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Non-Gaussian quantum states of light are critical resources for optical quantum information
processing, but methods to generate them efficiently remain challenging to implement. Here we
introduce a generic approach for non-Gaussian state production from input states populating dis-
crete frequency bins. Based on controllable unitary operations with a quantum frequency proces-
sor, followed by photon-number-resolved detection of ancilla modes, our method combines recent
developments in both frequency-based quantum information and non-Gaussian state preparation.
Leveraging and refining the K-function representation of quantum states in the coherent basis, we
develop a theoretical model amenable to numerical optimization and, as specific examples, design
quantum frequency processor circuits for the production of Schrödinger cat states, exploring the
performance tradeoffs for several combinations of ancilla modes and circuit depth. Our scheme
provides a valuable framework for producing complex quantum states in frequency bins, paving the
way for single-spatial-mode, fiber-optic-compatible non-Gaussian resources.

I. INTRODUCTION

The distinction between discrete-variable (DV) and
continuous-variable (CV) encodings offers a valuable lens
through which to classify and understand photonic quan-
tum information processing systems. Based on true
(or approximate) finite-dimensional Hilbert spaces, DV
optical designs are typically associated with qubits en-
coded in photons that are manipulated and subsequently
measured with single-photon detectors [1, 2]. On the
other hand, the infinite-dimensional Hilbert spaces of CV
quantum information exploit collective photonic excita-
tions (such as coherent or squeezed states) and homo-
dyne/heterodyne detection with local oscillators as fun-
damental resources [3–6]. From a technical side, the
DV/CV divide can prove quite stark, and significant dif-
ferences appear theoretically as well: for example, secu-
rity proofs for CV quantum key distribution have gen-
erally proven much more challenging to establish due to
the infinite dimensionality involved [7, 8].

Yet this dichotomy is far from absolute, with fea-
tures of particular quantum information processing ap-
proaches blurring the CV/DV distinction entirely. At the
implementation level, many DV photonic systems uti-
lize subspaces taken from a larger, intrinsically continu-
ous Hilbert space—time [9–12] and frequency bins [13–
15] forming representative examples of relevance to the
present work. In an even more direct fashion, in en-
codings such as the Gottesman–Kitaev–Preskill (GKP)
qubit [16–18], the logical quantum information is dis-
crete, but the encoding occupies the full continuous
Hilbert space. Here the CV aspects are not incidental
features of the chosen Hilbert space; rather, they prove
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critical to the paradigm itself, providing the foundation
for measuring and correcting continuous errors on the
logical qubit state.

The potential of error-corrected photonic quantum in-
formation processing with GKP qubits makes them an
appealing direction for research. But producing such
states—and non-Gaussian CV states more generally—
is an extremely challenging endeavor, with proof-of-
principle GKP realizations so far limited to non-photonic
platforms [19, 20]. The discovery and analysis of Gaus-
sian boson sampling (GBS) [21, 22], however, has pro-
vided a valuable framework for preparing non-Gaussian
optical states [23–26], based on earlier important works
on the universality of Gaussian states and partial post-
selection [27–29]. Also straddling the interface between
CV and DV—in that it leverages both CV fields and
single-photon detection—GBS circuits can in principle
produce arbitrary non-Gaussian states through ancilla
modes and postselection on particular detection patterns,
analogous to the probabilistic gates of linear-optical
quantum computation (LOQC) in the DV paradigm [1,
2]. The design [18, 24–26, 30, 31] and implementa-
tion [32–34] of GBS-type circuits for non-Gaussian state
preparation have so far focused on the path degree of
freedom (DoF), a natural choice given its long history
in optics and well-known unitary decomposition proce-
dure [35, 36]. But other DoFs offer promise as well.
As the focus of the present work, the frequency-bin
DoF enjoys several attractive features for scalable pho-
tonic quantum information processing, including wave-
length parallelizability, compatibility with single-mode
optical fiber, and CV state production with resonant
parametric oscillators, both free-space [37, 38] and in-
tegrated [39, 40].

A major challenge of non-Gaussian state production
with frequency-bin encoding, however, is the realization
of arbitrary unitary operations. Recent work on the
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quantum frequency processor (QFP) [15] in the LOQC
mold has made significant strides to this end; based on
alternating application of electro-optic phase modulators
(EOMs) and pulse shapers, the QFP can in principle syn-
thesize any unitary frequency-bin operation in a scalable
fashion. Following the original proposal [13], the QFP
has been demonstrated experimentally on both single-
[41, 42] and two-photon [43, 44] states. Yet apart from
a classical communications example using quadrature-
encoded data [45], the research focus has been entirely
within the DV paradigm, so that the opportunities and
limitations of applying the QFP to CV—and hybrid
DV/CV—systems remain uncharted.

In this work, we develop and simulate a complete
model for non-Gaussian frequency-bin state engineer-
ing on the QFP. Leveraging and expanding on the K-
function formalism of Ref. [26], we describe a resource-
efficient method for computing the output of a QFP
excited by Gaussian inputs and measured with photon-
number-resolving (PNR) detectors applied to a subset of
frequency modes. As examples of this general approach,
we design QFP circuits intended to produce Schrödinger
cat states in one undetected bin and explore the impact
of the number of components and ancilla modes on cir-
cuit performance, according to a cost function which bal-
ances both state fidelity and success probability. Our ap-
proach furnishes a general framework for non-Gaussian
state production in frequency-bin quantum systems, of-
fering a springboard for the design of practical experi-
mental systems.

II. MATHEMATICAL BACKGROUND OF OUR
APPROACH

For modeling our proposed system, we use a represen-
tation of Gaussian states in the coherent basis accord-
ing to the K-function formalism introduced in Ref. [26].
Here we briefly review the results in Ref. [26] and then
evolve those to further worked-out formulas. Among
other things, in Ref. [26] it was proven that any N -mode
pure Gaussian state |Ψ〉 with covariance matrix (CM) V
and displacement vector ~xβ can be written in the coher-
ent basis |~α〉 as

|Ψ〉 =

∫
d2N~xα K(~xα)|~α〉, (1)

where

K(~xα) =
e−

1
2 (~xα−~xβ)TB(~xα−~xβ)+ 1

2~x
T
αY~xβ

(2π)N (det Γ)1/4
, (2)

with Γ = V + I/2,

B =
1

2

(
A+ i

2

(
C + CT

)
C − i

2 (A−B)
CT − i

2 (A−B) B − i
2

(
C + CT

)) , (3)

Y =

(
0 iI
−iI 0

)
, (4)

where A = AT , B = BT , and C are defined as the blocks
of Γ−1 as follows:

Γ−1 =

(
A C
CT B

)
. (5)

Note that we have simplified the expressions compared
to Ref. [26]. We note that since the CM V is sym-
metric, Γ and Γ−1 are also symmetric. We work with
the convention ~ = 1 (therefore the CM of vacuum is
I/2) and consider the qqpp representation where vectors
are defined as ~xTα = (~qTα , ~p

T
α) with ~qTα = (qα1

, . . . , qαN )
and ~pTα = (pα1

, . . . , pαN ) the canonical position and mo-
mentum vectors. The volume element for integration is
then defined as d2N~xα = dqα1

. . . dqαNdpα1
. . . dpαN , and

αi = (qαi + ipαi)/
√

2.
The coherent basis representation is a valuable tool

for working on photon-subtraction-based or, more gener-
ally, partial PNR detection schemes aimed at engineering
Gaussian states into desired non-Gaussian states. Pho-
ton subtraction can be modelled either (i) as a beam-
splitter whose two input ports are fed with the ith mode
of |Ψ〉 and vacuum |0〉, respectively, followed by PNR
detection on the lower output port; or (ii) simply by act-
ing the annihilation operator âi, where the index i refers
to the mode, on |Ψ〉. Therefore, the photon subtraction
operator will act only on the basis vectors of the state,
i.e., coherent states in this instance. The action of beam-
splitters or annihilation operators on coherent states is
straightforward, making this basis particularly efficient
for analytical or numerical evaluation. The situation is
similar for partial PNR detection on a Gaussian state
written as a coherent state expansion; the projection of a
coherent state on a Fock state is the well known expres-
sion 〈n|α〉 = exp(−|α|2/2)αn/

√
n!.

In Ref. [26] it was shown that the probability of a
length-N PNR pattern for an N -mode Gaussian state
|Ψ〉 with zero displacements, i.e., ~xβ = 0 in Eq. (1), is
given by

Pn1...nN = |〈n1 . . . nN |Ψ〉|2

=
1

detH
√

det Γ
N∏
i=1

ni!2ni

∣∣In1...nN

∣∣2, (6)

where

In1...nN =

∫
d2N~xαR(~xα)

N∏
i=1

(qαi + ipαi)
ni , (7)

R(~xα) =

√
detH

(2π)N
e−

1
2~x
T
αH~xα , (8)

and H = B + I/2. Equation (7) can be rewritten as

In1...nN =

{
0 Σ = odd,
Hf (σ) Σ = even,

(9)

where Σ =
∑N
i=1 ni, Hf (σ) is the hafnian (often specif-

ically called the “loop hafnian” in the literature [25]) of
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the matrix σ with elements σij = 〈sisj〉, where 1 ≤ i, j ≤
Σ and si = qαi + ipαi . The hafnian in Eq. (9) represents
the mean value 〈sn1

1 . . . snNN 〉 under the Gaussian distri-
bution of Eq. (8).

In this work, we will derive the explicit relation of the
matrix σ to the matrix H−1 and consequently to the ma-
trix Γ−1 which describes the Gaussian state just before
partial PNR detection. This enables more efficient com-
putation of the output detection probabilities and the
Fock coefficients of any produced non-Gaussian state, for
a given input Gaussian state. We also simplify further
the expressions. The following subsections summarize
new simplifications, observations, and new results which
improve on Eqs. (5–8).

A. The determinant and inverse of Γ

The matrix Γ is defined as Γ = V + I/2, where V
is the CM and I the identity matrix. Since V corre-
sponds to a pure Gaussian state, it can be written as
V = SpV0S

T
p , where Sp is an orthogonal symplectic ma-

trix for a general passive transformation (beamsplitters
and phase rotations, but not squeezers) and V0 is the CM
for a product of N single mode squeezed vacuum states,
i.e., the diagonal matrix

V0 =
1

2
diag

(
e2r1 , . . . , e2rN , e−2r1 , . . . , e−2rN

)
, (10)

where r1, . . . , rN are the real and positive squeezing pa-
rameters for each of the N single-mode squeezed vacuum
states (note that the phase of the squeezing has been
absorbed into the orthogonal symplectic transformation
Sp).

We have the following relation,

det Γ = det

[
Sp

(
V0 +

I

2

)
STp

]
(11)

= detSp det

(
V0 +

I

2

)
detSTp , (12)

from which we write

det Γ = det

(
V0 +

I

2

)
(13)

since detSp = detSTp = 1 as both Sp and STp are sym-
plectic matrices. The right hand side of Eq. (13) is the
determinant of a diagonal matrix from which we find

det Γ =

N∏
i=1

cosh2 ri. (14)

Therefore, Eq. (6) is rewritten as

Pn1...nN =

∣∣In1...nN

∣∣2
detH

N∏
i=1

ni!2ni cosh ri

. (15)

In the case where the input squeezing is the same among
all single mode squeezed vacuum states, i.e. r1 = . . . =
rN = r, Eq. (14) reduces to det Γ = cosh2N r.

Now let us simplify Eq. (5). We can write Γ = Sp(V0 +

I/2)STp , and since ST
−1

p = Sp is a symplectic orthogonal
matrix we have

Γ−1 = Sp

(
V0 +

1

2

)−1

STp . (16)

The symplectic orthogonal matrix Sp has the following
block matrix structure and properties:

Sp =

(
SA SB
−SB SA

)
(17)

STASB = STBSA, (18)

SAS
T
B = SBS

T
A , (19)

STASA + STBSB = I, (20)

SAS
T
A + SBS

T
B = I. (21)

Moreover, since V0 is diagonal we can write(
V0 +

1

2

)−1

= I +

(
−T 0
0 T

)
, (22)

where T = diag (tanh r1, . . . , tanh rN ). In virtue of Eqs.
(16), (17), and (19), we find that in Eq. (5)

A = −SATSTA + SBTS
T
B , (23)

C = CT = SATS
T
B + SBTS

T
A , (24)

A+B = 2I. (25)

Therefore, in the most general case possible, Eq. (5) is
simplified to

Γ−1 =

(
A C
C 2I −A,

)
(26)

where A and C are given in Eqs. (23) and (24), respec-
tively, as functions of the passive symplectic transforma-
tion Sp and the input squeezing parameters.

Consequently, matrix B of Eq. (3) simplifies to

B =
1

2

(
A+ iC C − i(A− I)

C − i(A− I) 2I −A− iC

)
. (27)

B. The determinant and inverse of H

The matrix H appearing in Eq. (8) is defined as

H = B + I/2. (28)

We find it easier if we transform as H̃ = W †HW using
the unitary matrix W defined as

W =
1√
2

(
I I
−iI iI

)
. (29)

Utilizing Eqs. (27), (28), and (29) we find

H̃ =

(
I A− I + iC
0 I

)
, (30)
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from which we see that det H̃ = det I = 1. Since
|detW |2 = 1, we have det H̃ = detH and conclude that

detH = 1. (31)

Therefore, Eqs. (8) and (15) are further simplified to

Pn1...nN =

∣∣In1...nN

∣∣2
N∏
i=1

ni!2ni cosh ri

, (32)

R(~xα) =
1

(2π)N
e−

1
2~x
T
αH~xα . (33)

Let us derive a convenient expression for H−1. Again,
we work with H̃ and observe that

H̃−1 =

(
I −(A− I + iC)
0 I

)
(34)

is indeed the inverse of H̃, i.e., it satisfies H̃H̃−1 = I.
Since H̃ = W †HW we find that H−1 = W H̃−1W † and
finally

H−1 =
1

2

(
3I −A− iC i(A− I + iC)
i(A− I + iC) I +A+ iC

)
. (35)

Therefore, using Eqs. (23), (24), and (35), any given pas-
sive symplectic transformation Sp, and input squeezing
parameters, one can readily write H−1—the importance
of which will become apparent in the next subsections.

C. The relation of matrix σ to matrix H−1

Making use of Eq. (33), we can express the matrix
elements of σ as

σij = 〈(qαi + ipαi)
(
qαj + ipαj

)
〉 =

1

(2π)N

∫
d2N~xα exp

(
−1

2
~xTαH~xα

)
× (qαi + ipαi)

(
qαj + ipαj

)
=

d

dλi

d

dλj
exp

(
1

2
~ΛTH−1~Λ

)∣∣∣∣
~Λ=
−→
0

, (36)

where ~ΛT = (~λT , i~λT ) is a 2N -dimensional vector with
~λT = (λ1, . . . , λN ) a real N -dimensional vector. Viewing
1
2
~ΛTH−1~Λ in the exponential of the right hand side of

Eq. (36) as a polynomial in λi, Eq. (36) is equal to the
coefficient of λiλj . This way, we can write

σij = 2(H−1
ij −H

−1
i+N j+N ). (37)

From the covariance matrix V , one can find matrix Γ−1

and therefore matrix σ using Eqs. (35) and (37), which
is required in the calculation in Eq. (9).

The Gaussian moment problem of Eq. (7) represents
a hafnian calculation and is related to the Gaussian bo-
son sampling paradigm [21]. When the indices i, j are
equal this corresponds to a loop, i.e., matching an object
with itself. Therefore, it is typically referred to as a loop
hafnian.

Figure 1. Concept of heralding an M -mode state |Φ〉 from N
single-mode, zero-displacement squeezed resource states and
N × N unitary operation U . Partial PNR detection on the
N −M lower modes produces a non-Gaussian state on the
undetected M modes.

D. Occurrence probability of any produced state

Equation (32) is the probability of finding ni photons
in each one of the i = 1, . . . , N modes. If we wish to
engineer the N -mode Gaussian state into an M -mode
(M < N) non-Gaussian one as in Fig. 1, we leave M
modes undetected; without loss of generality we assume
the undetected modes are theM upper modes. The prob-
ability of the PNR pattern (nM+1, . . . , nN ) on the lower
detected modes is precisely the probability PnM+1,...,nN

of producing the corresponding non-Gaussian state. This
probability is

P ≡ PnM+1,...,nN =

∞∑
n1,...,nM=0

Pn1,...,nN . (38)

For numerical simulations, the above sum must be trun-
cated to a finite upper limit, which should be chosen with
care to ensure that it encompasses all Fock coefficients of
nonnegligible probability. This condition can be verified
in practice by successively increasing the limits and ob-
serving no change to P .

E. Fock expansion coefficients of the produced
state

The non-Gaussian state |Φ〉 on the M undetected
modes (see Fig. 1), can be written as a partial projec-
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tion on Fock states of the detected modes:

|Φ〉 =
1√
P
〈nM+1 . . . nN |Ψ〉

=
1√
P

∞∑
n1,...,nM=0

〈n1 . . . nMnM+1 . . . nN |Ψ〉|n1 . . . nM 〉

=

∞∑
n1,...,nM=0

cn1...nM |n1 . . . nM 〉, (39)

where P is given in Eq. (38), |Ψ〉 is the N -mode Gaussian
state just before partial PNR detection (i.e., the output
Gaussian state), and cn1...nM = 〈n1 . . . nM |Φ〉 are the
Fock expansion coefficients of the heralded state |Φ〉.

Using Eqs. (7) and (39) we find

cn1...nM =
In1...nMnM+1...nN

√
P

N∏
i=1

√
ni!2ni cosh ri

, (40)

where the numerator is given by Eq. (7). Therefore,
for any given partial PNR pattern (nM+1, . . . , nN ) one
can compute the Fock expansion coefficients of the pro-
duced state |Φ〉, which can be benchmarked against a
target non-Gaussian state |Φt〉 through direct compar-
ison of Fock coefficients or collectively through fidelity
F = | 〈Φt|Φ〉 |2.

F. Summarizing Comments

Let us close Sec. II with three remarks. First, we note
that our formalism provides an approach to computing
Gaussian states in the Fock basis complementary to that
of Refs. [25, 31]. By incorporating the reduced dimen-
sionality of a pure state directly, our approach requires
calculation of fewer expansion coefficients to fully char-
acterize the output, in the case of pure state evolution;
for example, for a photon cutoff of nc, a pure single-mode
output state is described by nc + 1 complex coefficients
cnK [Eq. (47)], while a mixed single-mode state formula-
tion would require (nc + 1)(nc + 2)/2, after accounting
for hermiticity.

Second, extra care is required when dealing with loop
hafnians. Let us give an example. Say that one wants to
calculate 〈s2

1s2s3〉. To apply Wick’s formula one has to
rewrite the mean value as containing four different ob-
jects, i.e., 〈s2

1s2s3〉 = 〈g1g2g3g4〉. Wick’s formula gives
the perfect matchings as 〈g1g2g3g4〉 = 〈g1g2〉〈g3g4〉 +
〈g1g3〉〈g2g4〉+ 〈g1g4〉〈g2g3〉, and then we substitute back
g1 = g2 = s1, g3 = s2, and g4 = s3, which gives
〈s2

1s2s3〉 = 〈s2
1〉〈s2s3〉+ 〈s1s2〉〈s1s3〉+ 〈s1s3〉〈s1s2〉.

For the calculation of loop hafnians, we find it more ef-
ficient instead to work with the formula found in Ref. [46,
Prop. 1, p. 547] as it takes inherently into account
the powers of si. For the convenience of the reader we
give the formula (adjusted to our notation) which is the

nonzero result of Eq. (9):

Hf(σ) =
1(
Σ
2

)
!

n1∑
ν1=0

. . .

nN∑
νN=0

(−1)ν1+...+νN

×
(
n1

ν1

)
. . .

(
nN
νN

)(
1

2
~hTσ~h

)Σ
2

(41)

where ~hT = (n1/2− ν1, . . . , nN/2− νN ), and νi, . . . , νN
are silent indices, i.e., they are summed. Equations (7)
and (41) can be used directly in Eq. (38) for the proba-
bility of finding any non-Gaussian state in the undetected
modes and in Eq. (40) for the Fock expansion coefficients
of such a state. This tailored expression for the loop haf-
nian was noted for its significant computational speed
up in previous non-Gaussian state engineering work as
well [31]. Essentially, the improvement is obtained when
the dominate bottleneck in Wick’s formula stems from
repeated factors (e.g., s1 in the example above) rather
than many non-repeated factors, (e.g., s2 and s3 in the
example above). This is certainly the case in our work,
where we consider many photons in the single undetected
mode to fully characterize the post-selected state (up to
nmax ∼ 40), with only a few PNR detectors (2 or 4).

Third and finally, the formulas above enable calcula-
tion of the coefficients 〈n1...nN |Ψ〉 for any diagonal in-
put covariance matrix V0 and passive symplectic mode
transformation Sp—i.e., any covariance matrix for a pure
Gaussian state—without numerical evaluation of a single
matrix inverse or determinant: these expressions have all
been reduced to straightforward matrix or scalar oper-
ations in the above. This simplification has a profound
impact on the efficiency of the numerical procedure in
Sec. IV A, eliminating time-consuming inverse calcula-
tions from the optimization loop.

III. QUANTUM FREQUENCY PROCESSOR

Up to this point, the mathematical formulation has
been completely general with respect to the underlying
optical modes, applicable equally well to any photonic
DoF. In this section, we refine our focus to frequency
bins specifically. Fundamentally, the QFP is designed to
realize arbitrary unitary operations on a discrete set of
equispaced, clearly separated frequency modes, or bins.
Inspired by the LOQC approach of Knill, Laflamme, and
Milburn [1]—whereby single photons, linear optics, de-
tectors, and feed-forward unite for universal quantum
computing—the original QFP proposal [13] succeeded in
showing that EOMs [47] and pulse shapers [48, 49], alter-
nating in series, could realize a universal gate set, arguing
further that any unitary could be synthesized such that
the combined number of EOMs and pulse shapers Q (see
Fig. 2) scales like O(d), where d is the dimension of the
targeted unitary.

In order to understand the basic principles of oper-
ation, consider a discrete set of frequency modes, each
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centered at ωn = ω0 + n∆ω (n ∈ Z) and associated with
an annihilation operator ân. The corresponding output

operators b̂n relate to the inputs ân as

b̂n = eiφn ân (42)

for a line-by-line pulse shaper and

b̂n =

∞∑
k=−∞

fn−kâk (43)

for an EOM driven with phase function ϕ(t) periodic
at the inverse mode spacing T = 2π

∆ω , so that eiϕ(t) =∑
n fne

−in∆ωt and fn = 1
T

∫ T
0
dt eiϕ(t)ein∆ωt. As writ-

ten, this formulation contains an infinite number of fre-
quency bins; in the interests of numerical tractability,
though, we can limit the total number of considered
modes to N and discretize the temporal period as tn =
nT
N (n ∈ {0, 1, ..., N − 1}). Under this approximation,

the total N ×N unitary for a sequence of Q components
becomes [13]

U = (FDQF
†)DQ−1 · · · (FD3F

†)D2(FD1F
†), (44)

where F is the discrete Fourier transform with elements
Fmn = 1√

N
e2πimn/N (m,n ∈ {0, 1, ..., N − 1}). Each

Dq is a diagonal unitary matrix; the odd-numbered q

signify an EOM with elements (Dq)nn = eiϕ
(q)(tn), and

the even-numbered q a pulse shaper with (Dq)nn = eiφ
(q)
n .

We bookend the QFP with EOMs in our example, rather
than pulse shapers, based on previous experience where
we have observed no increase in circuit performance with
the addition of a front- or back-end pulse shaper [42].

We note that the alternating pattern in Eq. (44) also
makes sense conceptually: each device multiplies the in-
put field by a phase-only function, either in the time do-
main for the EOM or the frequency domain for the pulse
shaper; thus, discrete Fourier matrices appear naturally
as finite approximations to the continuous Fourier trans-
formations between time and frequency representations.
Accordingly, the form in Eq. (44) accurately reflects the
physical situation as long as N is sufficiently large so that
photon probability amplitudes do not reach the edge of
the truncated simulated domain and artificially “wrap
around” to the other side; in practice, this situation can
be avoided by limiting the maximum EOM modulation
index or applying bandpass filters to the pulse shaper
matrices.

Diagonal unitary decompositions in the form of
Eq. (44) have appeared in a variety of photonic DoFs,
including position/momentum [50, 51], parallel waveg-
uides [52], and time bins [53]—whenever the physical sys-
tem can be modeled as the application of phase shifts
in alternating Fourier-transform pairs. As shown in
Ref. [54], one can analytically design such systems by
starting with the beamsplitter/phase-shifter decompo-
sition of path encoding [35, 36], and then expressing
each beamsplitter layer as six alternating phase masks;

Figure 2. Setup explored for non-Gaussian state preparation
with the QFP. The case of Ns = 3 input squeezed modes is
shown for concreteness. (a) Hardware view. Squeezed states
in distinct frequency modes traverse the sequence of EOMs
and pulse shapers in the QFP. The condition for successful
heralding is the detection of ns photons each in all but one
of the central Ns bins and zero photons in all adjacent bins.
The undetected mode is left in state |Φ〉. (b) Logical view.
Each rail denotes an individual frequency bin, with the QFP
functioning as a complex interferometer.

however, this introduces significant resource overhead,
so that there currently exists no recipe to compute the
Dq matrix elements required to synthesize a desired tar-
get matrix U optimally—i.e., without an intermediate
conversion step to an equivalent path circuit. Accord-
ingly, numerical optimization has been employed ex-
tensively in QFP designs for basic gates such as the
Hadamard [41, 43], controlled-NOT [44], cyclic hop [45],
and arbitrary single-qubit unitaries [42]. From the per-
spective of photon statistics, the most complicated QFP
gate explored so far is the two-ancilla controlled-Z in
Ref. [13] containing a total of four photons. In contrast,
the non-Gaussian CV cases considered in the present
work deal with many-photon states inherently, so the
mathematics involved proves markedly more complex.

Figure 2 provides an overview of our non-Gaussian
state engineering system. As previously mentioned in
Sec. II, our mathematical formalism applies to a system
like Fig. 1 where the M undetected modes can be any of
the total N modes without loss of generality. In the fol-
lowing application we choose M = 1 and select this single
undetected mode as the Kth mode, which is at the cen-
ter of a set of Ns modes that are populated with single-
mode squeezed vacuum states at the input; the remaining
N −Ns modes are initially vacuum. For our simulations,
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we take the phase of the squeezing to be zero for all cases.
After application of U , the Kth mode is left undetected
and ns photons are detected in each of the other central
Ns−1 modes. Production of the desired state in the Kth
mode is heralded by simultaneously detecting vacuum in
the remaining N − Ns modes: in essence, a bucket de-
tector for all remaining modes, reminiscent of heralded
QFP gates in the DV case [13]. The requirement of such
vacuum postselection is a consequence of the presence of
an infinite set of ancilla modes in the frequency-bin DoF,
which must be detected to ensure that the output state
is pure.

Given the massive design space available for non-
Gaussian QFP circuits—in terms of input states, uni-
taries, and output patterns—we have attempted in the
specific configuration of Fig. 2 to provide a relatively sim-
ple construction that nevertheless retains key features
anticipated for successful circuits. By placing the out-
put mode of interest in the center of the squeezed inputs,
we maximize opportunities for multiphoton interference
with relatively weak modulation amplitudes, and select-
ing from the modes initially populated with photons for
PNR detection with ns > 0 should permit reasonable
success probabilities. Of course, there is no guarantee
that such intuitions are globally optimal, and thus work
into other configurations will be extremely valuable in
the future such as, e.g., including the choice of detection
pattern within the optimization algorithm itself, rather
than taking it as given. Yet the present setup offers a
feasible foundation for this initial investigation.

Finally, before proceeding further, we note that sev-
eral features of the design in Fig. 2 share commonalities
with previous work in frequency-based quantum infor-
mation. Extensive research in CV quantum frequency
combs [37, 38, 55, 56] has focused on frequency-bin en-
coding for cluster-state–based quantum computing; in
fact, a recent theoretical investigation specifically incor-
porated EOMs, finding that highly intricate, multidi-
mensional cluster states could be produced by modu-
lating a comb of two-mode squeezed states at multiples
of the frequency-bin spacing [57]. Although these as-
pects overlap strongly with our approach, the addition
of pulse shaper layers in the QFP provides considerably
more complexity in the unitaries available, and our ex-
plicit examination of PNR detection allows us to attain
non-Gaussian states that are not available within exist-
ing Gaussian cluster state models. On another front,
researchers have recently introduced an alternative GKP
qubit encoding consisting of a single photon in a discrete
grid of spectro-temporal modes [58]. While similar in
that this also leverages the frequency DoF, we follow the
more traditional construction of non-Gaussian states in
which quantum information resides in the field quadra-
tures of optical modes, making our analysis inherently
multi- rather than single-photon in nature.

IV. CIRCUIT DESIGN EXAMPLES

Having detailed the mathematical formalism in Sec. II
and highlighted the specific features of the QFP in
Sec. III, we now apply the complete framework toward
the design of quantum circuits that produce desired non-
Gaussian output states, according to the configuration
presented in Fig. 2.

A. Numerical optimization

As noted in the previous section, quantum system de-
sign with the QFP lacks an optimal analytical unitary
decomposition procedure, so that numerical optimization
is in general required to obtain a QFP configuration re-
alizing a desired unitary. In the context of non-Gaussian
state design, the need for numerical optimization in itself
is not unique, but has proven a fixture in path encoding
as well [18, 25, 30]. However, the QFP case does present
additional practical constraints, most notably with re-
spect to the stellar decomposition [59] leveraged in pre-
vious path-encoded designs [25, 30].

In this approach, rather than designing a quantum
circuit to implement some target state |Φt〉 directly, a
Fock-truncated core state |Φcore〉 is sought instead—
related to |Φt〉 via a squeezing and displacement oper-
ation, |Φt〉 = S(z)D(β) |Φcore〉. Suppose that the mode
unitary found to produce |Φcore〉 is U ; then, by absorb-
ing the displacement and squeezing operation into a new
set of inputs and mode unitary U ′, an interferometer for
the desired full state |Φt〉 can be produced immediately
via the analytical decomposition scheme of Refs. [35, 36].
In the QFP case, however, if a set of EOM and pulse
shaper solutions are found that can implement the core
state preparation circuit U , the absence of an available
analytical decomposition procedure means that there is
no functional connection from this solution [i.e., the Dq

matrices in Eq. (44)] to the modified configuration that
would realize U ′; instead, numerical optimization must
again be employed on U ′, effectively doubling the rounds
of numerical design compared to path encoding. Accord-
ingly, in what follows we concentrate on synthesizing cir-
cuits that produce the full target state |Φt〉 immediately,
avoiding this intermediate core state step.

To begin the optimization process we first define the
target state |Φt〉 in the Fock basis, i.e., the coefficients
τn = 〈n|Φt〉. We employ MATLAB’s particle swarm op-
timization (PSO) tool [60] to find the Ns nonzero input
squeezing values of the total length-N vector of inputs

~r = (0, . . . , 0, rK−bNs2 c
, . . . , rK−1, rK ,

rK+1, . . . , rK+bNs2 c
, 0, . . . , 0), (45)

and a QFP unitary, U , that when applied to the N -
mode input followed by detection of ns photons in each
of the remaining Ns−1 squeezed modes, produces a state
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|Φ〉. Letting nc denote the photon number at which we
truncate the state for numerical simulations, we therefore
must compute a total of nc+1 coefficients (including vac-
uum) to fully describe the heralded output. To find the
optimal squeezing values and U , PSO varies the phase
shifts applied to the N QFP modes by the pulse shapers,
each EOM’s phase modulation function ϕ(t), and the Ns
nonzero elements of ~r in order to minimize the cost func-
tion

C = P log10(1−F), (46)

where F and P are the fidelity of |Φ〉 with respect to |Φt〉
and the probability of producing |Φ〉, respectively. We
have found a logarithmic cost function of this form useful
for penalizing F < 1 more strongly than P < 1, emulat-
ing the effect of a constraint on F without the compu-
tational cost associated with a strict constraint function.
With the revelations of Secs. II A and II B the Fock co-
efficients of |Φ〉 in the Kth mode can be expressed as
Eq. (40) which we write in the form

cnK =
I~n

√
P

N∏
i=1

√
ni!2ni cosh ri

, (47)

where ~n = (0, ..., 0, ns, ..., ns, nK , ns, ..., ns, 0, ..., 0) is the
vector of photon numbers over all output modes, so that
P and F can be written as

P =

nc∑
nK=0

 |I~n|2
N∏
i=1

ni!2ni cosh ri

 (48)

and

F = |〈Φt|Φ〉|2 =

∣∣∣∣∣
nc∑

nK=0

τ∗nK cnK

∣∣∣∣∣
2

(49)

With the cost function defined we now lay out the
recipe for evaluating F and P at each PSO iteration.
First, we calculate (V0 + I

2 )−1 using ~r in Eq. (22). U
is calculated by substituting the N phase shifts for each
pulse shaper and each EOM’s ϕ(t) into Eq. (44), which
we convert to symplectic form, Sp, via

Sp = W

(
U 0
0 U∗

)
W †, (50)

where W is defined by Eq. (29) and U∗ corresponds to
element-by-element conjugation (no transpose). Γ−1 is
then calculated by Eq. (16), and the blocks A and C ex-
tracted per Eq. (26). A and C are used to find H−1

with Eq. (35). The matrix elements of σ are found
by using H−1 in Eq. (37). Because we detect vac-
uum in all the QFP modes except for the center Ns,
~hT = (0, . . . , 0, ns2 − νK−bNs2 c

, . . . , nK2 − νK , . . . ,
ns
2 +

νK+bNs2 c
, 0, . . . , 0) in Eq. (41) renders unimportant all

the elements of σ other than the center Ns × Ns block.
Therefore we proceed to evaluate Eq. (47) using only the
center block of σ, for nK ∈ {0, 1, . . . , nc} and are left
with the Fock coefficients cnK of |Φ〉.

We choose to compute Γ−1 in this manner for compu-
tational reasons. As a large matrix—2N × 2N in general
and 128×128 in our case—Γ is time-consuming to invert.
We bypass this time sink by calculating Γ−1 directly with
Eq. (16), rather than performing Γ = SpV0S

T
p + I/2 and

inverting Γ. An alternative route to reaching Γ−1 is to
calculate the A and C matrices using Eqs. (23) and (24),
respectively, and then substituting them into Eq. (26).
While valid, this path involves four separate matrix prod-
ucts, making it less computationally efficient than using
Eq. (16) that requires only one matrix product.

We take further action to streamline the nc + 1 calcu-
lations of I~n needed to find the Fock coefficients of |Φ〉,
dominated by Hf(σ) in Eqs. (9) and (41). σ is the only
quantity in Eq. (41) that will change in the successive
iterations of PSO; therefore, we can precompute a num-
ber of the elements of Eq. (41) outside the optimization
loop and use them for every PSO iteration. Calculating
these elements upfront proves imperative to expediting
the optimization process when nc becomes large.

Consider a given value nK . First, we define the length-
Ns vector

~sT = (ns, ..., ns, nK , ns, ..., ns), (51)

the sum of photons in the output modes

Σ =

Ns∑
i=1

si = (Ns − 1)ns + nK , (52)

and index vectors for each mode ~νTi = (0, 1, ..., si), where
the maximum si for each mode is taken from Eq. (51).

Then we find all combinations of the entries of the ν
vectors and store them in a matrix D, where each row
corresponds to a unique length-Ns listing of elements,
one drawn from each ~νi. Because we choose to detect
the same number of photons, ns, in the Ns−1 modes, D
will be of dimension (ns + 1)Ns−1(nK + 1)×Ns and will
take on the role of the nested summations that appear in
Eq. (41). We calculate the exponent of the (−1) factor in
Eq. (41) for all terms of the nested summation and store

them in ~W whose elements are defined as

Wi =

Ns∑
j=1

Dij . (53)

Similarly, the product of binomials in Eq. (41) is cal-
culated for all terms in the nested summation and stored
in ~X ,

Xi =

Ns∏
j=1

(
sj
Dij

)
. (54)
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~hT for all the terms in the nested summation are stored
in vectors

~ZTi =
(s1

2
−Di1, . . . ,

sNs
2
−DiNs

)
. (55)

The Hf(σ) calculation is then reduced to a single sum-
mation over these precomputed elements,

Hf(σ) =

κ∑
i=1

1(
Σ
2

)
!
(−1)WiXi

(
1

2
~Zi
T
σ ~Zi

)Σ
2

, (56)

where κ = (ns + 1)Ns−1(nK + 1). Keep in mind this pro-
cess must be repeated for all values nK ∈ {0, 1, . . . , nc}
giving us all necessary precomputed ~s, Σ, ~W, ~X , and ~Zi
elements.

B. Coherent cat states

As examples of our method, we seek to generate even
Schrödinger cat states with coherent amplitudes α rang-
ing from 0.5 to 3 in steps of 0.25. For each α value |Φt〉
is therefore set to

|Φt〉 =
|α〉+ |−α〉√
2(1 + e−2|α|2)

, (57)

where |±α〉 ≈ e−
1
2 |±α|

2 ∑nc
n=0

(±α)n√
n!
|n〉. We truncate

|±α〉 at nc = 40 for all α values, which encompasses
all the Fock support to high precision at α = 3, and
therefore for any |Φt〉 with α < 3 as well. Indeed, the
truncation error defined as εnc = 1 −

∑nc
n=0 | 〈n|Φt〉 |2 is

less than 10−14 for α ≤ 3 and nc = 40. This choice is
highly conservative, as one could likely consider smaller
nc values such as nc = 20 or 30 for added computational
speed up, for which the errors remain small: ε20 < 10−3

and ε30 < 10−8 at α = 3.
To make these results as tractable as possible for ex-

periment we limit ϕ(t) to a single sinewave and con-
strain (rK−bNs2 c

, . . . , rK , . . . , rK+bNs2 c
) to a maximum of

1.5 (corresponding to a squeezing value of approximately
13 dB). We proceed to optimize with Q ∈ {3, 5, 7} total
QFP elements, N = 64 QFP modes, and Ns ∈ {3, 5}
input squeezed states, along with a 32-mode bandpass
filter on each pulse shaper to prevent unphysical solu-
tions that reach the edge of the N = 64-mode truncation.
The nonzero PNR detectors are set to herald on ns = 1,
which ensures that Σ in Eq. (9) will be even when com-
puting even Fock coefficients in the undetected mode K
(nK ∈ {0, 2, . . . , 40}). The target cat state coefficients
are real numbers; however, the coefficients found by op-
timization are in general complex. Therefore if the state
found by optimization is perfect (fidelity equal to one),
it should have a constant phase for all Fock coefficients.

To elucidate how the size of the cat state changes with
α we plot, in Fig. 3(a), |Φt〉 (target) and |Φ〉 (circuit),
with Ns = 3 and Q = 3, for α ∈ {1, 1.5, 2}. The plots

in Fig. 3(b) and 3(c) illustrate how the quality of |Φ〉
changes with Ns and Q for single α values, whereas Fig. 4
shows the overall trends. While running PSO it became
apparent that our chosen cost function [Eq. (46)] did not
favor high-fidelity solutions as strongly as intended, but
in certain cases converged to solutions with higher P but
F � 1. For example, in Fig. 4 for α = 2.5, Q = 3,
and Ns = 5, the output |Φ〉 with the lowest C is a state
with F = 0.47 (not even visible in the plotted range).
Consequently, we include in Fig. 4 not only the states
|Φ〉 with the lowest cost C, but also higher cost solu-
tions, found with different initial conditions, that attain
fidelities F > 0.9 (corrected). We emphasize that this
distinction does not reflect any issues in the optimiza-
tion procedure itself, but rather in our selection of the
cost function; to encourage PSO to find even higher fi-
delity states, future tests could consider alternative cost
functions that more aggressively penalize low fidelities.

Our results are comparable to those achieved by a sim-
ilar photon subtraction method performed in the path
DoF by Quesada et al. [31]: for an even cat state with
α ≈ 1.3 and zero loss, both approaches produce states
with similar fidelity. Our states do exhibit a higher suc-
cess probability; however, this improvement is expected
as Ref. [31] uses a single squeezed input with a fixed value
while we optimize our Ns individual input squeezing val-
ues. And although the impact of probabilistic state pro-
duction will depend on both the protocol implemented
and available resources, we nevertheless note that the
range of values found here (0.01 . P . 0.2) are of the
same order as many standard gates in DV LOQC with
unentangled ancillas—e.g., the heralded controlled-NOT
succeeds with P = 2/27 [61])—suggesting that they are
in a reasonable scale for photonic quantum information
processing.

For a set amount of resources, constant Ns and Q, the
output state quality found by PSO finds decreases as α
increases. This can be attributed to the fact that |Φt〉
becomes noticeably more non-Gaussian as α is increased
[see Fig. 3(a)]. Figure 4 reveals that while increasing the
complexity of the QFP through the number of elements
Q can moderately improve the success probability [cf.
Fig. 3(b)], it does not lead to markedly higher fidelities
in these examples. In contrast, for any Q, the addition of
more ancilla resource states (larger Ns) can substantially
improve fidelity, particularly for larger values of α, albeit
with about an order of magnitude reduction in success
probability [see Fig. 4]. Intuitively, this behavior makes
sense; the extra photons available provide a greater vari-
ety of interference possibilities in design, yet also reduce
the success probability through additional PNR detector
conditions that must be satisfied.
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Figure 3. Wavefunctions in the quadrature basis 〈q|Φ〉 (top) and photon number probabilities |〈n|Φ〉|2 (bottom) for example
target and QFP output states. (a) α ∈ {1, 1.5, 2}, Q = 3, and Ns = 3. (b) α = 2.25, Q ∈ {3, 5, 7}, and Ns = 5. (c) α = 1.75,
Q = 3, and Ns ∈ {3, 5}.

V. DISCUSSION

A. Further generalizations

The formalism we have presented currently relies
on several assumptions, most notably specialization to

single-mode squeezed vacuum inputs and the neglect
of photon loss. Mathematically speaking, single-mode
squeezed vacuum states are especially convenient because
of their zero displacement in phase space (~xβ = 0) and
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Figure 4. Fidelity (top) and Success Probability (bottom) plotted as functions of α (in steps of 0.25) for various combinations
of Ns and Q. Corrected results are shown for the Ns = 5, Q = 3 case (see Sec. IV B for disambiguation).

diagonal covariance matrix V0. Importantly, the latter
facilitated closed-form expressions for det Γ [Eq. (14)]
and Γ−1 [Eq. (26)], markedly simplifying calculations for
the numerical optimizer. However, the covariance ma-
trix just before the partial PNR detection (i.e., just after
the passive Gaussian unitary operator U of Fig. 1) nev-
ertheless remains completely general for a pure Gaussian
state. Indeed, the covariance matrix of a pure Gaussian
state is of the form SVvacS

T , where Vvac is the covariance
matrix of vacuum and S is any symplectic matrix which
includes squeezing, i.e., S = SpSsS

′
p, where Sp and S′p are

passive transformations and Ss is the symplectic trans-
formation for squeezing. Since passive transformations
have no effect on vacuum, the most general covariance
matrix for a pure Gaussian state can thus be written
as SVvacS

T = SpV0S
T
p , which is precisely the covariance

matrix assumed in our analysis. For example, any two-
mode squeezed state (like those produced in quantum
frequency combs [37, 38, 55, 56]) can be expressed as
the interference of two single-mode squeezed states on a
beamsplitter, whose unitary can be readily incorporated
on the front-end of the circuit in Fig. 2.

Yet although the diagonal input covariance matrix
V0 does not reduce the generality of our formulation,
the absence of displacement is significant. Incorporat-
ing nonzero displacements will not affect the covariance
matrix we have used; it will, however, introduce addi-
tional variables into the optimization procedure for gen-
erating desired non-Gaussian states. Since we have been
able to obtain high fidelities for our purposes using zero-
displacement inputs only, we leave the effects of displace-
ment to be thoroughly studied in the future.

It should be possible to move beyond unitary opera-

tions as well. For example, by coupling each frequency
bin to additional environmental modes, then tracing
these out, photon loss can be added into the formula-
tion, following the outline in Ref. [26]. The specifics of
how the final expressions can be simplified in this case—
as well as how they might compare with those of the Q
function approach adopted for loss in Ref. [31]—remain
open questions. Nevertheless, such an extension will be
extremely important from an experimental perspective,
and new in the context of QFP design. QFP theory up to
this point has concentrated on DV gates with Fock states,
where loss reduces photodetection events but does not
otherwise modify the (postselected) quantum state. On
the other hand, the prepared states here depend heavily
on both loss and detector efficiency, making this elab-
oration critical to predicting experimental performance.
Moreover, in light of the insertion loss of commercial dis-
crete fiber-pigtailed EOMs and pulse shapers, both loss
modeling and loss mitigation will be vital in advancing
this field. To this end, integrated EOMs [62, 63] and
pulse shapers [64, 65] with the potential for much higher
efficiencies seem particularly promising, and in our view
on-chip QFP integration is a prerequisite for practicable
non-Gaussian state generation according to the approach
proposed here.

B. GKP states

While the generation of cat states is nontrivial in itself,
a long-standing challenge in CV encoding is the realiza-
tion of GKP qubit states for error correction. The value
of GKP qubits, call them |0〉 and |1〉 in the logical basis,
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lies in their infinite series of equispaced delta functions,
|1〉 being displaced from |0〉 by

√
π when plotted in the

q-quadrature basis. Since these ideal states are unphys-
ical, approximate states |0̃〉 and |1̃〉 were presented in
the original GKP proposal [16], which consist of a sum
of Gaussian peaks with standard deviation ∆, all under
another Gaussian envelope with standard deviation 1

k .

∆ = k = 0.15 is required for |0̃〉 and |1̃〉 to maintain a
99% error correction rate [66]. Due to the limited un-
derstanding of how ns and ancilla mode placement affect
the quality of the output state, finding effective QFP cir-
cuits for direct GKP state production is beyond the scope
of the present investigation, but provides an important
direction for future work.

An alternative path to quality approximations of GKP
qubits, for which our system is already well suited, is the
so-called “cat breeding” protocol [67–69]. In the first
version of the protocol [67], two cat states are squeezed
by some amount r, where r = − ln ∆. The squeezed
cat states are combined on a balanced beamsplitter, and
a homodyne measurement is made on one of the out-
put modes. When the result of the homodyne measure-
ment for a single output mode’s p-quadrature is zero, the
other output mode is left in a state with three equispaced
peaks. The height of the peaks follows a binomial distri-
bution, and the width of the peaks is determined by the
amount of squeezing applied to the initial cat states. Suc-
cessive iterations of the protocol, where the beamsplitter
inputs are the states produced by the previous iteration,
yield higher-order binomial states. To ensure that the
final state has the correct spacing associated with GKP
states, the initial cat states must have a coherent ampli-

tude α =
√

2
m−1√

πer, where m is the number of iter-
ations of the protocol to be executed. The larger r and
m are, the more closely the resulting state will resemble
the approximate GKP state, making access to large cat
states vital to the protocol. The version of the proto-
col presented by Eaton et al. [69] replaces the homodyne
measurement by PNR detection. Because PNR detection
neglects the phase of the output, fine control over the rel-
ative phase of the input states is needed to achieve the
same comb-like output as in the homodyne approach. By
detecting four photons at one output mode after a single
iteration of the protocol, Ref. [69] numerically generated
states with a fidelity of 0.996 with respect to an approxi-
mate GKP state (∆ = k = 0.545) at a success probability
of 0.09.

As presented in Sec. IV B our system can generate cat
states up to a size α = 2 with 99.87% fidelity when Ns =
5 and Q = 7. These capabilities make our non-Gaussian
state engineering system a viable candidate to meet the
resource state demands set by cat breeding protocols.

VI. CONCLUSION

We have introduced a complete model for the produc-
tion of non-Gaussian quantum states using the QFP,
a device designed to implement arbitrary linear-optic
transformations on discrete spectral modes. Our mathe-
matical formulation using the K function expansion en-
ables efficient calculation of multimode Gaussian states
in the photon-number basis, providing a valuable frame-
work for analysis in any photonic DoF. Applying this
to the QFP specifically, we have designed basic quan-
tum circuits that produce non-Gaussian cat states with
a variety of amplitudes, revealing a clear fidelity/success-
probability tradeoff with the number of squeezed ancillas.
Given the multitude of configurations possible—along
with the rapidly evolving nature of quantum computation
with non-Gaussian resources such as GKP qubits—many
unsolved challenges remain on the path toward large-
scale quantum information processing in this paradigm.
Nonetheless, our work furnishes an important founda-
tional tool for designing CV quantum systems in fre-
quency bins and should contribute toward the realiza-
tion of fiber-compatible, single-spatial-mode, and paral-
lelizable quantum information processors based on non-
Gaussian photonic states.
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[54] V. J. López-Pastor, J. S. Lundeen, and F. Marquardt,
Arbitrary optical wave evolution with Fourier transforms
and phase masks, arXiv:1912.04721 (2019).

[55] O. Pfister, Continuous-variable quantum computing in
the quantum optical frequency comb, J. Phys. B: At. Mol.
Opt. Phys. 53, 012001 (2020).

[56] Z. Yang, M. Jahanbozorgi, D. Jeong, S. Sun, O. Pfister,
H. Lee, and X. Yi, A squeezed quantum microcomb on a
chip, arXiv:2103.03380 (2021).

[57] X. Zhu, C.-H. Chang, C. González-Arciniegas, A. Pe’er,
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