites empty, in a 1D lattice with L sites and open boundary
conditions. The shaded area marks the central region of s
lattice sites in which most observables have their support. (b)
Time evolution of the half-system von Neumann entanglement
entropy SHalf(t). The lattice bipartition is sketched in the
inset. We calculate SHalf(t) in the exact time-evolving state
|ψ(t)〉 (solid line), and in the corresponding eigenstate |Ψt〉 of

the emergent Hamiltonian Ĥ(t) (dashed line), for L = 2000.
Inset: Subtracted overlap 1 − |〈Ψt|ψ(t)〉| vs t for the states
involved in the SHalf(t) calculations in the main panel.

numerically using the one-body correlation matrix of the
half system [58] in the exact time-evolving state |ψ(t)〉
and in the corresponding eigenstate |Ψt〉 of the emergent

Hamiltonian Ĥ(t). The results in Fig. 1(b) show that
both entanglement entropies agree in the linear regime
SHalf(t) ∝ t. They depart from each other at times
close to t∗ ≈ L/(2vmax), where vmax = 2 is the maxi-
mal group velocity, which is the time at which the entan-
glement entropy is expected to saturate to its extensive
(L-dependent) value [59]. This is the time it takes for a
particle with vmax to move from the boundaries to the
center of the chain. In stark contrast (and as expected),
the inset in Fig. 1(b) shows that the overlap |〈Ψt|ψ(t)〉|
vanishes in times that are O(1).

Next, we focus on observables for the hard-core bosons
that are accessible in experiments with ultracold gases in
optical lattices [60–62], namely, the site occupations and
the quasimomentum distributions. While dynamics of
the site occupations are identical for hard-core bosons
and noninteracting fermions, dynamics of quasimomen-
tum distributions are not. We study the integrated rel-
ative differences between observables in the exact time-
evolving state |ψ(t)〉 and in the eigenstate |Ψt〉 of the
emergent Hamiltonian H(t), defined as

∆n(s, t) =

∑
j∈jS |nj(t)− ñj(t)|∑

j∈jS nj(t)
(5)

for site occupations, where nj(t) = 〈ψ(t)|b̂†j b̂j |ψ(t)〉 and
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FIG. 2. Integrated relative differences between observables in
the exact time-evolving state |ψ(t)〉 and in the eigenstate |Ψt〉
of the emergent Hamiltonian. (a) and (c): Density plots (in
log10 scale) of ∆n(s, t) and ∆m(s, t) from Eqs. (5) and (6),
respectively, for L = 2000. White dashed lines depict t/t∗ =
1 − s/L, where t∗ = L/4. (b) and (d): Logarithm (base 10)

of the scaled differences
√
L∆n(s) and L∆m(s), respectively,

as functions of s/L, at a fixed time t/L = 0.1 and for three
different system sizes L = 500, 1000, 2000.

ñj(t) = 〈Ψt|b̂†j b̂j |Ψt〉, and

∆m(s, t) =

∑
k∈kS |mk(t)− m̃k(t)|∑

k∈kS mk(t)
(6)

for the quasimomentum distributions, defined as

mk(t) =
1

s

∑
{j,l}∈jS

eik(j−l)Cjl(t) (7)

for |ψ(t)〉, namely, as the Fourier transform of the one-

body correlation matrix Cjl(t) = 〈ψ(t)|b̂†j b̂l|ψ(t)〉 within

the region with s sites sketched in Fig. 1(a). The number
of sites s is used to determine the set of kS numbers so
that

∑
k∈kS mk(t) is the number of bosons in that region.

m̃k(t) in Eq. (6) is the corresponding momentum distri-

bution for |Ψt〉, obtained replacing Cjl(t) → C̃jl(t) =

〈Ψt|b̂†j b̂l|Ψt〉 in Eq. (7). All expectation values are calcu-

lated following the approach introduced in Refs. [37, 63].
Figures 2(a) and 2(c) show density plots (notice the

log10 scale) of ∆n(s, t) and ∆m(s, t), respectively, as
functions of the scaled volume s/L and time t/L, for a
lattice with L = 2000 sites. As expected from the previ-
ous discussions, because of the boundary operator B̂(t),
the region of applicability of the emergent eigenstate so-
lution shrinks with increasing the scaled time t/L. Using
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FIG. 3. Dynamics of one-body correlations and momen-
tum distributions in a lattice with L = 2000 sites. (a) and

