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Quantum resource theories provide a unified framework to quantitatively analyze inherent quan-
tum properties as resources for quantum information processing. So as to investigate the best way
for quantifying resources, desirable axioms for resource quantification have been extensively studied
through axiomatic approaches. However, a conventional way of resource quantification by resource
measures with such desired axioms may contradict rates of asymptotic transformation between re-
sourceful quantum states due to an approximation in the transformation. In this paper, we analyze a
novel axiom, asymptotic consistency of resource measures, and we investigate asymptotically consis-

tent resource measures, which quantify resources without contradicting the rates of the asymptotic
resource transformation. We prove that relative entropic measures are consistent with the rates for a
broad class of resources, i.e., all convex finite-dimensional resources, e.g., entanglement, coherence,
and magic, and even some non-convex or infinite-dimensional resources such as quantum discord,
non-Markovianity, and non-Gaussianity. These results show that consistent resource measures are
widely applicable to the quantitative analysis of various inherent quantum-mechanical properties.

I. INTRODUCTION

Quantum resource theories (QRTs) [1, 2] provide a
unified framework for quantitatively analyzing quantum
properties, such as entanglement [3] and magic [4–6],
which underlies the advantage of quantum information
processing over classical information processing. General
frameworks to reveal the universal properties of quan-
tum resources have been widely studied [2, 7–17], and
quantification of resources is one of the major interests
of QRTs [18–25]. To quantify resources, we use real-
valued functions of states called resource measures. Re-
source measures can quantify resources without contra-
dicting one-shot convertibility of resources; that is, the
resource amount quantified by a resource measure does
not increase when we transform a resource by free op-
erations without error. For example, the relative en-

tropy of resource, that is, the relative entropy between
a given state and its closest free state, is conventionally
used in various QRTs [4, 26–32]. With various resource
measures proposed, desirable properties of resource mea-
sures have been extensively studied through axiomatic
approaches [2, 19, 33–37] to seek the best resource mea-
sure.
On the other hand, it is known that resources are not

necessarily comparable in terms of the exact convertibil-
ity. For example, in the QRT of magic for qutrits, there
are two classes of states impossible to be exactly con-
verted to each other using free operations [4]. Moreover,
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resource measures with conventionally adopted axioms,
i.e., asymptotic continuity and additivity, may contra-
dict rates of asymptotic state conversion [2], where many
copies of a given state are converted by free operations
into many copies of a target state within a vanishingly
small but nonzero error. Therefore, it is vital to investi-
gate properties of resource measures associated with the
asymptotic state conversion in addition to the exact con-
version. While these two concepts, resource measures
and asymptotic state conversion, are previously discussed
separately, we proposed in Ref. [2] a concept of asymp-
totically consistent resource measures, or consistent re-

source measures for short, which quantify resources with-
out contradicting the rates of the asymptotic state con-
version as well as the exact conversion. Reference [2] also
shows that a relative entropic measure called the regular-

ized relative entropy of resource serves as a consistent
resource measure in QRTs with particular restrictions,
namely, convex and finite-dimensional QRTs with a full-
rank free state.

However, physically well-motivated resources do not
necessarily satisfy these restrictions. For example, the
sets of states that have no quantum discord, e.g.,
classical-classical states and classical-quantum states, are
not convex [38]. In addition, the set of quantum Markov
chains [39] and that of Gaussian states [40] are also known
to be non-convex. Moreover, the Gaussian states are de-
fined on an infinite-dimensional state space. Therefore,
when we regard these properties as quantum resources,
the existing technique for proving the consistency of the
entropic measure is no longer directly applicable [2, 41],
and a substantial breakthrough is needed for further de-
velopment of general QRTs that cover such non-convex
or infinite-dimensional resources.
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In this paper, we investigate the regularized rela-
tive entropy of resource as a prospective candidate
for a consistent resource measure even for the general
classes of resources. We prove the consistency of the
regularized relative entropy of resource in all finite-
dimensional convex QRTs even without full-rank free
states. Moreover, as physically well-motivated non-
convex or infinite-dimensional resources, we study dis-
cord, non-Markovianity, and non-Gaussianity. Even
though the proof technique of the previous work cannot
be straightforwardly applied due to the non-convexity
and the infinite-dimensionality, we analyze the consis-
tency of the regularized relative entropy of resource for
these three resources. A more detailed overview of our
results is at the beginning of Sec. III. Here, we emphasize
that the concept of consistent resource measures accom-
plishes the fundamental and physically intuitive property
that resources do not increase under free operations in
both asymptotic and one-shot state conversions. Even
though the regularized relative entropy of resource is a
measure asymptotically defined, which may not be ex-
tracted with one-shot manipulation, the regularized rel-
ative entropy still qualifies as a valid resource measure
with monotonicity under one-shot state conversion.
Our results show the existence of a consistent resource

