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Circular dichroism (CD) is a widely used technique for investigating optically chiral molecules,
especially for biomolecules. It is thus of great importance that these parameters be estimated
precisely so that the molecules with desired functionalities can be designed. In order to surpass
the limits of classical measurements, we need to probe the system with quantum light. We develop
quantum Fisher information matrix (QFIM) for precision estimates of the circular dichroism and
the optical rotary dispersion for a variety of input quantum states of light that are easily accessible
in laboratory. The Cramer-Rao bounds, for all four chirality parameters are obtained, from QFIM
for (a) single photon input states with a specific linear polarization and for (b) NOON states having
two photons with both either left polarized or right polarized. The QFIM bounds, using quantum
light, are compared with bounds obtained for classical light beams i.e., beams in coherent states.
Quite generally, both the single photon state and the NOON state exhibit superior precision in the
estimation of absorption and phase shift in relation to a coherent source of comparable intensity,
especially in the weak absorption regime. In particular, the NOON state naturally offers the best
precision among the three. We compare QFIM bounds with the error sensitivity bounds, as the
latter are relatively easier to measure whereas the QFIM bounds require full state tomography.

I. INTRODUCTION

The estimation of physical quantities is a central theme
in scientific experiments and industrial enterprises. To
enable the development of modern metrological appli-
ances and state-of-the-art technology, devising schemes
for improving and optimizing the precision is of criti-
cal importance. The core objective of precision measure-
ments has given rise to the field of quantum estimation
which makes use of sophisticated quantum light sources
such as squeezed states [1, 2|, entangled photon pairs
[3, 4], single-photon sources [5-7], and so on. There are,
however, inherent theoretical challenges to extracting full
information about any parameter of interest. To quan-
tify theoretical constraints to parameter estimation,the
Fisher information method [8, 9] is used to obtain a lower
bound to the precision of a classical measurement, known
as the Cramér-Rao bound. This classical method has
been generalized to the quantum formalism [10-17]. The
quantum Fisher information (QFI) involving a set of pa-
rameters yields the absolute lower bound to the measure-
ment uncertainties with respect to a specific input state,
which is independent of the measurement setup. With
the bulk of quantum resources available, quantum esti-
mation has been applied to many experiments. In par-
ticular, the advent of single-photon detectors[18, 19] has
provided the logistic framework for implementing mea-
surements of the QFI.

In this paper, we demonstrate how suitable choices of
quantum input, integrated with single-photon detectors
aimed at measuring the QFI, can yield an enhanced es-
timation of the physical parameters relevant to circu-
lar dichroism (CD). The CD is a well-established tech-
nique that studies the differences in light-matter interac-

tion in an optical medium between the left- and right-
circularly polarized components. As a practical tech-
nique, this finds tremendous importance in the study
of bio-molecules and other scientific fields. It has ap-
plications in probing tiny molecules, including biological
macromolecules, such as proteins, nucleic acids, carbohy-
drates, etc. The CD can be used to unveil the secondary
structure of a protein, which, in turn, would shed light
on the protein’s function [20-23]. More intricate struc-
tural details of biomolecules, like antibodies [24-26], can
be investigated through CD than by analyzing the op-
tical rotatory dispersion spectrum. CD of a single cell
can be measured as a function of the position in the
cell cycle [27], and is sensitive to molten globule inter-
mediates which might be involved in the folding process
[28]. Thus, it can assess the structure and stability of
the protein fragments. Inorganic chiral nanoparticles or
quantum dots, which are expected to work as artificial
proteins for chiral catalysis or inhibition of specific en-
zymes, have been shown to demonstrate size-dependent
CD absorption features [29]. Interestingly, the technique
can even be observed remotely at astronomical distances,
which might prove contributory to the search of extrater-
restrial life [30].