(c), One-body correlations |C1l(t)| = |〈ψ(t)|b̂†1b̂l|ψ(t)〉| and

|C̃1l(t)| = |〈Ψt|b̂†1b̂l|Ψt〉|, respectively (measured with respect
to site j = 1). Due to the short-range nature of correlations,
we only show results for l ∈ [−20, 20]. (b) and (d) Quasi-
momentum distributions mk(t) and m̃k(t), respectively, for
s = 100. The inset in (d) shows the quasimomentum resolved
relative difference δmk(t) = |mk(t)− m̃k(t)|/mk(t).

the maximal group velocity vmax = 2 allows one to esti-
mate the region in which the emergent eigenstate solution
is accurate (see the dashed line).

The effect of increasing the system size L at a fixed
scaled time t/L = 0.1 is shown in Figs. 2(b) and 2(d).

One can see that the scaled differences
√
L∆n(s) and

L∆m(s) exhibit sharp transitions from vanishingly small
values at s/L . 0.6 to nearly constant values at s/L >
0.6. s/L = 0.6 is expected from t/t∗ = 1 − s/L for
t/L = 0.1. Most notably, for s/L . 0.6 the scaled dif-
ferences decay rapidly with increasing L. This suggests
that, so long as s/L . 1 − t/t∗ for large system sizes,
the emergent eigenstate solution provides a numerically
exact description of the time evolution of observables in
the central region of the lattice with s sites.

On their way to the long-time equilibrated values, the
dynamics of hard-core boson observables for our initial
density-wave state and final homogeneous Hamiltonian is
nontrivial, and it is fully captured by the emergent eigen-
state solution. In Figs. 3(a) and 3(c), we show the time

evolution of one-body correlations |C1l(t)| and |C̃1l(t)|.
Our initial state being a product state has no correla-
tions, but they develop in time and reach their maximal
extent at time t ≈ 1, after which they decrease mono-
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tonically with time. As a result of the emergence of one-
body correlations at short times after the quench, peaks
(at k = 0 and π) and dips (at k = ±π/2) develop in the
corresponding hard-core boson momentum distributions,
shown in Figs. 3(b) and 3(d) (this does not happen for
the fermions onto which they are mapped), and they dis-
appear at long times as the system equilibrates to the
generalized Gibbs ensemble prediction. For finite sys-
tems, such as the one considered in Fig. 3, a revival in
|C1l(t)| and |C̃1l(t)| occurs at t∗ ≈ L/4, when the light-
cones starting at the boundaries of our chain reach the
lattice center. This is about the time at which the emer-
gent eigenstate description breaks down. Beyond that
time, one can see differences between |C1l(t)| [Fig. 3(a)]

and |C̃1l(t)| [Fig. 3(c)], and between mk(t) and m̃k(t)
[inset in Fig. 3(d)].

Generalized thermalization. Let us conclude showing
that the emergent eigenstate solution allows one to accu-
rately describe the approach of observables to their long-
time equilibrated values. Since hard-core bosons in 1D
are integrable, the proper statistical ensemble to describe
observables after equilibration is the GGE [16, 29],

ρ̂GGE =
1

ZGGE
e−

∑
k λk Îk , (8)

where ZGGE = Tr[exp(−
∑
k λk Îk)] is the partition func-

tion, {Îk} are one-body conserved quantities given by the
occupations of single-particle eigenstates of the fermionic

Hf
SF [defined below Eq. (3)], and {λk} are the La-

grange multipliers set by the initial state, λk = ln[(1 −
〈ψ0|Îk|ψ0〉)/〈ψ0|Îk|ψ0〉]. The GGE is particularly simple

for our initial state because 〈ψ0|Îk|ψ0〉 = 0.5, so that
λk = 0 for all k. Hence, the GGE is equivalent to a
grand-canonical ensemble at infinite temperature [64].