measure even for physically important classes of non-
convex or infinite-dimensional resources, namely, discord,
non-Markovianity, and non-Gaussianity, which are not
covered in our initial work [2] introducing consistent
resource measures. Our analysis should be an essen-
tial first step for the breakthrough in general QRTs to
broadly cover the general class of resources. We believe
that our investigation for consistent resource measures
leads to further understandings of quantifications of re-
sources useful for studying a larger class of physically
well-motivated quantum phenomena.

II. CONSISTENT RESOURCE MEASURE

In this section, we provide a brief review of consistent
resource measures. For more details, see Sections 6.3 and
6.4 of Ref. [2]. Throughout this paper, we let D(H) de-
note the set of states on a quantum system H, and we
consider a subset S(H) ⊆ D(H) to be the set of states of
interest in QRTs. In a QRT, free operations are defined
as a subclass of quantum operations (linear completely
positive and trace-preserving maps) that is closed under
composition and tensor product, and includes the iden-
tity map and the (partial) trace [1, 2]. Free states on H
are states in S(H) into which an arbitrary state can be
converted by free operations. To begin with, we provide
a definition of a resource measure.

Definition 1 (Resource Measure). A resource measure
RH is a family of real functions from S (H) to R satisfying
monotonicity: for any states φ ∈ S(H) and ψ ∈ S(H′),

∃N : free operation s.t. N (φ) = ψ ⇒ RH(φ) ≧ RH′(ψ).

We may omit the subscript of RH to write R for brevity
when the system H is obvious.

In Ref. [2], a concept of consistency of a resource mea-
sure is introduced, which we investigate in this paper. As
implied in the definition, a resource measure R quanti-
fies resources consistently with the exact state conversion
under the free operations. By also considering the con-
sistency with the rate of the asymptotic state conversion,
we give the definition of a consistent resource measure.

Definition 2 (Asymptotically Consistent Resource Mea-
sure [2]). For quantum systems H and H′, a resource
measure R is called asymptotically consistent, or consis-
tent for short, if for any states φ ∈ S (H) and ψ ∈ S (H′),
it holds that

RH′ (ψ) r (φ→ ψ) ≦ RH (φ) , (1)

In Eq. (1), r (φ→ ψ) is the rate of the asymptotic state
conversion between φ and ψ definied as

r (φ→ ψ) := inf
{

r ≧ 0 : ∃ (Nn : free operation)n∈N
,

lim inf
n→∞

∥

∥

∥
Nn

(

φ⊗n
)

− ψ⊗⌈rn⌉
∥

∥

∥

1
= 0

}

,

where ‖ · ‖1 is the trace norm, and ⌈ · · · ⌉ is the ceiling
function.

We here note that from the definition (1), consis-
tent resource measures are weakly additive [2]; that is,
R(φ⊗n) = nR(φ) for all states φ and all positive inte-
gers n. In Ref. [2], a sufficient condition for the reg-
ularization R∞ of a resource measure R, defined as
R∞(φ) := limn→∞R(φ⊗n)/n, to be consistent was pro-
vided. The regularization of a resource measure also
serves as a resource measure. The sufficient condition
consists of the following conventionally considered prop-
erties for a resource measure:

1. Asymptotic continuity: For any sequence of posi-
tive integers (ni)i∈N

, and any sequences of states
(φni

∈ S (H⊗ni))i and (ψni
∈ S (H⊗ni))i satisfy-

ing limi→∞ ‖φni
− ψni

‖1 = 0, it holds that
limi→∞ |RH⊗ni (φni

)−RH⊗ni (ψni
)|/ni = 0.

2. Subadditivity: For any states φ and ψ, it holds that
R (φ⊗ ψ) ≦ R (φ) +R (ψ).

Note that, in Ref. [42], another sufficient condition for
consistency of resource measures is given; in this paper,
we investigate the sufficient condition shown in the fol-
lowing lemma [2].

Lemma 3 (Sufficient Condition for Consistency). The
regularization R∞ of a resource measure R is consistent

if R is asymptotically continuous and subadditive.

