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In this work, we present a lower bound on the quantum Fisher information (QFI) which is effi-
ciently computable on near-term quantum devices. This bound itself is of interest, as we show that
it satisfies the canonical criteria of a QFI measure. Specifically, it is essentially a QFI measure for
sub-normalized states, and hence it generalizes the standard QFI in this sense. Our bound employs
the generalized fidelity applied to a truncated state, which is constructed via the m largest eigen-
values and their corresponding eigenvectors of the probe quantum state ρθ. Focusing on unitary
families of exact states, we analyze the properties of our proposed lower bound, and demonstrate
its utility for efficiently estimating the QFI.

I. Introduction

Quantum Fisher information (QFI) [1, 2] quantifies
the ultimate precision with which one can estimate a pa-
rameter θ from a θ-dependent quantum state ρθ via the
quantum Cramér-Rao bound (QCRB). This quantity is
of fundamental importance for quantum metrology [3–
7]. Moreover, the QFI has been studied in the context of
quantum phase transitions [8–10], quantum information
geometry [11, 12], and quantum information [13–20].

The general definition of the QFI is

I(θ; ρθ) = Tr[J2
θ ρθ] , (1)

where Jθ is called Symmetric Logarithmic Derivative
(SLD) operator satisfying the following Lyapunov equa-
tion,

∂θρθ =
1

2
(Jθρθ + ρθJθ) . (2)

Also, the QFI is associated with the standard fidelity
between the exact state ρθ and the error state ρθ+δ as

I(θ; ρθ) = 8 lim
δ→0

1− F (ρθ, ρθ+δ)

δ2
, (3)

where F (ρ1, ρ2) = ||√ρ1
√
ρ2||1 is the standard fidelity,

and with the trace norm given by ||A||1 = Tr[
√
AA†].

In spite of its theoretical significance, the QFI is in gen-
eral a difficult quantity to compute. Calculating the SLD
operator requires one to solve the Lyapunov equation,
which in turn needs full knowledge of the exact state ρθ,
which is not always known in practice. In addition, when
employing Eq. (3) to determine the QFI, one encounters
the serious difficulty that there is no efficient algorithm to
compute the fidelity between arbitrary states. The com-
plexity of the classical algorithms for fidelity estimation

∗ The first two authors contributed equally to this work.

can scale exponentially due to the exponentially large di-
mension of the density matrices with respect to the num-
ber of qubits [21]. But even quantum algorithms face
complexity theoretic arguments [22], and the fact that
the nonlinear nature of fidelity implies that a finite num-
ber of copies of ρθ cannot lead to an exact computation
of the fidelity. Hence, instead of exactly computing the
QFI, one can estimate the QFI by bounding it [23, 24].

This is precisely the goal of this this paper, where we
introduce an efficiently computable lower bound for the
QFI. Our bound is based on the truncated (and there-
fore sub-normalized) state constructed by projecting the
exact state ρθ into the subspace of its m-largest eigen-
values. Particularly, we focus on the family of quantum
states of the form ρθ = W (θ)ρW †(θ), where ρ is called
probe state, and we define W (θ) = e−iθG with a Hermi-
tian and θ-independent generator G. As in Ref. [25], we
refer to the set of states of this form as a unitary family.
This family of states is general enough to describe phase
estimation tasks, such as magnetometry [5, 26, 27].

Our results are derived by employing the concepts
of generalized fidelity [28, 29] and truncated states [21]
to construct an efficiently computable quantity which
we call Truncated Quantum Fisher Information (TQFI).
Our main results are a series of lemmas that prove that
TQFI lower bounds the standard QFI, and that TQFI
satisfies various properties, including most of the canon-
ical criteria for a measure of QFI. In addition, we also
introduce a quantity that we call the Generalized Bures
distance, from which we provide a geometrical interpre-
tation to the TQFI. We note that in our recent work [30],
we have proposed a trainable variational quantum algo-
rithms to estimate QFI and further prepare the optimal
state for phase estimation by using TQFI.

This paper is organized as follows. We first provide
theoretical background in Sec. II. Then, Section III in-
troduces the TQFI and its associated Hermitian SLD op-
erator, and presents our main results. Finally, we offer
some concluding remarks in Sec. IV.
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II. Theoretical background

In this section we provide some theoretical background
that will be useful to define the TQFI. Specifically, we dis-
cuss the generalized fidelity, a measure of distinguishabil-
ity for sub-normalized states. We then discuss how the
generalized fidelity can be used to construct an upper
bound for the standard fidelity. We remark that this
bound will be the basis of the definition of the TQFI.

Let H be a d-dimensional Hilbert space. A quantum
state ρ on H is defined as a Hermitian, positive semi-
definite operator of trace equal to one. Hence, the set of
normalized quantum states on H can be defined as

S=(H) = {ρ : ρ† = ρ , ρ > 0 , Tr[ρ] = 1} , (4)

which forms a convex set with real dimension (d2 − 1).
Relaxing the normalization condition, one arrives at the
following definition.

Definition 1 (Sub-normalized state). A Hermitian, pos-
itive semi-definite operator τ on H is said to be a sub-
normalized quantum state if Tr[τ ] 6 1.

Definition 1 allows us to introduce S6(H) as the set of
sub-normalized states on H, that is

S6(H) = {τ : τ † = τ , τ > 0 , Tr[τ ] 6 1} . (5)

As schematically shown in Fig. 1, it follows that
S=(H) ⊂ S6(H). Moreover, S6(H) has dimensional-
ity d2, and can be obtained as the convex hull of the
set of quantum states and the zero operator S6(H) =
Conv(0,S=(H)) [31]. Sub-normalized quantum states
have been used in quantum information theory as a
convenient generalization of normalized quantum states
[28, 29, 31]. Moreover, exciting new work on near-term
quantum algorithms utilizes truncated, and thus sub-
normalized, quantum states to avoid having to store an
exponentially large density matrix, thus making the al-
gorithms implementable on the noisy intermediate-scale
quantum (NISQ) computers [30, 32, 33]. This exciting
new research direction is the primary motivation for this
work.

In Refs. [28, 29] the authors introduced a generaliza-
tion of the standard quantum fidelity to sub-normalized
states, which is known as the generalized fidelity, and
which is given as follows.

Definition 2 (Generalized fidelity). Given two sub-
normalized states τ, σ ∈ S6(H), the generalized fidelity
between τ and σ is

F∗(τ, σ) = ||
√
τ
√
σ||1 +

√
(1− Tr[τ ])(1− Tr[σ]) , (6)

where ||A||1 = Tr[
√
AA†] is the trace norm.

Note that the generalized fidelity reduces to the stan-
dard fidelity F if at least one of the two states is normal-
ized. That is,

F∗(τ, σ) = F (τ, σ) = ||
√
τ
√
σ||1 , (7)

FIG. 1. Set of eigenvalues {λi}di=1 for a sub-normalized quan-
tum state. Simplexes are shown for a d-dimensional Hilbert
space with (a) d = 2 and (b) d = 3. The eigenvalues of
normalized states in S=(H) lie on a (d2 − 1)-simplex: a line
segment in (a), and a triangle in (b). The eigenvalues of a pure
state lie on the edges of the simplex, while those of a mixed
state are on the centroid of the simplex. The eigenvalues of
sub-normalized states in S6(H) can be obtained from the sub-
normalization condition

∑d
i=1 λi 6 1. In the diagrams, the

origin corresponds to the zero operator.

if τ or σ is in S=(H).
As shown in Refs. [21, 28, 29], the generalized fidelity

has the following relevant properties:

• Invariance under unitary transformations. Given
two sub-normalized states τ, σ ∈ S6(H), and for
any unitary V in the unitary group U(d) of degree
d, we have

F∗(V τV
†, V σV †) = F∗(τ, σ) . (8)

• Concavity. Given sub-normalized states
τ1, τ2, σ1, σ2 ∈ S6(H), and a real number q ∈ [0, 1],
then

F∗(qτ1+(1− q)τ2, qσ1 + (1− q)σ2)

> qF∗(τ1, σ1) + (1− q)F∗(τ2, σ2) .
(9)

• Monotonicity under completely positive trace non-
increasing (CPTNI) maps. Given two sub-
normalized states τ, σ ∈ S6(H), and a CPTNI map
Φ, then

F∗(τ, σ) 6 F∗(Φ(τ),Φ(σ)) . (10)

We note that CPTNI maps are the mathematical gen-
eralization of CPTP maps, which becomes useful when
one allows for subnormalized quantum states [28, 29, 31].
Additionally, they have the physical interpretation of de-
scribing an experiment in which the measurement appa-
ratus does not work with some probabilities [31].

Let us now discuss how the generalized fidelity can
be used to upper bound the standard fidelity. Con-
sider a projection operator Π which maps states to a
subspace of H. Note that Π defines a CPTNI map as



3

Φ(ρ) = ΠρΠ which maps states in S=(H) and in S6(H)
to sub-normalized states in S6(H). Then, from the
monotonicity under CPTNI maps of the generalized fi-
delity the following bound on the standard fidelity F (ρ, ρ̃)
holds for any pair of normalized states ρ and ρ̃ [21]

F (ρ, ρ̃) 6 F∗(Π ρΠ,Π ρ̃Π) . (11)

In Ref. [21], the authors proposed an algorithm that
can efficiently compute the upper bound in Eq. (11) for
certain Π. Specifically, in that work, Π is the opera-
tor that projects onto the Hilbert space spanned by the
eigenvectors of the m-largest eigenvalues of ρ. That is,
given the spectral decomposition ρ =

∑
i λi|λi〉〈λi|, we

define

Πm
ρ =

m∑
i=1

|λi〉〈λi| . (12)

This operator allows us to introduce the truncated states
ρ(m) and ρ̃(m)

ρ(m) = Πm
ρ ρΠm

ρ =

m∑
i=1

λi|λi〉〈λi| ,

ρ̃(m) = Πm
ρ ρ̃Πm

ρ ,

(13)

which leads to the following expression of the generalized
fidelity for these states:

F∗(ρ
(m), ρ̃(m)) = Tr

[√
T
]

+
√

(1−Tr[ρ(m)])(1−Tr[ρ̃(m)]) .

(14)
Here, T is a positive semi-definite m×m operator given
by

T =

m∑
i,j=1

√
λiλj〈λi |ρ̃|λj〉|λi〉〈λj | . (15)

Finally, let us remark that the the upper bound
F∗(ρ

(m), ρ̃(m)) > F (ρ, ρ̃) gets monotonically tighter with
m, with equality holding if m = rank(ρ) [21].

III. Truncated Quantum Fisher Information

From the discussions above, in this section, we intro-
duce a generalized measure of the QFI definable with the
sub-normalized state, which we call Truncated Quantum
Fisher Information (TQFI), and show that it is a lower
bound on the standard QFI. We then present some of its
properties in the form of lemmas, which we prove in the
Appendices, and present its geometrical interpretation in
the space of sub-normalized states.

A. Definition of the TQFI

Consider the (normalized) exact state ρθ, and the (nor-
malized) error state ρθ+δ. These states encode the infor-
mation of an unknown parameter θ and of a shift δ in a

probe state ρ of rank r as

ρθ = W (θ)ρW †(θ)

ρθ+δ = W (θ + δ)ρW †(θ + δ) ,
(16)

with

W (θ) = e−iθG , (17)

where G is a θ-independent Hermitian operator. Given
the spectral decomposition of the exact state ρθ =∑
i λi|λi(θ)〉〈λi(θ)| with |λi(θ)〉 = W (θ)|λi〉, we define the

operator that projects onto the Hilbert space spanned by
the eigenvectors corresponding to the m-largest eigenval-
ues of ρθ as Πm

ρθ
=
∑m
i=1 |λi(θ)〉〈λi(θ)|. Then, we define

the truncated (sub-normalized) states

ρ
(m)
θ = Πm

ρθ
ρθΠ

m
ρθ

=

m∑
i=1

λi|λi(θ)〉〈λi(θ)| ,

ρ
(m)
θ+δ = Πm

ρθ
ρθ+δΠ

m
ρθ
.

(18)

Finally, we have the following definition for the TQFI.

Definition 3 (Truncated Quantum Fisher Information).
Given an exact state ρθ and error state ρθ+δ in S=(H),
let ρ(m)

θ and ρ(m)
θ+δ denote their truncated versions accord-

ing to (18) such that ρ(m)
θ , ρ

(m)
θ+δ ∈ S6(H). The Truncated

Quantum Fisher Information is

I∗(θ; ρ(m)
θ ) = 8 lim

δ→0

1− F∗(ρ(m)
θ , ρ

(m)
θ+δ)

δ2
. (19)

B. TQFI as a lower bound

From Eq. (11) we have that the following lemma holds.

Lemma 1. The TQFI of Definition 3 is a lower bound
for the QFI

I∗(θ; ρ(m)
θ ) 6 I(θ; ρθ) , (20)

where I(θ; ρθ) is the QFI defined in (3). In addition, the
TQFI is monotonically increasing with m, i.e.,

I∗(θ; ρ(m)
θ ) 6 I∗(θ; ρ(m+1)

θ ) , (21)

with the equality in (20) holding if m = r, where r =
rank(ρ).

Lemma 1 provides an operational meaning of the TQFI
as a lower bound on the standard QFI. We remark that
since the generalized fidelity is a tight bound for high
purity states, the TQFI will also be a tight bound on the
QFI in this case.
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C. Computation of TQFI

Let us briefly discuss how the TQFI can be com-
puted. We refer the reader to our work [30] for a
much more detailed description of the estimation of
TQFI. As previously mentioned, the generalized fidelity
can be efficiently computed for m ∈ O(poly(log(d)))
via a variational hybrid quantum-classical algorithm [34]
called the Variational Quantum Fidelity Estimation al-
gorithm in Ref. [21], which uses state diagonalization as
a subroutine [35, 36]. Assuming this state diagonaliza-
tion subroutine is efficient, it follows that one can ef-
ficiently approximate the TQFI and lower bound the
QFI by using the algorithm in Ref. [21] and computing(

1− F∗(ρ(m)
θ , ρ

(m)
θ+δ)

)
/δ2 for small δ.

D. Properties of the TQFI

To further understand the meaning of the TQFI, it is
useful to express this quantity in the representation of
the eigenbasis of ρ.

Lemma 2. The TQFI of Definition 3 can be written as

I∗(θ; ρ(m)
θ ) =4

m∑
i,j=1

λi|Gij |2 − 8

m∑
i,j=1

λiλj
λi + λj

|Gij |2 (22)

where Gij = 〈λi |G|λj〉, and where we recall that λi = 0
for i > r.

Recalling that the standard QFI can be expanded in
the eigenbasis of ρ as [37]

I(θ; ρθ) = 4

d∑
i,j=1

λi|Gij |2 − 8

d∑
i,j=1

λiλj
λi + λj

|Gij |2 (23)

with again λi,j = 0 for i, j > r. We can see that the
first two terms in (22) are simply obtained by truncating
the summations of (23) so that i, j = 1, . . .m, and while
this may seem like the natural way to generalize the QFI
to sub-normalized states, the derivation of Eq. (22) and
the proofs of the properties required for it to satisfy the
canonical criteria of a QFI measure are non-trivial. Be-
fore listing these important properties, let us consider an
alternative definition for the TQFI by introducing the
Truncated Symmetric Logarithmic Derivative (TSLD).

Definition 4 (Truncated Symmetric Logarithmic
Derivative Operator). Given a sub-normalized truncated
exact state ρ(m)

θ ∈ S6(H) defined according to (18), the
TQFI of Definition 3 can be expressed as

I∗(θ; ρ(m)
θ ) = Tr

[
L2
θρ

(m)
θ

]
, (24)

where

Lθ = 2

m∑
i,j=1

〈λi(θ)|∂θρ(m)
θ |λj(θ)〉

λi + λj
|λi(θ)〉〈λj(θ)| (25)

is the TSLD operator. For the unitary families, we par-
ticularly have

Lθ = 2i

m∑
i,j=1

λi − λj
λi + λj

〈λi|G|λj〉|λi(θ)〉〈λj(θ)| . (26)

As we can see, the TSLD is simply obtained by trun-
cating the summation of the SLD operator.

From the previous definitions and lemmas we can de-
rive the following properties of the TQFI.

Lemma 3. From the definition of the TQFI, for the uni-
tary families ρθ = W (θ)ρW †(θ), I∗(θ, ρ(m)

θ ) satisfies the
following properties:

• Invariance under unitary transformations. Given a
truncated sub-normalized state ρ(m)

θ ∈ S6(H), for
any θ-independent unitary V in the unitary group
U(d) of degree d, we have

I∗(θ, V ρ(m)
θ V †) = I∗(θ, ρ(m)

θ ) . (27)

• Convexity. For two truncated sub-normalized states
ρ
(m)
θ , ξ

(m′)
θ ∈ S6(H) with ρ

(m)
θ = Πm

ρθ
ρθΠ

m
ρθ

and

ξ
(m′)
θ = Πm′

ξθ
ξθΠ

m′

ξθ
, with a real number q ∈ [0, 1],

we have

I∗(θ;qρ(m)
θ + (1− q)ξ(m

′)
θ )

6 qI∗(θ; ρ(m)
θ ) + (1− q)I∗(θ; ξ(m

′)
θ ) .

(28)

• Monotonicity under CPTNI maps. Given a trun-
cated sub-normalized state ρ

(m)
θ ∈ S6(H), and a

CPTNI map Φ, we have

I∗(θ,Φ(ρ
(m)
θ )) 6 I∗(θ, ρ(m)

θ ) . (29)

• Sub-additivity for product of truncated states.
Given a product of truncated states σ =

⊗
k ρ

(mk)
k,θ ,

where ρ(mk)k,θ = Πmk
ρk,θ

ρk,θΠ
mk
ρk,θ

, then we have

I∗(θ;σ) 6
∑
k

I∗(θ; ρ(mk)k,θ ) . (30)

• Additivity for direct sum of truncated states. Given
a direct sum of truncated states σ =

⊕
k µkρ

(m)
k,θ ,

where ρ(mk)k,θ = Πmk
ρk,θ

ρk,θΠ
mk
ρk,θ

, and where µk are θ-
independent coefficients such that 0 <

∑
k µk 6 1,

we have

I∗(θ;σ) =
∑
k

µkI∗(θ; ρ(mk)k,θ ) . (31)

Note that the TQFI satisfies the same properties as
those that the standard QFI satisfies (see Ref. [2] for
a review of the properties of the QFI), except for the
additivity for product of states. Here, the TQFI satisfies
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instead a sub-additivity property which naturally follows
from the fact that the states are sub-normalized.

Let us finally discuss the geometric interpretation of
the TQFI. From Eq. (19) we first define the Generalized
Bures distance.

Definition 5 (Generalized Bures Distance). Given two
sub-normalized state τ, σ ∈ S6(H), the generalized Bures
distance is

B2
∗(τ, σ) = 2(1− F∗(τ, σ)) . (32)

Here we remark that the generalized Bures distance is
closely related to the purified distance for sub-normalized
states introduced in Refs. [28, 29]. Hence, the following
lemma holds.

Lemma 4. Given two sub-normalized state τ, σ ∈
S6(H), the generalized Bures distance B2

∗(τ, σ) is a dis-
tance metric on the space of sub-normalized states.

Then, for the truncated exact stateρ(m)
θ defined in (18),

we can obtain the following result.

Lemma 5. Let B2
∗(ρ

(m)
θ , ρ

(m)
θ+δ) be the generalized Bures

distance. Then, for |δ| � 1, we have

B2
∗(ρ

(m)
θ , ρ

(m)
θ+δ) =

1

4
I∗(θ; ρ(m)

θ )δ2 +O(δ3) . (33)

Lemma 5 provides a geometrical interpretation for the
TQFI as being related to the curvature of the generalized
Bures distance in the space of sub-normalized states.

IV. Conclusion

In conclusion, we have introduced the truncated quan-
tum Fisher information (TQFI), which is demonstrated
to be an efficiently computable lower bound on the quan-
tum Fisher information. This quantity can be used for
estimating QFI and prepare the optimal state for metrol-
ogy via the variational quantum algorithms on the near-
term quantum computers. Specifically, the TQFI can be
obtained from the generalized fidelity between the states

obtained by projecting the exact state ρθ and error state
ρθ+δ onto the subspace spanned by the largest m eigen-
values of ρθ. For unitary families, we have proven that
the TQFI satisfies the criteria of the quantum Fisher in-
formation for sub-normalized states. In addition, we have
revealed the geometrical interpretation of the TQFI by
introducing a generalized Bures distance, a distance mea-
sure on sub-normalized states.

This lower bound can be employed to efficiently
estimate the quantum Fisher information. This is
especially useful in the context of quantum sensing,
where one is interested in maximizing the quantum
Fisher information. Hence, one can use our lower bound
as a means to prepare states that maximize quantum
Fisher information, to enhance sensing performance of
the quantum sensors. Moreover, the quantum Fisher
information is often used to witness metrologically useful
entanglement [15, 38]; therefore, an interesting future
research direction will be exploring the use of TQFI
for the entanglement witness in the condensed matter
systems.

Note. We note that TQFI belongs to the class of
quantum monotone metrics under the CPTNI maps,
whose mathematical properties have been recently
studied by Yamagata in Ref. [39].
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A. Proof of Lemma 1

The fact that the TQFI is a lower bound on the QFI follows directly from the fact that the generalized fidelity is
an upper bound for the fidelity. Recall the definition of the QFI and the TQFI, which are respectively defined as

I(θ; ρθ) = 8 lim
δ→0

1− F (ρθ, ρθ+δ)

δ2
, I∗(θ; ρ(m)

θ ) = 8 lim
δ→0

1− F∗(ρ(m)
θ , ρ

(m)
θ+δ)

δ2
. (A1)

From the fact that

F (ρθ, ρθ+δ) 6 F∗(ρ
(m)
θ , ρ

(m)
θ+δ) , (A2)

we obtain the bound

I∗(θ; ρ(m)
θ ) 6 I(θ; ρθ) . (A3)

Then, let us recall that the generalized fidelity is monotonically decreasing with m [21], meaning that we have
F∗(ρ

(m)
θ , ρ

(m)
θ+δ) > F∗(ρ

(m+1)
θ , ρ

(m+1)
θ+δ ). Hence, from the definition of the TQFI, we find that

I∗(θ; ρ(m)
θ ) 6 I∗(θ; ρ(m+1)

θ ) . (A4)

B. Proof of Lemma 2

Let us consider a normalized quantum state ρθ = W (θ)ρW †(θ), where the state ρ has spectral decomposition
ρ =

∑r
j=1 λj |λj〉〈λj |, and where {λj}rj=1 are θ-independent. Then, we have

ρθ =

d∑
j=1

λje
−iθG|λj〉〈λj |e+iθG =

d∑
j=1

λj |λj(θ)〉〈λj(θ)| , (B1)

ρθ+δ =

d∑
j=1

λje
−i(θ+δ)G|λj〉〈λj |e+i(θ+δ)G =

d∑
j=1

λje
−iδG|λj(θ)〉〈λj(θ)|e+iδG , (B2)

where we use the notation

|λj(θ)〉 = e−iθG|λj〉 . (B3)

From Eq. (19), the TQFI is

I∗(θ; ρ(m)
θ ) = 8 lim

δ→0

1− F∗(ρ(m)
θ , ρ

(m)
θ+δ)

δ2
, (B4)

where

F∗(ρ
(m)
θ , ρ

(m)
θ+δ) = ||

√
ρ
(m)
θ

√
ρ
(m)
θ+δ||1 +

√
(1− Tr[ρ

(m)
θ ])(1− Tr[ρ

(m)
θ+δ]) . (B5)

Here, following Ref. [21], we can write

||
√
ρ
(m)
θ

√
ρ
(m)
θ+δ||1 = Tr

[√
T
]
, (B6)

where T is an m×m positive semidefinite operator defined as T =
∑m
i,j=1 Tij |λi〉〈λj |, and where

Tij =
√
λiλj〈λi(θ)|ρθ+δ|λj(θ)〉 . (B7)

For simplicity of notation let us define

I∗(θ; ρ(m)
θ , δ) = 8

1− F∗(ρ(m)
θ , ρ

(m)
θ+δ)

δ2
, (B8)
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such that I∗(θ; ρ(m)
θ ) = limδ→0 I∗(θ; ρ(m)

θ , δ). To second order in δ, we find

Tij =
√
λiλj〈λi |e−iδGρeiδG|λj〉 (B9)

=
√
λiλj〈λi |

(
11− iδG− δ2

2
G2 + . . .

)
ρ

(
11 + iδG− δ2

2
G2 + . . .

)
|λj〉 (B10)

=
√
λiλj λi δij − iδ

√
λiλj〈λi | (Gρ− ρG) |λj〉+ δ2

√
λiλj

(
〈λi |GρG|λj〉 −

1

2
〈λi |

(
G2ρ+ ρG2

)
|λj〉

)
+O(δ3)

(B11)

=
√
λiλj λi δij + iδ

√
λiλj(λi − λj)〈λi |G|λj〉+ δ2

√
λiλj

(
〈λi |GρG|λj〉 −

1

2
(λi + λj)〈λi |G2|λj〉

)
+O(δ3) .

(B12)

Since we want to find the square root of the operator T , we can solve this problem via perturbation by determining
an operator X such that X2 = T and X =

∑m
i,j=1Xij |λi〉〈λj |, with X an m×m matrix. Hence, from the expansion

X =

∞∑
k=0

δkX(k) , (B13)

we find

X2 =

∞∑
k=0

δk
k∑
p=0

X(p)X(k−p) . (B14)

To the second order of δ, we can use (B12) to find

(X(0))ij =
(√

λiλjλi

)1/2
δij (B15)

(X(0)X(1) +X(1)X(0))ij = i
√
λiλj(λi − λj)〈λi |G|λj〉 (B16)

(X(0)X(2) +X(2)X(0) +X(1)X(1))ij =
√
λiλj

(
〈λi |GρG|λj〉 −

1

2
(λi + λj)〈λi |G2|λj〉

)
. (B17)

These equations allows us to show that

(X(1))ij =
i
√
λiλj(λi − λj)
λi + λj

〈λi |G|λj〉 (B18)

(X(2))ij =

√
λiλj

λi + λj

(
〈λi |GρG|λj〉 −

1

2
(λi + λj)〈λi |G2|λj〉+

m∑
`=1

λ`(λi − λ`)(λ` − λj)
(λi + λ`)(λ` + λj)

〈λi |G|λ`〉〈λ` |G|λj〉

)
. (B19)

Then, we can compute the trace of X to second order in δ as

||
√
ρ
(m)
θ

√
ρ
(m)
θ+δ||1

= Tr[X] = Tr[X(0)] + δTr[X(1)] + δ2Tr[X(2)] +O(δ3)

=

m∑
i=1

λi +
δ2

2

m∑
i=1

−λi〈λi |G2|λi〉+

d∑
j=1

λj |〈λi |G|λj〉|2 −
m∑
j=1

λj(λi − λj)2

(λi + λj)2
|〈λi |G|λj〉|2

+O(δ3)

=

m∑
i=1

λi −
δ2

2

m∑
i=1

λi〈λi |G2|λi〉+
δ2

2

m∑
i,j=1

4λ2jλi

(λi + λj)2
|〈λi |G|λj〉|2 +

δ2

2

m∑
i=1

d∑
j=m+1

λj |〈λi |G|λj〉|2 +O(δ3) .

(B20)

Note that throughout our derivations, we use the fact that λj = 0 for j > r. Let us now consider the second term in
Eq. (B5). To second order in δ we simply find√(

1−Tr
[
ρ
(m)
θ

])(
1−Tr

[
ρ
(m)
θ+δ

])
= 1−

m∑
i=1

λi −
δ2

2

m∑
i=1

 d∑
j=1

λj |〈λi|G|λj〉|2 − λi〈λi|G2|λi〉

+O(δ3) (B21)
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Then, combining Eqs. (B20) and (B21), we can obtain

I∗(θ, ρ(m)
θ ) = lim

δ→0
I∗(θ, ρ(m)

θ , δ)

= lim
δ→0

8

δ2

(
1− F∗(ρ(m)

θ , ρ
(m)
θ+δ)

)
= lim
δ→0

8

δ2

(
1− ||

√
ρ
(m)
θ

√
ρ
(m)
θ+δ||1 −

√(
1−Tr

[
ρ
(m)
θ

])(
1−Tr

[
ρ
(m)
θ+δ

]))

= lim
δ→0

8

δ2

(
1−

m∑
i=1

λi +
δ2

2

m∑
i=1

λi〈λi |G2|λi〉 −
δ2

2

m∑
i,j=1

4λ2jλi

(λi + λj)2
|〈λi |G|λj〉|2 −

δ2

2

m∑
i=1

d∑
j=m+1

λj |〈λi |G|λj〉|2

− 1 +

m∑
i=1

λi +
δ2

2

m∑
i=1

d∑
j=1

λj |〈λi|G|λj〉|2 −
δ2

2

m∑
i=1

λi〈λi |G2|λi〉+O(δ3)

)

= 4

m∑
i,j=1

λj |〈λi |G|λj〉|2 − 16

m∑
i,j=1

λ2jλi

(λi + λj)2
|〈λi |G|λj〉|2

= 4

m∑
i,j=1

λj |〈λi |G|λj〉|2 − 8

m∑
i,j=1

λiλj
λi + λj

|〈λi |G|λj〉|2 .

(B22)

Here, in the last equality we used the fact that

2

m∑
i,j=1

λiλ
2
j

(λi + λj)2
|〈λi |G|λj〉|2 =

m∑
i,j=1

λiλ
2
j

(λi + λj)2
|〈λi |G|λj〉|2 +

m∑
i,j=1

λ2iλj
(λi + λj)2

|〈λi |G|λj〉|2

=

m∑
i,j=1

λiλj
λi + λj

|〈λi |G|λj〉|2
(B23)

Also, we remark that this can be also simplified as

I∗(θ, ρ(m)
θ ) = 2

m∑
i,j=1

(λi − λj)2

λi + λj
|〈λi |G|λj〉|2 , (B24)

and finally, because of the symmetry of the summand in i and j, we have

I∗(θ, ρ(m)
θ ) = 4

m∑
i<j

(λi − λj)2

λi + λj
|〈λi |G|λj〉|2 , (B25)

C. Truncated Symmetric Logarithmic Derivative

The standard QFI can be defined in terms of the so-called Symmetric Logarithmic Derivative (SLD) operator. For
the state ρθ =

∑d
i=1 λi|λi(θ)〉〈λi(θ)|, standard SLD operator is [25]

Jθ = 2

d∑
i,j=1

〈λi(θ)|∂θρθ|λj(θ)〉
λi + λj

|λi(θ)〉〈λj(θ)|. (C1)

Analogously, we can also define the TQFI through a truncated SLD (TSLD) operator. Let the spectral decomposition
of our truncated exact statebe given as

τθ =

m∑
i=1

λi|λi(θ)〉〈λi(θ)|, (C2)
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which the parameter dependence left implicit to simplify notation. Then, the TSLD operator is

Lθ = 2

m∑
i,j=1

〈λi(θ)|∂θτθ|λj(θ)〉
λi + λj

|λi(θ)〉〈λj(θ)|. (C3)

One can easily verify that ∂θτθ = i[τθ, G], so that the explicit form of the TSLD operator becomes

Lθ = 2i

m∑
i,j=1

λi − λj
λi + λj

〈λi(θ)|G|λj(θ)〉|λi(θ)〉〈λj(θ)|

= 2i

m∑
i,j=1

λi − λj
λi + λj

〈λi|G|λj〉W (θ)|λi〉〈λj |W †(θ),
(C4)

where we used the fact that |λj(θ)〉 = W (θ)|λj〉 and [W (θ), G] = 0. Taking the conjugate transpose and then
exchanging i and j, we can easily verify that Lθ is Hermitian, i.e. Lθ = L†θ. In addition to Hermiticity, the
justification for regarding Lθ as an SLD operator comes from the following propositions.

Proposition 1. For a θ-parameterized sub-normalized state τθ = W (θ)τW †(θ), the TSLD operator satisfies

∂θτθ =
1

2
(Lθτθ + τθLθ) , (C5)

with Tr[Lθτθ] = 0 .

Proof. First, using the fact that ∂θτθ = i[τθ, G] and τθ|λi(θ)〉 = λi|λi(θ)〉, we can write

∂θτθ = i

m∑
i,j=1

〈λi(θ)|[τθ, G]|λj(θ)〉|λi(θ)〉〈λj(θ)|, (C6)

= i

m∑
i,j=1

(λi − λj)〈λi|G|λj〉|λi(θ)〉〈λj(θ)|. (C7)

Then, making use of the explicit expansions of τθ and Lθ in the eigenbasis of τθ, we can write

1

2
(Lθτθ + τθLθ) = i

m∑
i,j=1

(
λi − λj
λi + λj

)
〈λi(θ)|G|λj(θ)〉(|λi(θ)〉〈λj(θ)|τθ + τθ|λi(θ)〉〈λj(θ)|) (C8)

= i

m∑
i,j=1

(
λi − λj
λi + λj

)
〈λi|G|λj〉(λi + λj)|λi(θ)〉〈λj(θ)| (C9)

= i

m∑
i,j=1

(λi − λj)〈λi|G|λj〉|λi(θ)〉〈λj(θ)| . (C10)

Comparing these two expressions, we see that indeed

∂θτθ =
1

2
(Lθτθ + τθLθ), (C11)

as is required of a well-defined SLD operator. Finally, because Tr[τθ, G] = 0, we have

Tr[∂θτθ] = iTr[τθ, G] = Tr

[
1

2
(Lθτθ + τθLθ)

]
= Tr[Lθτθ] = 0 . (C12)

Proposition 2. The TQFI I∗(θ; τθ) can be expressed as

I∗(θ; τθ) = Tr[L2
θτθ] . (C13)
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Proof. I∗(θ; τθ) is given by

I∗(θ; τθ) = 4

m∑
i,j=1

λi|〈λi|G|λj〉|2 − 8

m∑
i,j=1

λiλj
λi + λj

|〈λi|G|λj〉|2 (C14)

From Eq. (C4), we have

Lθ = 2i

m∑
i,j=1

λi − λj
λi + λj

〈λi|G|λj〉W (θ)|λi〉〈λj |W †(θ) , (C15)

and

τθ = W (θ)τW †(θ) =

m∑
i=1

λiW (θ)|λi〉〈λi|W †(θ) . (C16)

Therefore, we obtain

Tr[L2
θτθ] =− 4

m∑
i,j=1
k,`=1

m∑
r=1

(
λi − λj
λi + λj

)(
λk − λ`
λk + λ`

)
〈λi|G|λj〉〈λk|G|λ`〉 · λr · δjkδ`rδir (C17)

=4

m∑
i,j=1

λi

(
λi − λj
λi + λj

)2

|〈λi|G|λj〉|2 (C18)

=4

m∑
i,j=1

λ3i − 2λ2iλj + λiλ
2
j

(λi + λj)2
|〈λi|G|λj〉|2 (C19)

=4

m∑
i,j=1

λ3i + λiλ
2
j

(λi + λj)2
|〈λi|G|λj〉|2 − 4

m∑
i,j=1

2λ2iλj
(λi + λj)2

|〈λi|G|λj〉|2 (C20)

=2

m∑
i,j=1

λ3i + λiλ
2
j + λ3j + λjλ

2
i

(λi + λj)2
|〈λi|G|λj〉|2 − 4

m∑
i,j=1

λ2iλj + λ2jλi

(λi + λj)2
|〈λi|G|λj〉|2 (C21)

=2

m∑
i,j=1

(λi + λj)
3 − 2λiλj(λi + λj)

(λi + λj)2
|〈λi|G|λj〉|2 − 4

m∑
i,j=1

λiλj(λi + λj)

(λi + λj)2
|〈λi|G|λj〉|2 (C22)

=2

m∑
i,j=1

(λi + λj)|〈λi|G|λj〉|2 − 8

m∑
i,j=1

λiλj
λi + λj

|〈λi|G|λj〉|2 (C23)

=4

m∑
i,j=1

λi|〈λi|G|λj〉|2 − 8

m∑
i,j=1

λiλj
λi + λj

|〈λi|G|λj〉|2 , (C24)

which leads to

I∗(θ; τθ) = Tr[L2
θτθ] . (C25)

D. Proof of Lemma 3

In the following, we prove each property in Lemma 3.

1. Invariance under unitary transformations: Given a unitary V ∈ U(d) which is θ-independent, since the general-
ized fidelity [29] is unitary-invariant, i.e.

F∗(V τθV
†, V τθ+δV

†) = F∗(τθ, τθ+δ) , (D1)

we obtain

I∗(θ;V τθV †) = I∗(θ; τθ) . (D2)
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2. Convexity: Let τθ and ξθ be sub-normalized states. Since the generalized fidelity is jointly concave [29], we have

F∗

(
qτθ + (1− q)ξθ, qτθ+δ + (1− q)ξθ+δ

)
> qF∗(τθ, τθ+δ) + (1− q)F∗(ξθ, ξθ+δ) . (D3)

Hence, for all δ, we have

I∗(θ; qτθ + (1− q)ξθ) 6 qI∗(θ; τθ) + (1− q)I∗(θ; ξθ) . (D4)

3. Monotonicity under CPTNI map: Here, we employ the monotonicity of the generalized fidelity [29]:

F∗(τθ, τθ+δ) 6 F∗(Φ(τθ),Φ(τθ+δ)) (D5)

for a CPTNI map Φ. For all δ, we have

1− F∗(τθ, τθ+δ)
δ2

>
1− F∗(Φ(τθ),Φ(τθ+δ))

δ2
, (D6)

so that we have

I∗(θ; τθ) > I∗(θ; Φ(τθ)) . (D7)

4. Sub-additivity for product of truncated states: Consider a sub-normalized state obtained from a tensor product
of sub-normalized state τθ =

⊗
k τ

(k)
θ . We have

∂θτθ =
∑
k

∂θτ
(k)
θ ⊗ τ (k)θ =

∑
k

Lk,θτ
(k)
θ + τ

(k)
θ Lk,θ

2
⊗ τ (k)θ , (D8)

where we define

τ
(k)
θ =

⊗
j 6=k

τ
(j)
θ . (D9)

Therefore, the TSLD operator becomes

Lθ =
∑
k

Lk,θ ⊗ 11k . (D10)

Then, we can obtain

I∗(θ; τθ) = Tr[L2
θτθ] =

∑
k

AkTr[L2
k,θτ

(k)
θ ] , (D11)

where

Ak =
∏
j 6=k

Tr
[
τ
(j)
θ

]
6 1 . (D12)

Therefore,

I∗(θ; τθ) =
∑
k

AkI∗(θ; τ (k)θ ) 6
∑
k

I∗(θ; τ (k)θ ) . (D13)

5. Additivity for direct sum of truncated states: For τθ =
⊕

k µkτ
(k)
θ , where µk is θ-independent and 0 <

∑
k µk 6 1,

we have

∂θτθ =
⊕
k

µk∂θτ
(k)
θ =

⊕
k

µk
Lk,θτ

(k)
θ + τ

(k)
θ Lk,θ

2
. (D14)
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Then, the TSLD operator becomes

Lθ =
⊕
k

Lk,θ . (D15)

Therefore,

I∗(θ; τθ) = Tr[L2
θτθ] =

∑
k

µkTr[L2
k,θτ

(k)
θ ] , (D16)

so that

I∗(θ; τθ) =
∑
k

µkI∗(θ; τ (k)θ ) , (D17)

and
√
T is taken to be the unique, positive semi-definite square root of T .

Finally, let us remark that an alternative proof for the sub-additivity for product of truncated states can be obtained
as follows. This is for the readers who are not familiar with SLD operator. It will suffice to show it is true in the
bipartite case (as larger product states follow by induction). So, we consider a sub-normalized state of the form:

τθ = τ
(1)
θ ⊗ τ (2)θ ∈ S6(H1)⊗ S6(H2) , (D18)

where dim(Hk) = dk with k = 1, 2. Here, we focus on the unitary families. First, recall that the TQFI is defined as

I∗(θ, ρ(m)
θ ) = 2

m∑
i,j=1

(λi − λj)2

λi + λj
|〈λi |G|λj〉|2 . (D19)

As this explicit form depends on the eigensystem of our state and the generator of the unitary dynamics, let us prove
explicitly. When the sub-normalized state of the subspace belongs to the unitary families, we have

τθ = τ
(1)
θ ⊗ τ (2)θ (D20)

= e−iθG
(1)

τ (1)e+iθG
(1)

⊗ e−iθG
(2)

τ (2)e+iθG
(2)

(D21)

= (e−iθG
(1)

⊗ e−iθG
(2)

)(τ (1) ⊗ τ (2))(e+iθG
(1)

⊗ e+iθG
(2)

) . (D22)

A useful quantity needed here is the Kronecker sum defined as

A(1) ⊕B(2) = A(1) ⊗ 11(2) + 11(1) ⊗B(2) (D23)

And we recall here the following useful identity

eA ⊗ eB = eA⊕B = eA
(1)⊗11(2)

+11(1)⊗B(2)

, (D24)

where ⊕ is the Kronecker sum defined above. Hence, we have

τθ = (e−iθG
(1)

⊗ e−iθG
(2)

)(τ (1) ⊗ τ (2))(e+iθG
(1)

⊗ e+iθG
(2)

) (D25)

= e−iθ(G
(1)⊗11(2)

+11(1)⊗G(2))(τ (1) ⊗ τ (2))e+iθ(G
(1)⊗11(2)

+11(1)⊗G(2)) . (D26)

As for the eigensystem, we note that the Hilbert space is now of the form H(1) ⊗ H(2) so the eigenvalues and
eigenvectors are now of the form

τ
(1)
θ ⊗ τ (2)θ |λi〉 ⊗ |λj〉 = λiλj |λi〉 ⊗ |λj〉 , (D27)

where we have that i ∈ [1,m1] and j ∈ [1,m2], and where 0 <
∑
i λi 6 1 and 0 <

∑
j λj 6 1. Together, TQFI

becomes

I∗(θ, τ (1)θ ⊗ τ (2)θ ) = 2

m1∑
i,k=1

m2∑
j,`=1

(λiλj − λkλ`)2

λiλj + λkλ`
|〈λi| ⊗ 〈λj |(G(1) ⊗ 11(2) + 11(1) ⊗G(2))|λk〉 ⊗ |λ`〉|2 . (D28)



14

Let us now expand the matrix element part of the expression

|〈λi| ⊗ 〈λj |(G(1) ⊗ 11(2) + 11(1) ⊗G(2))|λk〉 ⊗ |λ`〉|2 (D29)

= (〈λi| ⊗ 〈λj |(G(1) ⊗ 11(2) + 11(1) ⊗G(2))|λk〉 ⊗ |λ`〉)
× (〈λk| ⊗ 〈λ`|(G(1) ⊗ 11(2) + 11(1) ⊗G(2))|λi〉 ⊗ |λj〉) (D30)

=
(
〈λi|G(1)|λk〉δj` + δik〈λj |G(2)|λ`〉

)(
〈λk|G(1)|λi〉δj` + δik〈λ`|G(2)|λj〉

)
(D31)

= |〈λi|G(1)|λk〉|2δj`δj` + (〈λi|G(1)|λk〉)(〈λ`|G(2)|λj〉)δikδj`
+ (〈λ`|G(2)|λj〉)(〈λk|G(1)|λi〉)δj`δik + |〈λj |G(2)|λ`〉|2δikδik (D32)

Replacing this expansion in the summation of TQFI sum, we see that the terms with δikδj` lead to λiλj − λkλ` = 0.
Hence, the first term in the TQFI becomes

2

m1∑
i,k=1

m2∑
j,`=1

(λiλj − λkλ`)2

λiλj + λkλ`
|〈λi| ⊗ 〈λj |(G(1) ⊗ 11(2) + 11(1) ⊗G(2))|λk〉 ⊗ |λ`〉|2 (D33)

= 2

m1∑
i,k=1

m2∑
j,`=1

(λiλj − λkλ`)2

λiλj + λkλ`

(
|〈λi|G(1)|λk〉|2δj` + |〈λj |G(2)|λ`〉|2δik

)
(D34)

= 2

m1∑
i,k=1

m2∑
j=1

λ2j (λi − λk)2

λj(λi + λk)
|〈λi|G(1)|λk〉|2 + 2

m1∑
i=1

m2∑
j=1

λ2i (λj − λ`)2

λi(λj + λ`)
|〈λj |G(2)|λ`〉|2 (D35)

6 2

m1∑
i,k=1

(λi − λk)2

λi + λk
|〈λi|G(1)|λk〉|2 + 2

m2∑
j,`=1

(λj − λ`)2

λj + λ`
|〈λj |G(2)|λ`〉|2 , (D36)

Therefore, we get

I∗(θ, τ (1)θ ⊗ τ (2)θ ) 6 I∗(θ, τ (1)θ ) + I∗(θ, τ (2)θ ) (D37)

as desired.

E. Proof of Lemma 4

Let σ, ξ and η be sub-normalized states in S6(H). Then we have that the following properties of the generalized
Bures distance hold:

1. Symmetry: Because of F∗(σ, ξ) = F∗(ξ, σ), we have B∗(σ, ξ) = B∗(ξ, σ).

2. Identity of indiscernibles: Because F∗(σ, ξ) = 1 if and only if σ = ξ, we have B∗(σ, ξ) = 0 if and only if σ = ξ.

3. Triangular inequality: Let A∗(σ, ξ) be the generalized angular distance A∗(σ, ξ) = arccos(F∗(σ, ξ)), and 0 6
A∗(σ, ξ) 6 π

2 . Then, we can write

B∗(σ, ξ) = 2 sin

(
A∗(σ, ξ)

2

)
. (E1)

From the triangle inequality for the generalized angular distance [28, 29], we have

B∗(τ, ξ) = 2 sin

(
A∗(σ, ξ)

2

)
6 2 sin

(
A∗(σ, η)

2

)
+ 2 sin

(
A∗(η, ξ)

2

)
= B∗(σ, η) +B∗(η, ξ) . (E2)

These prove that B∗(σ, ξ) is a distance metric on the space of sub-normalized state. Let us finally remark that the
generalized Bures distance can also be expressed as B∗(σ, ξ) = 2P 2(σ, ξ), where P (σ, ξ) =

√
1− F∗(σ, ξ) is so-called

purified distance [28, 29].
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F. Proof of Lemma 5

Let us consider B2
∗(ρ

(m)
θ , ρ

(m)
θ+δ). Suppose that B2

∗(ρ
(m)
θ , ρ

(m)
θ+δ) has the form

B2
∗(ρ

(m)
θ , ρ

(m)
θ+δ) =

1

4

∞∑
k=0

bkδ
k =

b0
4

+
b1
4
δ +

b2
4
δ2 +O(δ3) , (F1)

where bk ∈ R and |bk| <∞. Defining F∗(δ) = F∗(ρ
(m)
θ , ρ

(m)
θ+δ), by definition, we have

B2
∗(ρ

(m)
θ , ρ

(m)
θ+δ) = 2(1− F∗(δ)) = 2− 2

(
F∗(0) + δ∂δF∗(0) +

δ2

2
∂2δF∗(0) +O(δ3)

)
, (F2)

From F∗(0) = 1 and ∂δF∗(0) = 0 because the generalized fidelity is a continuous function of δ and becomes maximum
at δ = 0, we have

B2
∗(ρ

(m)
θ , ρ

(m)
θ+δ) = −δ2∂2δF∗(0) +O(δ3) . (F3)

Therefore, we arrive at the following equality

b0
4

+
b1
4
δ +

b2
4
δ2 +O(δ3) = −δ2∂2δF∗(0) +O(δ3) , (F4)

which has to be valid for any infinitesimal δ. Therefore, we must have b0 = b1 = 0, and

b2 = −4∂2δF∗(0) . (F5)

Here, applying F∗(0) = 1 and ∂δF∗(0) = 0, by definition of the truncated QFI, we can also obtain

I∗(θ; ρ(m)
θ ) = 8 lim

δ→0

1− F∗(δ)
δ2

= −4∂2δF∗(0) , (F6)

which leads to

b2 = I∗(θ; ρ(m)
θ ) . (F7)

Therefore, we obtain

B2
∗(ρ

(m)
θ , ρ

(m)
θ+δ) =

1

4
I∗(θ; ρ(m)

θ )δ2 +O(δ3) . (F8)
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