In analogy to Eqs. (5) and (6), we define the integrated
relative difference of site occupations,

∆nGGE(s, t) =

∑
j∈jS |nj(t)− n

GGE
j |∑

j∈jS n
GGE
j

, (9)

and of the quasimomentum distribution,

∆mGGE(s, t) =

∑
k∈kS |mk(t)−mGGE

k |∑
k∈kS m

GGE
k

, (10)

where nGGE
j = mGGE

k = 1/2. Equivalently, we define
∆ñGGE(s, t) by replacing nj(t)→ ñj(t) and ∆m̃GGE(s, t)
by replacing mk(t) → m̃k(t). Since the site occupations
of the hard-core bosons are identical to those of nonin-
teracting fermions, it is straightforward to show that, in
the thermodynamic limit, ∆nGGE(s, t) = |J0(4t)|, where
J0 is the zeroth-order Bessel function of the first kind.

In Fig. 4(a) [Fig. 4(b)] we show results for
∆nGGE(s, t) = |J0(4t)| and ∆ñGGE(s, t) [∆mGGE(s, t)
and ∆m̃GGE(s, t)] vs t for s = 300 in a system with
L = 2000. The numerical results obtained within the
emergent eigenstate solution are indistinguishable from
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FIG. 4. Generalized thermalization on a lattice with L =
2000. (a) Shows ∆nGGE(s, t) = |J0(4t)| and ∆ñGGE(s, t),
while (b) shows ∆mGGE(s, t) and ∆m̃GGE(s, t), vs t for s =
300. The dashed lines show the result of power-law fits ∝ t−α
for t ≥ 100, with α = 0.50 in (a) and α = 1.00 in (b). The
inset in (b) shows ∆m̃GGE(s, t) for three values of s.

the analytical results for ∆nGGE(s, t) and from the exact
numerical results for ∆mGGE(s, t). The inset in Fig. 4(b)
shows that the finite-size effects associated to the value
of s selected are negligible in ∆m̃GGE(s, t).

We note that the relative differences vanish as power
laws in time t−α, with α = 0.50 for ∆nGGE(s, t)
and ∆ñGGE(s, t), and α = 1.00 for ∆mGGE(s, t) and
∆m̃GGE(s, t). Power-law approaches to the GGE predic-
tions are common in integrable models like the one con-
sidered here [29, 65–68]. For an accurate description of
such power-law relaxations in the context of the emergent
eigenstate solution, one can simply increase L keeping
t/L ≤ const, such that ∆ñGGE(s, t) and ∆m̃GGE(s, t) can
be made arbitrary small while ensuring that the emergent
eigenstate solution is numerically exact.

Summary. We have shown that it is possible to con-
struct emergent local Hamiltonians of which one eigen-
state describes the entire generalized thermalization pro-
cess following a quantum quench that produces exten-
sive entanglement. Namely, the “emergent” eigenstate
mirrors both the far from equilibrium stages as well as
the equilibrated one. In the specific construction con-
sidered here, the dynamics in a subsystem of size s is
correctly described by the emergent eigenstate for times
t/t∗ . 1 − s/L with t∗ = L/(2vmax), where vmax is the
maximal group velocity in the lattice. A novel byproduct
of our construction is that, for t < t∗, our eigenstate of
interest exhibits an entanglement entropy that is linear
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with t, which is a parameter in the emergent Hamilto-
nian. This is to be contrasted to the traditional area- vs
volume-law discussion about the entanglement entropy of
Hamiltonian eigenstates. Here the entanglement entropy
is a (linear) function of a Hamiltonian parameter.

The ultimate limits of emergent constructions and
their applicability remain to be explored. In the con-
text of geometric quenches, emergent eigenstate solutions
have been provided for a wide range of trapped hard-core
boson and spinless fermion systems in the ground state

and at nonzero temperature [42, 43, 50], and for domain
walls in spin-1/2 XXZ chains [42]. Our results here open
the door to using emergent eigenstate solutions to ex-
plore global quenches, which due to the high entangle-
ment they produce are much more challenging to study
computationally than geometric quenches.
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