Classical ellipsometry utilizes the polarization of light
to study the reflection amplitude and the phase shift be-
tween the reflected and the incident light from a ma-
terial medium [31]. Here, we contextualize the theory
of quantum estimation to the study of CD by measur-
ing the transmission characteristics of a chiral medium.
As shown in Fig.1, four parameters characterize this chi-
ral interaction process: the dimensionless net absorption
coefficients for the two circularly polarized light waves
(a4, ), and the corresponding dimensionless net phase
shifts (¢4, ¢—). Equivalently, one can treat the sums and



differences of these pairs, by introducing a new param-
eter family, X; = (o + a-)/2, Xqg = (a4 — a_)/2,
Y = ¢+ ¢ and A = ¢ — ¢_, where we assume
that ay > a_ and ¢4y > ¢_. All these parameters are
functions of the longitudinal dimension of the medium.
The standard ellipsometry provides measurements of the
four chirality parameters: ay,a_, ¢4, ¢_. In particu-
lar circular dichroism is given by the parameter X; and
the optical rotary dispersion (ORD) is given by A. The
Stokes polarimetry can also be used to obtain complete
polarization state of the output beam. The classical re-
sults on parameter estimation are limited by the standard
quantum noise limit which can be surpassed by the use
of quantum light such as squeezed light[33]. Clearly we
need to use quantum light for precision estimates of the
chirality parameters for both CD and ORD. For quantum
inputs we need to do complete state tomography|[34, 35].
A scheme for ellipsometry with twin photons produced
by the spontaneous parametric down conversion (SPDC)
was introduced as a self-referenced method without any
calibrated source or a detector [36-38], which manifested
a sizable improvement through the use of entangled quan-
tum states. The method was based on the intensity cor-
relations between the output twin beams. But the sen-
sitivity of the measurement scheme was not discussed.
Several other studies have shown advantages of using
squeezed light with tailored beams; SPDC photons in
ellipsometry [39, 40]. The ellipsometry with classically
correlated beams was discussed in [32].
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Figure 1. Left and right handed circularly polarized light

fields undergo differential transmissions through a chiral
medium, as characterized by distinct absorption and phase
shift rates. The detectors can include polarizers before them.

We briefly outline the organization of the paper here.
In Sec. II, we summarize the key features of the QFIM.
In Sec. III, we introduce the master equation to obtain
the quantum state of the output field in terms of the
input state. The master equation is needed as a chiral
system is an open system. In sections IV, V, and VI,
we apply the QFIM method and obtain the Cramér-Rao
bounds for the uncertainties and the correlations of chi-
ral parameters with coherent light, a linearly polarized
single-photon Fock state, and a NOON state produced in
a collinear type-II SPDC process, respectively. We com-
pare the obtained bounds for the different states and plot
them against the absorption sensitivities of a standard in-
tensity measurement, thereby illustrating the remarkably
precision offered by the NOON state in the estimation of
circular dichroism. In section VII, we highlight how the
sensitivity in the determination of the relative phase shift

is doubled on using the NOON state as compared to a
single-photon Fock state.

II. SUMMARY OF KEY FEATURES OF THE
QUANTUM FISHER INFORMATION MATRIX

In the estimation of an unknown parameter X, the
measurement uncertainty or sensitivity of X is always

bounded as 6X > /Fy 1(X), which constitutes the

Crameér-Rao bound for a single-parameter measurement.
Here, the QFI F(X) is defined by Fg(X) = Tr[pL?],
where the symmetric logarithmic derivative (SLD) ma-
trix L follows from the equation 66—)”( = 1(Lp+ pL), with
p being the density matrix of the system. In practice,
one needs to determine several parameters which char-
acterize the physical system, each of which suffers from
similar kinds of sensitivity constraints. If we consider a
comprehensive set of parameters {X;}, fori =1,2,..., N,
the SLD for each parameter would be obtained from the
equation 8—8)% = 2(Lip+ pL;). The generalized quantum
Fisher information, now expressed as a matrix QFIM, is
constructed from elements given by