From this lemma, a promising way for constructing a
consistent resource measure is to consider a subadditive
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resource measure and then to check its asymptotic con-
tinuity. As a subadditive resource measure, we here con-
sider the relative entropy of resource RR, which is widely
studied in various QRTs [4, 26–31]. For our purpose,
it may not be suitable to use non-subadditive measures
such as robustness-based measures [5, 19, 43–45].

Definition 4 (Relative Entropy of Resource). The rela-
tive entropy of resource RR is defined as

RR(φ) := min
ψ:free

D(φ‖ψ) (2)

for all states φ, where D(·‖·) is the relative entropy
D(ρ||σ) := Tr(ρ log2 ρ− ρ log2 σ).

The regularization of the relative entropy of resource
R∞
R is called the regularizaed relative entropy of resource.

Reference [46] gives an operational interpretation of the
regularlized relative entropy of resource; the regularized
relative entropy of resource is considered as the optimal
rate of asymptotic hypothesis testing where one aims to
distinguish a given state and its closest free state.

III. MAIN RESULTS

In this section, we investigate the consistency of the
regularized relative entropy of resource for general re-
sources of physical importance. Before we go through
the further details, we briefly overview the backgrounds
and our contributions.
In Ref. [2], it was shown that the regularized relative

entropy of resource is consistent in all finite-dimensional
convex QRTs with a full-rank free state. The proof was
based on asymptotic continuity of the relative entropy of
resource in such QRTs [36, 47].
Here, we consider relaxing the assumption. First, in

Sec. III A, we study the necessity of full-rank free states.
Indeed, by refining the definition of consistency, we show
that the regularized relative entropy of resource is con-
sistent in finite-dimensional convex QRTs even without
full-rank free states. Next, we investigate physically well-
motivated non-convex or infinite-dimensional resources.
We will overview the physical significance of these re-
sources at the beginning of each subsection. For non-
convex resources, namely, discord (Sec. III B) and non-
Markovianity (Sec. III C), despite the existence of a coun-
terexample for asymptotic continuity of the relative en-
tropy of resource [41], we prove that the regularized rel-
ative entropy of resource is consistent. Moreover, we an-
alyze an infinite-dimensional resource, non-Gaussianity,
in Sec. III D. Contrary to the statement in the previ-
ous work [31], we prove that the relative entropy of non-
Gaussinity is not continuous even with a reasonable en-
ergy constraint. On the other hand, if we take the convex
hull of the set of Gaussian states, we show that the rela-
tive entropy of non-Gaussinity is asymptotically contin-
uous under an appropriate energy constraint; therefore,
the regularized relative entropy can be employed as a

consistent resource measure under the energy constraint
in this convex but infinite-dimensional QRT.

A. Finite dimensional convex QRTs

In this section, we show that the regularized rel-
ative entropy of resource is indeed consistent in all
finite-dimensional convex QRTs even without full-rank
free states. This result contributes to removing an ar-
guably artificial restriction of imposing full-rankness of
free states in considering general QRTs. Here, the prob-
lem is that if no full-rank free state exists, the regularized
relative entropy of resource RR in Eq. (2) may become
infinite, and the definition of consistency may become an
indeterminate form. To resolve these problems, we con-
sider the inequality (1) to be also true when R(φ) = ∞
or when R(φ) < ∞, R(ψ) = ∞, and r(φ → ψ) = 0. If
the set of free states contains a full-rank state, the reg-
ularized relative entropy of resource becomes consistent
as shown in the previous work. As shown in Supplemen-
tal Materials, we show that these two cases cover all the
cases where R diverges to infinity. Therefore, under this
refined definition to take infinities into account, the reg-
ularized relative entropy of resources can be consistent
even in the QRTs without full-rank free states.

B. Discord

In this section, we investigate consistent resource mea-
sures for discord. Discord is conceptually understood as
a form of quantum correlation; it is defined as the dif-
ference between total (quantum and classical) correla-
tion and classical correlation [38]. While entanglement is
widely appreciated as a quantum correlation enhancing
various quantum information processing tasks [3], it has
been revealed that discord serves as a resource for several
tasks even without the existence of entanglement [48–54].
In addition, discord also has operational meanings in sev-
eral tasks [55, 56]. From such operational significance of
discord, it is essential to establish a consistent way for
quantitative analysis of discord.
To analyze discord for this purpose, one may consider

a QRT of discord by choosing, as free operations, a class
of operations that preserve a set of states with zero dis-
cord. As explained in Sec. II, each choice of free oper-
ations determines the corresponding set of free states.
For discord, there have been three kinds of sets of states
conventionally considered as free states. Here, we only
consider the bipartite case for simplicity of presentation,
while it is also possible to consider multipartite cases [29].
Hereafter, we consider two parties A and B with finite-
dimensional quantum systems HA and HB respectively.
Then, let D denote the dimension of the composit system
HA⊗HB. The first set of free states is the set of classical-

classical states c-c :=
{

∑

k pk |ak〉 〈ak|
A ⊗ |bk〉 〈bk|

B
}

,
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where {|ak〉
A} is an orthonormal basis ofHA and {|bk〉

B}
is an orthonormal basis of HB. Note that these bases are
not necessarily fixed to some standard bases in contrast
to the QRT of coherence [57]. The second one is the set of

quantum-classical states q-c :=
{

∑

k pkρ
A
k ⊗ |bk〉 〈bk|

B
}

,

and the last one is the set of classical-quantum states
c-q, where the roles of A and B in q-c are interchanged.
Due to the symmetry of the definitions of q-c and c-q, we
only consider c-c and q-c in the rest of this section. Since

the bases {|ak〉
A} and {|bk〉

B} are not fixed but arbi-
trary, it is clear that none of these three sets are convex.
Then, for each of these sets of free states, discord can
be analyzed in the framework of QRTs. Due to the non-
convexity of these sets, however, these QRTs of discord
are non-convex QRTs.
Based on these free states, we can define the relative

entropy of discord as

DF
rel(φ

AB) := min
ψAB∈F

D(φAB‖ψAB), (3)

where F is either c-c or q-c. Indeed, we derive a simple
expression of the relative entropic measure for any choice
of free states. In more detail, for all states φAB ∈ D(HA⊗
HB), it holds that

DF
rel(φ

AB) = min
χF
φ

H(χF
φ )−H(φAB), (4)

with the von Neumann entropy H(ρ) := −Tr(ρ log2 ρ).
The minimization in Eq. (4) is taken over the free states

χc-c
φ

:=
∑

k(〈ak, bk|)φ
AB(|ak, bk〉) |ak, bk〉 〈ak, bk|

AB
or

χq-c
φ

:=
∑

k(1
A ⊗ 〈bk|)φAB(1A ⊗ |bk〉) ⊗ |bk〉 〈bk|

B
with

the identity operator 1. See also Ref. [29] for derivation
of this expression in the case F = c-c.
With this simplified expression of the relative entropy

of discord, we prove that this relative entropic measure
is asymptotically continuous by repeatedly using Fannes-
Audenaert inequality [58] on asymptotic continuity of
the von-Neumann entropy. Indeed, we show that for all
states φAB , ψAB ∈ D(HA ⊗HB), it holds that

|DF
rel(φ

AB)−DF
rel(ψ

AB)| (5)

≦ ‖φAB − ψAB‖1 log2D + 2h2

(

‖φAB − ψAB‖1
2

)

,

where h2 is the binary entropy function defined as
h2(x) := −x log2 x − (1 − x) log2(1 − x) for x ∈ [0, 1].
Then, Eq. (5) implies asymptotic continuity of the rel-
ative entropy of discord. The rigorous proof is shown
in Supplemental Materials. Considering Lemma 3 and
Eq. (5) together, we conclude that the regularization of
the relative entropy of discord is consistent for all the
choices of free states.
On the other hand, we also prove that another dis-

cord measure, measurement-based quantum discord [59],
is subadditive and asymptotically continuous. Therefore,
we can also employ its regularization as a consistent re-
source measure for discord. The detailed definition and
proofs are shown in supplemental Materials.

C. Non-Markovianity

In this section, we prove that the regularized rela-
tive entropy of non-Markovianity is consistent. Quan-
tum Markov chain is a quantum extension of the clas-
sical Markov chain, originally formulated in Ref. [39].
In the classical case, a sequence of random variables
XY Z is said to be a Markov chain if Z conditioned
on Y is independent of X , which is indeed equivalent
to I(X : Z|Y ) = 0, where I(X : Z|Y ) is the condi-
tional mutual information [60]. Analogously, a quantum
state φABC ∈ D(HA ⊗ HB ⊗ HC) is said to be a quan-
tum Markov chain if C conditioned on B is independent
of A [39], which is indeed equivalent to the condition
I(A : C|B)φ = 0 [61] in terms of the quantum conditional
mutual information [62]. Non-Markovianity serves as a
resource in various tasks. For example, while classical
non-Markov chain enables the secret key agreement [63],
quantum non-Markovianity is exploited as a resource in
quantum one-time pad [64], which is a protocol to ensure
secure communication between two parties.

The QRT of non-Markovianity has been established in
Refs. [65, 66] to analyze this quantum version of Markov
property in the QRT framework. Hereafter, we consider
the tripartite system HA ⊗HB ⊗HC with dimension D
in total. The set of quantum Markov chains DMarkov

are defined as DMarkov := {ψ ∈ D(HA ⊗ HB ⊗ HC) :
I(A : C|B)ψ = 0}. Here, note that DMarkov is not con-
vex [65]; the QRT of non-Markovianity is a non-convex
QRT. Then, the relative entropy of non-Markovianity is
defined as

∆(φABC) := min
ψ∈DMarkov

D(φABC‖ψABC). (6)

We prove that the relative entropy of non-Markovianity
is asymptotically continuous. We show that for all states
φ, ψ ∈ D(HA ⊗HB ⊗HC) satisfying ‖φ − ψ‖1/2 ≦ 1/3,
it holds that

|∆(φABC)−∆(ψ)ABC | (7)

≦ 2(‖φABC − ψABC‖1 log2D + h2(‖φ
ABC − ψABC‖1)).

Then, Eq. (7) implies that the relative entropy of non-
Markovianity is asymptotically continuous. Our proof is
based on a simple expression of the relative entropy of
non-Markovianity, in a similar form to Eq. (4), as a gap
of two von Neumann entropies [30]. Then, we explic-
itly show asymptotic continuity of the relative entropy
of non-Markovianity using this characterization. In the
proof, we further decompose the characterization and re-
peatedly exploit Fannes-Audenaert inequality [58]. See
Supplemental Materials for more details of the proof.
Therefore, from Lemma 3 and Eq. (7), it follows that
the regularized relative entropy of non-Markovianity is
consistent.
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D. Non-Gaussianity

In this section, we investigate the consistency of
the relative entropic measure in the QRT of non-
Gaussianity [67–70]. Gaussian quantum information [40],
based on Gaussian states and Gaussian operations, plays
a central role in continuous-variable (CV) quantum infor-
mation processing since Gaussian states and operations
are experimentally implementable with high-precision
control in quantum-optical setups [71]. In addition, de-
spite the infinite-dimensionality, the theoretical analy-
sis of Gaussian states is relatively tractable due to the
fact that their characterization functions are in Gaus-
sian forms. Indeed, various quantum information pro-
cessing protocols, such as quantum teleportation [72–
74], noisy quantum cloning [75, 76], quantum illumi-
nation [77], quantum reading [78], and quantum key
distribution [79–83], can be implemented by Gaussian
states and operations. However, it was shown that non-
Gaussianity is an essential resource for several tasks in-
cluding entanglement distillation [84–87], quantum error
correction [88], and universal quantum computation us-
ing CV systems [89–93]. Non-Gaussianity also reveals
implementation cost of CV fault-tolerant quantum com-
putation [70, 93].
Here, we briefly review the basic concepts for the QRT

of non-Gaussianity. For further details, see Refs. [40, 94].
Consider an N -mode bosonic system and define real
quadratic field operators x̂ := (q̂1, p̂1, . . . , q̂N , p̂N). A
quantum state φ is described by its Wigner characteristic
function χ(ξ, φ) = Tr[φD̂(ξ)]. Here, ξ = (ξ1, . . . , ξ2N ) ∈

R
2N is a real-valued vector, and D̂(ξ) := exp(ix̂TΩξ)

is the Weyl displacement operator with Ω := i
⊕N

k=1 Y ,
where Y is the Pauli-Y matrix.
A quantum state ψ is a Gaussian state if its character-

istic function χ(ξ, ψ) is expressed as a Gaussian function
whose form is determined only by the mean and covari-
ance matrix of x̂ with respect to ψ [40, 94]. We define
G as the set of Gaussian states. Since the sum of Gaus-
sian functions are not necessarily Gaussian, the set G is
not convex. The relative entropy of non-Gaussianity is
defined as

δ[φ] := min
ψ∈G

D(φ‖ψ). (8)

It is known that the relative entropy of non-Gaussianity
can be written as δ[φ] = H(φG) − H(φ), where φG is
the Gaussification of φ, that is, the Gaussian state with
the same mean and covariance matrix as φ [31]. Despite
this simple characterization, we cannot directly apply the
same strategy for asymptotic continuity as in the QRTs
of discord and non-Markovianity because Gaussian states
are defined on an infinite-dimensional state space.
While continuity of the relative entropy of non-

