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Continuous-variable cluster states allow for fault-tolerant measurement-based quantum computing
when used in tandem with the Gottesman-Kitaev-Preskill (GKP) encoding of a qubit into a bosonic
mode. For quad-rail-lattice macronode cluster states, whose construction is defined by a fixed,
low-depth beam splitter network, we show that a Clifford gate and GKP error correction can be
simultaneously implemented in a single teleportation step. We give explicit recipes to realize the
Clifford generating set, and we calculate the logical gate-error rates given finite squeezing in the
cluster-state and GKP resources. We find that logical error rates of 10−2–10−3, compatible with
the thresholds of topological codes, can be achieved with squeezing of 11.9–13.7 dB. The protocol
presented eliminates noise present in prior schemes and puts the required squeezing for fault tolerance
in the range of current state-of-the-art optical experiments. Finally, we show how to produce
distillable GKP magic states directly within the cluster state.

I. INTRODUCTION

Continuous-variable cluster states are entangled re-
sources for continuous-variable (CV) measurement-based
quantum computation (MBQC) [1, 2]. They are highly
scalable, can be generated deterministically, and op-
erate at room temperature—all of which make them
an attractive substrate for quantum computing [3–9].
CV cluster states were originally designed using single-
mode squeezed states and CV controlled-Z gates (in di-
rect analogy to their qubit counterparts) [1]. The CV
controlled-Z gates require inline squeezing, which is ex-
perimentally difficult, however, and later work showed
that this is unnecessary: CV cluster states can be made
entirely with offline squeezing and passive linear op-
tics [10], albeit with a design that makes scaling up to
large sizes a challenge. Later, it was realized that CV
cluster states could be generated using an experimentally
accessible set of resources: offline squeezing and constant-
depth local linear optical circuits [7, 11–20].

Since then, large-scale cluster states, which are all
based on macronodes (i.e., collections of multiple modes
functioning as a single unit) [7, 11, 13], have been ex-
perimentally produced in the frequency [8] and tempo-
ral [3–5, 9] domains. The macronode wire is a linear
macronode cluster state (where each macronode has only
two modes within it) used to implement single-mode,
Gaussian, unitary operations in a measurement-based
fashion. It is constructed from a chain of two-mode
squeezed states linked by 50:50 beam splitters [7, 21]
as shown in Fig. 1(a). Coupling together macronode
wires using additional beam splitters produces higher-
dimensional macronode cluster states that are useful for
universal quantum computing [7, 14–20, 22]. We focus
on the quad-rail lattice (QRL) [7, 22], which is used to
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implement the two-mode unitaries required for univer-
sality. Although originally proposed as a macronode-
based implementation of a 2D square-lattice cluster state,
the QRL construction [7] does not require a specific
graph topology—it only requires that four local modes
are stitched together as in Fig. 1(b). This can be used to
realize a class of graphs that includes 3D lattices, such
as that in Ref. [17] and the Raussendorf–Harrington–
Goyal (RHG) lattice [23, 24], which provide topological
fault tolerance when used as a qubit cluster state.

Any physical implementation of quantum circuits will
involve some degree of noise, but CV MBQC also has
to contend with intrinsic noise that results from finite
energy constraints [2, 25]. Thus, considerations of scal-
able quantum computing with CV cluster states require
a method for addressing noise up front. Bosonic codes
fill this role by encoding discrete-variable quantum reg-
isters within the Hilbert space of one or more bosonic
modes. Reference [26] proposed using the Gottesman-
Kitaev-Preskill (GKP) encoding [27] to discretize the in-
trinsic Gaussian noise that arises in MBQC with CV clus-
ter states. GKP error correction collapses CV noise (in-
cluding intrinsic noise) into probablistic qubit-level er-
rors. These errors will also need to be corrected, so
they must be passed on to a higher level quantum er-
ror correcting code. Fault-tolerant quantum computa-
tion is possible given an effective qubit error rate below
some threshold value (specific to the noise model, chosen
higher level code, and decoder) [20, 26, 28].

Recent studies have married macronode cluster states
with the GKP code [21, 29] and found squeezing thresh-
olds [20, 24, 28] in reach of near-term technology. This
provides a (non-optimized) target for experimental ef-
forts into creating these resource states. GKP error cor-
rection, which mitigates intrinsic finite-squeezing noise,
is possible out of the box, because the Gaussian unitary
operations from MBQC with CV cluster states are all
that is needed for the full set of single- and two-qubit
GKP Cliffords [26]. However, current proposals that are
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Figure 1. Macronode cluster states for quantum comput-
ing. Each light purple oval designates a grouping of two lo-
cal modes called a (two-mode) macronode. Arrows repre-
sent beam splitters between local modes, applied in the order
{1, 2, 3}. (a) In the one-dimensional case, known as a macron-
ode wire, macronodes are chained together using beam split-
ters. Macronode-local measurements teleport an input state
along the macronode wire with gates applied at each macron-
ode that depend on the measurement bases and the specific
states in each wire. (b) An example of a 2D quad-rail-lattice
(QRL) construction. Macronode wires are periodically cou-
pled to one another using additional beam splitters (verti-
cal, red), and local measurements teleport multimode input
states and facilitate two-mode gates. Previous work on the
QRL interprets coupled two-mode macronodes as a four-mode
macronode [22]; we circle one of these four-mode macronodes
(solid outline) to highlight the defining property of the QRL:
local four-mode coupling. Dashed boxes indicate the macron-
ode gadgets used to implement (a) single-qubit and (b) two-
qubit Clifford gates on a GKP-encoded qubit. Their respec-
tive circuit diagrams can be found in Eq. (20) and Eq. (28).

based on local implementation of gates rely on compiling
GKP Clifford gates and error correction across several
teleportation steps [20, 28], which is undesirable since
each additional step adds finite-squeezing noise.

In this work, we provide three critical advances. First,
we simplify gate implementations by showing that all
GKP Cliffords can be performed deterministically in a
single teleportation step. Second, we show that preparing
the cluster-state modes in squeezed GKP states (called
qunaught states [21]), automatically implements GKP
error correction during gate execution. Together, these
streamline quantum computing in the QRL construction
by reducing the number of measurements per mode to
just two per gate, which encompass both the gate it-
self and GKP error correction. Third, we embed the
scheme for making GKP magic states from Ref. [30] di-
rectly into the macronode setting, thereby eliminating
any additional noise that would otherwise result from
having to attach such states if they were prepared offline.

Using the first two advances, we calculate the logical-
gate error rates for GKP Clifford implementations and

find that they surpass previous best-case gate error
rates [29]. For the noisiest gate, the logical controlled-Z,
we find that gate error rates of 10−2–10−3 are achievable
with 11.9–13.7 dB of squeezing in the resource states that
comprise the cluster state. Since our advances use the
minimum number of ancillae per gate, they outperform
previous studies by at least ∼ 1.3 dB [20, 26, 29].

We detail the assumptions made by our analysis in Sec-
tion IV. Succinctly, we consider equivalent finite squeez-
ing noise on all input states, and our GKP states are
treated as if the Gaussian envelope width approaches
infinity, which is justified in the limit of high squeez-
ing [31, 32]. These assumptions are common in other lit-
erature (e.g., [26, 29, 33]), and we employ them for ease
of comparison. We don’t claim these gate error rates are
actual fault-tolerance thresholds since such a claim would
require a more sophisticated error model.

II. NOTATION AND CONVENTIONS

We first lay out notational conventions and impor-
tant continuous-variable circuit identities used through-
out this work, most of which come from Ref. [21], where
further details can be found.

A. CV bases and unitary operators

Each CV mode has canonical position and momentum
operators, q̂ = 1√

2
(â + â†) and p̂ = −i√

2
(â − â†), obey-

ing the canonical commutation relation [q̂, p̂] = i. This
corresponds to an implicit choice of ~ = 1, with mea-
sured vacuum variance equal to 1

2 in both quadratures.
Their eigenstates |s〉q and |t〉p satisfy q̂|s〉q = s|s〉q and
p̂|t〉p = t|t〉p.