Foy((X) = 3 Trlp(Lily + L)L (1)
The whole SLD matrix would generally contribute to the
sensitivity of determining a specific parameter. The mod-
ified Cramér-Rao bound Cov(X;, X;) > [F~1({X:})]i;
then yields the lower bound on the sensitivity of X; to
be
5X; = \/IF (X)) (2)
Note that the sensitivity bound is determined in terms
of the diagonal element of the inverse matrix F~!, which
is contingent on all the elements of the QFIM. For sim-
plicity, we can introduce the sensitivity bound matrix
(SQFIM) defined by S;; = +/(F~1); ;. Based on this
formulation, we could estimate the sensitivities of chiral
parameters in a standard ellipsometric setup for various
input states of light. Following the QFI formalism, the
sensitivity bounds for absorption rate of a single mode of
the field have been evaluated with both a Gaussian state
[41, 42] and non-Gaussian states such as a Fock (photon
number) state [43, 44]. The Fock state has turned out
to be an optimal choice for the estimation. At zero tem-
perature, the sensitivity derived from ordinary intensity
fluctuations saturates the QFI bound for the single ab-
sorption mode with a Fock state input. For an output
intensity of the form N(«), the error sensitivity of the
parameter o is determined in a single experiment via the
relation dov = 6]3%, where (6N)? = (N?) — (N)2. How-
ever, when multiple unknown parameters are connected
to the propagation dynamics of light, the estimation un-



certainty of any particular parameter is not independent
of the others, and is related, as would be seen, by the
QFI matrix (QFIM) [45-48]. A pertinent question is:
are there measurements which can optimize the bounds
for two parameters at the same time. Crowley et al[49)
investigated the measurements of both phase and absorp-
tion of a single mode, and found that there is a trade off
between the simultaneous measurement of phase and ab-
sorption, i.e. if scheme is optimised for absorption mea-
surements, then it is not optimal for phase. We also note
that the reference [48] considers the optimum measure-
ment of only the absorption parameters and thus works
with 2 x 2 Fisher matrix. In this paper, we focus on
initial states of fields which are now easily accessible in
the laboratory, rather than studying the question when a
measurement is optimal. And we work with 4 x 4 Fisher
matrix as we consider all four parameters associated with
the propagation of light through anisotropic medium.

III. THE EVOLUTION OF DENSITY MATRIX
OF THE FIELDS

The transport properties of electromagnetic field in a
medium follow from Maxwell’s equations and are deter-
mined by the refractive index of the medium. At the
classical level, the absorption and the phase shift of light
through the medium are encoded in the output field
amplitude which is related to the input amplitude as
cout = e W g, In the quantum mechanical pre-
scription, the evolution of the system is described by
the master equation for the density matrix p of light.
For a single-mode input, the phase shift by itself is de-
scribed as a unitary process via the von-Neumann equa-
tion % = —i[H, p], where H = fa’a, and a denotes the
Bosonic annihilation operator for the light field. The pro-
cess of absorption needs recourse to the master equation
for a damped field, i.e.,

9 _ _iprat t f gt

L = —iblata, p] — (pata — 2apal +alap), (3)
where the time dependence also can be considered as
medium-length dependence as | = tc. Owing to the inde-
pendence of the two processes, the two dynamical equa-
tions can be superposed to yield a simple solution akin to
the classical result, (a(t)) = e~%*=7* (a(0)). More gener-
ally, for a chiral medium, in which the photon transfer is
sensitive to the input polarization, the full master equa-
tion would be expressed as
% =—i04 [alﬂbm Pl — ”Y+(Pala+ - 26L+PCLEr + aiaﬂ’)

—10_ [alf_a,, ol — - (paT_a, - 2a,paT_ + aT_a,p) )

(4)