Gaussianity is claimed in Ref. [31], we discover a coun-
terexample showing that the relative entropy of non-
Gaussianity is not continuous even under a reasonable en-
ergy constraint. Note that this discovery may also affect

some of the arguments in other existing literature citing
Ref. [31]. Consider a single-mode system with Hamilto-
nian H = ~ωa†a. Take two Fock-diagonal states ρ =
ǫ |E/ǫ〉 〈E/ǫ|+ (1− ǫ) |0〉 〈0| and σ = |0〉 〈0| with a small
positive number ǫ and fixed positive number E. Then,
these states satisfy the energy constraint Tr(ρH) ≦ E
and Tr(σH) ≦ E. However, while ‖ρ− σ‖1 ≈ ǫ, we have
|δ[ρ] − δ[σ]| ≈ (E + 1) log2(E + 1) − E log2E even for
infinitesimal ǫ. Therefore, the relative entropy of non-
Gaussianity is not continuous. More detailed discussion
and proof are shown in Supplemental Materials.
We also show that we can avoid this discontinuity of

the relative entropy of non-Gaussianity, by considering
the convex QRT of non-Gaussianity [67, 68]. In the
convex QRT of non-Gaussianity, we take, as free op-
erations, Gaussian operations that may be conditioned
on outcomes of homodyne detections. That is, we use
the convex hull of the set of Gaussian operations as free
operations. The set of free state is the convex hull of
the set of Gaussian states conv(G). Then, we consider
the following modified version of relative entropy of non-
Gaussianity, which we call the relative entropy of convex
non-Gaussianity:

δconv[φ] := min
ψ∈conv(G)

D(φ‖ψ). (9)

Here, to avoid discontinuity due to the infinite-
dimensionality of the state space, we prove asymptotic
continuity under an energy constraint. Hereafter, let H
be the Hamiltonian of a given system. We suppose that
the smallest eigenvalue of H is fixed to zero. Then, let
E ≧ 0 represent an upper bound of the energy of the sys-
tem. Let DH,E(H) := {ρ ∈ D(H) : Tr(Hρ) ≦ E} denote
a subset of the set of density operators that contains all
states satisfying the energy constraint, and we here take
the set of states of interest as S(H) = DH,E(H). The rel-
ative entropy of convex non-Gaussianity δconv is indeed
asymptotically continuous in the following sense: if the
Hamiltonian H satisfies the condition from Ref. [95]

lim
λ→∞

[Tr(e−λH )]λ = 0, (10)

for any sequences {φn ∈ DHn,nE(H)}n and {ψn ∈
DHn,nE(H)}n such that limn→∞ ‖φn − ψn‖1 → 0 with
the Hamiltonian Hn = H ⊗ I ⊗ · · · ⊗ I + I ⊗ H ⊗
I ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ I ⊗ H , then it holds that
limn→∞ |δconv[φn]− δconv[ψn]|/n = 0.
Here, we note that the assumtion (10), on which

asymptotic continuity is based, is satisfied by representa-
tive choices of Hamiltonians such as those of harmonic os-
cillators representing light. Our proof of the asymptotic
continuity is based on a modified version of Proposition 3
in Ref. [95] showing that for the Hamiltonian H satisfy-
ing Eq. (10) and for all states φ, ψ ∈ DH,E(H) such that
‖φ−ψ‖ ≦ ǫ ≦ 1/2, it holds that |δconv[φ]− δconv[ψ]| → 0
as ǫ → 0. Then, letting r(H,E) (φ→ ψ) denote the
asymptotic conversion rate under the energy constraint,
we have the following inequality showing the consistency
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of δ∞conv

δ∞conv[ψ]r
(H,E) (φ→ ψ) ≦ δ∞conv[φ]. (11)

See Supplemental Materials for the rigorous statement
and proof. Therefore, from Eq. (11), it follows that the
regularized relative entropy of convex non-Gaussianity is
consistent in terms of the asymptotic state conversion
under the energy constraint.

IV. CONCLUSION

We investigated the relative entropy of resource for
general resources, including discord, non-Markovianity,
and non-Gaussianity to show the existence of asymp-
totically consistent resource measures in QRTs of these
resources. In contrast with the analysis in our initial
paper [2], which showed the consistency of the regular-
ized relative entropy of resource by assuming the finite-
dimensionality, convexity, and existence of full-rank free
states, we here showed that the regularized relative en-
tropy of resource is consistent in all finite-dimensional
convex QRTs even without assuring the existence of full-
rank free states. Furthermore, we proved that the reg-
ularized relative entropy of resource serves as a consis-
tent resource measure for some physically well-motivated
non-convex quantum resources, namely, discord and non-