The displacement operators

X̂(s) := e−isp̂ = D̂( s√
2
), (1)

Ẑ(t) := eitq̂ = D̂( it√
2
), (2)

displace by +s in position and +t in momentum, respec-
tively: X̂†(s)q̂X̂(s) = q̂ + s, Ẑ†(t)p̂Ẑ(t) = p̂ + t, with
D̂(α) = eαâ

†−α∗â being the ordinary quantum-optics dis-
placement operator.

With the phase-delay operator

R̂(θ) := eiθâ
†â , (3)

we define a rotated momentum quadrature

p̂θ := R̂†(θ)p̂R̂(θ) = p̂ cos θ + q̂ sin θ , (4)

whose eigenstates, satisfying p̂θ|t〉pθ = t|t〉pθ , are given by
|t〉pθ := R̂†(θ)|t〉p [21].

A special case of the phase delay operator is the Fourier
transform operator,

F̂ := R̂(π2 ) , (5)
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which rotates the canonical quadratures, F̂ †q̂F̂ = −p̂,
and F̂ †p̂F̂ = q̂. We describe measurements of a rotated
quadrature p̂θ, realized via homodyne detection, as pro-
jections onto rotated eigenstates. In the circuit setting,
these projections are described by the bra

pθ
〈m| := p〈m|R̂(θ), (6)

where m is the measurement outcome.
We use two additional single-mode Gaussian opera-

tors. First is the squeezing operator with squeezing fac-
tor ζ ∈ R,

Ŝ(ζ) := R̂(Im ln ζ)e−
i
2 (ln |ζ|)(q̂p̂−p̂q̂) (7)

= R̂(Im ln ζ)e
1
2 (ln |ζ|)(â

†2−â2) , (8)

where Im ln ζ = π if ζ < 0 and 0 otherwise. This appends
a π phase shift to the squeeze if and only if ζ < 0, keeping
its symplectic Heisenberg action consistent for all real ζ
(see Ref. [15]). Next is the momentum-shear operators
with shear parameter σ:

P̂ (σ) := e
i
2σq̂

2

. (9)

The two-mode CV gates we focus on are the controlled-
Z gate and the balanced beam splitter. A controlled-Z
gate with real weight g,

ĈZ(g) := eigq̂⊗q̂ , (10)

is symmetric (invariant under swapping the inputs). The
two-mode entangling gate for macronode cluster states is
a balanced beam splitter. For modes j and k, the beam
splitter convention we use is

B̂jk := e−i
π
4 (q̂j⊗p̂k−p̂j⊗q̂k) (11)

= e−
π
2 (âj⊗â†k−â

†
j⊗âk) . (12)

Note that Hermitian conjugation is equivalent to ex-
changing the inputs: B̂†jk = B̂kj .

B. Quantum circuits and right-to-left convention

Following Ref. [21], the circuits in this work flow from
right to left, with input states specified by kets on the
right-hand side of the circuit and projective measure-
ments (including the outcome) specified by bras on the
left-hand side. With this convention, which is sometimes
called the Kitaev convention, each circuit maps simply to
Dirac notation. This means gates merge together without
reversing their order, and projective measurements can
be straightforwardly represented as bras. For instance,

b〈m| B A |ψ〉 = b〈m| BA |ψ〉 = b〈m|B̂Â |ψ〉 ,
(13)

where |ψ〉 is the input state, b〈m| indicates a measurement
in basis b with outcome m, and the result of the circuit

is an amplitude for that outcome. Circuits for which
only some of the systems are measured produce Kraus
operators associated with that outcome under a similarly
straightforward mapping. The notation for other circuit
elements is standard and without modification, except
for the understanding that time flows right to left.

One circuit element of particular importance, whose
novel notation was first introduced in Ref. [21], is that
of the beam splitter, Eq. (11). We represent this as a
vertical arrow pointing from the wire for mode j to that
for mode k:

B̂jk = (out)
��

j

k
(in) .

(14)

Since B̂†jk = B̂kj , taking the Hermitian conjugate re-
verses the direction of the arrow.

C. Gottesman-Kitaev-Preskill code

The ideal, square-lattice GKP computational basis
states, indexed by j ∈ {0, 1}, are described by periodic
wavefunctions in position and momentum, respectively
given by [27]

|jGKP〉 :=

∫
dsX2

√
π(s− j

√
π)|s〉q (15)

=

∫
dt eij

√
πtX√

π(t)|t〉p, (16)

where a Dirac comb of period T is defined as [31]

XT (x) :=
√
T

∞∑
n=−∞

δ(x− nT ). (17)

Together, the basis states span a two-dimensional sub-
space of a CV mode’s Hilbert space that is described by
the projector

Π̂GKP := |0GKP〉〈0GKP|+ |1GKP〉〈1GKP| . (18)

A distinguishing feature of GKP codes is that the Clif-
ford group can be implemented with Gaussian unitary
operations on the CV mode. For the square-lattice GKP
code considered here, the correspondence between Gaus-
sian CV unitaries and their action as Clifford gates in the
square-lattice GKP encoding is{

Î , F̂ , P̂ (±1), ĈZ(±1)
}︸ ︷︷ ︸

CV unitaries

7−→
{
Ī , H̄, P̄ , C̄Z

}︸ ︷︷ ︸
GKP Cliffords

, (19)

respectively. The CV unitaries were introduced in
Sec. II A, and the GKP Clifford gates use standard nota-
tion for qubit gates, with P̄ indicating the phase gate (π2
rotation about the Z axis of the Bloch sphere). Through-
out this work, CV unitaries are indicated by hats and
logical GKP gates by overbars. Many CV unitaries can
perform the same logical gate on a square-lattice GKP
state—for example, F̂ † also implements H̄; see Ref. [27]
for further details.
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III. QUANTUM COMPUTING WITH
QUAD-RAIL-LATTICE CLUSTER STATES AND

THE GKP CODE

The key to using CV cluster states for computing with
the GKP code is determining the measurement bases
that implement GKP Clifford gates. For a slightly dif-
ferent macronode cluster state, Larsen et al. recently
proposed a set of gates (including two-qubit Clifford
gates) [20] that requires at most two steps (teleporta-
tion through two macronodes) and relies on variable-
transmission beam splitters for error correction.

In this work, we give an improved protocol that pro-
vides three advances. First, the full generating set of
GKP Clifford operations can be performed in a single
measurement step. That is, all single-qubit Cliffords are
executed during teleportation through a single macron-
ode, and the two-qubit Cliffords through two entangled
macronodes. This more efficient use of the macronode
cluster state reduces the amount of finite-squeezing noise
per gate. Second, GKP error correction is performed in
parallel with each logical gate by teleporting through an
encoded GKP Bell pair. This introduces less noise than
an ancilla-coupled approach and leads to the improved
squeezing thresholds in Sec. IV. Third, our protocol does
not require variable-transmission beam splitters; rather,
the beam splitter network is fixed, which simplifies ex-
perimental implementation.

A. Single-mode gates

We describe the above concepts in more detail using
the essential primitive element in a macronode wire—the
macronode teleportation gadget, indicated by a dashed
black box in Fig. 1(a). Each macronode gadget consists
of three modes. Measuring the first two teleports the
input state to the output mode with a Kraus operator
applied. The circuit identity for the macronode gadget,
derived in Ref. [21], is

pθa
〈ma|

��

(in)

pθb
〈mb|

��

|ψ〉

(out) |φ〉

=

D(µa,b)
1√
π
V (θa, θb) (in)

(out) 1√
π
A(ψ, φ)

,

(20)

where the specific elements in the right hand side are de-
fined and discussed below. We call this circuit the single-
mode macronode gagdet since it takes a single mode as
input and is implemented at a single (two-mode) macron-
ode. In fact, this circuit is identical to the standard CV
teleportation circuit [34]. Note that the term ‘single-
mode’ refers to the number of inputs, with the size of the
macronode being double that since two measurements are
required to teleport a single mode.

The gate V̂ (θa, θb) is a Gaussian unitary determined
by the homodyne measurement angles θa and θb. We

give the standard form of this unitary (up to an overall
phase) [21, 25] along with a new decomposition that will
be useful when working with the GKP code:

V̂ (θa, θb) = R̂(θ+ − π
2 )Ŝ(tan θ−)R̂(θ+) (21)

= R̂(θa − π
2 )P̂ [2 cot(2θ−)]R̂(θa − π

2 ) , (22)

where the operators on the right are defined in Sec. II A,
and

θ± :=
θa ± θb

2
. (23)

Equation (22) arises from the Bloch-Messiah decompo-
sition [35] of the squeezing operation (up to an overall
phase),

Ŝ(tan θ−) = R̂(θ−)P̂ [2 cot(2θ−)]R̂(θ− − π
2 ) , (24)

which can be verified directly using the symplectic repre-
sentation of the Heisenberg action of these operators [25].

The influence of the measurement outcomes ma and
mb is through a displacement D̂(µa,b) whose amplitude
depends on these outcomes and on the chosen measure-
ment bases:

µa,b :=
−mae

iθb −mbe
iθa

sin(2θ−)
. (25)

At each macronode, this displacement is known and can
be corrected. For this reason, we frequently set ma =
mb = 0 throughout this work so that µ = 0. Interested
readers can consult Ref. [21] for more details.

Finally, the local states |ψ〉 and |φ〉 at the input deter-
mine the gate Â(ψ, φ), which is, in general, not unitary.
The precise definition of this gate and more details about
it can be found in Ref. [21]. When its particular form is
required, we will give it explicitly for that special case.

The circuit in Eq. (20) describes the Kraus operator

K̂(ma,mb) =
1

π
Â(ψ, φ)D̂(µa,b)V̂ (θa, θb) , (26)

which gives the evolution of an input state ρ̂in as it is
teleported from the top mode to the bottom mode:

ρ̂out =
1

Pr(ma,mb)
K̂(ma,mb)ρ̂inK̂

†(ma,mb) . (27)

Since the Kraus operator is not unitary, the output state
is renormalized by the probability density of the out-
comes, Pr(ma,mb) = Tr[K̂†(ma,mb)K̂(ma,mb)ρ̂in].

The macronode gadget, Eq. (20), allows us to im-
plement a deterministic single-mode Gaussian unitary
V̂ (θa, θb), Eq. (21), through a choice of homodyne mea-
surement bases. (It is deterministic because the displace-
ment is known and can be corrected at the end of the
gadget or accounted for in later steps of the computa-
tion.) Two consecutive V̂ (θa, θb) gates can enact any
single-mode Gaussian operation [25]. Such generality is
not required for the GKP encoding, however. In fact, the
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{θa, θb} V̂ (θ) Logical Gate

{π
2
, 0} Î Ī

{ 3π
4
, π
4
} F̂ H̄

{π
2
, π
2
∓ χ} P̂ (±1) P̄

{θa, θb, θc, θd} V̂ (2)(θ) Logical Gate

{π
2
, π
2
± χ, π

2
, π
2
∓ χ} ĈZ(±1) C̄Z

{0, π
2
, π
2
, 0} SWAP SWAP

{π
2
, 0, π

2
, 0} Î ⊗ Î Ī ⊗ Ī

{ 3π
4
, π
4
, 3π

4
, π
4
} F̂ ⊗ F̂ H̄ ⊗ H̄

{π
2
, π
2
∓ χ, π

2
, π
2
∓ χ} P̂ (±1)⊗ P̂ (±1) P̄ ⊗ P̄

Table I. Measurement bases and the resulting GKP Clifford
gates for the QRL macronode cluster state. The upper set
(above the double horizontal line) are single-mode CV gates
realized with the single-mode macronode gadget in Eq. (20).
These gates implement single-qubit GKP Cliffords. The lower
set (below the double horizontal line) are two-mode CV gates
realized via the two-mode macronode gadget in Eq. (28). This
set includes an entangling GKP Clifford gate, the SWAP gate,
and several pairs of identical single-mode gates. The constant
angle χ is defined as χ := arctan 2 ≈ 1.1071 rad ≈ 63.435◦.

minimal set of single-qubit GKP Clifford gates in Eq. (19)
can be performed in a single step—i.e., a single macron-
ode gadget—using the measurement bases presented in
Table I. This is a novel and distinctive feature of GKP
Clifford gates that has not, to the authors’ knowledge,
been previously reported in the literature. Single-step
operation allows for lower gate error rates than previ-
ously reported (discussed further in Sec. IV).

B. Two-mode gates

Thus far, we have considered only single-mode gates
implemented by measurements on a macronode wire. To
complete the Clifford group, we need to implement an en-
tangling gate between encoded GKP qubits. A suitable
resource for this purpose is created by coupling macron-
ode wires together via additional beam splitters into a
two-dimensional lattice. There are various ways to do
this [4, 5, 7, 15], distinguished by (among other things)
the number of modes per macronode in the final state.
Here, we focus on an architecture with four modes per
macronode, called the quad-rail lattice (QRL) [7, 22, 36],
which was previously found to have favorable noise prop-
erties compared to other lattices [29]. The QRL construc-
tion depends only on each macronode comprising exactly
four modes. Thus, when we refer to “the QRL,” we mean
the particular method of stitching together a four-node
macronode [7, 22], with the understanding that this can
be applied to any graph of degree four—i.e., a graph
in which every node is connected to exactly four neigh-
bors. This is an important class of graphs that includes,

among others, the RHG lattice [23] for which a QRL
construction has been proposed and a squeezing thresh-
old found [37]. In any QRL-based architecture, groups of
four modes are couplied using a four-splitter [22], which
is typically implemented using four beam splitters. One
can equally well consider two of these beam splitters to be
first creating macronode wires, as shown by the dashed
arrows in Fig. 1(a) and also in (b). Macronode wires
are then stitched together at a four-mode macronode us-
ing the remaining two beam splitters, as shown by the
red (dark gray) arrows in Fig. 1(b), with an example of
a four-mode macronode circled (with a solid border) in
that figure.

Each four-mode macronode powers a two-mode gadget
capable of implementing either two single-mode gates or
one two-mode gate [22]. We illustrate both actions to-
gether using a single quantum circuit, which corresponds
directly to the dashed box of Fig. 1(b):

pθa
〈ma|

��

��

(in)

pθb
〈mb|

��

��

|ψ〉

(out) |φ〉

pθc
〈mc|

��

(in)

pθd
〈md|

��

|ψ′〉

(out) |φ′〉

, (28)

where the beam splitters are all the same 50:50 beam
splitter with dashed corresponding to the red, vertical
ones in Fig. 1. We call this circuit the two-mode macron-
ode gadget since it takes two modes as inputs, produces
outputs over two modes, and is implemented at a sin-
gle (four-mode) macronode. It is the two-mode gener-
alization of the single-mode macronode gadget shown in
Eq. (20).

This macronode gadget generates a two-mode quan-
tum operation (which could be separable or entangling)
between the input modes as they are jointly teleported to
the output modes. Just as for the single-mode macron-
ode gadget, Eq. (20), the two-mode quantum operation
that gets implemented depends on the quadratures being
measured, the measurement outcomesm, and the ancilla
states that comprise the two-mode gadget.

The two-mode Kraus operator

K̂(2)(m) =
1

π2

[
Â1(ψ, φ)⊗ Â2(ψ′, φ′)

]
D̂

(2)
QRL(m)V̂

(2)
QRL(θ)

(29)
has three parts. First, each macronode contributes a
teleported gate Âj(ψ, φ) with the subscript indicating
the output mode on which the gate acts. Second, each
contributes an outcome-dependent displacement, and the
two displacements are mixed by the beam splitters into

D̂
(2)
QRL(m) := D̂1(µ+)⊗ D̂2(µ−) , (30)

with µ± =
µc,d±µa,b√

2
. Finally, the quadrature measure-

ment bases θ = (θa, θb, θc, θd) implement the determinis-
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tic two-mode Gaussian unitary (up to a global phase),

V̂
(2)
QRL(θ) := B̂21[V̂1(θa, θb)⊗ V̂2(θc, θd)]B̂12 , (31)

which is represented by the circuit,

V1(θa, θb)

��

OO

V2(θc, θd)

.
(32)

A derivation of this gate is given in Appendix B.
Choosing various measurement angles allows us to re-

alize various two-mode Gaussian unitaries. Most impor-
tant for GKP quantum computing is a two-mode Clifford
gate, which can be implemented by a CV controlled-Z
gate ĈZ(±1); see Eq. (18). To find the measurement an-
gles that realize this gate, we decompose a CV controlled-
Z gate of weight g as

ĈZ(g) = B̂21[P̂ (−g)⊗ P̂ (g)]B̂12 , (33)

equivalently described by the circuit identity

•
g

•
=

P (−g)

��

OO

P (g)

, (34)

with the left-hand side being the circuit for ĈZ(g).1 This
convenient decomposition allows us to implement the
gate using two single-mode shears of equal magnitude
and opposite sign. When g = ±1, the gate acts as the
two-qubit GKP Clifford C̄Z gate we desire; measurement
angles that produce this gate are given in Table I. We
note that there are many other sets of measurement an-
gles that implement Clifford equivalent entangling gates,
which we will detail in future work.

In Table I we also include the CV SWAP gate that
exchanges states across the two modes, SWAP |ψ〉⊗|φ〉 =
|φ〉 ⊗ |ψ〉. This includes the case when those states are
GKP encoded.

We also review a method of disentangling the two-
mode gate [22], allowing more versatile use of the QRL.
When the single-mode Gaussian unitaries V̂ in Eq. (32)
are identical, they commute with the beam splitters,
which then cancel:

V

��

OO

V

=
��

VOO

V

=

V

V

. (35)

Thus, one can implement two identical single-mode GKP
gates simultaneously on both modes with the two-mode
macronode gadget. Several useful examples are given in
Table I.

1 A related decomposition in terms of local squeezing between
beam splitters is given in Ref. [38]. That decomposition is related
to ours through Eq. (24).

C. Teleporation-based GKP error correction

In addition to the measurement-basis-dependent gates
discussed above, the macronode gadget in Eq. (20) also
applies a quantum operation Â(ψ, φ) that depends on the
states |ψ〉 and |φ〉 [21]. For an ideal macronode-based CV
cluster state (with no qubit encoding), |ψ〉 = |0〉p and
|φ〉 = |0〉q, which is depicted as

, (36)

in the schematics of Fig. 1. This choice generates a
maximally entangled EPR pair across two neighboring
macronodes [21], giving the trivial operation

Â(0p, 0q) = Î (37)

that forms the backbone of standard CV teleportation.
GKP error correction can be performed automatically

when the states in a macronode gadget are themselves
GKP states [21]. However, since beam splitters introduce
additional squeezing that modifies the spacing of a peri-
odic wavefunction, the appropriate states are not square-
lattice |+GKP〉 states. Rather, they are Fourier-invariant
qunaught states [21] (also called sensor states [39]), with
wavefunction period T =

√
2π in both position and mo-

mentum,

|∅〉 :=

∫
dsX√

2π(s)|s〉q =

∫
dtX√

2π(t)|t〉p , (38)

with the empty-set symbol ∅ and ‘naught’ in the name
indicating that the state carries no quantum informa-
tion [21]. Nevertheless, combining two qunaught states
on a beam splitter produces an encoded Bell pair of
square-lattice GKP qubits [21],

B̂12 |∅〉⊗|∅〉 = 1√
2

(
|0GKP〉⊗|0GKP〉+|1GKP〉⊗|1GKP〉

)
.

(39)
A GKP Bell pair across neighboring macronodes is pro-

duced by preparing both |φ〉 and |ψ〉 in the macronode
gadget, Eq. (20), in qunaught states:

. (40)

Teleportation through an encoded Bell pair is the founda-
tion for Knill-style GKP error correction [40], and indeed
this choice yields the quantum operation

Â(∅,∅) =

√
π

2
Π̂GKP , (41)

with Π̂GKP being the projector onto the square-lattice
GKP subspace [Eq. (18)]. From the Kraus operator in
Eq. (26), we see that this allows a GKP Clifford gate fol-
lowed by GKP error correction to be performed in the
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same step (i.e., teleportation through a single macron-
ode). The two-mode macronode gadget works identically,
since the quantum operations Â(ψ, φ) are local to each of
the output modes as shown in the two-mode Kraus op-
erator, Eq. (29). Preparing all four ancilla states in the
gadget in |∅〉 implements the two-mode Gaussian gate
determined by θ and m followed by GKP error correc-
tion on each output mode.

D. Magic states

Extending the above described operations to a uni-
versal gate set requires a logical non-Clifford element.
Given access to high-fidelity Clifford gates, a universal
set of operations is attainable by probabilistically dis-
tilling a high-quality magic state from multiple noisier
copies via Clifford operations [41]. Two commonly con-
sidered magic states are the |+T 〉 state (stabilized under
a Clifford gate that permutes the positive Pauli axes),

|+T 〉 =

(√
3 + 3

6

) 1
2

|0〉+ eiπ/4
(

2−
√

3

6

) 1
4

|1〉 , (42)

and the |+H〉 state (stabilized under the Hadamard
gate), 2

|+H〉 = cos π8 |0〉+ sin π
8 |1〉 . (43)

These states are distillable with ideal Clifford operations
from noisy copies with fidelities no worse than 0.853 [42]
and 0.8273 [43], respectively. Distillation of magic states
with imperfect (but high-fidelity) Clifford gates is possi-
ble but requires copies with higher fidelities.

An experimentally convenient method for probabilisti-
cally generating magic states of a desired fidelity in the
GKP code was introduced in Ref. [30]. Performing GKP
error correction on the vacuum state (or a low-photon-
number thermal state) produces a heralded, distillable
GKP magic state with high probability.3

In a cluster-state setting, there are two straightforward
ways to implement this protocol using state injection.
The first is to inject externally produced noisy magic
states using the above or some other method. The second

2 Both of these magic states and their Clifford equivalents can
be used to deterministically teleport non-Clifford gates (given
Clifford resources). Unfortunately, they go by different names
in the literature as do the gates they teleport. We follow the
conventions in Ref. [41].

3 The analysis in Ref. [30] focuses on vacuum and thermal states,
but many other Gaussian states of high purity will also yield her-
alded, distillable magic states. Notable exceptions are position-
or momentum-squeezed vacuum states, which are often used in
combination with GKP states to produce hybrid cluster states for
use in fault-tolerant architectures [20, 26, 33]. These Gaussian
states instead yield undistillable encoded states that are close to
Pauli eigenstates [44], so a different type of Gaussian state must
be used instead.

is to inject Gaussian states (notably, vaccum states) and
then project them into the GKP code space through tele-
portation as described in Eq. (40). In either case, homo-
dyne measurements on surrounding cluster-state modes
provide the GKP Clifford machinery to perform distilla-
tion as needed within the cluster state itself.

An intriguing alternative approach that also yields a
distillable magic state is to measure half of an encoded
GKP Bell pair using heterodyne detection [30], which
projects that mode onto the coherent-state basis. We
modify this approach for streamlined implementation in
macronode cluster states. We make use of two facts.
First, beam splitters acting before projections onto co-
herent states are equivalent to projections onto different
coherent states,

〈α1| ⊗ 〈α2| B̂12 = 〈α+| ⊗ 〈α−| , (44)

with α± := 1√
2
(α1±α2). With this, beam splitters can be

effectively removed by postprocessing of outcomes. Sec-
ond, performing heterodyne on both modes of the single-
mode macronode gadget, Eq. (20), disentangles the input
mode, leaving the final two modes in a GKP Bell pair,
Eq. (39):

〈αa|
��

(in)

〈αb|
��

|∅〉

(out) |∅〉

=

〈α+| (in)

〈α−|
��

|∅〉

(out) |∅〉
.

(45)

Since one of these modes is measured by heterodyne
detection, this implements the conditional GKP magic-
state approach described above. From a resource per-
spective, this approach is equivalent to introducing a vac-
uum state into the cluster state, since heterodyne can be
realized via dual homodyne detection in which vacuum
enters through an empty beampslitter port.

This technique has broader application, too. When the
input state is itself half of a GKP Bell pair, two GKP
magic states are produced, which are generally differ-
ent but both distillable. In the context of the two-mode
macronode gadget, Eq. (28), performing heterodyne de-
tection on all measured modes produces up to four GKP
magic states—one at each output and one for each input
mode that is part of a GKP Bell pair with another mode
of the cluster state. The generated GKP magic states
are nearby in the cluster state, potentially making their
Clifford-circuit distillation convenient.

The suitability of any particular method of including
magic states in a cluster-state framework will depend on
the details of the architecture. Our novel contribution
here is to illustrate how to implement the methods pro-
posed in Ref. [30], which involve either injection of the
vacuum or heterodyne detection, in a way that dovetails
naturally with QRL-based cluster states.
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IV. GKP-QUBIT GATE NOISE

The success of error correction and ultimately the re-
liability of the computation depend on the amount of
noise in the resources used as well as the machinery em-
ployed to handle this noise. The Clifford resources for
ideal GKP quantum computing with macronode-based
cluster states generally include ideal 0-momentum, 0-
position, and GKP qunaught states [21, 24]. These ideal
resources, which are combined using beam splitters and
then measured, allow multiple GKP Clifford gates to
be applied consecutively without introducing additional
noise. Physical approximations to these resource states—
i.e., momentum- and position-squeezed vacuum states
and approximate GKP qunaught states, respectively—
have finite energy, so teleported GKP Clifford gates are
accompanied by additional noise [21]. In this section,
we quantify how the CV noise inherent in a macronode
cluster state manifests as logical noise on GKP-encoded
qubits. Provided the qubit-level noise is low enough, con-
catenation with qubit codes can reduce the effective noise
as low as required for any particular quantum computa-
tion.

Following the method introduced in Ref. [26] for noise
analysis, we consider teleported CV gates followed by
GKP error correction as noisy qubit gates. As we have
shown above, the GKP Cliffords in Table I followed by
GKP error correction can be performed in a single step.
To quantify the performance of these error-corrected
gates, we calculate the qubit-level error rate associated
with each gate after the error correction. This is the
probability that one or more of the GKP error correction
steps fails, resulting in a qubit-level error.

Having done so, we can abstract away the CV level en-
tirely and treat these gates as noisy qubit gates whose er-
ror rates may be compared to the fault-tolerance thresh-
olds of typical quantum error correction codes using
qubits to make claims about the level of squeezing re-
quired for fault tolerance (before any other sources of er-
ror are considered). While it is possible to choose a qubit-
level code and numerically derive a squeezing threshold
for that specific code [20, 24, 28], we choose to remain ag-
nostic about the qubit-level code used and instead focus
on the gate error rates associated with different levels of
squeezing in the approximate states.

As discussed in Sec. IIID, supplementing fault-tolerant
GKP Clifford operations with easy-to-produce vacuum or
thermal states can be used to make GKP magic states
required for universality [30]. The quality requirements
for the Clifford gates are much more stringent than for
noisy magic states since the latter can be improved us-
ing distillation if the Clifford circuits are good enough.
For this reason, we focus on the noise in Clifford gate
implementations.

A. Gaussian blurring channel

In what follows, we will make liberal use of the (inco-
herent) Gaussian blurring channel

Eδ2 :=
1

πδ2

∫
d2α e−|α|

2/δ2D̂(α)� D̂†(α) , (46)

which applies random displacements whose amplitudes
are drawn independently from a zero-mean Gaussian
with variance δ2. This channel will be used to conceptu-
ally describe the initial states in the analysis—noisy GKP
and qunaught states—as well as the noise-accumulation
effects of each step in the measurement-based quantum
computation. The action of the channel on a state is
the Gaussian weighted average of displacements; in the
Wigner representation, this is simply a Gaussian blurring
in each quadrature [31].

Consider a multimode Gaussian state with zero mean
and Wigner covariance matrix Σ. The elements of this
covariance matrix are Σjk = 1

2 〈{x̂j , x̂k}〉, where x̂ =

(q̂1, . . . , q̂N , p̂1, . . . , p̂N )T, and {·, ·} is the anticommuta-
tor. This is the same ordering convention for the quadra-
tures that is used, for instance, in Ref. [26]. Applying
this channel Eδ2 independently on all N modes produces
a new Gaussian state with the same mean and broader
Wigner covariance Σ+δ2I2N , where I2N is the 2N × 2N
identity matrix. For a single mode, we write the action
of Eδ2 as a simple map on the Wigner covariance matrix:

Σ +

[
δ2 0
0 δ2

]
Eδ2←−−− [ Σ . (47)

Note that this evolution is right to left.

B. Representing approximate GKP states and
teleportation-based error correction

Ideal GKP states are unique in that their Wigner func-
tions are a weighted sum of delta spikes—i.e., individual
Gaussians whose covariance approaces the zero matrix
(while remaining positive definite). Formally, we can
write this covariance matrix as 0+I2, where 0+ is an in-
finitesimal positive constant. The reason such a spike
is allowed in a Wigner function—despite violating the
Heisenberg uncertainty principle when considered on its
own—is that it is part of an infinite ensemble of regularly
spaced spikes that form the GKP grid [27, 31]. Finite
approximations to these states can have spikes as narrow
as allowed by the envelope of the state [31], with larger
envelopes allowing for smaller spikes.

Physical approximations to ideal GKP states are de-
scribed by replacing each δ-function tooth in the ideal
wavefunctions (position or momentum) with a sharp
Gaussian and then damping the comb with a broad Gaus-
sian envelope [27, 31, 45]. For our study of logical error
rates and corresponding levels of squeezing, we consider
high-quality GKP states. In this regime, the analysis
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is simplified by ignoring the broad envelope (or broad-
ening it out to infinity) and considering only the noise
on the individual spikes [26, 32, 46–48].4 The result
is a Gaussian-blurred version of an ideal GKP state,
i.e., Eδ2(|ψGKP〉〈ψGKP|), which gives a blurred version
of the original state,5 whose Wigner-function spikes have
covariance matrix

η =

[
δ2 0
0 δ2

]
(48)

that we refer to as the error matrix for the approximate
GKP state. This is because it determines the probability
of a logical error occuring after ideal GKP error correc-
tion is performed on the state [26, 46].

The diagonal elements of η give the variance along each
quadrature that would be measured in an experiment,
(σ2

spike,q, σ
2
spike,p). We call these measured variances to

distinguish them from wavefunction variances such as ∆2

and κ2 as defined in Ref. [27] for pure approximate GKP
states.6 The off-diagonal elements of η describe correla-
tions between the two quadratures (i.e., the covariance
of the two). For the blurred ideal states under considera-
tion, the variances are σ2

spike,q = σ2
spike,p = δ2, and there

are no correlations between them (zeros off the diagonal),
which gives η the form shown.

In figures and discussion, we present the measured vari-
ances of the resources used for quantum computation—
the input GKP qubit and qunaught states comprising
the cluster sate—in decibels, with the measured vacuum
variance of 1

2 taken as the reference value. This is a stan-
dard way to characterize the quality of the squeezing in
both types of states:

(δ2)dB = −10 log10(2δ2). (49)

We choose a convention for which δ2 < 1
2 (squeezed below

vacuum variance) corresponds to positive decibel values.
Using the noise model described above, we replace the

pure states |ψ〉 and |φ〉 in macronode gadget, Eq. (20),
with blurred qunaught states, Eδ2(|∅〉〈∅|). In this more

4 This can be modelled formally as resulting approximately from
a high-quality physical GKP state (i.e., one that has a finite
Gaussian envelope that limits the total energy of the state) and
twirling it by the GKP stabilizer group [31, 32]. This leaves the
logical information invariant but blurs out the envelope (in the
Wigner picture) to the point where it is approximately constant.

5 Normalization for ideal GKP states is a subtle issue [21, 27, 30–
32]. Whatever norm is chosen for the ideal state is preserved by
this channel.

6 For ease of comparison to other works, we note that these
measured variances would also appear in the quadrature statis-
tics of pure approximate GKP states with ∆2 = 2σ2

spike,q and
κ2 = 2σ2

spike,p. Our input GKP states, which are slightly blurred
(and thus, mixed) ideal states, have the same measured quadra-
ture statistics for each spike as pure approximate GKP states
with ∆2 = κ2 = 2δ2.

general case, the input state evolution through the cir-
cuit is not given by the Kraus-operator map in Eq. (27);
instead, it is described by the map7

ρ̂out = D̂cEδ2
[
Π̂GKPEδ2(D̂µV̂ ρ̂inV̂

†D̂†µ)Π̂GKP
]
D̂†c , (50)

where V̂ stands for the intended gate to be applied
V̂ (θa, θb) and D̂µ for the outcome-dependent displace-
ment D̂(µa,b). The final displacement D̂c implements a
possible logical Pauli correction P̄c at the very end of
the protocol, which is determined by a decoder using the
measurement outcomes µa,b.8

C. Noise in GKP macronode-based quantum
computing

We now focus on using the QRL macronode gadgets
for GKP quantum computing, where the input state ρ̂in
is itself an approximate GKP state from the output of
the previous macronode gadget, ρ̂out,previous. Since dis-
placements commute with Eδ2 , we can postpone Eδ2 to
the very end and collect D̂cΠ̂GKPD̂(µa,b) into a single
operation that describes ideal GKP error correction.

With this change of ordering, we schematically de-
scribe the map implemented in Eq. (50) as a sequence
of transformations on the input state ρ̂in,

ρ̂out
Eδ2←−−− [ ρ̂3

GKP EC←−−−−−−− [ ρ̂2
Eδ2←−−− [ ρ̂1

V̂ (θa,θb)←−−−−−−−[ ρ̂in ,
(51)

where “GKP EC” stands for D̂cΠ̂GKPD̂(µa,b) and in-
cludes the final logical Pauli correction, if required. This
sequence is read right to left, with ρ̂1,2,3 mathematically
representing the state at various points through the evo-
lution. Although we have broken it down into four pieces
for analysis, the entire transformation ρ̂in 7→ ρ̂out actu-
ally happens all at once during teleportation through a

7 The sandwiching of Π̂GKP by two instances of Eδ2 is the re-
sult of teleportation through the noisy GKP Bell pair [47]. It
is the mixed-state version of the Kraus operator discussed in
Ref. [21] that implements GKP error correction when used with
pure approximate qunaughts, namely e−βn̂Π̂GKPe

−βn̂. When
mixed qunaughts (as discussed here) are used instead, the damp-
ing operators e−βn̂ become quantum channels Eδ2 . More pre-
cisely, twirling e−βn̂ by the GKP stabilizers gives the chan-
nel Eδ2 [31], with β = 2δ2 under our assumption of high-quality
states (δ2 � 1). In a related (but not identical) setting to what
we consider here, Ref. [48] compared average fidelity for telepor-
tation error correction using these two types of noisy GKP states
and found no differences.

8 The fact that only logical corrections are needed is a feature of
teleportation-based [21] (Knill-style [49]) error correction. The
state returns to the GKP subspace (followed by blurring) via
the teleportation, but logical errors can be introduced in the
process. These are heralded by the measurement outcomes and
corrected by applying an appropriate D̂c. When this correction
is incorrectly determined, a logical Pauli error occurs.
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single macronode (which includes the final displacement
correction). That is, this entire operation is performed in
a single step of teleportation. We stress this fact to con-
trast with prior protocols in which the gates and GKP
error correction are performed separately [20, 29].

Since the input state ρ̂in is itself an approximate GKP
state, we can study the noise properties of macronode
gadget evolution by evolving the input-state error matrix
under an analogous transformation,

ηout
Eδ2←−−− [ η3

GKP EC←−−−−−−− [ η2

Eδ2←−−− [ η1

V̂ (θa,θb)←−−−−−−−[ ηin ,
(52)

with the understanding that ηs is the corresponding er-
ror matrix for ρ̂s for each subscript s in Eq. (51). Also,
note that displacements have no effect on error matrices,
which allows us to reuse the same notation for them as
above. In what follows, we illustrate the effect of each of
these operations on the error matrix in order to determine
the success probability for a variety of GKP logical Clif-
ford gates, which will ultimately depend on the amount
of initial squeezing (δ2)dB.

The Gaussian unitary operation V̂ (θa, θb), which im-
plements a GKP Clifford gate using the measurement an-
gles in Table I, updates the error matrix according to a
symplectic matrix SV̂ representing the Heisenberg action
of the gate on the quadratures [26]. Thus,

η1 = SV̂ ηinS
T
V̂
. (53)

The effect of Eδ2 is additive on the error matrix, Eq. (47),
so

η2 = η1 +

[
δ2 0
0 δ2

]
. (54)

Ideal GKP error correction produces an output state with
delta-function spikes. Thus, formally, η3 → 0+I. This is
a good time to recall that that this error matrix is never
realized in practice and is merely a mathematical tool
used to assist with the calculation. Finally, the second
Eδ2 gives a fixed, final (and physical) error matrix of

ηout =

[
δ2 0
0 δ2

]
. (55)

After the whole procedure, the noise properties of the
output state are identical to those of the qunaught states
used for error correction. However, during the error cor-
rection, logical errors may have been introduced, and it is
these errors that constitute the logical-qubit gate noise.

Noting that it is ρ̂2 that undergoes GKP error cor-
rection, η2 can be used to determine its probability
of success. Furthermore, this error matrix depends on
V̂ (θa, θb), so for these reasons, we rename η2 as

ηV̂ := η2 = SV̂ ηinS
T
V̂

+

[
δ2 0
0 δ2

]
. (56)

This notation will let us differentiate between the error
matrices for different gates.

We also need the analogous result for a two-mode gate,
corresponding to the output of Eq. (29). We write η(2)

for a general two-mode error matrix, which is the covari-
ance matrix for a single spike in the Wigner function of
a two-mode GKP state, with respect to the quadrature
ordering (q̂1, q̂2, p̂1, p̂2). An entirely analogous procedure
to the single-mode case gives the relevant error matrix

η
(2)

V̂
:= η

(2)
2 = SV̂ η

(2)
in ST

V̂
+

δ
2 0 0 0
0 δ2 0 0
0 0 δ2 0
0 0 0 δ2

 . (57)

The error matrices for the single-mode gates in Table I
are

ηÎ = ηF̂ =

[
2δ2 0
0 2δ2

]
, ηP̂ (±1) =

[
2δ2 δ2

δ2 3δ2

]
. (58)

For the two-mode gate ĈZ(±1) that completes the Clif-
ford generating set, the error matrix is

ηĈZ(±1) =

2δ2 0 0 δ2

0 2δ2 δ2 0
0 δ2 3δ2 0
δ2 0 0 3δ2

 . (59)

The error matrix for the SWAP gate is

ηSWAP =

2δ2 0 0 0
0 2δ2 0 0
0 0 2δ2 0
0 0 0 2δ2

 . (60)

For comparison, we also consider the separable gates.
The error matrices for two-mode identity and identical
Fourier transforms on both modes are the same as that
for the SWAP gate in Eq. (60):

ηÎ⊗Î = ηF̂⊗F̂ = ηSWAP . (61)

Finally, the error matrices for identical unit-weight shears
on both modes are

ηP̂ (±1)⊗P̂ (±1) =

2δ2 0 δ2 0
0 2δ2 0 δ2

δ2 0 3δ2 0
0 δ2 0 3δ2

 . (62)

We will use these error matrices to determine gate error
rates as a function of (δ2)dB in the next subsection.

D. Logical gate error rates and fault tolerance

The probability that a logical Pauli error is introduced
during error correction is a function of the noise in the
input GKP data qubit, the noise in the qunaught states
that comprise the macronode gadget, and which Clifford
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is being implemented. The error matrices above capture
all of these effects on each Wigner-function spike of a
GKP state. For the square-lattice GKP code, the prob-
ability that a Pauli-X or a Pauli-Z error is introduced
during error correction is determined by the leakage of
the Wigner-function GKP spike out of its unit cell in q
and in p, for each half of error correction [26]. These
logical error probabilities are given by

Perr,X|Z = 1− Psucc,q|p, (63)

where ·|· represents alternatives, respectively, on each
side of the equation. The probability of success (no error
during that half of error correction) is given by

Psucc,q|p = erf

√ π

8σ2
spike,q|p

, (64)

where σ2
spike,q|p is the measured variance of the GKP

spike, either q or p [26]. For each gate, we find these
spike variances from the diagonal elements of the gate’s
noise matrix (which are all integer multiples of the base-
line noise δ2 in the input GKP and qunaught states).

To consider gate errors at the logical-qubit level, we
are interested in the probability that at least one Pauli
error occurs,

Perr = 1− Psucc, (65)

where Psucc is the total success probability, given by

Psucc =
∏
j

P (j)
succ,qP

(j)
succ,p , (66)

with j iterating over the modes being considered (either
one or two modes, depending on whether we are consid-
ering single- or two-mode gates).

In Fig. 2, we plot the gate error rate, Eq. (65), as a
function of the squeezing in the resources—specifically,
the input GKP states and the qunaught states that com-
prise the macronode cluster state—required to imple-
ment the gate. Noisy GKP Clifford gates have different
error rates, with the worst-performing gate setting the
required squeezing for a fixed tolerable error rate. That
gate is the two-mode gate ĈZ(±1) for all levels of squeez-
ing.

Required squeezing for selected error rates are shown in
Table II. We find that error rates of 10−2–10−3, which are
compatible with the thresholds of 3D topological codes
(∼1% for local noise [23, 50]), require a minimum of 11.9–
13.7 dB of squeezing in the resources. For comparison,
we also give the required squeezing at these error rates
for several previous proposals.

An important benchmark is the required squeezing set
out in Ref. [26] for canonical CV cluster states and GKP
ancillae resources. That work found, using an extremely
conservative logical error rate of 10−6, that with 20.5 dB
of squeezing in the resource states (cluster state and GKP

0 5 10 15 2010-6
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10-2

10-1

10 0

Figure 2. Logical gate error rates, Eq. (65), for resources
(input GKP states and qunaught states) of a given quality de-
scribed by the squeezing, Eq. (49). Dashed curves are single-
mode gates and solid curves are two-mode gates. Unfilled
circles indicate the squeezing required for error rate 10−2 and
filled circles for 10−3; squeezing values at these points are
given in Table II. The two-mode gate ĈZ(±1) sets the squeez-
ing threshold for Clifford implementation, since it is the worst
performing gate in the set, Eq. (19). The grey line (furthest
right) shows the error rate for the ĈZ gate implemented in a
canonical CV cluster state using the method of Ref. [26]. That
method required at least four measurements per mode to do
the gate and two additional ones per mode to implement error
correction (six measurements per mode in total). Our results,
in contrast, require only two measurements per mode in to-
tal, which implement both the gate and the error correction
simultaneously. This reduction in measurements is the source
of the substantial improvement in error rates in our results
over those in Ref. [26]. A similar reduction in measurements
per mode also explains the (more modest) improvement over
those in Refs. [20, 29], shown in Table II.

states) Clifford gates had no more than this level of error.
This level of squeezing has been considered a “squeezing
threshold” associated with the 10−6 error rate. We do
not use the term “squeezing threshold” to characterize
the results in this work to avoid making claims about
the practical viability of fault-tolerant quantum comput-
ing with a given level of squeezing; doing that would re-
quire simulations of particular implementations, such as
in Refs. [20, 24, 33]. Instead, we focus on the relationship
between the level of required squeezing to achieve target
gate error rates.

Reference [26] employed canonical CV cluster states for
ease of theoretical analysis, but these are not the type of
cluster state that admit scalable generation. All large-
scale cluster states demonstrated to date are based on
macronodes [3–5, 9], which is why a macronode-based
analysis is important. The first reported required squeez-
ing values for macronode cluster states (built with beam
splitters) were given in Larsen et al. [29], which con-
sidered quantum computation protocols for a variety of
macronode lattices, including the QRL. These protocols
differ from ours in two significant ways: their single-
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Gate Error rate: 10−2 Error rate: 10−3

Ref. [26] Ref. [29] Ref. [20] ours Ref. [26] Ref. [29] Ref. [20] ours

Î 14.0 13.2 11.8 10.0 15.9 15.0 13.6 11.9

F̂ 14.8 14.9 11.8 10.0 16.8 16.7 13.6 11.9

P̂ (±1) 14.4 15.2 12.5 11.2 16.4 17.1 14.5 13.7

ĈZ(±1) 15.6 - - 11.9 17.4 - - 13.7

F̂ F̂ ĈZ - 16.0 13.2 - - 17.6 15.0 -

Table II. Squeezing requirements (reported in dB) for imple-
menting GKP Clifford gates with 10−2 and 10−3 logical-qubit
error rates. We consider the following CV gates that together
generate the GKP Clifford group: {Î , F̂ , P̂ (±1), ĈZ(±1)}.
We compare the results in this work (‘ours’) with those of
prior studies [20, 26, 29], noting that we use F̂ F̂ ĈZ as short-
hand for (F̂ ⊗ F̂ )ĈZ(1) from Ref. [29] and (F̂ † ⊗ F̂ )ĈZ(1)
from Ref. [20].

mode Clifford gate implementations require two steps—
four homodyne measurements—and used ancilla-assisted
GKP error correction (Steane-type error correction [51]).
The required squeezing was later improved by 2.8 dB in
Larsen et al. [20] by upgrading to teleportation-based er-
ror correction (Knill-type [49]), yet the new protocol was
still limited by the fact that it required two steps, one to
perform the gate and another for GKP error correction.9
Our further improvement of ∼1.3 dB over that scheme
results from combining Clifford gates and teleportation-
based GKP error correction into a single teleportation
step. Moreover, we have reduced GKP gate implementa-
tions to the minimum number of noisy ancilla states in
the macronode gadgets (four qunaughts in the two-mode
gadget), so further improvements are unlikely without
devising new schemes for gates requiring fewer ancillae.

E. Applications for fault tolerance in topological
codes

A promising avenue for fault-tolerant quantum com-
puting is concatenation of GKP qubits with a topolog-
ical code [32, 52, 53]. Measurement-based implementa-
tions wire up cluster states in various ways into 3D clus-
ter states with topological fault tolerance. A key exam-
ple is the Raussendorf–Harrington–Goyal (RHG) 3D lat-
tice [23], which can be used with GKP qubits [18, 33] in-
cluding macronode-based architectures [20, 24]. Since the
RHG lattice is of uniform degree four, it is directly com-
patible with a QRL construction (i.e., with four modes
per macronode), as one recent proposal illustrates [24].

The QRL construction that we consider here serves
as a canonical base case that showcases improved use of

9 That work did not report required squeezing values. We have
calculated them using the methods described here, including for
the two-mode gate that arises from a different macronode tele-
portation gadget.

noisy GKP resources in a macronode setting. Prelim-
inary results indicate that GKP computing with other
similar macronode lattices of interest—including that
employed in Refs. [20, 28]—perform equally well. That
is, GKP Clifford gates and error correction can be ex-
ecuted in a single step (using the minimum number of
noisy qunaught ancilla states) and the logical error rates
are identical to those for the QRL presented here. This
noise equivalence dovetails with current proposals for
topological quantum computing by enabling known fault-
tolerance thresholds of 10.2 dB in Ref. [20] and in 9.9 dB
in Ref. [28]. In those works, simultaneous GKP gate
and error correction were anticipated, but the methods
to execute them were unknown. Further threshold im-
provements may result from combining other techniques
such as “hyper-enriching” the GKP qubits in the clus-
ter state [24], concatenating with other codes [54], and
using the analog syndrome to improve the error correc-
tion [55, 56].

V. CONCLUSION

Using the quad-rail lattice CV cluster state, we have in-
troduced improvements that allow for more efficient use
of the cluster state for fault-tolerant quantum comput-
ing with the GKP code. These improvements include
single-step implementations of all single- and two-mode
GKP Clifford gates using only the minimum number of
noisy ancilla states in the QRL macronode gadgets that
realize the gates. This allows GKP Cliffords and GKP
error correction to be performed simultaneously, lowering
GKP gate noise by at least 1.3 dB over similar protocols.
Additionally, we show how to produce GKP magic states
without modifying the cluster state itself by using het-
erodyne detection instead of homodyne to measure the
modes.

It is interesting to note that for a squeezing of 10.5 dB
(the fault-tolerance threshold reported in Ref. [33]), we
find a gate error rate of 3.6%—very near that of the RHG
lattice under local noise (3.3% [23]), which is the code
that work used for concatenation. However, beyond sim-
ple comparisons that can give insight for rigorous studies,
one should resist the temptation to take the gate-error
rates reported here and draw conclusions about fault tol-
erance. Fault-tolerance thresholds depend on many spe-
cific factors, notably the decoder and the error model.

Finally, preliminary studies indicate that the results
here are not unique to the QRL construction: simultane-
ous GKP Clifford gates and error correction can be imple-
mented in various other macronode lattices with identical
gate noise to that for the QRL presented here. This puts
many macronode cluster states on the same footing, pro-
viding flexibility for experimental implementation. This
will be reported in a future publication.



13

ACKNOWLEDGMENTS

We thank Mikkel Larsen for useful feedback. This work
is supported by the Australian Research Council Centre
of Excellence for Quantum Computation and Communi-
cation Technology (Project No. CE170100012). BQB is
additionally supported by the Japan Science and Tech-
nology Agency through the MEXT Quantum Leap Flag-
ship Program (MEXT Q-LEAP).

Appendix A: Double bouncing beam splitters

Bouncing is the mathematical relationship that allows
us to move a quantum operation from one mode to an-
other when those two modes are prepared in a maximally
entangled state |EPR〉. For some single mode operator
Ô1 on mode 1, the bounce relation is

Ô1 ⊗ Î2 |EPR〉1,2 = Î1 ⊗ ÔT
2 |EPR〉1,2 (A1)

where the transpose T is taken in the position basis for
the EPR state defined in Ref. [21]. More details and the
explicit bouncing of various single-mode operators are
described in Ref. [21]. Here, we “double bounce” several
useful Gaussian two-mode gates. We begin with a two-
mode gate between a pair of modes that are each one
half of separate EPR states. Double bouncing refers to
bouncing the two-mode gate through both EPR states
(single bouncing would be through just one of the EPR
states, but we do not consider that case here). Examples
follow that make this concept clear.

1. Controlled-shift gates

The first useful relation is the double bounce of a CV
controlled-Z gate of weight g, Eq. (10):

Ĉ24
Z (g) |EPR〉12 ⊗ |EPR〉34 = Ĉ13

Z (g) |EPR〉12 ⊗ |EPR〉34 ,
(A2)

where we use superscripts to denote the modes on which
the gate acts. This relation is found easily, because the
generator for ĈZ(g) is a tensor-product operator, q̂ ⊗ q̂,
and the transpose (in the position basis) of each single-
mode position operator is trivial; q̂T → q̂. The circuit
diagram for this relation is

•
g

•

=

•
g

•
. (A3)

This technique can be used to double bounce more gen-
eral controlled shift gates along any quadrature, because
of the fact that [R̂(θ)]T = R̂(θ), and this gate can be
used to change the quadrature basis for the target mode
of the controlled shift. The next example illustrates this.

Here we double bounce a CV controlled-X gate, de-
fined for control mode j, target mode k, and real weight g,
as

ĈjkX (g) := e−igq̂j⊗p̂k = F̂ †k ĈZ [g]F̂k . (A4)

From the result for ĈZ(g) above, double bouncing a CV
controlled-X gate is straightforward because the two are
related by Fourier transforms that bounce trivially since
F̂T = F̂ [21]. Decomposing a controlled-X gate and
bouncing the operators one by one gives

Ĉ24
X (g) |EPR〉12 ⊗ |EPR〉34 = Ĉ31

X (−g) |EPR〉12 ⊗ |EPR〉34
(A5)

with a notable change of sign in the weight, g → −g, that
arises from the Fourier transforms acting in the opposite
order after the bounce. The circuit description is

•
g =

•
−g

. (A6)

2. Beam splitter

Double bouncing a beam splitter cannot be performed
using the simple rules in [21], because beam splitter uni-
taries are not generated by a single tensor product of
quadrature operators. However, we can decompose a
beam splitter into a product of such operators (up to
an overall phase) using an LDU decomposition [21]. We
consider a general beam splitter between modes j and k
parameterized by θ,

B̂jk(θ) := e−iθ(q̂j⊗p̂k−p̂j⊗q̂k) . (A7)

which has unequal transmissivity T and reflectivity R:
T = cos2 θ and R = sin2 θ, with T 2 +R2 = 1. The 50:50
beam splitter used in the main text, Eq. (11), has θ =
π/4. Hermitian conjugation is equivalent to exchanging
the inputs: B̂†jk(θ) = B̂kj(θ).

The LDU decomposition of Eq. (A7) is (up to a global
phase),

B̂jk(θ) = ĈjkX (tan θ)
[
Ŝ†j (sec θ)⊗ Ŝk(sec θ)

]
ĈkjX (− tan θ) ,

(A8)
which is represented by the circuit diagram

θ

��

=

•

tan θ

S†(sec θ)

S(sec θ) •

− tan θ . (A9)

We double bounce each of these gates one-by-one, not-
ing that [Ŝ(r)]T = Ŝ†(r). The result is the relation,

B̂24(θ) |EPR〉12 ⊗ |EPR〉34 = B̂31(θ) |EPR〉12 ⊗ |EPR〉34
(A10)
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described by the circuit diagram

θ

��

=
θ

OO

. (A11)

Appendix B: Derivation of the two-mode gate for
the QRL

Any two beam splitters that share only one wire do
not commute. We can, however, use the four-splitter
identity to commute pairs of beam splitters. The identity,
introduced in Ref. [22], is

��

��

��

OO

=

��

��

��

OO

(B1)

Note that while the two dashed beam splitters commute
trivially with each other as do the two black ones, any
single pair of a black and a dashed beam splitter alone
does not. Nevertheless, the two dashed ones commute
with the two black ones as shown.

Here we derive the two-mode gate V̂ (2)
QRL, Eq. (32), for

the quad-rail lattice (QRL) [22]. The circuit for the QRL
two-mode macronode gadget is shown in Eq. (28). First,
we use the foursplitter identity, Eq. (B1), to rearrange the
four leftmost beam splitters into the following circuit,

pθa
〈ma|

��

��

(in)

pθb
〈mb|

��

��

|ψ〉

(out) |φ〉

pθc
〈mc|

��

(in)

pθd
〈md|

��

|ψ′〉

(out) |φ′〉

. (B2)

Then, we use the same circuit identities as in Eq. (20),
which give single-mode V̂ gates on modes a and c, and
we pull out the teleported gates (details in Ref. [21]).

Together, these give the equivalent circuit,

D(µa,b) V (θa, θb)

��

(in)

��

(out) A(ψ, φ)

D(µc,d) V (θc, θd) (in)

(out) A(ψ′, φ′)

. (B3)

The next step requires us to move the beam splitter be-
tween modes b and d onto modes a and c (mode labels
are specified in the measurement bras of circuit (B2)).
We double-bounce the left beam splitter using Eq. (A11)
to get

D(µa,b) V (θa, θb)

��

(in)

(out) A(ψ, φ)

OO

D(µc,d) V (θc, θd) (in)

(out) A(ψ′, φ′)

. (B4)

All the non-trivial operations are now on the input and
output modes, so we commute the displacements through
the leftmost beam splitter and pull the circuit taut to get

(out) A(ψ, φ) D(µ+) V (θa, θb)

��

(in)

(out) A(ψ′, φ′) D(µ−)

OO

V (θc, θd) (in)
,

(B5)

where the displacement amplitudes are

µ± :=
1√
2

(µc,d ± µa,b) . (B6)

This technique can be used to find the two-mode Kraus
operators for other macronode lattices including that in
Ref. [20]; these will be presented in future work.
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