Here, v+ = —in(1 — ay)/(2t) and 01 = ¢/t are the

damping and phase-shift rates pertaining to the two cir-
cular polarization directions, a+ and aTi are the annihila-
tion and creation operators of photons obeying the com-
mutation relation [a+,al] = 1, with ay = %(aHzlziaV).
The four parameters a4, ¢4+ were introduced earlier in
Sec. I. For a known initial state p(0), the density ma-
trix p(t) at time ¢ can be straightforwardly calculated
from the master equation. Subsequently, the necessary
SLDs: Ly, Ls, La, and Ly can be computed at any arbi-
trary time in terms of the derivatives %p)((’;), %”)((?, gg((i),

9p(t)

Xy In the next few sections, we would present ex-
plicit solutions for several input states of interest, and
demonstrate how quantum sources outperform classical
light by furnishing improved sensitivity bounds. Specifi-
cally, we would consider a coherent state, a single-photon
state, and a two-photon entangled state to establish this
result.

IV. BOUNDS ON THE MEASUREMENTS OF CD
PARAMETERS WITH CLASSICAL LIGHT

|aer, Bv)

The simplest method of precision measurement of CD
parameters is via the estimation of intensity fluctuations.
Classically, the uncertainty of an ellipsometric param-
eter X translates into a fluctuation in the output in-
tensity which is connected to the former through the
propagation of uncertainty. For a functional dependence

Lwt = Lwt (X, In), we have 6X = g

of classical light, we prove that the magnitudes of 6/)\(/0;

and 0 X, obtained from intensity measurements saturate

the Cramér-Rao bound. Classical light with two polar-

izations is described by a coherent state |c) ; |5)y,, which
a—if

) .o

can be recast as
a4+ i5>
vz /.2

in the basis of eigenstates of a-. Since this is a product
state, the solution to the master equation in this case

reads p(t) = (1)) (1(t)], where

In the case

[¥(0) >=

() > = <a+w>\/1‘%e“+t>
JF
® |(a - i)y == _2a‘e‘i“> ,ér = 0st. (6)

Thus, the coherent input goes over into a coherent out-
put, albeit with modified amplitude and phase. Using
this solution, we first calculate sensitivities as obtained
by intensity fluctuations. As sketched in Fig. 1, the input



light first goes through the measured sample, and then,
a polarization analyzer, so that we can detect a certain
polarized output. For the pair of measured intensities
I+ corresponding to the two polarizations, we have the
absorption difference Xy = (I — I_)/Ny, and the net
absorption X, = 1 — (I + I_)/Np, where Ny is the in-
put photon number, as for simplicity, we set the relative
phase between o and f3 zero , thus |a4i3|* = |a|? +|8/|%
The sensitivities then unfold as

0Xg=+/(0I;)2 + (01)2 = 2Cov(I,1-)/Ny, (7)

0X, = \/(01;)2 + (61-)2 + 2Cov(Iy,I_)/Ny,  (8)
both of which reduce to

SRR — 1— X,
0Xa = 0X, =\ (9)

Next, we calculate the bound by following the ap-
proach outlined in Sec II. We obtain the corresponding
SLDs at time t as
L 4 L 4

Lg= ma+a+ - ma_a, , (10)

1 1
Li=———— t ——— a'a_+ N, 11
R (e K
Ly = _2Z[G27p] ) Gx = (aT+CL+ + aT—a*)v (12)
La = —2i[Ga,p|, Ga = (alay —ala_).  (13)

The derivation of these SLDs is shown in Appendix A.
This leads us to the QFIM

Faa Fys
Fds Fss
F:
Fan Fspa |7
Fyp Frex
where
NO(l _Xs)
Fog=Fs = ——m—m——,
“ (1-X,)2 - X3
Fan =Fxx = No(1-X5),
NoXy4
Fpg=—— 2004 po. = NoXg, (14
d 1—X.)’ - X2 DA 0 X4 (14)

The empty spaces within the matrix in (14) indicate null
matrices, the derivation of which is shown in Appendix B.
Being a block-diagonal matrix, its inverse F~! also pos-
sesses a block-diagonal structure, implying that on using

coherent state as an input, the Cramér-Rao bounds for
the absorption and the phase shift would be independent
of each other. The obtained sensitivity bounds are listed
below:

6X g min = 0X g min = ! ;V(‘)X : (15)
Cov(Xg4,Xs) = % , (16)

i = i =R
Con(Z,A) = = Ko (18)

No (1-X,)?2—-X2"

It follows immediately that the sensitivities obtained
via intensity measurements coincide with the Cramér-
Rao bounds (14) entailed by the QFIM method, and thus
sensitivity bounds saturate Cramér-Rao bounds. This is
important as we can perform a very simple measurement
on intensity fluctuations which would yield the same re-
sult as the full 4 x 4 Fisher information matrix.

V. BOUNDS ON THE MEASUREMENTS OF CD
PARAMETERS WITH QUANTUM LIGHT:
SINGLE-PHOTON STATE |1x,0v)

Here, we demonstrate that a single-photon Fock state
provides better sensitivity than the coherent state in the
measurement of the absorption rate with a minimum
uncertainty in the input photon number, thereby yield-
ing a definite advantage in estimating the chiral coeffi-
cients. Taking the direction of the single photon’s polar-
ization as horizontal, the input state reads |1), [0),, =
%(|1>Jr |0)_ +10), |1)_). The sensitivity obtained from
the intensity measurement can be similarly derived via
the method invoked in section IV. With the input field
|1) ;7 |0),, the corresponding expressions stand as

6Xq=1/1— X, — X2, (19)
5/)\(/5 =V (1 _Xs)Xs- (20)

Next, we study the bound obtained from the QFIM.

From the master equation, we obtain the density ma-
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Figure 2. a). §X, as a function of X4 and X,. b-e). For a clearer vision, we also plot § X, as a function of X, for different
values of Xy : b) Xg = 0.005, ¢) Xq = 0.05, d) Xq = 0.1, and e) X4q = 0.2. In each plot, the top-most (purple) curve is 6 X,
obtained for a coherent state |am,Ov), the next one (blue) from the top-most is obtained from the state |1x,0v ), the curve
(pink) just above the bottom-most is obtained from the intensity measurement with |1z, 1v), while the bottom-most (red)
curve is obtained from the QFIM of |1x,1v). f). 6X, as a function of a; and «—, in which the top(red) and bottom(green)
curves are obtained from the QFIM of |1x,1y) and |14,1_) respectively.

trix at time ¢ as

p(t) = 51— ) 14,00 (15,0
50— a)]05,1) (04, 1|
=T =a) 102 (01|
+ A= anT=a0) 05 1-) (14,0
X 104,02) (04,0 1)

where the time-dependence (length-dependence) is im-
plicit in the variables X, X; and A. Fock states have
no absolute phase; thus, the sum of two phase shifts X
doesn’t appear in the equation. Nevertheless, we can
study the absorption and the phase-shift difference. The
Ly, Lg, and L are 3 X 3 matrices. A calculation of the
SLDs from the density matrix yields

-1 1

Ld:dlag(Q7H=O)a (22)
-1 -1 1
Ls =diag(——— —, ), 23
RS wanll el o (23)
,L'eiA
pa=2V-a)l-a) | . (24)
(—an+(-a) .

The notation diag(ay, ...,an) is the N x N diagonal ma-
trix whose entries are the N elements aq,...,ay. The
SLDs for the absorption rates are diagonal. We then find

the SQFIM to be

Faq Fys
F= Fds Fss )
Fan

where
1- X,

(f=an-a)’
1-X; 1

T imai-a TR

2(1-a)(1-a-)

(i—ap)+(-a)’
Xq

I—ap)(i—a)
This is also block-diagonal as the phase shift is not related

with absorption in this case. This leads to the following
bounds:

Fuqg =

Fan =

Fds:

(25)

5Xd,min =/ 1- Xs - ng (26)

5Xs,min - (1 - XS)XS 3 (27)

Cov(Xy4,Xs) = —XsXa, (28)

_ a4+ (0 —-a)
5Amm_\/2(1—a+)(1—a) @)

A plot of X in Fig. 2 brings out the advantage of using



the single-photon Fock state as an input compared to the
coherent state. Clearly, the single-photon state renders a
notable improvement in comparison to the coherent state
in the weak absorption regime. It stands to the intuition
that an input state with lower fluctuation in the pho-
ton number yields a better sensitivity. As X; — 0, X,
becomes vanishingly small, while the corresponding sen-
sitivity bound for a coherent state levels off to 1 when
a mean photon number of unity is considered. However,
improvements in the estimation sensitivity of the chiral
absorption-rate difference § X, are not as substantial as
that for either of the absorption rates a-. This sensi-
tivity can be improved by the administration of a two-
photon entangled state as an input, as we illuminate in
the next section.

Note that the sensitivity obtained from intensity fluc-
tuations reach the lower bounds 6Xg min and 0Xs min
expressed in (26) and (27). This shows that the simple
intensity measurements in this case are already optimal.
Thus the results predicted from the Fisher information
matrix can be tested by measurements of intensity fluc-
tuations.

VI. BOUNDS ON THE MEASUREMENTS OF CD
PARAMETERS WITH QUANTUM LIGHT:
NOON STATE = (|2+4,0-) —[04,2_))

Using a type-II SPDC, one can generate entangled pho-
ton pairs with perpendicular polarizations. We choose
the input state to be [1),,|1),,. Transformed into the &
basis, it becomes \/i§(|2+7 0_-) —1]04+,2-)), which embod-
ies a typical two-photon NOON state. In this case, the
intensity measurement yields a sensitivity of

6Xq = %\/(1 —ap)+(1-a)+2(1l-ap)(l—a).
(30)

5%, = gV —a) + (a0 ) 20 —ap)( —a ).
(31)

On solving the master equation for this input, we ob-
tain the evolved density matrix as

(1) = 51— a2 [24,00) 24,0
(=0 )?105,2) (04,2 |
€= a1~ a0 [24,0) (04,2 |
PR a1 - ) 05,20 (24,0

+opr(l—ag)[14,0-) (14,0
Fo_(1-a-)[04,1-) (04, 1|

1
+ 5(043_ + 042_) |O+7O—> <O+7O—| 9

along with the SLDs

—2 2 1-2
Ld:dlag( ) ) o )
l—ay’'l—a ar(l—ay)
1—-2a_ 2X4
— 33
T ) @
—2 -2 1-2
LS:diag( ) Y aJr )
l—ay’ l—a- ar(l—ay)
1—-2a_ 2X;

04_(1—a_)’XS?—i—Xg)7 (34)

41— ay)(1—a)
T—ar P+ (1 —a )

ieiQA
X dla’g(( _iefiQA ) 707070) . (35)

L=

One can see that L has a similar form as for the
single-photon input state, but the dependence on A is
increased by 2. This results in a two-fold enhancement
of the sensitivity in A. In particular, we find that the
QFIM is given by

Faq Fys
F= Fds Fss )
Fan
where

1—2ay)? 1—2a_)? 4Xx2
e (122002 (1-20)) i

ar(l—ay) a(l—a-) XZ2+X7
P-4+ (1—2a,)? (1-2a_)? 4X? ,

ay(l—ay) a-(l-a-) X2+X2
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Figure 3. a). §X4 as a function of X4 and X,. b-e). For a clearer vision, we also plot § X4 as a function of X, for different

values of Xy :

b) X4 = 0.005, ¢c) Xq = 0.05, d) X4 = 0.1, and e) Xq = 0.2. In each plot, the top-most (purple) curve is § Xq4

obtained for a coherent state |ag,Ov), the next one (blue) from the top-most is obtained from the state |1z,0v). The curve
(pink) just above the bottom-most is obtained from the intensity measurement with |1z,1v), while the bottom-most (red)
curve is obtained from the QFIM of |1x,1v). In the first three plots b-d), the top two curves are almost overlapping. f). §Xq4
as a function of ay and a—, in which the top(red) and bottom(green) curves are obtained from the QFIM of |1z, 1yv) and

|14, 1_) respectively.

0.25

0.5

Figure 4. 0 Amin as a function of a4 and a—. The top-most
(blue) curve is obtained from the state |1, 0y ), which is the
same with a coherent state |am,8v) with an average photon
number of 1. The middle (orange) curve is obtained from the
QFIM of a coherent state |aw,By) with an average photon
number of 2. The bottom-most (green) curve is obtained from
the state |1q,1v).

8(1— ay)?(1—a.)?

F =

AT M—az+(l—a )2’
14X X, 1—2a)? 1—2a_)?2

FdS: d2 ( O[+) _ ( o ) . (36)
X2+ X7 ar(l—ay) a(l—a-)

The formulae for SQFIM and the resulting sensitiv-
ity bounds are too complicated and not very insightful.
Figures 2 and 3 capture the essential features. Clearly,

than intensity-fluctuation measurements, a direct mea-
surement of the QFI, predicts a much better sensitiv-
ity. Further, the QFI method, in this case, would grant
more precise information compared to the single-photon
input, especially in the weak absorption region for 6 Xy
(Fig. 3). As Xs — 0, 6X4 — 0 for the NOON state
input, while this uncertainty approaches 1 for a single-
photon input. Using the idea that Fock states are opti-
mal for absorption measurements, we can obtain § X4 and
d X assuming the input state is |14,1_) [43, 44, 48] and
get a bound for this particular two photon input state
Vai(l—ayg)+a_(1 —a_)/2. Considering all of these
aspects, we conclude that the use of the SPDC-generated
NOON state would be considerably advantageous in the
estimations of both net absorption X, and absorption
difference X4 in weakly absorbing samples.

We have shown that the bounds stipulated by the
QFIM are lower than the sensitivities obtained by in-
tensity measurements for the NOON state. The whole
density matrix here bears on the QFIM, and we need to
measure all the coefficients in the density matrix. In the
equations (21) and (32), the diagonal terms can be mea-
sured by single photon detectors. And by means of pro-
jective measurements introduced in section VII, we can
infer the off-diagonal terms via fidelity estimations. The
magnitudes and the phases of these off-diagonal terms
would be given by the respective amplitudes and frequen-
cies of the fringes.

There is also advantage of using the NOON state to
obtain a better achievable sensitivity of relative phase
0 A min- As shown in Figure 4, at the weak absorption
limit X, — 0, X4 — 0, the NOON state has an im-
provement of V2 to the coherent state with the same



input average photon number, or an improvement of 2 to
the single photon state. In the following section VII, we
propose an alternative method based on the projective
measurement for the estimation of A.

VII. PROJECTIVE MEASUREMENTS TO
OBTAIN ORD OR RELATIVE PHASE

Though the sensitivity of phase difference §/A can not
be obtained from intensity measurements for Fock states
or NOON state, we are still able to study the same
through the information encoded in the density matrix
p(t). As shown in (21) and (32), only the off-diagonal
terms contain the phase parameter A. The fidelity, i.e.
the degree to which that the output state resembles the
input state, defined as (¥in| pout |%in), can provide infor-
mation about A by virtue of the off-diagonal terms in
the density matrix. For the single-photon state, upon
projecting p(t) to the state |1p,0v) = %(|1+,07> +
|04,1_)), the fidelity is calculated as

F= %[1 C X, 44 /(1— X.)2 — X2eosn],  (37)
where the cross-terms in p(t) contribute to a cosA term
in Fi, which results in a fringe pattern. The pattern can
be Fourier transformed to enable an estimation of A.
Similarly, we obtain the fidelity with the NOON state
input, |1z, 1y) = %(|2+,0_> —104,2.)), as

Fy = %{(1—X5)2+X§+[(1—Xs)2—X§]COS2A}a (38)

where the cross terms now contribute to a fringe pattern
with double the frequency. The sensitivity in the esti-
mation of A is consequently doubled to the preceding
scenario.