Markovianity. For an infinite-dimensional resource, non-
Gaussianity, we showed that the relative entropy of non-
Gaussinity is indeed discontinuous even though the con-
tinuity is argued in the previous research [31]. At the
same time, by considering the convex hull of Gaussian
states, we proved that the convex relative entropy of
non-Gaussinaity is asymptotically continuous under an
energy constraint and that its regularization is consis-
tent. Thus, we disclosed the consistency of the regu-
larized relative entropy of resource for general resources
beyond those covered in the previous work. These results
pave the way for the quantification of resources consis-
tent with the asymptotic state conversion, which fuels
further investigation of resources not exactly compara-
ble with each other. The results in this paper estab-
lish a theoretical foundation for quantitative studies of a
wide variety of quantum resources that may not satisfy
restrictive mathematical assumptions such as convexity
and finite-dimensionality.

ACKNOWLEDGMENTS

This work was supported by JSPS Overseas Re-
search Fellowships and JST, PRESTO Grant Number
JPMJPR201A, Japan. K. K. was supported by Mike
and Ophelia Lazaridis, and research grants by NSERC.

[1] E. Chitambar and G. Gour, Quantum resource theories,
Rev. Mod. Phys. 91, 025001 (2019).

[2] K. Kuroiwa and H. Yamasaki, General Quantum Re-
source Theories: Distillation, Formation and Consistent
Resource Measures, Quantum 4, 355 (2020).

[3] R. Horodecki, P. Horodecki, M. Horodecki, and
K. Horodecki, Quantum entanglement, Rev. Mod. Phys.
81, 865 (2009).

[4] V. Veitch, S. A. H. Mousavian, D. Gottesman, and
J. Emerson, The resource theory of stabilizer quantum
computation, New J. Phys. 16, 013009 (2014).

[5] M. Howard and E. Campbell, Application of a resource
theory for magic states to fault-tolerant quantum com-
puting, Phys. Rev. Lett. 118, 090501 (2017).

[6] Z.-W. Liu and A. Winter, Many-body quantum magic
(2020), arXiv:2010.13817 [quant-ph].

[7] M. Horodecki and J. Oppenheim, (Quantumness in the
context of) resource theories, Int. J. Mod. Phys. B 27,
1345019 (2013).

[8] F. G. S. L. Brandão and G. Gour, Reversible framework
for quantum resource theories, Phys. Rev. Lett. 115,
070503 (2015).

[9] K. Korzekwa, C. T. Chubb, and M. Tomamichel, Avoid-
ing irreversibility: Engineering resonant conversions of
quantum resources, Phys. Rev. Lett. 122, 110403 (2019).

[10] C. L. Liu, X.-D. Yu, and D. M. Tong, Flag additivity
in quantum resource theories, Phys. Rev. A 99, 042322
(2019).

[11] M. K. Vijayan, E. Chitambar, and M.-H. Hsieh, Simple
bounds for one-shot pure-state distillation in general re-
source theories, Phys. Rev. A 102, 052403 (2020).

[12] Z.-W. Liu, K. Bu, and R. Takagi, One-shot operational
quantum resource theory, Phys. Rev. Lett. 123, 020401
(2019).

[13] R. Takagi, B. Regula, K. Bu, Z.-W. Liu, and G. Adesso,
Operational advantage of quantum resources in subchan-
nel discrimination, Phys. Rev. Lett. 122, 140402 (2019).

[14] R. Takagi and B. Regula, General resource theories in
quantum mechanics and beyond: Operational character-
ization via discrimination tasks, Phys. Rev. X 9, 031053
(2019).

[15] K. Fang and Z.-W. Liu, No-go theorems for quantum re-
source purification, Phys. Rev. Lett. 125, 060405 (2020).

[16] B. Regula, K. Bu, R. Takagi, and Z.-W. Liu, Benchmark-
ing one-shot distillation in general quantum resource the-
ories, Phys. Rev. A 101, 062315 (2020).

[17] C. Sparaciari, L. del Rio, C. M. Scandolo, P. Faist, and
J. Oppenheim, The first law of general quantum resource
theories, Quantum 4, 259 (2020).

[18] Z.-W. Liu, X. Hu, and S. Lloyd, Resource destroying
maps, Phys. Rev. Lett. 118, 060502 (2017).

[19] B. Regula, Convex geometry of quantum resource quan-
tification, J. Phys. A 51, 045303 (2017).

