
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Optimal Frobenius light cone in spin chains with power-law
interactions

Chi-Fang Chen and Andrew Lucas
Phys. Rev. A 104, 062420 — Published 13 December 2021

DOI: 10.1103/PhysRevA.104.062420

https://dx.doi.org/10.1103/PhysRevA.104.062420


Optimal Frobenius light cone in spin chains with power-law interactions

Chi-Fang Chen1, ∗ and Andrew Lucas2, †

1Institute for Quantum Information and Matter,
California Institute of Technology, Pasadena, CA, USA

2Department of Physics and Center for Theory of Quantum Matter,
University of Colorado, Boulder CO 80309, USA

(Dated: November 29, 2021)

In many-body quantum systems with spatially local interactions, quantum information propagates
with a finite velocity, reminiscent of the “light cone" of relativity. In systems with long-range
interactions which decay with distance r as 1/rα, however, there are multiple light cones which
control different information theoretic tasks. We show an optimal (up to logarithms) “Frobenius light
cone" obeying t ∼ rmin(α−1,1) for α > 1 in one-dimensional power-law interacting systems with finite
local dimension: this controls, among other physical properties, the butterfly velocity characterizing
many-body chaos and operator growth. We construct an explicit random Hamiltonian protocol that
saturates the bound and settles the optimal Frobenius light cone in one dimension. We partially
extend our constraints on the Frobenius light cone to a several operator p-norms, and show that
Lieb-Robinson bounds can be saturated in at most an exponentially small e−Ω(r) fraction of the
many-body Hilbert space.
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1. INTRODUCTION

The celebrated Lieb-Robinson theorem proves that for arbitrary systems with nearest-neighbor interactions
(with bounded strength), the speed at which quantum information can propagate is finite [1–6]. Intuitively, the
time t it takes to prepare an entangled state between two qubits (in an initially unentangled state) separated by
distance r is lower bounded as

t ≥ r

vLR
, (1.1)

with vLR the so-called Lieb-Robinson velocity. In many respects, vLR is analogous to the speed of light c in
special relativity – no signals can be sent faster than vLR. For this reason, we call (1.1) the Lieb-Robinson light
cone. Over the past few decades, numerous unexpected and important results have been shown to follow from
the Lieb-Robinson theorem, including the exponential decay of correlation functions in a gapped ground state,
together with an area law for entanglement [3] and the effectiveness of matrix product state representations [7],
proofs of the ability to efficiently simulate local quantum systems [8], and demonstration of the stability of
topological order [9].

1.1. Alternative choices of norms

In quantum information dynamics, we study information propagation through the commutator between local
operators (e.g. Pauli matrices) localized on lattice sites x and y. This commutator takes the form of [Ax(t), By],
where

Ax(t) := eiHtAxe−iHt (1.2)

denotes Heisenberg time evolution.1 Indeed, local operators commute [Ax(0), By] = 0, and a non-vanishing
commutator indicates the operator Ax(t) has “grown" to a distant site y.
The traditional Lieb-Robinson bounds quantify the growth of this commutator in the infinity norm (or the

operator norm): ‖[Ax(t), By]‖∞, being the maximal singular value of the operator A. In slightly more physical
terms,

‖A‖ ≡ ‖A‖∞ = sup
ψ,ψ′
|〈ψ′|A|ψ〉| (1.3)

is the maximal matrix element of A between any normalized many-body states ψ and ψ′ and we drop the
subscript. A bound on this operator norm then rules out the possibility of signaling, under the “worst-case"
choices of states ψ and ψ′. For quantum technology applications, such a bound is relevant to a device only when
the many-body initial and final states can be controlled exactly. If the device is imperfect and prone to some local
errors, then we would like to know if other states in Hilbert space can also transmit information similarly fast.

Recently, [10] emphasized that there can be multiple different light cones for quantum information. Mathemati-
cally, these different light cones correspond to the choices of norms, which capture different physics and constrain
different quantum information theoretic tasks; the physical question would be, “what quantum mechanical task
are we trying to bound?"

As a concrete example, we consider whether or not one can signal between two qubits x and y independently
of the actual quantum state. This amounts to averaging over the magnitude of 〈ψ′|A|ψ〉 over all pairs of ψ and
ψ′ [10]. This can be captured by the square of matrix element’s magnitude, and (for an operator A) we then
recognize that this average is nothing but the normalized 2-norm, which will be called the Frobenius norm

‖A‖2F :=
Tr(A†A)

Tr(I)
. (1.4)

Here I denotes the identity matrix. If we wish to design a quantum device in which signaling or quantum state
transfer is achieved regardless of the details of the many-body state, we will care not about the Lieb-Robinson
bound on a commutator, but instead a “Frobenius bound" on ‖[Ax(t), By]‖F.

Interestingly, this Frobenius norm has a natural interpretation as an (out-of-time-ordered) correlator at infinite
temperature

‖[Ax(t), By]‖2F =
Tr
(
[Ax(t), By]†[Ax(t), By]

)
Tr(I)

= Tr
(
ρT=∞[Ax(t), By]†[Ax(t), By]

)
. (1.5)

1 For simplicity, we assume in this equation that Hamiltonian H does not depend on time. In all main results in this paper, we will
eventually relax this assumption.
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Here ρT=∞ ∝ I denotes the infinite temperature density matrix. Such objects have been used to diagnose
many-body chaos in extensive studies over the past few years. Indeed, when the Frobenius norm becomes large
for any operator By, information about the initial operator Ax cannot be retrieved via local measurements.

A simple way to define a “light cone" out of either of these norms is to define t(r) as the first time that qubits
separated by distance r have a large commutator: e.g.,

t(r) := arginft

{
0 < t <∞ : ‖[A0(t), Br]‖∗ ≥

1

2

}
(1.6)

The notation here is simply that we look for the smallest time (arginf) at which a certain commutator norm
is bigger than some O(1) number, such as 1

2 . It is interesting to ask whether in all Hamiltonian dynamics
consistent with various simple constraints (e.g. nearest-neighbor interactions) there are bounds on t(r). For the
operator norm, the answer is provided by the Lieb-Robinson theorem (1.1). But, is it possible that in typical
states (Frobenius norm)2, the light cone is slower:

vF < vLR? (1.7)

Preliminary work [11, 12] noticed that in random unitary circuits, this was indeed the case. In other words, the
choice of norm (or, more physically, the task of interest) quantitatively changed the “speed limits" on quantum
dynamics.

With local interactions, this change is typically quantitative (but not qualitative). With long-range interactions,
however, the discrepancy between Lieb-Robinson and Frobenius bounds becomes drastic. This perhaps explains
why the Frobenius norm did not draw serious attention in the study of locally interacting systems.

1.2. Long-range interactions

We now turn to physical systems with power-law, or long-range, interactions. Many promising platforms for
future quantum technologies do not merely contain nearest neighbor interactions: they can include trapped
ion crystals [13], Rydberg atom arrays [14], polar molecules [15], etc.; each of these platforms has long-range
interactions between all pairs of qubits which decay with the distance r as V (r) ∝ r−α. Here α is an exponent
characterizing the system: 0 < α < 3 can approximately be achieved in trapped ion crystals, while α = 3
for polar molecules with dipolar interactions and α = 3, 6 for Rydberg atoms. The classic techniques from
Lieb-Robinson bounds were ineffective at constraining information dynamics in long-range systems. Over the
past few years, increasingly sophisticated methods have been developed [2, 16–23] to conclusively settle the
optimality of Lieb-Robinson-like bounds. In a d-dimensional system, the time it takes to prepare an EPR state
between two qubits, separated by distance r, scales as t ∼ rmin(α−2d,1) for α > 2d. This remarkable result means
that even when α = 6, in three dimensions it is possible to prepare highly entangled states in nearly constant
time (t ∼ log r).

It was first noted in [10] that the Lieb-Robinson bounds did not effectively constrain the Frobenius norm of a
commutator in models with power-law interactions. There, it was argued that the bound on Frobenius norms
would scale as

t∗F(r) & rmin(α−3d/2,1), (1.8)

which was proved in d = 1 and also shown to be “optimal". However, strictly speaking, the OTOCs which
saturate (1.8) are not of the form ‖[Ax(t), By]‖F, with Ax and By simple Pauli matrices. Instead, they are of
the form (in d = 1, for simplicity): ∥∥∥∥∥∥

Ax(t),
∏
z≥y

B′z

∥∥∥∥∥∥
F

,

with B′z Pauli raising operators on sites z ≥ y.3
However, (1.8) is not optimal if we demand Ax and By are both local matrices. It was recently proved in any

dimension d that for α > d, the Frobenius light cone for such an OTOC is of the form [24]

t & r2(α−d)/(2α−d+1). (1.9)

2 Sometimes the Frobenius light cone vF ∼ r/t(r)F is called butterfly velocity in the quantum chaos literature.
3 Products of raising operators has low rank and a very large singular value, unlike simple Pauli.
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1.3. Our results

The main motivation of this paper is to reconcile the results of [10, 24], and prove an optimal Frobenius bound
of small operators in systems with long-range interactions, in one dimensional models (d = 1). We find in Section
4 that

tF(r) & rmin(α−1,1), (α > 1), (1.10)

where logarithms and absolute constants(that only depends on α) are suppressed. In Section 5, we construct an
explicit random dynamical protocol that saturates this scaling (up to factors of log r).

We conjecture that in d spatial dimensions, (1.10) generalizes to

tF(r) ∼ rmin(α−d,1) (1.11)

for α > d. In fact, we will present a random protocol which saturates such a bound. Our bounds together with a
saturating protocol definitively settle the nature of the Frobenius light cone in d = 1 spatial dimensions. For
technical reasons we explain in the body of the work, proving Frobenius light cones in higher dimensions is much
more difficult and thus remains a conjecture for d > 1.

In our proof, we employ a new set of mathematical tools for deriving bounds on quantum dynamics with other
norms in Section 3. In a nutshell, the standard Lieb-Robinson bounds work by exploiting submultiplicativity,
which states that

‖AB‖ ≤ ‖A‖ · ‖B‖. (1.12)

The traditional Lieb-Robinson bound strategy proceeds by iteratively using this identity repeatedly to a nested
commutator of the form ‖[H, [H, · · · O]]‖tn/n!, reducing the problem of bounding quantum dynamics to a
combinatorial problem. This property does not hold for the normalized Frobenius norm introduced in (1.4). As
a consequence, existing proofs [10, 25–27] of Frobenius light cones have typically involved other methods inspired
by quantum walks and probability theory: these methods are, in turn, uniquely adapted to the Frobenius norm.
A key development in this paper is to show that (1.12) can be nearly generalized to the normalized Frobenius
norm (and also Schatten p-norms below), when the operators A and B obey certain spatial locality constraints:

‖AB‖F . ‖A‖F · ‖B‖F ln‖B‖F. (1.13)

Our results therefore allow us to use traditional Lieb-Robinson-like techniques, but to obtain parametrically
stronger bounds on dynamics using more physically relevant norms.

We are also able to obtain results for p-norms which interpolate between the Frobenius and operator norms
defined above. We generalize the proof of [20] to any Schatten p-norms [Tr([Ax(t), By]

p)/Tr(I)]1/p. We prove
that there is a p-dependent light cone of the form

t(r)p &
rmin(1,α−3/2)

√
p

(1.14)

for any fixed value of p. Intuitively, these bounds constrain the p-th moments of the singular value distribution
of [Ax(t), By], and therefore tell us how rare extreme singular values are. While we don’t believe this bound is
tight, it is already tighter than Lieb-Robinson bounds. In particular, we will show that Markov’s inequality
implies it is exponentially rare to find a state in Hilbert space that can saturate a Lieb-Robinson light cone.

1.4. Implications of our results and further conjectures

Our results have a number of interesting implications. In systems with power-law interactions, we find a
remarkable result: in a spin chain with α = 2 the growth of operators is hardly faster than with nearest neighbor
interactions, while existing state transfer protocol may send a single qubit in time t ∼ log r [22]! At the same time,
the rapid state transfer algorithm of [22] requires an exponentially fine-tuned background state to implement in
quantum processors. Our results therefore have important practical implications for the wide range of possible
quantum technologies, such as trapped ion crystals, which might seek to use power-law interactions to speed up
the transfer of information. It will be interesting to understand the actual performance of the protocol of [22] in
the presence of some errors.

We conjecture that the Frobenius light cone is an upper bound on the time it takes to generate a volume-law
entangled state. Intuitively, generating volume law entanglement requires taking all local information and
scrambling it amongst highly non-local degrees of freedom; thus, a local operator must evolve into a non-local
one. Since operator growth is captured by the Frobenius norm, the Frobenius light cone should also control
entanglement. Support for this conjecture is found in the examples of [28].
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While we believe this intuitive argument to be correct, we have not been able to formalize a proof of this
result. Nevertheless, if this conjecture is correct, it would immediately imply a very surprising result: namely,
the (asymptotically) optimal way to send volume law entangled states using power-law interactions is to send one
qubit at a time. Indeed, the protocol of [22] shows that we can send one qubit in a time rα−2d for 2d < α < 2d+1.
However, if volume law entanglement can only be generated in time rα−d, that means that sending one qubit
at a time using the fast protocol of [22] takes a time rα−2d × rd ∼ rα−d, which is the fastest possible. This
observation can simplify the design of any future quantum processor performing fast quantum state transfer
with power law interactions.

Another implication of our results is that the Frobenius bound we present is essentially optimal even when the
Hamiltonian is drawn randomly - in fact our saturating protocol is designed using an ensemble of saturating
Hamiltonians, which are themselves random. In contrast, typical random Hamiltonians have sharper operator
norm bounds than deterministic Hamiltonian [29]. This demonstrates that the Frobenius bounds is more robust
than the operator norm, in that much less fine tuning of Hamilotonians is needed to saturate a Frobenius bound.
In this sense, Frobenius bounds are slightly more universal than Lieb-Robinson bounds.

Our mathematical results may help to improve existing “many-body quantum walk" techniques for bounding
OTOCs in a variety of models [25–27, 30, 31]. A particularly challenging problem where our methods may be
extremely valuable is bounding finite temperature correlators, where the appropriate “norm" depends on the
thermal density matrix [32]. Understanding how to derive specific notions of submultiplicativity, which might
hold under this norm, but not in general, may help to solve longstanding conjectures about the speed limits on
finite temperature dynamics which have, in recent years, linked developments in string theory and quantum
gravity to many-body physics [33–35].

Lastly, our bounds on Frobenius light cones may help to find sharper error bounds on new numerical techniques
such as matrix product operator methods [36], since so long as a thermal correlator is being studied, one is not
interested in the error in the numerical evaluation of an operator in the worst-case state, but only in a typical
state in the ensemble.

2. PRELIMINARIES

In this section we review formalisms in operator dynamics and useful facts from non-commutative functional
analysis.

2.1. Long-range interactions

We first provide a careful definition for long-range interacting systems. Let Λ denote the vertices of a lattice
graph, consisting of some unit cell repeated periodically in d spatial dimensions.4 For vertices i, j ∈ Λ, let us
define the distance d(i, j) between the two vertices to be the Manhattan distance (minimal number of edges to
traverse to get from i to j). For ease of presentation, let us consider a many-body Hibert space consisting of a
single qubit (two-level system) on every lattice site. The Hilbert space of operators acting on a single qubit on
site x is spanned by the identity Ix, and the three Pauli matrices Xx, Yx, Zx. In what follows, we denote with
Xa = (X,Y, Z) the set of all non-trivial Paulis.

Given a 2-local Hamiltonian

H(t) =
∑
x,y∈Λ

3∑
a,b=1

Jabxy(t)Xa
xX

b
y, (2.1)

we say that it has power-law interactions of exponent α if

|Jabxy(t)| ≤ 1

d(x, y)α
. (2.2)

Without loss of generality, we set the prefactor above to be 1 by rescaling the Hamiltonian. In practice, it is
useful to say a model has exponent α if it does not have exponent α′ > α, in our bounds the only criterion
necessary is (2.2).

4 Mathematically, if EΛ is an edge set on Λ, we demand that the pair (Λ, EΛ) has an automorphism group containing a translation
subgroup Zd.
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2.2. Operator norms and operator size

In this paper, we are interested in the Heisenberg time evolution of an operator

dA(t)

dt
:= i[H(t), A] := L(t)[A(t)]. (2.3)

It will be helpful to interpret operator dynamics in a bra-ket notation on the “Hilbert space" of operators, in
which case we write the above equation as

d

dt
|A(t)) := L(t)|A(t)). (2.4)

We define a Frobenius inner product on this space. Loosely speaking5,

(A|B) :=
tr(A†B)

tr(I)
. (2.5)

It is often helpful to define projection operators. For example, the superoperator Px, defined via

PxA = −1

8

3∑
a=1

[Xa
x , [X

a
x , A]], (2.6)

allows us to restrict to all terms in A which act non-trivially on site x. Since

‖[By, A]‖F = ‖[By,PyA]‖F ≤ 2‖By‖∞‖PyA‖F = 2‖By‖∞
√

(A|Py|A), (2.7)

it suffices to bound the (Frobenius) norm of Py|A), in order to bound OTOCs.
In fact, without loss of generality, we may write any operator A as

A =
∑
S⊂Λ

AS(t), where PxAS(t) =

{
AS(t) x ∈ S
0 otherwise . (2.8)

Assuming (A|A) = 1 is normalized, we will then refer to

pS = (AS |AS) (2.9)

as the probability that the operator is supported on subset S. Clearly,∑
S

pS = 1, (2.10)

so this terminology is well-defined. This probabilistic language will be highly valuable for us as we develop a fast
operator growth protocol.

While the most important operator norms in this paper are the Frobenius norm (1.4), along with the operator
norm (1.3), we will also find useful the Schatten p-norms6 that interpolate in between the Frobenius and operator
norms:

‖X‖p := Tr[(X†X)p/2]1/p. (2.11)

We will often deal with the normalized p-norm divided by tr(I) that

‖X‖p̄ ≤
‖X‖p
‖I‖p

≤ ‖X‖∞ ≤ ‖X‖p. (2.12)

To show an approximate form of submultiplicativity for the Frobenius norm, we will also find useful the following
standard inequality from functional analysis:

5 On an infinite lattice, this ratio is not well-defined. We may interpret it so long as the operators A and B have compact support,
in which case the traces may be restricted to the support of A and B. Taking such an operator A with compact support, we
may also time-evolve it. With a Hamiltonian H without compact support, the operator A(t) will (in general) also no longer
have compact support. In this case, we may define (A|B) via a limiting process: letting AS denote the terms in A supported on
compact set S, the limit of (AS |BS) will converge as S grows; the convergence is guaranteed by Lieb-Robinson theorems.

6 As before, one should rigorously only apply this definition on a finite dimensional Hilbert space. We will implicitly invoke the
limiting process explained above in this paper, in order to make sense out of the p-norm on an infinite dimensional space.



7

Proposition 2.1 (non-commutative Hölder’s inequality [29]). If

1

p
=

1

p1
+

1

p2
, (2.13)

then

‖AB‖p ≤ ‖A‖p1‖B‖p2 (2.14)

Additionally, we have:

Proposition 2.2 (Riesz-Thorin interpolation). If

1

qθ
=

θ

q1
+

1− θ
q2

, (2.15)

then

‖A‖qθ ≤ ‖A‖θq1‖A‖
1−θ
q2 . (2.16)

3. TOWARDS SUBMULTIPLICATIVITY FOR THE FROBENIUS NORM

In this section, we develop a mathematical machinery which will be critical to proving the Frobenius light cone,
and its p-norm extensions. In the main text, we will focus on the simpler case of two-body (2-local) Hamiltonians;
the straightforward extension to k-local Hamiltonians is provided in Appendix A.

The following lemma represents the key technical result of this section:

Lemma 3.1. Consider the 2-local Hamiltonian

H =
∑
i<j

Hij (3.1)

with each Hij supported on exactly sites i and j (PkHij = I(k ∈ {i, j})Hij), and ‖O‖ ≤ 1, then

‖HO‖F ≤ 2e‖H‖(2)‖O‖F
(
| ln‖O‖F|+ 1

)
. (3.2)

where the Frobenius norm is normalized as in (1.4), and

‖H‖(2) :=

√∑
i<j

‖Hij‖2∞. (3.3)

Before diving into the proof, let us put this result into some context and explain why this refinement is valuable.
For simplicity, consider a operator O of diameter r. As this paper is motivated by long-range interacting systems,
we consider the effect of long-range interactions with another sphere of diameter r, a distance O(r) away: see
Figure 1. The leading order type of operator growth is

eiHtOe−iHt ≈ O + it[H,O] + · · · , (3.4)

and an unconditional bound would be

‖HO‖F ≤ ‖H‖∞‖O‖F. (3.5)

If we simply wish to bound ‖O‖F, this triggers an recursive identity; however, it comes at the price of a large
prefactor of ‖H‖∞. Indeed, observe that between two balls of size r a distance r apart, [10]

‖H‖∞ .
∑

x∈ball 1

∑
y∈ball 2

1

d(x, y)α
∼ 1

rα−2d
, (3.6a)

‖H‖(2) ∼ ‖H‖F =
‖H‖2
‖I‖2

.

√√√√ ∑
x∈ball 1

∑
y∈ball 2

(
1

d(x, y)α

)2

∼ 1

rα−d
. (3.6b)

This equation suggests it is highly desirable to use ‖H‖(2), not ‖H‖∞, if at all possible. Yet (3.5) suggests we
must always use the worst case scenario, set by the operator norm.7

7 Note that the normalization is absolutely crucial, otherwise the Schatten 2-norm is even looser than the operator norm, and is
already submultiplicative:‖X‖2/‖I‖2 ≤ ‖X‖∞ ≤ ‖X‖2.
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r

O

∥Hij∥ ≤ 1
| i − j |α

r r

[O, H]

Figure 1. Long-range interactions acting on a large operator between two balls of radius r. The interaction Hamiltonian
between these two balls has norms given in (3.6). The key technical advance of this paper is to learn how to take advantage
of the smaller Frobenius norm of an interaction Hamiltonian in controlling the Frobenius light cone.

An observation in [24] was that the Frobenius norm can behave submultiplicatively when the other operator
has bounded spectrum: as in (2.7),

‖HO‖F ≤ ‖H‖F‖O‖∞. (3.7)

If ‖O‖∞ ≈ ‖O‖F, as is the case when O is a simple Pauli matrix (O2 = 1), then using this inequality gives us
an approximate form of submultiplicativity, one time. Of course, clearly this does not feed in to a recursive
bound; indeed in [24] this trick was only used once. But our refined bound is written entirely in terms of the
Frobenius-like-norm ‖H‖(2) (except for the global constraint ‖O‖ ≤ 1 inherited from the initial operator). This
is more powerful and allows us to obtain much stronger Frobenius light cone bounds. We now present the proof
of the lemma.

Proof. Using Proposition 2.1,

‖HO‖2 = ‖HO‖2 ≤ ‖H‖2/(1−θ) · ‖O‖2/θ. (3.8)

We now bound each of these norms in turn. The idea is to choose θ → 1, without making the norm of ‖H‖2/(1−θ)
too large. Hence, we need to prove that the p-norms ‖H‖p/‖I‖p grow sufficiently slowly (when normalized by
the Hilbert space dimension). In other words, we need to prove bounds on the tails of the singular distribution
of H. In the mathematics/probability literature, this is called a concentration bound.
More precisely, to bound ‖H‖q, q := 2/(1− θ), we will use a seemingly simple recursive moment inequality,

proved in Appendix A:

Proposition 3.2 (Uniform smoothness for subsystem). Consider matrices X,Y of the same dimensions that
satisfy Tri(Y ) = 0;X = Xj ⊗ Ii. For q ≥ 2,

‖X + Y ‖2q ≤ ‖X‖2q + Cq‖Y ‖2q. (3.9)

for optimal constant Cq = q − 1.

Hence,

‖
∑
i<j

Hij‖2q ≤ ‖
∑

1<i<j

H1j‖2q + Cq‖
∑

1=i<j

Hij‖2q

≤
∑
i

Cq‖
∑
i<j

Hij‖2q

≤
∑
i<j

(Cq)
2‖Hij‖2q

≤ (Cq)
2‖I‖2q

∑
i<j

‖Hij‖2∞ = (Cq)
2‖I‖2q‖H‖2(2) (3.10)

In the first line we applied Proposition 3.2 for Y =
∑

1=i<j Hij and X =
∑

1<i<j H1j , i.e. “peeling off" any term
traceless on the qudit i = 1. In the second inequality we peel off qudit i = 2, 3, . . . analogously. In the third line,
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we recursively repeat the first and second line for the j index, which gives a second factor of Cq. Lastly, we use
Holder to bound the q-norm by the ∞ norm with a ‖I‖q overhead.8

(2) For the norm of O, a standard manipulation using Proposition 2.2, and ‖O‖∞ ≤ 1, allows us to write

‖O‖2/θ ≤ ‖O‖θ2 · ‖O‖1−θ∞ ≤ ‖O‖θ2 (3.11)

Now combining (1.4), (3.8), (3.10) and (3.11), we plug in q = 2/(1− θ) to get

‖HO‖F =
1

‖I‖2
‖HO‖2 ≤

1

‖I‖2

((
2

1− θ
− 1

)
‖H‖(2)‖I‖2/(1−θ)

)
‖O‖θ2 ≤

(
2

1− θ

)
‖H‖(2)

(
‖O‖2
‖I‖2

)θ
(3.12)

where we explicit display the ‖I‖2 and used that ‖I‖2 = (Tr[I])1/2 to normalize ‖O‖2. Now we choose a value of
θ close to 1:

n =
1

1− θ
:= max (1, | ln(‖O‖F)|) ≤ | ln(‖O‖F)|+ 1. (3.13)

(Note that ‖O‖F ≤ 1 since ‖O‖∞ ≤ 1.) Then

‖HO‖F ≤ ‖H‖(2)‖O‖F × n‖O‖
−1/n
F ≤ 2‖H‖(2)‖O‖F × n exp(| ln ‖O‖F|/n). (3.14)

Combining (3.13) and (3.14), we obtain the advertised result.

In Appendix A, we extend Lemma 3.1 to both p-norms and to k-local Hamiltonians. The price of each of
these extensions is a slightly worse prefactor in (A9). However, these prefactors are mild enough that we can
still prove Theorem 4.4: a partial extension of the Frobenius light cone to any p-norm.
In Appendix B, we extend our results to an additional family of physical norms, inspired by [31, 40], which

allow us to straightforwardly extend the results of Appendix A to certain norms which induce physical correlation
functions in thermodynamic ensembles.

These two additional sets of results demonstrate the flexibility of our methods.

4. LIGHT CONES

Now we turn to our main application of the mathematics developed above: the Frobenius light cone for a
one-dimensional system with power-law interactions.

4.1. Frobenius light cone

For simplicity, suppose that we study a spin chain with a qubit on each site. Let us define a set of projectors
Qi for i = 0, 1, . . . , R (here R is an integer capturing the number of sites on the chain we wish to study). On
Pauli strings of the form Xa0

0 Xa1
1 · · · with a0 = 0 denoting I and a0 = 1, 2, 3 denoting X0, Y0, Z0, we define:

Qx|{Xai
i }) =

 I(ay = 0 if y > 0)|{Xai
i }) x = 0

I(ax > 0)I(ay = 0 if x < y)|{Xai
i }) 0 < x < R

I(ay 6= 0 for some y ≥ R)|{Xai
i }) x = R

. (4.1)

Here I denotes the indicator function which returns 1 if its argument is true, and 0 if false. The projector Qx
hence projects onto operators which act non-trivially on site x, but trivially on all sites to the right of x. The
exceptions are Q0 and QR, where we simply include all operators supported on a site ≥ R into QR, and all
operators supported on ≤ 0 in Q0. Note that

R∑
i=0

Qi = 1. (4.2)

For more general qudit systems, the extension of these definitions is straightforward (albeit notation can get
clunkier).
With these projectors defined, we may now state our main result, which is the Frobenius light cone for spin

chains with power-law interactions:

8 This also has the name of hypercontractivity that was proven in some special cases [37, 38]. We re-derive it using uniform
smoothness which also has wider applications. See [39] for a further discussion.
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Theorem 4.1. Let H(t) be a time-dependent Hamiltonian which has power-law exponent α > 1, as defined in
Section 2.1; let

R = 2q∗+1 − 1 (4.3)

for some positive integer q∗. Then for any δ > 0, if Q0|A0) = |A0), and

‖QR|A0(t))‖F ≥ δ, (4.4)

then there exists a α-dependent constant 0 < Kα <∞ such that

|t| ≥ δ2Kα ×


R/ lnR α > 2
R/ ln2R α = 2
Rα−1 1 < α < 2

. (4.5)

Note that in the statement of this theorem, we choose R to be (nearly) a power of 2 for the conceptual
simplicity of Figure 2. From the definition in (4.1), we can always just choose r/2 < R ≤ r if we wish to get a
bound on the light cone at any distance r which is not of the form (4.3).

Proof. The method of proof is adapted from the “quantum walk" proofs developed in [10, 25–27, 30, 31]. In
a nutshell, we can think of (A0(t)|Qx|A0(t)) as the probability that the operator has made it as far right as
site x. We then try to bound how quickly (A0(t)|Qx|A0(t)) can grow with x and t. We do this using Markov’s
inequality, by bounding the expected right-most site of the operator, and noting that

(A0(t)|QR|A0(t)) ≤ E[right-most site x at time t]
R

. (4.6)

To formalize this last equation, we define the following superoperator F which acts on an operator and returns
its right most site:

F :=

R∑
i=0

iQi. (4.7)

Our goal is to prove that at sufficiently short t,

δ2 ≤ ‖QR|A0(t))‖2F ≤
1

R
(A0(t)|F|A0(t)). (4.8)

We thus must bound d/dt(A|F|A). This is achieved by the following Lemma:

Lemma 4.2. For constants 0 < C <∞,

d

dt
(A0(t)|F|A0(t)) ≤ C(q∗ + 1)

(
4 + (1 + q∗

2 ) ln 2
)

α = 2
C

(1− 22−α)2

(
(4 + ln 2)(22−α − 1)(2(2−α)q∗ − 1) + ln 2(2(2−α)q∗ + q∗ − (1 + q∗)2

2−α)
)

else . (4.9)

Proof. The rigorous proof is in Appendix C; here we sketch the main ideas. We divide up the Hamiltonian into a
set of scales q, with the rough intuition that couplings on scale q have lengths of order 2q. Using some identities
special to one-dimensional models, we are able to re-write

d

dt
(A0(t)|F|A0(t)) = (A0(t)|[F ,L]|A0(t)) =

q∗∑
q=0

∑
k

(A0(t)|[F ,Lq,k]|A0(t)) (4.10)

as a sum of similar inner products at each scale q; here q∗ denotes the maximum scale q∗ ∼ ln r, and k denotes
which “block" of couplings of size ∼ 2q we are studying. These blocks are shown in Figure 2. At each scale,
we can efficiently re-sum up the magnitude of each Lq,k using Lemma 3.1. We find that each factor of Lq,k
contributes (2q)1−α, following the logic of (3.6b). When α ≥ 2, the logarithmic factors in (A9) cannot be
neglected, and lead to an additional logarithmic enhancement in (4.9).

Using the result of this lemma, we see that there exists an α-dependent constant Kα such that

d

dt
(A0(t)|F|A0(t)) ≤


Kα lnR α > 2
K2 ln2R α = 2
KαR

2−α 1 < α < 2
. (4.11)

Indeed, looking at (4.9), when α = 2, the constant scales as q2
∗ ∼ ln2R; when α > 2, the term linear in q∗

dominates and leads to lnR scaling; when α < 2, the 2(2−α)q∗ ∼ R2−α terms dominate.
Combining (4.11) and (4.8) we obtain (4.5).



11

B’

10 2 43 5 76 8 109 11 1312 14 1615-1 17 18

�q= 0

�q= 1

�q= 2

ℚi |O(t))

Figure 2. We organize a growing operator |A0(t)) according to the site x on which the right-most non-trivial Pauli acts
(achieved via projectors Qx|A0(t)). We then regroup the Hamiltonian into scales as in [20]. We then study the quantum
walk of the weights Qx|A0(t)), which are efficiently bounded one scale at a time.

As we will show in the next section, the scaling of Theorem 4.1 is optimal. We thus arrive at the surprising
result that it is possible to have a Lieb-Robinson velocity which grows exponentially with time (at α = 2), while
the butterfly velocity of the Frobenius light cone grows no faster than ln2 t.
We note that it is quite challenging to extend this result to higher dimensions. The reason is that on a 1d

chain, it is very simple to define the projectors Qx to classify how far to the right an operator has grown. For
d > 1, we have tried to define analogous projectors keeping track of the “diameter" of a growing operator, yet
because there are Ld−1 sites near the edge of a ball of diameter L, the transition rates between sectors QL and
QL+1 will grow with L. The more sophisticated ansatz necessary to use quantum walk bounds to constrain
higher dimensional models (with power-law interactions) has not yet been found. An analogous challenge was
present in the original proof of a linear light cone in 1d systems with power law interactions [20]; a much more
complicated proof [21] was necessary to prove the linear light cone in higher d. We would not be surprised if a
similar lengthy extension is required to generalize Theorem 4.1 to d > 1; however, we expect that our Lemma 3.1
will be at the heart of any generalization of this work.

4.2. The Lieb-Robinson light cone is rarely tight

A natural question to ask is whether the Frobenius light cone or the Lieb-Robinson light cone is more relevant
for a “typical” physical state. Naively, one would expect the Frobenius light cone to be more relevant. Indeed,
we can take a probabilisitc interpretation of the Frobenius norm:

‖A‖2F = Tr[Eψ(|ψ〉 〈ψ|)A†A] = Eψ[‖A |ψ〉‖2`2 ] (4.12)

for any ensemble of pure states that average to the maximally mixed Eψ(|ψ〉 〈ψ|) = I/Tr[I]. Then, we can obtain
a concentration inequality via Chebychev’s inequality:

P
(
‖A |ψ〉‖`2 ≥ a

)
≤ ‖A‖

2
F

a2
. (4.13)

In words, a state drawn “randomly” from the ensemble will mostly like be of order O(‖A‖F). However, 1/a2

dependence is not the strongest concentration we can ask for.
As it turns out, a sharper concentration inequality would be possible if we further obtained bounds on the

Schatten p-norms of A, for tunable values of p. Let us denote normalized p-norm by

‖O‖p̄ :=
‖O‖p
‖I‖p

(4.14)

that avoids tedious and exponentially large normalization constants when discussing the p-norms of local
operators in a many-body system. We now note the following fact:
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Proposition 4.3 (p-norm and typical states [39]). For any operator A, when uniformly averaging over states
|ψ〉 that E |ψ〉 〈ψ| = I/Tr[I],

P
(
‖A |ψ〉‖`2 ≥ a

)
≤
(
‖A‖p̄
a

)p
. (4.15)

And we obtain a p-norm estimate as follows.

Theorem 4.4. Let H(t) be a time-dependent Hamiltonian which has power-law exponent α > 1, as defined in
Section 2.1. Then under the Heisenberg equation of motion generated by this H(t),

‖QRA0(t)‖p ≤ c′
√
p
|t|
R(r)

(4.16)

for constant 0 < c′(α) <∞ which only depends on α, and

R(r) =


r if α > 5/2

r/ ln3/2(r) if α = 5/2

rα−3/2 if 5/2 > α > 3/2

. (4.17)

Alternatively, we may write that ‖QRA0(t)‖p ≥ δ is only possible if

|t| ≥ δ√pc′R(r). (4.18)

Proof. The technical details of the proof are quite similar in spirit to the proof of [20], which itself uses the same
decomposition of H into different scales shown in Figure 2. The difference between the proof of this theorem and
Theorem 4.1 is that we are unable to use the quantum walk bounds to tightly control the growth of QR|A0(t)),
because ‖Qx|A0(t))‖p̄ does not obey a quantum walk equation. We give the proof in Appendix D.

We do not expect this bound to be tight – clearly it is not for p = 2, in which case Theorem 4.1 is already
stronger. Nevertheless, it already suffices to guarantee a meaningful concentration bound:

Corollary 4.5. For power-law models with exponent 2 < α < 3, the Lieb-Robinson light cone is rarely saturated:
for 0 < ε <∞ and sufficiently large r,

P
(
‖[A0(t), Br] |ψ〉‖`2 ≥

εt

rα−2

)
≤ exp(2− ε2Crβ) (4.19)

for some constant 0 < C(α) < ∞ which does not depend on r, and with β = min(1, 6− 2α)− δ for arbitrary
δ > 0. This result holds even if H(t) is time-dependent.

Note that the infinitesimal parameter δ is only due to the logarithm ln(r) at α = 5/2, and should not distract
the reader.

Proof. Plug the p-norm bound of Theorem 4.4 into Proposition 4.3 to obtain

P
(
‖[A0(t), Br] |ψ〉‖`2 ≥

εt

rα−2

)
≤
(
rα−2

εt
· √p · c′t

R(r)

)p
=

(
√
p · c

′rα−2

εR(r)

)p
≤ exp

(
2− ε2R(r)2r4−2α

e2c′2

)
. (4.20)

where in the last inequality we used that (
√
pb)p ≤ exp(2 − e−2b−2) (set p = min(2, (eb)−2)). The +2 in the

exponential is added since to use our concentration bounds we must always take p ≥ 2. We conclude the proof
by noting that for any 2 < α < 3, r4−2αR(r)2 > rβ if r is sufficiently large.

Remarkably, even though the form of the bound in Theorem 4.4 is not tight, we find an exponential bound on
the number of states in which the Lieb-Robinson bounds might be saturated. In the regime 2 < α < 5

2 , this
bound is optimal(up to constants in the exponent): the protocol of [22] shows that in a spin chain of qubits,
it is possible to saturate the Lieb-Robinson light cone in at least one state. What Corollary 4.5 proves is that
the state identified in [22] is in fact one of the exponentially rare states for which the Lieb-Robinson light cone
can be saturated! This strongly suggests that the rapid single-bit state transfer protocol of [22], which can
transfer one qubit in time t ∼ rα−2d, may require exquisite control of the background state; this contrasts
with the more robust (yet slower) protocol of [10, 41], which uses long-range interactions to send qubits in a
“self-error-correcting" scheme. It is an interesting open question to more quantitatively compare fast quantum
error correction schemes to the optimal Frobenius and Lieb-Robinson light cones which have been developed
over the past few years.
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Lastly, we conjecture that the optimal bound on p-norms takes the form

‖[A0(t), Br]‖p̄
?

.
pt

rα−1
. (4.21)

This is an educated guess: it extrapolates to the p = 2 case, and that the concentration holds at e−Ω(r) though
Corollary 4.5. We do not currently know how and if our quantum walk based proof of Theorem 4.1 can be
generalized to a p-norm bound.

5. ALGEBRAICALLY OPTIMAL OPERATOR GROWTH PROTOCOL

Having established the Frobenius light cone rigorously in d = 1, and with a conjecture on how it generalizes to
higher dimensions d, let us now describe a protocol which we claim (and will susbequently prove) achieves these
speed limits (up to sub-algebraic corrections). Our approach is loosely inspired by the optimally fast single-qubit
state transfer protocol developed in [22]: as in [22], we will develop our protocol via “recursive" intuition.

5.1. Intuitive argument

To begin, let us assume that we have a system with tunable and time-dependent power-law interactions of
exponent d < α < d + 1 on the standard hypercubic lattice Zd. We divide up this lattice into a partition of
hypercubes at multiple scales q = 0, 1, 2, . . .. For intuitive purposes, we can say that the scale q = 0 corresponds
to each lattice site being in its own cube; scale q = 1 corresponds to a partition of the lattice into hypercubes of
side length m1 in all dimensions; scale q = 2 corresponds to a partition into hypercubes of side length m1m2

in all dimensions, and so on. (Note that the q = 2 cubes contain m2 q = 1 cubes within them, etc.). In the
discussion that follows, we will for simplicity set m1 = m2 = · · · = m.
At time t = 0, we start with a Pauli matrix X0 on a single site. By the definitions above, that Pauli matrix

occupies exactly one 0-cube, which we might as well call the origin of the lattice. Our goal is to find a quantum
mechanical protocol (i.e. a unitary matrix U(t), which can be generated from a power-law Hamiltonian evolving
for time t, possibly with time-dependent coefficients), such that U(t)†X0U(t) consists of Pauli strings of length
Ld. If we achieve this, then we know that this operator must have support on at least one site a distance ∼ L
away from the origin where we started. Our goal is to do this in a time t ∼ Lα−d for d < α < d+ 1.

To motivate how we might achieve this task, suppose that we have a quantum protocol – a unitary matrix Uq
– which is capable of taking any single-site Pauli matrix (e.g. X0) and evolving it into an operator U†qWUq which
is supported on an O(1) fraction of sites in the q-cube Cq:∑

x∈Cq

∥∥PxU†qWUq
∥∥2

F
∝ Rdq , (5.1)

with Rdq being the number of sites in Cq, and

Rq = mRq−1 = mq. (5.2)

We can certainly do this in constant time when q = 1 by simply using nearest neighbor interactions.
Now, assuming that we found Uq, let us find a Uq+1 at the next scale. First, note that any q-cube Cq lies

entirely within a (q + 1)-cube Cq+1. How can we find a unitary Uq+1 such that (5.1) continues to hold at scale
q + 1? One possible way to do this would be:

Uq+1 = UqVq+1Uq, (5.3)

where Vq+1 is a unitary that takes an operator supported in a single q-cube, and evolves it to have support on
only a single site in each of the other md − 1 q-cubes in Cq+1. The three-step process is sketched in Fig. 3.
The key observation is that this “recursive" construction is quite natural to implement with power-law

interactions. As the scale q = 0→ 1 unitary U1 is quite easy to implement (even using only nearest neighbor
interactions), let us focus on how Vq+1 might effectively be implemented with power-law interactions. Suppose
that as an idealistic cartoon, we found that

U†qX0Uq =
∏
x∈Cq

Xx. (5.4)

Now let us consider

Vq+1 = exp

−iτq+1

∑
x,y∈Cq+1

ZxZy
(dRq+1)α

 . (5.5)
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Uq−2

Vq−2

Uq−2

Uq−1

Vq

Uq−1

Uq

Cq
Rq = mqRq−1

Rq−1

Cq−1

Figure 3. The recursive step in the idealized protocol, constructing Uq from Uq−1. The new sites are shaded lighter. (1)
grow a single Pauli W to have support on ∼ |Cq| sites using the first Uq−1. (2) “seed" a single Pauli matrix (e.g. Zx)
on one site x in each other q-cube C′q ⊂ Cq using Vq. (3) run again the Uq−1 protocol on each remaining q-cube C′q to
“bloom" the seeded single operator into a finite fraction of sites. On the left is the description of Uq−1.

Clearly, this Hamiltonian is compatible with (2.2). When τq+1 is small, we may estimate that the fraction of the
operator with support outside of the original Cq is given by the first order expansion∥∥∥∥∥∥τq+1

 ∑
x,y∈Cq+1

ZxZy
(dRq+1)α

,
∏
x∈Cq

Xx

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
∑

x∈Cq,y∈Cq+1−Cq

2τq+1YxZy
(dRq+1)α

∏
z∈Cq−x

Xz

∥∥∥∥∥∥
2

F

=
4τ2
q+1

(dRq+1)α
Rdq
(
Rdq+1 −Rdq

)
(5.6)

Taking

τq+1 & Rα−dq+1 , (5.7)

we can estimate that our protocol may have substantial weight outside of Cq(and thus have some seeds in each
new Cq.). The runtime of the overall Uq+1 is, recursively,

tq+1 = τq+1 + 2tq. (5.8)

And indeed,

tq ∝ Rα−dq (5.9)

does appear consistent with (5.8). This suggests that our recursive approach will be capable of growing an
operator at the provably optimal rate in d = 1, and conjectured optimal rate in d > 1.
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In order to make the argument above precise, we will study a random ensemble of protocols, which proceed
up to scale q ∼ lnm ∼

√
ln r. This peculiar choice of m happens to speed up some technical steps in our proof,

while only leading to sub-algebraic factors in the overall runtime of the method. We will show that at least half
of the protocols in our random ensemble grow operators quickly, (nearly) saturating Theorem 4.1. We emphasize
that randomness does not play some key physical role – after all, if we just pick some random instance of our
protocol, with at least 50% chance that one non-random protocol can grow operators quickly! Randomness is
useful, however, as a way to simplify what is already a rather tedious proof which aims to keep track of the
probability that a growing operator O(t) has support on a given lattice site. In a nutshell, we introduce random
depolarizing unitaries (denoted as D below) which will allow us to keep track of only whether a given site has a
Pauli matrix on it or not, but ignore what kind of Pauli we have. This makes our technical proof a bit more
conceptually simple.
Despite this randomness, we emphasize that constructive quantum interference is absolutely essential to the

success of these random protocols. Indeed, (5.6) holds as τq+1 → 0; however, we also need to make sure that
(5.6) holds at sufficiently late times such that the unitary Vq+1 has spread the operator U†qX0Uq into many sites
in Cq+1. The fact that Vq+1 is the product of many exp[−iZZ] unitaries, which are all mutually commuting,
ensures that the long-range interactions are interfering coherently.

5.2. Explicit protocol

Having gone through the intuitive argument, let us now present an explicit random Hamiltonian protocol
that achieves this result – at the expense of a logarithmically increased runtime (which we will “justify" at the
end of this section). The protocol is built using the same q-cube structure outlined above. In a nutshell, our
(q + 1)-scale protocol takes the form

Uq+1 = U ′qVq+1Uq, (5.10)

where Uq and U ′q are random q-scale unitary protocols drawn from an ensemble that we will state below, and

U ′q = UqD, (5.11)

where D is a depolarizing unitary drawn uniformly at random from a discrete ensemble (to be described below)
and Vq+1 is a random unitary, built out of power-law interactions, that will mimic (5.5). At each step, we will
choose the unitaries Uq, D, etc. uniformly at random from particular distributions. Perhaps surprisingly, this
randomness will actually help us prove that the protocol works. The depolarizer D will allow us to effectively
ignore what operator is present on a given site, and just keep track of which sites our growing operator has
support on. Analogous to recent work on random unitary circuits [42, 43], this can make it much easier to keep
track of the many-body operator growth.

Ultimately, we will prove that the ensemble averaged Frobenius norm of a commutator is large; if the average
is large, there must be one instance of a unitary time evolution operator in the ensemble (which we do not need
to explicitly point out), which achieves a large Frobenius norm. Of course, it is even more interesting that typical
unitaries in the ensemble achieve a large Frobenius norm.

Let us now carefully define the q-cube partitions of the lattice Zd. We define the q-cubes

Cq(k1, . . . , kd) := {(n1, . . . , nd) ∈ Zd : Rqki ≤ ni < Rq(ki + 1)}. (5.12)

The set of all such q-cubes will be denoted with

Bq := {Cq(k) : k ∈ Zd}. (5.13)

Rq is defined via (5.2), where

m :=
⌈
e
√

ln(r)
⌉
. (5.14)

The random depolarizing unitary D is chosen as follows:

D :=
⊗
x∈Λ

Dx, (5.15)

where Dx are 2× 2 unitary matrix acting on qubit x, independent and identically distributed (iid) for each x.
Each Dx is chosen uniformly at random (via the discrete Haar measure) from the group

G =

{
±1,
±1± iXa

√
2

,±iXa,
±iXa ± iXb

√
2

,
±1± iX ± iY ± iZ

2

}
(5.16)
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In the above equation, Xa and Xb denote distinct Pauli matrices (X,Y, Z). Each Dx can be generated using a
single-site Hamiltonian of (operator) norm 1 in a time

tD <
π

2
. (5.17)

The growth unitary is

Vq = exp[−iτq+1H
ZZ
q ], (5.18)

where the Hamiltonian

HZZ
q :=

1

(dRq)α

∑
C∈Bq

∑
x,y∈C

JxyZxZy, (5.19)

where Jxy are iid random variables uniformly distributed on the interval [−1, 1]. This clearly mimics what we
intuitively introduced above; however, we will see that the randomness in the couplings is beneficial in allowing
us to neglect possible quantum interference phenomena (among growing operators) that might ruin our protocol.
The times τq will be chosen explicitly in (E21) in Appendix E, but note for now that it obeys

τq < 120qmdRα−dq . (5.20)

The protocol will stop at scale

q∗ :=
⌈√

ln r
⌉
. (5.21)

At this scale, at least half of the operator (as measured by the Frobenius norm) will have size > rd−ε for any
ε (Proposition 5.2). In order to demonstrate that the Frobenius light cone is saturated (up to subalgebraic
prefactors), we must calculate the total runtime of the protocol Uq. Using the inductive identity (5.10), along
with (5.20), we see that if tq is the total runtime of Uq, and tD < τq is the runtime of D,9 then

tq = 2tq−1 + tD + τq < 2tq−1 + 2τq =

q∗∑
q=1

τq∗−q2
q < 2q∗+1τq∗

< 480 · (240e)
√

ln r
(

1 + e
√

ln r
)(α−d)(1+

√
ln r)

< 480 · (240eα−d+1 · 4α−d)
√

ln rrα−d. (5.22)

We thus conclude a lower bound on the Frobenius light cone in any dimension. To be more precise, given the
decomposition of an operator defined in (2.8), let us define the projector

P≥L|A) :=
∑

S⊂Λ:diam(S∪{0})≥L

|AS). (5.23)

Here diam(S) denotes the maximal distance between any two elements in the set S. The discussion above
immediately implies the following theorem:

Theorem 5.1. Let X0 be the Pauli X-matrix supported at the origin (0, . . . , 0) ∈ Zd. For any ε > 0, define
r(L) := L1+ε/2. Then there exists a sufficiently large L, such that a power-law Hamiltonian protocol drawn from
the distribution (5.10) achieves

‖P≥L|U†q∗X0Uq∗)‖F ≥
1

2
, (5.24)

with probability ≥ 1/2. Moreover, the shape of the Frobenius light cone is bounded by

L(t) ≥ Kεt
1

α−d−ε (5.25)

for some constant 0 < Kε <∞. The asymptotic bound of Theorem 4.1 cannot be improved by an algebraic factor.

The last thing we need to do is to prove that our protocol in fact does grow a finite fraction of an initial small
operator to be large. This result is captured by the following key technical proposition:

Proposition 5.2. For sufficiently large L, there exists a Hamiltonian in the random ensemble of Section 5.2 in
which (5.24) holds.

9 This condition will always be assured at sufficiently large r. We can shrink the prefactor of HZZ
q to ensure this at small r.
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Proof. The proof of this proposition, of course, corresponds to the overwhelming majority of the proof of Theorem
5.1. As it is rather technically involved, let us outline the key steps in the proof. (1 ) We will first develop
a “super-operator density matrix" perspective for bounding the Frobenius light cone. (2 ) This notation will
prove highly useful, since we will show that the “super-depolarizing channel" (conjugation by D) destroys all
(unwanted) quantum coherence, and leaves us with an effectively classical problem to analyze. (3 ) We will then
describe the inductive hypothesis required to achieve (5.24), and reduce the quantum mechanical problem of
bounding operator growth to the bounds on a classical stochastic process. (4 ) We will then show that (in the
language of the effective stochastic process), with very high probability the Vq unitary “seeds" enough Pauli
matrices in new cubes. (5 ) Analogously, we will show that with very high probability, these seeds in turn grow
into large Pauli strings upon applying another Uq−1. (6 ) We will show that at every possible step of the protocol,
the collective failure probability is small and decreases sufficiently fast that there is a finite success probability
to grow a large operator. Upon converting back to the quantum mechanical language, that will imply (5.24).

The technical implementation of this proof is in Appendix E.

The fact that typical protocols actually are effective at growing operators at the Frobenius light cone suggests
a certain robustness of this notion of light cone. At the same time, for chaotic systems, the light cone is linear
above α > d + 1

2 [29, 44]. One way to reconcile these facts is to note that the chaotic Hamiltonians do not
choose ZZ Hamiltonians to implement operator growth in Vq. By only including ZZ terms in our long-range
Hamiltonian, we ensure that there is always constructive interference in the Vq step at which the operator
actually grows.10 In a Brownian circuit [29, 44], in contrast, the operator is re-chosen randomly at each step
in time: this leads to far greater incoherence which effectively doubles the power law of the interactions from
α→ 2α (as one can only incoherently add squares).11
Remarkably, our protocol also saturates both the Frobenius light cone of this paper (proven in d = 1 and

conjectured for d > 1), and a Frobenius light cone proven for random Hamiltonians in d = 1 (Theorem 7, [29]).
In other words, the Frobenius light cones are essentially the same, whether one fine tunes the Hamiltonian or
just draws one randomly from an ensemble. We anticipate these conclusions generalize to higher dimensions,
though a formal proof is not known.

6. OUTLOOK

We have shown constraints on the dynamics of growing operators, measured by the Frobenius norm. In
particular, we have proved that in one dimensional spin chains with long-range interactions, it is possible for
the Frobenius light cone to be exponentially slower than the Lieb-Robinson light cone (α = 2). Such a result is
based on the key insight that Frobenius norm becomes approximately submultiplicative, proven by combining
standard and new functional analysis tools (uniform smoothness) with the quantum walk formalism.
Moreover, we demonstrated that our Frobenius light cone in one dimension is essentially optimal (up

to subalgebraic corrections). Our protocol features the first comprehensive analysis of an explicit random
Hamiltonian; in contrast, existing results relied on Brownian Hamiltonian dynamics [44]. Our usage of super-
density operator and super-channel may find further applications in studying operator growth and Frobenius
light cones in other systems.

In the near future, we hope to prove our conjecture that the Frobenius light cone in higher dimensional models
with long-range interactions looks (schematically like) t & rα−d (for d < α < d + 1). Beyond that obvious
generalization, we anticipate that our novel methods will find use in a broad variety of other challenging problems,
such as bounding fast scrambling and chaos in quantum simulators, including trapped ion crystals and cavity
quantum electrodynamics [26, 45, 46]; this work may help to constrain when it is possible (or not) to mimic
quantum gravity in an experiment [47–52]. A more practical possible application of the Frobenius light cone may
be to constrain the generation of (volume-law) entanglement. Lastly, we hope to develop a more general toolkit
(perhaps based on the quantum walk methods) to control Frobenius light cones in arbitrary many-body models.
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Appendix A: Extension of Lemma 3.1 to p-norms and k-local Hamiltonians

In this appendix, we show that the approximate form of submultiplicativity derived in Section 3 extends to
Schatten p-norms with p > 2, using the following version of uniform smoothness. We include a minimal review,
and e.g. [39, 53] for further discussions. 12

Proposition A.1 (Uniform smoothness for subsystem). