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Among various quantum key distribution (QKD) protocols, the round-robin differential-phase-
shift (RRDPS) protocol has a unique feature that its security is guaranteed without monitoring the
signal disturbance. Moreover, this protocol has a remarkable property of being robust against source
imperfections assuming that the emitted pulses are independent. Unfortunately, some experiments
with high-speed QKD systems confirmed the violation of the independence due to pulse correlations,
and therefore the lack of a security proof with taking into account this effect is an obstacle for
guaranteeing the implementation security. In this paper, we show that the RRDPS protocol is
secure against any source imperfections by establishing a security proof with the pulse correlations.
The proof is simple in the sense that we make only three experimentally simple assumptions on the
source. Our numerical simulation based on the proof shows that the long-range pulse correlation
does not cause a significant impact on the key rate, which reveals another striking feature of the
RRDPS protocol. Our security proof is thus effective and applicable to wide range of practical
sources and paves the way to realize truly secure QKD in high-speed systems.

I. INTRODUCTION

Quantum key distribution (QKD) offers information-
theoretically secure communication between two distant
parties, Alice and Bob [1]. To prove the security of QKD,
we suppose mathematical models on the users’ devices. If
these models are discrepant from the physical properties
of the actual devices, the security of actual QKD systems
cannot be guaranteed. Hence, it is important to establish
a security proof by reflecting the actual properties of the
devices as accurately as possible.

One of the serious imperfections in the source device
is the pulse correlation, which becomes a problem espe-
cially in high-speed QKD systems. Due to experimental
imperfections, signal modulation for each emitted pulse
affects the modulation of subsequent pulses. This means
that information of Alice’s setting choices, such as a bit
choice and an intensity choice of the current pulse, is
propagated to the subsequent pulses. Indeed, in [2], it
is experimentally observed that the intensities are cor-
related among the adjacent pulses with GHz-clock QKD
system. Even though tremendous efforts have been made
so far to accommodate imperfections in the source into
the security proofs (see e.g. [3]), such pulse correlation
violates the assumption of most security proofs. The ex-
ceptions are the results in [2, 4, 5], where the intensity
correlations between the nearest-neighbor pulses and ar-
bitrary intensity correlations are respectively accommo-
dated in [2] and [4], and the pulse correlation in terms of
Alice’s bit choice information is taken into account in [5].
Note that the result in [6] provides a security proof incor-
porating the correlation among the emitted pulses, but
this correlation is assumed to be independent of Alice’s
setting choices.

Among various QKD protocols, the round-robin
differential-phase-shift (RRDPS) protocol [7] is one of
the promising protocols, which has a unique feature that
its security is guaranteed without monitoring the signal
disturbance such as the bit error rate. Thanks to this
property, the RRDPS protocol has a better tolerance on
the bit error rate than the other protocols and the fast
convergence in the finite key regime. For this protocol, a
number of works have been done theoretically [8–16] and
experimentally [17–21]. Moreover, the RRDPS protocol
is shown to be robust against most of source imperfec-
tions [8], which is a remarkable property. However, this
robustness is maintained only when the pulses emitted
from the source are independent, which is also assumed
in all the previous security proofs of the RRDPS protocol
[9–16]. Unfortunately, some experiment [2] confirms the
violation of this independence due to the pulse correla-
tions, and hence the lack of a security proof with taking
into account this effect is an obstacle for guaranteeing
the implementation security of the RRDPS protocol.

In this paper, we show that the RRDPS protocol is se-
cure against any source imperfections by establishing the
security proof with the pulse correlations. We adopt a
general correlation model in which a bit information Al-
ice selected is encoded not only on the current pulse but
also on the subsequence pulses. In our security proof, we
make only three experimentally simple source assump-
tions, which would be useful for simple source charac-
terization. More specifically, we assume the length of
the correlation among the emitted pulses, the fidelity be-
tween two emitted states when the correlation patterns
are different, and the lower bounds on the vacuum emis-
sion probabilities of each emitted pulse. It is remark-
able that no other detailed characterization is required
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for the source and any side-channels in the source can
be accommodated. In the security proof, we exploit the
reference technique [5] that is a general framework of a se-
curity proof to deal with source imperfections, including
the pulse correlation. As a result of our security proof,
we show that the long-range pulse correlation does not
cause a significant impact on the key rate under a real-
istic experimental setting, which reveals another striking
property of the RRDPS protocol.

The paper is organized as follows. In section II, we
explain how to apply the reference technique to deal with
the pulse correlation in the RRDPS protocol and why
our protocol employs multiple interferometers in Bob’s
measurement depending on the length of the correlation.
In sections III and IV, we describe the assumptions that
we make on Alice and Bob’s devices and introduce the
protocol considered, respectively. In section V, we first
summarize the security proof and state our main result
about the amount of the privacy amplification, followed
by providing its proof. Then in section VI, we present
our numerical simulation results for the key generation
rate and show that the long-range pulse correlation does
not cause a significant impact on the key rate. Finally,
in section VII, we wrap up our security proof and refer
to some open problems.

II. THE IDEA TO APPLY REFERENCE
TECHNIQUE TO RRDPS PROTOCOL

Here, we explain how to apply the reference technique
(RT) [5] to deal with the pulse correlations in the RRDPS
protocol. In the original RRDPS protocol [7], Alice sends
a block of pulses from which Alice and Bob try to extract
one-bit key using a variable-delay interferometer. On the
other hand, in our protocol with the correlation length of
lc, Alice and Bob divide each emitted block into (lc + 1)
groups and try to extract (lc + 1)-bit key from each of
the groups. In so doing, Bob employs (lc + 1) variable-
delay interferometers so that the pulses belonging to the
same group interfere. In other terms, our protocol can
be regarded as running (lc + 1) RRDPS protocols simul-
taneously. We adopt such a modification for enabling us
to apply the RT. Below, we explain why the modification
is needed.

In the RT, we consider an entanglement-based pic-
ture where each kth emitted pulse is entangled with the
qubit. To discuss the security of the kth bit jk that is
obtained by measuring the qubit in the Z-basis (whose
eigenstates are denoted by {|0〉, |1〉}), each qubit is mea-
sured in the X-basis (whose eigenstates are denoted by
|±〉 := (|0〉 ± |1〉)/

√
2). Since how well Alice can predict

the X-basis measurement outcome is directly related to
the amount of privacy amplification [22], this estimation
is crucial in proving the security. The RT provides a
method for its estimation under the pulse correlation,

but one vital point is that the set of the kth emitted
states must be fixed just before the emission of the kth

pulse. To fix the set, we consider to measure the previous
lc qubits in the Z-basis. For instance, if lc = 1, to discuss
the security of the even-indexed bit j2k, the previous odd-
indexed qubit must be measured in the Z-basis. These
Z-basis measurements of the previous lc qubits conflict
the original security proof [7] of the RRDPS protocol.
This is because to estimate the aforementioned X-basis
statistics, all the qubits in the block are measured in the
X-basis since any two pulses in the block can interfere in
Bob’s measurement. To avoid this conflict, for instance
if lc = 1, we modify the RRDPS protocol such that the
even-indexed and the odd-indexed pulses interfere sepa-
rately, and the secret keys are separately extracted from
each interference using two interferometers. In doing so,
when we discuss the security of the even-indexed bit, only
the even-indexed qubits in the block are measured in the
X-basis while the odd-indexed ones are measured in the
Z-basis. Hence, thanks to this modification, we can re-
alize both the X- and the Z-basis measurements at the
same time. By generalizing this idea to any lc ≥ 2, if we
use (lc+1) interferometers and consider the protocol that
extracts the keys from each interferometer, these two ba-
sis measurements become compatible, and hence we can
apply the RT for proving the security.

We remark that when lc = 1, the security proofs for the
even- and the odd-indexed keys are mutually exclusive
in the sense that the proof for the odd-indexed (even-
indexed) key provides us with how much privacy am-
plification needs to be applied to the odd-indexed (even-
indexed) key, but it does not offer the security of the even-
indexed (odd-indexed) key. Fortunately, thanks to the
universal composability [23] of the two security proofs,
the amount of privacy amplification to generate the key
both from the odd- and the even-indexed bits simultane-
ously is equivalent to those obtained from the mutually
exclusive proofs. This argument holds for any lc ≥ 2
due to the universal composability of the (lc+1) security
proofs.

III. ASSUMPTIONS ON THE DEVICES

Before describing the protocol, we summarize the as-
sumptions we make on the source and the receiver. Fig-
ure 1 depicts the setups of Alice and Bob’s devices em-
ployed in the protocol. Throughout the paper, we adopt
the following notations. Let N be the total number of
pulses sent by Alice in the protocol, and for any symbol
A, we define Ai := Ai, Ai−1, ..., A1 with i ∈ N.

First, we list up the assumptions on Alice’s source as
follows. As long as the following assumptions hold, any
side-channel in the source can be accommodated.

(A1) For each kth emitted pulse (1 ≤ k ≤ N), Al-
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FIG. 1: The setups of the source and the measurement devices under nearest-neighbor correlation (lc = 1), the number of pulses

in each of the block to be fed into each of the interferometer L being three (L = 3), and block size being 6 (L̃ = (lc + 1)L = 6).

For the 1st block (i = 1), the positions of the black [gray] pulses belong to the 1st group (w = 1), that is, G(1)w=1 = {1, 3, 5} [2nd

group (w = 2), that is, G(1)w=2 = {2, 4, 6}]. The black and gray pulses are respectively corresponds to w = 1 and w = 2, which
are fed to the 1st and the 2nd variable-delay interferometer with two 50:50 beam splitters, respectively. Here, the delay r is
randomly chosen from the set {1, 2}. The pulse trains from the interferometer are measured by two photon-number-resolving
detectors representing bit values “0” and “1”. The successful detection in each of the interferometers occurs if Bob detects a
single-photon in total among the (r + 1)th to the Lth time slots and observes no detection at the other time slots.

ice chooses a random bit jk ∈ {0, 1}. The bit
jk is encoded not only to the kth emitted pulse
but also to the subsequence pulses. Let lc ≥ 0
be the number of pulses that the information jk
is propagated, and we call lc correlation length.
Let |ψjk|jk−1,...,j1〉Bk = |ψjk|jk−1

〉Bk be the state

of the kth emitted signal to Bob, where the sub-
scripts jk−1, ..., j1 indicate the dependency of the
previous information jk−1, ..., j1. Note that j0 rep-
resents having no condition. In defining the state
|ψjk|jk−1

〉Bk , we have the freedom in the choice of
its global phase. Throughout this paper, we fix the
global phase of the state |ψjk|jk−1

〉Bk such that the
coefficient of the vacuum state is non-negative. In
this paper, we consider the case where Alice em-
ploys L̃ pulses contained in a single-block, where L̃
is set to be (lc + 1)L for L ≥ 3. We call L̃ pulses of
systems B(i−1)L̃+1, ..., BiL̃ the ith block.

(A2) When lc ≥ 1, for any k (1 ≤ k ≤ N) and any ζ (k+
1 ≤ ζ ≤ min{N, k + lc}), the following parameter
εζ−k ≥ 0 characterizing the correlation is available.∣∣〈ψjζ |jζ−1,...,jk+1,jk=1,jk−1

|ψjζ |jζ−1,...,jk+1,jk=0,jk−1

〉∣∣2
≥ 1− εζ−k. (1)

Note that the difference between both states in the
inner product is in the value of jk. The parameter
εζ−k depends only on the difference ζ − k, but it is
independent of jζ , jζ−1, ..., jk+1, jk−1, ..., j1. Note
that by the assumption (A1), if ζ ≥ k + lc + 1, the

left hand size of Eq. (1) is equal to 1 since the bit
information jk does not propagate to the ζth state.

(A3) For any k (1 ≤ k ≤ N) and any jk ∈ {0, 1}, the
squared overlap of the vacuum state |vac〉 and the
state |ψjk|jk−1,...,j1〉 is lower-bounded by pL

vac,jk
re-

gardless of k and the previous choices of jk−1, ..., j1.
Mathematically, we suppose that

tr
[
|vac〉〈vac|ψjk|jk−1

〉〈ψjk|jk−1
|
]
≥ pL

vac,jk
. (2)

Providing the method for experimentally measuring the
bounds in Eqs. (1) and (2) is beyond the scope of this pa-
per. Note that the assumption (A2) can be alternatively
expressed by using pL

vac,0 and pL
vac,1 in Eq. (2) because as

we will show in Appendix A, the inner product in Eq. (1)
can be lower-bounded as∣∣〈ψjζ |jζ−1,...,jk+1,jk=1,jk−1

|ψjζ |jζ−1,...,jk+1,jk=0,jk−1

〉∣∣
≥

{
2pL

vac,jζ
− 1 if 2pL

vac,jζ
≥ 1

0 otherwise.
(3)

Next, we list up the assumptions on Bob’s measure-
ment. As explained in Sec. II, we consider that Alice and
Bob try to extract (lc+1) secret keys i.e., they divide each
block into (lc + 1) groups and try to generate a one bit
key from each of the groups. In so doing, Bob employs
(lc + 1) variable-delay interferometers with (L − 1) de-
lays followed by two detectors [26]. To explain this more
clearly, we classify the set {(i−1)L̃+1, (i−1)L̃+2, ..., iL̃}
of the positions of the emitted pulses associated with
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the ith block into (lc + 1) groups, and the wth group
(w ∈ {1, 2..., lc + 1}) for the ith block is defined by

G(i)
w := {(lc + 1)(m− 1) + w + (i− 1)L̃}Lm=1. (4)

Note that wth group G(i)
w is constructed by picking up all

the kth pulses from the ith block with k ≡ w in mod-
ulo (lc + 1). For instance, if i = 1, lc = 2, L = 10 and

L̃ = 30, G(1)
w=1 = {1, 4, 7, ..., 28},G(1)

w=2 = {2, 5, 8, ..., 29}
and G(1)

w=3 = {3, 6, 9, ..., 30}. Then, Bob prepares (lc + 1)
interferometers, and for each ith block, he feeds the in-
coming pulses of systems {Bk}k∈G(i)

w
to the wth interfer-

ometer.

(B1) Bob uses an active optical splitter with one-input
and (lc + 1)-output to feed the pulses in the ith

block into the (lc+1) interferometers. This splitter
actively sorts the incoming pulses to an appropriate

interferometer, where the kth pulse with k ∈ G(i)
w is

fed to the wth interferometer.

(B2) Followed by the active optical splitter, Bob em-
ploys the (lc+1) variable-delay interferometers with
two 50:50 beam splitters (BSs), where the delay
of the interferometer is chosen uniformly at ran-
dom from a set {1, 2, ..., L − 1}. When r-bit delay
(r ∈ {1, 2, ..., L − 1}) is chosen in the interferom-
eter, two pulses that are r(lc + 1)-pulses apart in
terms of the pulses Alice emitted interfere.

(B3) After the interferometer, the pulses are detected at
time slots 1 through L+ r by two photon-number-
resolving (PNR) detectors, which discriminate the
vacuum, a single-photon, and two or more photons
of a specific optical mode. Each of the detectors
is associated to bit values 0 and 1, respectively.
We suppose that the quantum efficiencies and dark
countings are the same for both detectors.

(B4) We suppose that there are no side-channels in Bob’s
measurement device.

IV. PROTOCOL

In this section, we describe the actual protocol of
the RRDPS protocol under the pulse correlations in the
source device. Let Nem be the number of emitted blocks
sent by Alice, and the total number of pulses sent by Al-
ice is N = NemL̃. As we will see below, our protocol can
be regarded as running (lc + 1) RRDPS protocols simul-
taneously, each of which employs a block containing L
pulses. More specifically, our protocol runs as follows. In
the description, |z| denotes the length of the bit sequence
z.

1. Alice and Bob respectively repeat steps 2 and 3
for i = 1, ..., Nem.

2. Alice chooses a sequence of random bits

j(i−1)L̃+1, ..., jiL̃ ∈ {0, 1}L̃, and sends Bob the
pulses in the following state through the quantum
channel:

iL̃⊗
k=(i−1)L̃+1

|ψjk|jk−1,...,j1〉Bk . (5)

3. By the active optical splitter with one-input and
(lc + 1)-output, the pulses in the ith block are split
to feed into the (lc + 1) variable-delay interferom-
eters. Among the pulses in the ith block, the kth

pulse with k ∈ G(i)
w is fed to the wth interferometer.

Bob executes the following for w = 1, ..., lc + 1.
At the wth interferometer, Bob randomly selects
the delay r ∈ {1, 2, ..., L − 1}, splits L incoming
pulses into two trains of pulses using a 50:50 BS,
and shifts backwards only one of the two trains by
r. Recall that the time of a single shift is equal
to (lc + 1)-times as long as the interval of the
neighboring emitted pulses. Then, Bob lets each of
the first L − r pulses in the shifted train interfere
with each of the last L− r pulses in the other train
with the other 50:50 BS, and detects photons with
the two PNR detectors at time slots 1 through
L+ r.

(a) When Bob detects exactly one photon among
the (r + 1)th to the Lth time slots and ob-
serves no detection at the other time slots,

he records a sifted key bit z
(w)
B,i ∈ {0, 1} de-

pending on which detector reported the single
photon. He also records the unordered pair

{u(w)
i , v

(w)
i }, which are the positions of the

pulse pair that resulted in the successful detec-

tion (u
(w)
i , v

(w)
i ∈ {1, 2, ..., L}, |u(w)

i − v(w)
i | =

r). He announces “success” and {u(w)
i , v

(w)
i }

over the classical channel.

(b) In all the cases other than (a), Bob announces
“failure” and w through the classical channel.

4. Bob executes the following for w = 1, ..., lc + 1.

Let N
(w)
suc be the number of success blocks observed

at the wth interferometer. For these blocks, Bob

defines his wth type sifted key z
(w)
B by concatenat-

ing his sifted key bits z
(w)
B,i for i ∈ B(w)

suc . Here, the

set B(w)
suc is composed of the block-index i where the

pulses whose indices in the set G(i)
w result in the

successful detection.

5. Alice executes the following for w = 1, ..., lc + 1.

Alice calculates her sifted key bit z
(w)
A,i = jk1 ⊕ jk2

for i ∈ B(w)
suc with k1 and k2 being the u

(w)
i -th and
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the v
(w)
i -th elements of G(i)

w , and defines her wth

type sifted key z
(w)
A by concatenating her raw key

bits z
(w)
A,i for i ∈ B(w)

suc .

6. Bob corrects the bit errors in zB :=
(z

(1)
B , ...,z

(lc+1)
B ) to make it coincide with

zA := (z
(1)
A , ...,z

(lc+1)
A ) by sacrificing |zA|fEC

bits of encrypted public communication from Alice
by consuming the same length of a pre-shared
secret key.

7. Alice and Bob executes the following for w =
1, ..., lc + 1.
For each wth type reconciled key, Alice and Bob
conduct privacy amplification by shortening their

keys by |z(w)
A |f

(w)
PA to obtain the final keys.

In this paper, we only consider the secret key rate in
the asymptotic limit of an infinite sifted key length. We
consider the asymptotic limit of large Nem while the fol-
lowing observed parameters are fixed:

0 ≤ Q(w) :=
N

(w)
suc

Nem
≤ 1. (6)

Note that fEC in step 6 is determined as a function of the
bit error rate ebit in zA and zB , where ebit can be esti-
mated by random sampling whose cost is negligible in the
asymptotic limit. Also, the fraction of privacy amplifica-

tion f
(w)
PA in step 7 is determined by the experimentally

available observables Q(w) in Eq. (6), {εd}lcd=1 in Eq. (1),
pL

vac,0 and pL
vac,1 in Eq. (2), whose explicit form is given

the next section.

V. SECURITY PROOF

A. Summary of security proof

Here, we summarize the result of the security proof of
the protocol described above and determine the amount

of privacy amplification |z(w)
A |f

(w)
PA for the wth type sifted

key in the asymptotic limit. As will be explained in this
section, our security proof is based on the complementar-
ity scenario [22] in which estimation of an upper bound on
the phase error rate assures the security. The main result
is this upper bound, which is given in Theorem 1, and we
provide its derivation in Sec. V B. Here, we outline the
crux of the discussions. The difficulty of our phase error
rate estimation comes from the correlations among the
emitted pulses that have not been accommodated in the
previous security proofs of the RRDPS protocol [8–16].
We solve this problem by exploiting the reference tech-
nique established in [5]. This is a technique that sim-
plifies the estimation of the phase error rate when the
actually employed states are close to the ones whose for-
mula associated to the phase error rate is easily derived.

In this technique, we consider reference states, which are
fictitious states that are not prepared in the protocol but
close to the actual state. The key intuition is rather sim-
ple; when the reference states and the actual states are
close, the deviation between probabilities associated to
the reference states and those associated to the actual
states should not be large. Therefore, we can obtain the
phase error rate formula for the actual states by slightly
modifying the formula for the reference states. We em-
phasize that Alice does not need to generate the reference
states in the protocol, and they are purely a mathemat-
ical tool for phase error rate estimation. In particular,
we choose the reference states regarding the kth emit-
ted pulse such that the information jk is only encoded
to system Bk (see Eq. (31) for the explicit formula). By
exploiting this property, it is simple to obtain the prob-
abilities for the reference states, which will be given by
T in Eq. (26). Depending on the fidelity between the
actual and reference states, which will be given by S in
Eq. (27), by slightly modifying the relationship for the
reference states, we finally obtain the target probability
with the actual ones.

In the rest of this section, we first explain the struc-
ture of the security proof, define the parameters that are
needed to present the main result, and then describe The-
orem 1. For the security proof with complementarity,
we consider alternative entanglement-based procedures
for Alice’s state preparation at step 2 and calculation of

her raw key bit z
(w)
A,i at step 5. These alternative proce-

dures can be employed to prove the security of the ac-
tual protocol because the states sent to an eavesdropper
(Eve), Bob’s measurement, and the final key are identi-
cal to those in the actual protocol. Also, Bob’s public

announcement of the unordered pair {u(w)
i , v

(w)
i } in the

actual protocol is identical to the one in the alternative
protocol. As for Alice’s state preparation at step 2, she
alternatively prepares N auxiliary qubits in systems AN ,
which remain at Alice’s laboratory during the whole pro-
tocol, and the N pulses in systems BN to be sent, in the
following state

|Ψ〉ANBN

:=
1√
2N

1∑
jN=0

· · ·
1∑

j1=0

N⊗
k=1

|jk〉Ake
iθjk|jk−1 |ψjk|jk−1

〉Bk .

(7)

Here, the phase factors eiθjk|jk−1 can be chosen arbitrary
because from Eve’s perspective, the states of system Bk
in Eqs. (5) and (7) are equivalent. However, these fac-
tors must be adequately chosen to apply the reference
technique for each wth type sifted key, which will be ex-
plained in Sec. V B 2. As for calculation of the sifted key

bit z
(w)
A,i = jk1

⊕ jk2
at step 5, this bit can be alterna-

tively extracted by applying the controlled-not (CNOT)
gate (defined on the Z-basis) on the kth

1 and kth
2 auxil-
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iary qubits of systems Ak1
and Ak2

with the kth
1 one being

the control and the kth
2 one being the target followed by

measuring the kth
2 auxiliary qubit in the Z-basis to obtain

z
(w)
A,i .
In the complementarity scenario, the discussion of the

security of the key z
(w)
A is equivalent to consider a vir-

tual scenario of how well Alice can predict the outcome
of the measurement complementary to the one to obtain

z
(w)
A,i . In particular, we take the X-basis measurement

as the complementary basis, and we need to quantify
how well Alice can predict its outcome xk2 ∈ {+,−} on
system Ak2 . As for Bob, instead of aiming at learning

z
(w)
A,i , he performs the alternative measurement that de-

termines which of the kth pulse in the group G(i)
w contains

the single-photon. This measurement is complementary

to the one for obtaining his sifted key bit z
(w)
B,i . With

this alternative measurement, Bob announces the pair

{u(w)
i , v

(w)
i } such that the first index u

(w)
i corresponds

to the location of the single-photon and the second in-

dex v
(w)
i is chosen uniformly at random from the set

{1, 2..., i − 1, i + 1, i + 2..., L} [27]. Hence, in this vir-
tual scenario, Alice’s task is to predict the outcome xk2

where k2 is chosen uniformly at random from the group

G(i)
w except for k1. We define the occurrence of phase er-

ror to be the case where Alice fails in her prediction of

the outcome xk2
. Let N

(w)
ph denote the number of phase

errors of the wth type sifted key among |z(w)
A | trials. Sup-

pose that the upper bound N
(w),U
ph on N

(w)
ph is obtained

as a function of the experimentally available observables
Q(w) in Eq. (6), {εd}lcd=1 in Eq. (1), pL

vac,0 and pL
vac,1 in

Eq. (2). In this case, in the asymptotic limit, a sufficient
fraction of privacy amplification is given by [22]

f
(w)
PA = h

(
N

(w),U
ph /N (w)

suc

)
, (8)

where h(x) is defined by h(x) = −x log2 x − (1 −
x) log2(1 − x) for 0 ≤ x ≤ 0.5 and h(x) = 1 for x > 0.5.
Our main result, Theorem 1, derives the upper bound

e
(w),U
ph on the phase error rate e

(w)
ph := N

(w)
ph /N

(w)
suc with

Q(w), {εd}lcd=1, pL
vac,0 and pL

vac,1 (see Sec. V B for the
proof).

Theorem 1 In the asymptotic limit of large key length

of the wth type sifted key |z(w)
A |, the upper bound on the

phase error rate for the wth type sifted key of the RRDPS
protocol is given by

e
(w),U
ph =

L−2∑
s=0

1

L− 1
min

{
ν(L, s, C)

Q(w)
, 1

}
. (9)

Here, function ν(L, s, C) is defined by

ν(L, s, C) :=

L∑
y=s+1

(
L

y

)
Cy(1− C)L−y,

where C = g(T, S) if T ≤ S2 and C = 1 other-

wise with T := 1 −
(√

pL
vac,0 +

√
pL

vac,1

)2

/4, S :=(
1 +

∏lc
d=1

√
1− εd

)
/2 for lc ≥ 1 and S=1 for lc = 0,

and g(x, y) := x+(1−y2)(1−2x)+2y
√

(1− y2)x(1− x).

We remark that once characterizations of the source de-
vice are completed (i.e., {εd}lcd=1, pL

vac,0 and pL
vac,1 are ob-

tained), C becomes a constant. Theorem 1 reveals that
as the correlation length lc gets larger, ν(L, s, C) in the
expression of the phase error rate in Eq. (9) generally
gets larger because C = g(T, S) is a monotonically de-
creasing function of S and S generally gets smaller as lc
becomes larger.

Finally, using Theorem 1, the secret key rate per pulse
is given by

R =

lc+1∑
w=1

Q(w)
[
1− fEC − h

(
e

(w),U
ph

)]
/(lc + 1)L, (10)

where we provide its proof in Appendix C.

B. Proof of the main result

In this section, we prove our main result, Theorem 1.

1. Derivation of the phase error rate for the wth type sifted
key

Here, we derive the upper bound e
(w),U
ph on the phase

error rate e
(w)
ph := N

(w)
ph /N

(w)
suc for the wth type sifted

key (w ∈ {1, 2, ..., lc + 1}). We remark that the follow-

ing discussions hold for any w. To derive e
(w),U
ph , we

consider performing the X-basis measurement on sys-
tem Ak of |Ψ〉ANBN

in Eq. (7) with k belonging to the

wth group of indices
⋃Nem

i=1 G
(i)
w , and we define the total

number of the minus n
(i)
w,− with 1 ≤ i ≤ Nem obtained

through measuring L qubit systems {Ak}k∈G(i)
w

. Thanks

to these X-basis measurements, we can classify N
(w)
suc suc-

cessfully detected blocks according to nw,−, which leads

to N
(w)
ph =

∑L
s=0N

(w)
ph,nw,−=s. Here, N

(w)
ph,nw,−=s denotes

the number of the phase error events for the wth type
sifted key when nw,− = s. By considering Bob’s alterna-
tive measurement explained in Sec. V A, the probability
of failing in the prediction of the X-basis measurement
outcome (namely, having the occurrence of the phase er-
ror) when nw,− = s is s/(L − 1). More precisely, the
phase error is defined by obtaining the outcome of the
minus in the X-basis measurement on the target qubit,
which is randomly chosen with probability 1/(L− 1) [7].
Since there are s-outcomes of the minus when nw,− = s,
the probability of obtaining the phase error is at most
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s/(L− 1). Importantly, the probability 1/(L− 1) comes
from the random choice of the delay at Bob’s measure-
ment assumed in (B2), and Eve cannot distort this prob-
ability distribution [7]. With this phase error probability
s/(L− 1) when nw,− = s, the Chernoff bound leads the
following for any ζ > 0

e
(w)
ph :=

N
(w)
ph

N
(w)
suc

=

∑L
s=0N

(w)
ph,nw,−=s

N
(w)
suc

≤
L−1∑
s=0

s

L− 1

N
(w)
suc,nw,−=s

N
(w)
suc

+ ζ +
N

(w)
suc,nw,−=L

N
(w)
suc

=

L−2∑
s=0

1

L− 1

N
(w)
suc,nw,−>s

N
(w)
suc

+ ζ. (11)

To upper-bound N
(w)
suc,nw,−>s/N

(w)
suc , whose trivial upper

bound is 1, in addition to the successfully detected
blocks, Alice measures the total number of the minus

n
(i)
w,− for the non-detected blocks (namely, all the ith

block with i /∈ B(w)
suc ). In doing so, it is obvious to

see that the number N
(w)
suc,nw,−>s of obtaining nw,− > s

among the detected blocks can never be larger than the

one N
(w)
em,nw,−>s among the emitted blocks [28]. We note

that the number N
(w)
em,nw,−>s of the emitted blocks is fixed

once Alice prepares the state |Ψ〉ANBN
in Eq. (7). By

overestimating N
(w)
suc,nw,−>s as

N
(w)
suc,nw,−>s ≤ N

(w)
em,nw,−>s, (12)

Eq. (11) results in

e
(w)
ph ≤

L−2∑
s=0

1

L− 1
min

{
N

(w)
em,nw,−>s

N
(w)
suc

, 1

}
+ ζ. (13)

Hence, the remaining task is to derive the upper bound

on N
(w)
em,nw,−>s. For this, we evaluate the upper bound

on the probability of obtaining the outcome of the minus
when system Ak of state |Ψ〉ANBN

is measured in the X-
basis with k belonging to the mth element (1 ≤ m ≤ L)

of set G(i)
w . Mathematically, the target for computation

is the probability Pr[xt = −|{xk}k∈P(w)
i,m

] with

t := (i− 1)L̃+ w + (m− 1)(lc + 1),

P(w)
i,m :=

i⋃
a=1

{k|k ∈ G(a)
w , k < t}.

If

Pr[xt = −|{xk}k∈P(w)
i,m
, jt−1, ..., jt−lc ] ≤ C (14)

with constant C holds for any jt−1, ..., jt−lc ∈ {0, 1}lc ,
where jk ∈ {0, 1} denotes the Z-basis measurement out-
come on system Ak of Eq. (7), applying the Bayes rule

leads that the target probability is also upper-bounded
by C [29] :

Pr[xt = −|{xk}k∈P(w)
i,m

] ≤ C. (15)

The derivation of the upper-bound C in Eq. (14) involves
the reference technique established in [5], and we explain
its detail in Sec. V B 2. Note that as mentioned in Sec. II,
to apply the reference technique to estimate the statis-
tics of xt in Eq. (14), the previous lc Z-basis measure-
ment outcomes jt−1, ..., jt−lc must be fixed, where these
Z-basis measurements are possible because we can dis-
cuss the security of each wth type sifted key separately
thanks to the modification of the RRDPS protocol. With
Eq. (15) in hand, by considering the binomial trial with

success probability C, the total number of the minus n
(i)
w,−

obtained through measuring L systems {Ak}k∈G(i)
w

obeys

the following probability distribution when conditioned

on the previous outcomes n
(i−1)
w,− , ..., n

(1)
w,−:

Pr[n
(i)
w,− > s|n(i−1)

w,− , ..., n
(1)
w,−] ≤

L∑
y=s+1

(
L

y

)
Cy(1− C)L−y =: ν(L, s, C). (16)

Here, s denotes the integer. Once s is fixed, ν(L, s, C)
is constant independently of the block index i (1 ≤ i ≤
Nem). Since the probability of obtaining nw,− > s for any
ith block is upper-bounded by ν(L, s, C) from Eq. (16),

for deriving N
(w)
em,nw,−>s, we can imagine independent

trials with probability ν(L, s, C). Therefore, again by
using the Chernoff bound, we have from Eq. (13) and

N
(w)
em,nw,−>s/N

(w)
suc = 1/Q(w) · N (w)

em,nw,−>s/Nem that for
any χ > 0 and ζ > 0

e
(w)
ph ≤

L−2∑
s=0

1

L− 1
min

{
ν(L, s, C) + χ

Q(w)
, 1

}
+ ζ. (17)

When we increase N
(w)
suc for any fixed ζ and χ, the

probability of violating Eq. (17) decreases exponentially.