VIII. CONCLUSIONS

In summary, we have computed the Cramér-Rao
bounds relevant to the estimation of chiral parameters
for three different input states: a coherent state |ag, Sy ),
a single-photon Fock state |1z,0y), and a NOON state
[177,1y). Unsurprisingly, the measurement sensitivities
for the coherent state imposed by the Cramér-Rao bound
coincide with the precision obtained through intensity
measurements. The single-photon input state reveals a
large improvement in the measurement of the net absorp-
tion rate, compared against the coherent states. Par-
ticularly, we find that §X; — 0 in the weak-absorption
regime, i.e., Xy — 0. The effect is manifestly quantum.
Further improvements in both the net absorption rate
X, and the CD absorption difference X, are achieved by
using the NOON state. Both the Cramér-Rao bounds

0Xs min and 6Xg min become vanishingly small for this
choice of input as Xy — 0, implying infinite theoreti-
cal improvement in this limit. This is to be contrasted
against a coherent state with the same input photon num-
ber, for which the sensitivity § X4 approaches a constant
nonzero number \/1/_2 It is useful to note that the sensi-
tivities from ordinary intensity measurements also yield
relatively better results for quantum sources for the esti-
mation of X, which lie close to the lowest bounds when
the absorption is weak. Since such schemes are widely
in practice, this gives us a readily accessible mechanism
to exploit the utilities of these light sources. However,
when the absorption rate is higher, the QFIM method
would lead to a more significant improvement, allowing
us to achieve better precision by measuring the QFIM.
With all this in mind, we conclude that the use of the
quantum NOON state, generated by the SPDC, would
be a desirable choice to measure circular dichroism with
enhanced precision.
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APPENDIX A: DERIVATION OF THE SLDS
WITH THE COHERENT STATE INPUT

We give a detailed derivation. For simplicity, we use a
_ 1182 k
coherent state |3) = e~ 218" 2 % |k) to study a sample

with a single absorption rate @ = 1 — e~27%. The master
equation in this case is

9p _

i (A1)

—~(pata — 2apa’ + atap).

Coherent states remains coherent after damping, p(t) =
|Be= ") (Be™7t|. We write it on the Fock state bases

ot —(m-l—n)'ytﬂmﬂ*n
t) = e~ IBPPe™ ¢ m)(n|, (A2
0 Y e Il (a2)
and apply g—g = g—;% on the matrix element p,,,
Opmn 1
P — pmnle®!(n+m) —2(B]7).  (A3)

a2



Comparing it with g—z = %(Lp + pL), the term propor-
tional to (m +n) can be obtained by pmp(L1)pn = NPmn
and (L1)mpPpn = MPmn, leading to L1 = e*''ala. And
the other term —|3|%pmn is a constant number acting on
Pmn, Which leads to a constant part Ly = —|3|? in L.
Thus we have

1
L:L1+L2:1_aaTa—|B|2. (A4)

APPENDIX B. THE OFF-DIAGONAL
ELEMENTS OF THE QFIM WITH THE
COHERENT STATE INPUT

The off-diagonal elements between absorption and
phase shifts of the QFIM in Eq. (14) is zero. We show a
derivation of of Fy A for example. Eq. (1) reads as

1
Fyn = 5Trlp(LaLa + LaLa)) (B1)

for Fy a, where Ly and La are defined in Eq. (10) and
(13). The RHS of Eq. (B1) can be calculated as

TripLaLa+pLaLg) = —2iTr[pLaGap]+2iTr[pLapG A]
—2iTr[pGapLa) + 2iTr[ppG A Lqg)

= —2iTr[p[Lq,GA]] =0, (B2)

Since Tr[ABC] = Tr[BCA] and [L4,Ga] = 0. This
would apply also to the other three off-diagonal coefli-
cients.
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