[20] T. R. Bromley, M. Cianciaruso, S. Vourekas, B. Regula,
and G. Adesso, Accessible bounds for general quantum
resources, J. Phys. A 51, 325303 (2018).

https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.22331/q-2020-11-01-355
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1088/1367-2630/16/1/013009
https://doi.org/10.1103/PhysRevLett.118.090501
https://arxiv.org/abs/2010.13817
https://doi.org/10.1142/S0217979213450197
https://doi.org/10.1103/PhysRevLett.115.070503
https://doi.org/10.1103/PhysRevLett.122.110403
https://doi.org/10.1103/PhysRevA.99.042322
https://doi.org/10.1103/PhysRevA.102.052403
https://doi.org/10.1103/PhysRevLett.123.020401
https://doi.org/10.1103/PhysRevLett.122.140402
https://doi.org/10.1103/PhysRevX.9.031053
https://doi.org/10.1103/PhysRevLett.125.060405
https://doi.org/10.1103/PhysRevA.101.062315
https://doi.org/10.22331/q-2020-04-30-259
https://doi.org/10.1103/PhysRevLett.118.060502
https://doi.org/10.1088/1751-8121/aa9100
https://doi.org/10.1088/1751-8121/aacb4a


7

[21] A. Anshu, M.-H. Hsieh, and R. Jain, Quantifying re-
sources in general resource theory with catalysts, Phys.
Rev. Lett. 121, 190504 (2018).

[22] R. Uola, T. Kraft, J. Shang, X.-D. Yu, and O. Gühne,
Quantifying quantum resources with conic programming,
Phys. Rev. Lett. 122, 130404 (2019).

[23] T. Gonda and R. W. Spekkens, Monotones in general
resource theories (2019), arXiv:1912.07085 [quant-ph].

[24] B. Regula, L. Lami, G. Ferrari, and R. Takagi, Opera-
tional quantification of continuous-variable quantum re-
sources, Phys. Rev. Lett. 126, 110403 (2021).

[25] L. Lami, B. Regula, R. Takagi, and G. Ferrari, Frame-
work for resource quantification in infinite-dimensional
general probabilistic theories, Phys. Rev. A 103, 032424
(2021).

[26] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight,
Quantifying entanglement, Phys. Rev. Lett. 78, 2275
(1997).

[27] T. Baumgratz, M. Cramer, and M. B. Plenio, Quantify-
ing coherence, Phys. Rev. Lett. 113, 140401 (2014).

[28] F. G. S. L. Brandão, M. Horodecki, J. Oppenheim, J. M.
Renes, and R. W. Spekkens, Resource theory of quantum
states out of thermal equilibrium, Phys. Rev. Lett. 111,
250404 (2013).

[29] K. Modi, T. Paterek, W. Son, V. Vedral, and
M. Williamson, Unified view of quantum and classical
correlations, Phys. Rev. Lett. 104, 080501 (2010).

[30] B. Ibinson, N. Linden, and A. Winter, Robustness of
quantummarkov chains, Commun. Math. Phys. 277, 289
(2008).

[31] M. G. Genoni, M. G. A. Paris, and K. Banaszek, Quan-
tifying the non-gaussian character of a quantum state
by quantum relative entropy, Phys. Rev. A 78, 060303
(2008).

[32] L. Lami and M. E. Shirokov, Attainability and lower
semi-continuity of the relative entropy of entanglement,
and variations on the theme (2021), arXiv:2105.08091
[quant-ph].

[33] G. Vidal, Entanglement monotones, J. Mod. Opt. 47, 355
(2000).

[34] M. Horodecki, Entanglement monotones, Quantum Inf.
Comput. 1, 3 (2001).

[35] M. J. Donald, M. Horodecki, and O. Rudolph, The
uniqueness theorem for entanglement measures, J. Math.
Phys. 43, 4252 (2002).

[36] B. Synak-Radtke and M. Horodecki, On asymptotic con-
tinuity of functions of quantum states, J. Phys. A 39,
L423 (2006).

[37] M. W. Girard, G. Gour, and S. Friedland, On convex
optimization problems in quantum information theory,
J. Phys. A 47, 505302 (2014).

[38] A. Bera, T. Das, D. Sadhukhan, S. S. Roy, A. Sen(De),
and U. Sen, Quantum discord and its allies: a review of
recent progress, Rep. Prog. Phys. 81, 024001 (2017).

[39] L. Accardi and A. Frigerio, Markovian cocycles, Proc. R.
Ir. Acad. A 83A, 251 (1983).

[40] C. Weedbrook, S. Pirandola, R. Garćıa-Patrón, N. J.
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