Therefore, in the limit of large N
(w)
suc , we can neglect these

terms and finally obtain our main result in Eq. (9). Note
that Q(w) defined in Eq. (6) is experimentally observed
data. As will be shown in Sec. V B 2, C is determined by
the assumptions (A2) and (A3), namely, the parameters
ε1, ..., εlc in Eq. (1) and the probabilities pL

vac,0 and pL
vac,1

in Eq. (2).

2. Derivation of X-basis measurement statistics using
reference technique

Here, we derive the upper bound on Pr[xt =
−|{xk}k∈P(w)

i,m
, jt−1, ..., jt−lc ] in Eq. (14), regardless of

jt−1, ..., jt−lc ∈ {0, 1}lc that are the Z-basis measurement
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outcomes of systems At−1, ..., At−lc in Eq. (7). The cru-
cial point for its computation is that once jt−1, ..., jt−lc
are fixed, we find from Eq. (7) that the state of the sys-
tems At−1Bt−1 and the one of the systems A≥tB≥t are
decoupled, i.e, they are in the tensor product. Here, we
define A≥i := AN , AN−1, ..., Ai. The Z-basis measure-
ment outcomes jt−1, ..., jt−lc have an influence on de-
termining the set of the tth states {|ψjt|jt−1

〉Bt}jt , but
the previous X-basis measurement outcomes {xk}k∈P(w)

i,m

have no influence on the state of the systems A≥tB≥t
thanks to the tensor product structure. Therefore, when
conditioned on jt−1, ..., jt−lc , we only focus on the state of
the systems A≥tB≥t to calculate the target probability.
From Eq. (7), conditioned on the outcomes jt−1, ..., jt−lc ,
the state of systems A≥tB≥t is written as

|ΓAct
jt−1
〉A≥tB≥t :=

1√
2

1∑
jt=0

|jt〉At |ψAct
jt|jt−1

〉A≥t+1B≥t (18)

with

|ψAct
jt|jt−1

〉A≥t+1B≥t := eiθjt|jt−1 |ψjt|jt−1
〉Bt⊗

1√
2N−t

∑
jN

· · ·
∑
jt+1

N⊗
ζ=t+1

|jζ〉Aζe
iθjζ |jζ−1 |ψjζ |jζ−1

〉Bζ .

(19)

As shown in [5], and also in Appendix B, Eq. (19) is
rewritten as

|ψAct
jt|jt−1

〉A≥t+1B≥t = eiθjt|jt−1 |ψjt|jt−1
〉Bt[

ajt,jt−1
|Φjt−1

〉A≥t+1B≥t+1
+ bjt,jt−1

|Φ⊥jt,jt−1
〉A≥t+1B≥t+1

]
.

(20)

Here, |Φjt−1
〉 and |Φ⊥jt,jt−1

〉 are normalized states that re-
spectively does not contain the information of jt and does
contain its information. Note that the state |Φjt−1〉 repre-
sents a side-channel-free state, while the state |Φ⊥jt,jt−1

〉
represents the state of the side-channel since the infor-
mation of jt is propagated to the subsequence pulses. In
our security proof, |Φ⊥jt,jt−1

〉 can be taken as any form
in any-dimensional Hilbert space as long as it is orthog-
onal to |Φjt−1〉, and the characterization of |Φ⊥jt,jt−1

〉 is

not required. As stated below Eq. (7), the phase factors

eiθjk|jk−1 in Eq. (7) can be chosen arbitrary, but to de-
rive the lower bound on ajt,jt−1

in Eq. (20), for each k of

k ≡ w in modulo lc + 1, the phase factors eiθjk|jk−1 must
be set as

eiθjk|jk−1 = 1, (21)

and for each k of k ≡ w in modulo lc + 1, the phase
factors {eiθjζ |jζ−1}k+lc

ζ=k+1 must be chosen as

e
iθjζ |jζ−1

:=

∣∣〈ψjζ |jζ−1,...,jk+1,jk=0,jk−1
|ψjζ |jζ−1,...,jk+1,jk,jk−1

〉∣∣〈
ψjζ |jζ−1,...,jk+1,jk=0,jk−1

|ψjζ |jζ−1,...,jk+1,jk,jk−1

〉 .
(22)

Note that eiθjt|jt−1 = 1 holds in Eqs. (19) and (20) be-
cause of Eq. (21) and t ≡ w in modulo lc + 1. In doing
so, the coefficient ajt,jt−1

is positive and can be lower-
bounded by using Eq. (1) as

ajt=0,jt−1
= 1, ajt=1,jt−1

≥
lc∏
d=1

√
1− εd (23)

if lc ≥ 1. If lc = 0, ajt,jt−1
= 1 for both jt = 0, 1 (see

Appendix B for the detail).
Using Eq. (18), we have that the probability of our

interest leads to

Pr[xt = −|{xk}k∈P(w)
i,m
, jt−1, ..., jt−lc ]

= tr
[
|−〉〈−|At |ΓAct

jt−1
〉〈ΓAct

jt−1
|A≥tB≥t

]
. (24)

To calculate Eq. (24), we introduce the reference states
{|φRef

jt|jt−1
〉A≥t+1B≥t}jt that are associated with the actual

states {|ψAct
jt|jt−1

〉A≥t+1B≥t}jt . The reference states, which
are close to the actual states prepared by the protocol,
need to be chosen such that the following two conditions
are satisfied. In its description, we use the notation

|ΓRef
jt−1
〉A≥tB≥t :=

1√
2

1∑
jt=0

|jt〉At |φRef
jt|jt−1

〉A≥t+1B≥t . (25)

(C1) For the reference state, the probability of obtaining
the outcome of the minus when system At is mea-
sured in the X-basis is upper-bounded by constant
T > 0, which is expressed as

Pr
[
xt = − | |ΓRef

jt−1
〉
]
≤ T. (26)

(C2) The fidelity between |ΓAct
jt−1
〉 and |ΓRef

jt−1
〉 is lower-

bounded by constant S > 0, that is∣∣∣〈ΓRef
jt−1
|ΓAct

jt−1

〉∣∣∣ ≥ S. (27)

Once the reference states satisfy Eqs. (26) and (27), the
upper bound on Eq. (24) can be obtained by using the
function g(x, y) [5] that relates the statistics of the actual
and the reference states [30]. Specifically, the X-basis
measurement statistics of these two states are related as

Pr
[
xt = − | |ΓAct

jt−1
〉
]

≤ g
(

Pr
[
xt = − | |ΓRef

jt−1
〉
]
,
∣∣∣〈ΓRef

jt−1
|ΓAct

jt−1

〉∣∣∣) , (28)
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where g(x, y) = x+(1−y2)(1−2x)+2y
√

(1− y2)x(1− x)
if x ≤ y2 and g(x, y) = 1 if x > y2. A direct calculation
reveals that if x ≤ y2,

g(x, y) ≤ g(xU, yL) (29)

holds, where U (L) indicates the upper (lower) bound.
Then, combining Eqs. (26)-(29) gives

Pr
[
xt = − | |ΓAct

jt−1
〉
]
≤ C =

{
g(T, S) (if T ≤ S2)

1 (if T > S2).
(30)

Hence, the remaining task for obtaining Eq. (15) is to de-
rive the two bounds T and S, which are calculated below.
In so doing, we take the reference state |φRef

jt|jt−1
〉A≥t+1B≥t

for jt ∈ {0, 1}, which are associated with the actual state
|ψAct
jt|jt−1

〉A≥t+1B≥t in Eq. (20), such that it is the first

term of |ψAct
jt|jt−1

〉A≥t+1B≥t :

|φRef
jt|jt−1

〉A≥t+1B≥t = |ψjt|jt−1
〉Bt ⊗ |Φjt−1〉A≥t+1B≥t+1

.

(31)

Calculation of T in Eq. (26):

We calculate the upper bound on Pr
[
xt = − | |ΓRef

jt−1
〉
]

as follows:

Pr
[
xt = − | |ΓRef

jt−1
〉
]

= 1− Pr
[
xt = + | |ΓRef

jt−1
〉
]

= 1−
∞∑
n=0

Pr
[
nt = n, xt = + | |ΓRef

jt−1
〉
]

≤ 1− Pr
[
nt = 0, xt = + | |ΓRef

jt−1
〉
]
,

where nt denotes the number of photons contained in
system Bt. By rewriting |ΓRef

jt−1
〉 using the X-basis states

|±〉At :

|ΓRef
jt−1
〉A≥tB≥t = |Φjt−1〉A≥t+1B≥t+1

⊗
|+〉At

∑
jt
|ψjt|jt−1

〉Bt + |−〉At
∑
jt

(−1)jt |ψjt|jt−1
〉Bt

2
,

(32)

we find that the statistics of nt only depends on sys-
tem At. Importantly, in obtaining Eq. (32), we used
the fact that |Φjt−1

〉A≥t+1B≥t+1
is independent of jt as

stated in Sec. V B 2. Then, combining Eq. (32) and the
assumption (A3) in Sec. III gives the lower-bound on

Pr
[
nt = 0, xt = + | |ΓRef

jt−1
〉
]

as

Pr
[
nt = 0, xt = + | |ΓRef

jt−1
〉
]

=

∣∣∣∣ 〈vac|
∑
jt
|ψjt|jt−1

〉
2

∣∣∣∣2
≥
[√

pL
vac,0 +

√
pL

vac,1

]2
/4.
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FIG. 2: Secure key rate R per pulse as a function of the
overall channel transmission η. From top to bottom, we plot
the key rates for (lc,∆) =(0,0), (1,0.2), (2,0.2) and (10,0.2)
with ebit = 3% and L = 32. We note that the key rates for
the last three parameters are almost superposed.

In the inequality, we employ the fact that the coefficient
of the vacuum state of |ψjt|jt−1

〉 is non-negative, which
is stated in assumption (A1). Therefore,

Pr
[
xt = − | |ΓRef

jt−1
〉
]
≤ 1−

(√
pL

vac,0 +
√
pL

vac,1

)2

/4 = T.

Calculation of S in Eq. (27):
Next, we calculate the fidelity between |ΓAct

jt−1
〉 and

|ΓRef
jt−1
〉. We have that for lc ≥ 1

∣∣∣〈ΓRef
jt−1
|ΓAct

jt−1

〉∣∣∣ =

∣∣∣∑jt

〈
φRef
jt|jt−1

|ψAct
jt|jt−1

〉∣∣∣
2

=

∣∣∣∑jt
ajt,jt−1

∣∣∣
2

≥
1 +

∏lc
d=1

√
1− εd

2
= S.

The first equality follows from Eqs. (18) and (25), the
second equality comes from Eqs. (20) and (31), and the
inequality follows from Eq. (23). If lc = 0, S = 1 holds
since ajt,jt−1

= 1 for both jt = 0, 1.

VI. SIMULATION OF SECURE KEY RATES

Here, we show the simulation results of asymptotic key
rate R per pulse given by Eq. (10) as a function of the
overall channel transmission η including the detector effi-
ciency. For the simulation, we assume that each emitted
pulse is a coherent pulse from a conventional laser with
mean photon number µ and only the phases of the coher-
ent pulses are correlated. In this case, the lower bound
on the vacuum emission probability pL

vac,jk
in Eq. (2) is

given by e−µ and hence T defined above is 1− e−µ. For
the simulation, we consider the cases of the correlation
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length lc = 0, 1, 2 and 10, and for all the cases, we adopt
fEC = h(ebit) with ebit denoting the bit error rate in the
protocol and suppose the successful detection rate for any
w as Q(w) = Lηµe−Lηµ/2.

In the case of lc = 1, namely, the case of the nearest-
neighbor correlation, we assume that the kth emitted
state is written as

|ψjk|jk−1
〉 = δjk−1,0|(−1)jk

√
µ〉+ δjk−1,1|(−1)jk

√
µei∆〉.

(33)

Here, δx,y is the Kronecker delta and |eiθ√µ〉 denotes the
coherent state with the complex amplitude being eiθ√µ.
This state represents the pulse correlation that if the pre-
vious choice of bit jk−1 is 0, then the next kth states are
the ideal states {|√µ〉, |−√µ〉}, but if jk−1 is 1, then the
phases are deviated by ∆ from the ideal ones. In this
setting, S defined above is given by

S =
1 +
√

1− ε1
2

=
1 + |

〈√
µ|√µei∆

〉
|

2
=

1 + eµ(cos ∆−1)

2
.

In the case of lc = 2, we assume that the kth emitted state
is written as |ψjk|jk−1,jk−2

〉 = δjk−1,0δjk−2,0|(−1)jk
√
µ〉+

δjk−1,0δjk−2,1|(−1)jk
√
µei∆/2〉 +

δjk−1,1δjk−2,0|(−1)jk
√
µei∆〉 +

δjk−1,1δjk−2,1|(−1)jk
√
µei3∆/2〉. This state repre-

sents that if jk−1 = 1 (jk−2 = 1), the phases of the kth

pulses are rotated by ∆ (∆/2). This means that the
influence of the second-previous bit jk−2 to the kth pulse
is half of that of the previous bit jk−1. In this setting, S
is given by

S =
1 +
√

1− ε1
√

1− ε2
2

=
1 + eµ(cos ∆−1)eµ(cos ∆

2 −1)

2
.

As for the case of lc = 10, the kth state is set
to be analogous to the one for lc = 1, 2, where
if jk−d = 1 (with d = 1, ..., 10), the phases of
the kth pulses are rotated by ∆/2d−1. A direct

calculation shows S =
(

1 +
∏10
d=1

√
1− εd

)
/2 =(

1 +
∏10
d=1 e

µ(cos(∆/2d−1)−1)
)
/2.

In Fig. 2, we plot the key rates for ebit = 0.03, L = 32
and ∆ = 0.2 rad for the cases of lc = 0, 1, 2, 10 from
top to bottom. The top line is the key rate with no
pulse correlation (i.e., lc = 0) that corresponds to ∆ =
0 in Eq. (33). The key rates are optimized over mean
photon number µ for each value of channel transmission
η. From these lines, we see that the pulse correlation
slightly degrades the key rate (about 0.7 times lower than
the one without pulse correlation), but the three lines
with lc = 1, 2 and 10 are almost superposed. This implies
that when the pulse correlation gets weaker as the pulses
are farther apart, which is assumed in our simulation, the
long-range pulse correlation does not cause a significant
impact on the key rate.

VII. DISCUSSION

In this paper, we have provided the information the-
oretic security proof of the RRDPS protocol with the
pulse correlation in Alice’s source by using the reference
technique. The pulse correlation is one of the serious
imperfections in high-speed QKD systems where Alice’s
random bit choice is propagated to the subsequent emit-
ted pulses. Once the number of propagated pulses (lc) is
fixed, our security proof only requires the two experimen-
tally simple assumptions on the source: the lower bound
on the fidelity between the two kth states when the cor-
relation patterns are different and the lower bounds on
the vacuum emission probabilities of each emitted pulse.
Our numerical simulations have shown the key rates up
to lc = 10 and have revealed that the long-range pulse
correlation does not cause a significant impact on the key
rate in a realistic experimental setting. Therefore, our se-
curity proof is effective and applicable to wide range of
practical sources, and thus paves the way to realize the
truly secure and high-speed QKD systems.

We end with some open questions. It has an practical
importance to simulate the key rates based on another
source correlation model such as an intensity correlation
that is beyond the one we have supposed in our simu-
lation shown in Fig. 2. Also, it is interesting to extend
our security proof without the modification of the pro-
tocol, namely, with a single variable-delay interferometer
assuming the same source correlation. Another interest-
ing topic is to extend the security proof to accommodate
quantum correlations among the emitted signals.
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Appendix A: Proof of Eq. (3)

In this appendix, we prove Eq. (3). For this,
once we obtain the following proposition, by sub-
stituting |ψ〉 = |ψjζ |jζ−1,...,jk+1,jk=1,jk−1,...,j1〉, |φ〉 =
|ψjζ |jζ−1,...,jk+1,jk=0,jk−1,...,j1〉 and the lower bounds in
Eq. (2) to Eq. (A1), Eq. (3) can be obtained.

Proposition 1 For any state |ψ〉 and |φ〉, a lower bound
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on the fidelity between these two states is given by

| 〈ψ|φ〉 | ≥

{
2
√
pvac,φpvac,ψ − 1 if 2

√
pvac,φpvac,ψ ≥ 1

0 otherwise,

(A1)

where pvac,φ := tr[|vac〉〈vac||φ〉〈φ|].

(Proof) We expand |ψ〉 and |φ〉 using the photon number
states in all the optical modes, |vac〉 and {|n〉}n≥1, as
follows:

|ψ〉 =
√
pvac,ψ|vac〉+

∑
n≥1

βn|n〉,

|φ〉 =
√
pvac,φ|vac〉+

∑
n≥1

γn|n〉.

We here choose the global phase of |ψ〉 and |φ〉 such that
the coefficients of |vac〉 being positive, and βn ∈ C and
γn ∈ C are the coefficients for n ≥ 1 of |ψ〉 and |φ〉,
respectively. By using this, | 〈ψ|φ〉 | is written as

| 〈ψ|φ〉 | =

∣∣∣∣∣∣√pvac,ψpvac,φ + eiθ

∣∣∣∣∣∣
∑
n≥1

β∗nγn

∣∣∣∣∣∣
∣∣∣∣∣∣ , (A2)

where θ = arg(
∑
n≥1 β

∗
nγn). We next derive the upper

bound on
∣∣∣∑n≥1 β

∗
nγn

∣∣∣ by exploiting the triangle inequal-

ity and the Cauchy-Schwarz inequality:∣∣∣∣∣∣
∑
n≥1

β∗nγn

∣∣∣∣∣∣ ≤
∑
n≥1

|βn| |γn| ≤

√√√√√
∑
n≥1

|βn|2

∑
n≥1

|γn|2


=
√

(1− pvac,ψ)(1− pvac,φ) =: τ.

(i) If 2
√
pvac,φpvac,ψ ≥ 1, since

√
pvac,φpvac,ψ ≥ τ

holds, Eq. (A2) is lower-bounded as follows:

| 〈ψ|φ〉 |
≥
∣∣√pvac,φpvac,ψ + eiπτ

∣∣
=
√
pvac,φpvac,ψ −

√
(1− pvac,ψ)(1− pvac,φ)

≥√pvac,φpvac,ψ −
√

1 + pvac,ψpvac,φ − 2
√
pvac,φpvac,ψ

=2
√
pvac,φpvac,ψ − 1.

The second inequality follows from the fact that
a+ b ≥ 2

√
ab holds for any a, b ≥ 0.

(ii) If 2
√
pvac,φpvac,ψ < 1, we only have the trivial lower

bound:

| 〈ψ|φ〉 | ≥ 0. (A3)

Appendix B: Proof of Eqs. (20) and (23)

In this appendix, we prove Eqs. (20) and (23). We
start form Eq. (19):

|ψAct
jt|jt−1

〉A≥t+1B≥t = eiθjt|jt−1 |ψjt|jt−1
〉Bt

 1√
2N−t

∑
jN

· · ·
∑
jt+1

N⊗
ζ=t+1

|jζ〉Aζe
iθjζ |jζ−1 |ψjζ |jζ−1,...,jt+1,jt,jt−1

〉Bζ

 . (B1)

To see how the information jt is encoded to the state
|ψAct
jt|jt−1

〉A≥t+1B≥t , we expand it using |Φjt−1〉A≥t+1B≥t+1

and |Φ⊥jt,jt−1
〉A≥t+1B≥t+1

to have

|ψAct
jt|jt−1

〉A≥t+1B≥t = eiθjt|jt−1 |ψjt|jt−1
〉Bt⊗(

ajt,jt−1 |Φjt−1〉A≥t+1B≥t+1
+ bjt,jt−1 |Φ⊥jt,jt−1

〉A≥t+1B≥t+1

)
,

(B2)

where |Φjt−1
〉A≥t+1B≥t+1

and |Φ⊥jt,jt−1
〉A≥t+1B≥t+1

de-

note some normalized states, and these are orthogo-
nal each other. The subscripts in ajt,jt−1 , bjt,jt−1 ,
|Φjt−1

〉A≥t+1B≥t+1
, and |Φ⊥jt,jt−1

〉A≥t+1B≥t+1
indicate

the dependency on the previous setting choices [31].
Importantly, |Φjt−1

〉A≥t+1B≥t+1
does not depend on

jt but |Φ⊥jt,jt−1
〉A≥t+1B≥t+1

does. This means that

|Φ⊥jt,jt−1
〉A≥t+1B≥t+1

represents the side-channel state of

jt. For |Φjt−1〉A≥t+1B≥t+1
, we can take any state as long

as it is independent of jt. Here, we choose it as
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|Φjt−1〉A≥t+1B≥t+1
=

1√
2N−t

∑
jt+lc

· · ·
∑
jt+1

t+lc⊗
ζ=t+1

|jζ〉Aζ |ψjζ |jζ−1,...,jt+1,jt=0,jt−1
〉Bζ


⊗

∑
jN

· · ·
∑

jt+lc+1

N⊗
ζ=t+lc+1

e
iθjζ |jζ−1 |jζ〉Aζ |ψjζ |jζ−1,...,jt+1,jt=0,jt−1

〉Bζ

 (B3)

that corresponds to the N − t systems of Eq. (B1) with
jt being fixed to be 0 and with omitting the phase from
the state {|ψjζ |jζ−1,...,jt+1,jt=0,jt−1

〉Bζ}
t+lc
ζ=t+1. The reason

for omitting the phase is to guarantee the positivity of
ajt,jt−1

in Eq. (B2). The remaining task is to derive the
lower bound on ajt,jt−1

for jt ∈ {0, 1} using the assump-
tion (A2). Since ajt,jt−1

is the inner product between
Eq. (B3) and the vector

1√
2N−t

∑
jN

· · ·
∑
jt+1

N⊗
ζ=t+1

|jζ〉Aζe
iθjζ |jζ−1 |ψjζ |jζ−1,...,jt+1,jt,jt−1

〉Bζ ,

which is the state of the N − t systems shown in the
parenthesis of Eq. (B1), we have

ajt,jt−1
=

1

2N−t

∑
jt+lc

· · ·
∑
jt+1

t+lc∏
ζ=t+1

e
iθjζ |jζ−1

〈
ψjζ |jζ−1,...,jt+1,jt=0,jt−1

|ψjζ |jζ−1,...,jt+1,jt,jt−1

〉∑
jN

· · ·
∑

jt+lc+1

1


=

1

2lc

∑
jt+lc

· · ·
∑
jt+1

t+lc∏
ζ=t+1

e
iθjζ |jζ−1

〈
ψjζ |jζ−1,...,jt+1,jt=0,jt−1

|ψjζ |jζ−1,...,jt+1,jt,jt−1

〉
=

1

2lc

∑
jt+lc

· · ·
∑
jt+1

t+lc∏
ζ=t+1

∣∣〈ψjζ |jζ−1,...,jt+1,jt=0,jt−1
|ψjζ |jζ−1,...,jt+1,jt,jt−1

〉∣∣ . (B4)

In the second equality, we set the phases e
iθjζ |jζ−1 for any

ζ (t+ 1 ≤ ζ ≤ t+ lc) and jN as

e
iθjζ |jζ−1

:=

∣∣〈ψjζ |jζ−1,...,jt+1,jt=0,jt−1
|ψjζ |jζ−1,...,jt+1,jt,jt−1

〉∣∣〈
ψjζ |jζ−1,...,jt+1,jt=0,jt−1

|ψjζ |jζ−1,...,jt+1,jt,jt−1

〉 .
(B5)

Since the only difference between both states in the inner
product of Eq. (B4) is in the jth

t index, we have

ajt=0,jt−1
= 1.

On the other hand, if jt = 1, by applying Eq. (1) to
Eq. (B4), we obtain

ajt=1,jt−1 ≥
1

2lc

∑
jt+lc

· · ·
∑
jt+1

t+lc∏
ζ=t+1

√
1− εζ−t

=

lc∏
d=1

√
1− εd.

This ends the proof of Eqs. (20) and (23). �
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Appendix C: Proof of Eq. (10)

In this appendix, we prove Eq. (10) that is our re-
sult of the security proof. Our security proof adopts the
composability definition [23], where the security of our
RRDPS protocol is evaluated by the correctness and se-
crecy parameters. As shown in [22], these parameters
can be quantified separately, and since the correctness
parameter is obtained by a verification step of the pro-
tocol, our target is to compute the secrecy parameter εs.
The protocol is εs-secret if and only if

d := ||ρfinal
AfinalE

− ρideal
AfinalE

|| ≤ εs. (C1)

Here, we define trace distance ||X|| := tr[
√
X†X]/2,

ρfinal
AfinalE

denotes the state of Alice’s actual final keys and

Eve’s quantum system, and ρideal
AfinalE

denotes the state
of ideal final keys that are completely secret from Eve
and Eve’s quantum system. These final keys can be
obtained by applying a quantum circuit (composed of
a lot of CNOT gates), which is determined by random
matrices used in privacy amplification. We introduce

a quantum operation E(w)
act that extracts the wth-type

final key from wth-type sifted qubits of systems A
(w)
sift .

The operation E(w)
act is composed of CNOT gates acting

on systems A
(w)
sift and Z-basis measurements. The to-

tal operation in privacy amplification to obtain the fi-
nal keys, which acts on all the sifted qubits of systems

Asift := A
(1)
siftA

(2)
sift...A

(lc+1)
sift , is then written as

Eact :=

lc+1⊗
w=1

E(w)
act . (C2)

Using this definition, ρfinal
AfinalE

and ρideal
AfinalE

in Eq. (C1)
can be written as

ρfinal
AfinalE

= Eact(ρAsiftE), (C3)

ρideal
AfinalE

= Eact(|+〉〈+|Asift
⊗ trAsift

[ρAsiftE ]), (C4)

where ρAsiftE is the state of Alice’s all the sifted qubits
and Eve’s quantum system just before executing privacy
amplification Eact. Note that |+〉 := (|0〉 + |1〉)/

√
2 is

the X-basis eigenstate from which an ideal key can be
extracted. We use the notation |+〉Asift

to express all
the qubits of systems Asift being in |+〉. Below, we show
that the above trace distance d can be upper-bounded
by using our Theorem 1. In this theorem, as we con-
sider the asymptotic limit of an infinite sifted key length,
we neglect the probability of failing in obtaining the up-
per bound of Eq. (9). For a general discussion here, we
denote its negligible probability of failing in obtaining
Eq. (9) for w by ξ(w). With these failure probabilities
and Theorem 1, we have the following proposition.

Proposition 2 When Eq. (9) in our Theorem 1 holds
except for probability ξ(w), and if the amount of privacy

amplification applied for the wth-type reconciled key is set
to be

N (w)
suc h(e

(w),U
ph ) + log2

1

η(w)
(C5)

for any η(w) > 0, the secrecy parameter εs of the RRDPS
protocol is given by

εs =

lc+1∑
w=1

√
2
√
ξ(w) + η(w). (C6)

Here, h(x) denotes the binary entropy function, and N
(w)
suc

is the number of sifted qubits of systems A
(w)
sift .

In the asymptotic limit (N
(w)
suc → ∞), as ξ(w) → 0 and

η(w) → 0, εs in Eq. (C6) results in negligible. Therefore,
using this proposition by setting ξ(w) → 0 and η(w) → 0,
we finally obtain the secret key rate shown in Eq. (10)
with εs-secret. The rest of this appendix is devoted to
prove this proposition.

(Proof) First, when the amount of privacy amplifi-
cation is set to be as Eq. (C5), it is straightforward
from [25] to derive the secrecy parameter for the wth-type
key, that is, we obtain for any w ∈ {1, 2, ..., lc + 1},

||E(≥w)
act (tr

A
(0,...,w−1)
sift

[ρAsiftE ])

− E(≥w)
act (|+〉〈+|

A
(w)
sift

⊗ tr
A

(1,...,w)
sift

[ρAsiftE ])||

≤
√

2
√
ξ(w) + η(w) =: ∆(w). (C7)

Here, we define E(≥w)
act :=

⊗lc+1
x=w E

(x)
act and tr

A
(0)
sift

means

that no system is traced out. This bound ∆(w) is ob-
tained by executing phase error correction to correct all

the qubits of systems A
(w)
sift to |+〉. This operation of

its correction does not change any statistics of the mea-

surement outcomes obtained by E(≥w)
act , and hence we can

insert this operation to upper-bound the trace distance
in Eq. (C7). Then, based on [25], this trace distance can
be evaluated by the failure probability η(w) of phase error

correction when e
(w),U
ph is obtained and the failure prob-

ability ξ(w) of obtaining the upper-bound on the phase

error rate e
(w),U
ph . We remark that in doing this argu-

ment of phase error correction, the state ρAsiftE must be
dependent on w ∈ {1, 2, ..., lc + 1}. This is because we
define the virtual state |Ψ〉ANBN

in Eq. (7) for each w

differently (due to the phase factors eiθjk|jk−1 defined in
Eqs. (21) and (22)) in order to obtain the upper bound
on the phase error rate for each w, which is explained
in Sec. V B 2. The differences of the states ρAsiftE for w
become apparent in correcting the phase errors for each
wth-type sifted qubits. Importantly, however, these dif-
ferences do not change any statistics of the final keys
obtained through the operation Eact [32]. Therefore, we
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can take the state ρAsiftE independently of w when we
consider the security of the final keys in Eq. (C7). This
is the reason why the state ρAsiftE in Eq. (C7) does not

depend on w.
Then, by exploiting Eq. (C7) and substituting

Eqs. (C3) and (C4) to Eq. (C1), d is calculated as follows:

d ≤ ||Eact(ρAsiftE)− Eact(|+〉〈+|A(w=1)
sift

⊗ tr
A

(w=1)
sift

[ρAsiftE ])||

+ ||Eact(|+〉〈+|A(w=1)
sift

⊗ tr
A

(w=1)
sift

[ρAsiftE ])− Eact(|+〉〈+|Asift
⊗ trAsift

[ρAsiftE ])|| (C8)

≤ ∆(1) + ||E(≥2)
act (tr

A
(w=1)
sift

[ρAsiftE ])− E(≥2)
act (|+〉〈+|

A
(w≥2)
sift

⊗ trAsift
[ρAsiftE ])|| (C9)

≤ ∆(1) + ||E(≥2)
act (tr

A
(w=1)
sift

[ρAsiftE ])− E(≥2)
act (|+〉〈+|

A
(w=2)
sift

⊗ tr
A

(w=1,2)
sift

[ρAsiftE ])||

+ ||E(≥2)
act (|+〉〈+|

A
(w=2)
sift

⊗ tr
A

(w=1,2)
sift

[ρAsiftE ])− E(≥2)
act (|+〉〈+|

A
(w≥2)
sift

⊗ trAsift
[ρAsiftE ])|| (C10)

≤ ∆(1) + ∆(2) + ||E(≥2)
act (|+〉〈+|

A
(w=2)
sift

⊗ tr
A

(w=1,2)
sift

[ρAsiftE ])− E(≥2)
act (|+〉〈+|

A
(w≥2)
sift

⊗ trAsift
[ρAsiftE ])||. (C11)

The first and third inequalities come from the triangle
inequality of trace distance, and the second and fourth
ones follow from Eq. (C7). So far, we have quantified the

security of the wth-type keys for w = 1, 2. By repeating
the same arguments for w = 3, 4, ..., lc, we have

d ≤
lc∑
w=1

∆(w) + ||E(≥lc+1)
act (tr

A
(w=1,2...,lc)
sift

[ρAsiftE ])− E(≥lc+1)
act (|+〉〈+|

A
(w=lc+1)
sift

⊗ trAsift
[ρAsiftE ])||. (C12)

Finally, applying Eq. (C7) for w = lc + 1, we obtain

d ≤
lc+1∑
w=1

∆(w), (C13)

which ends the proof. �
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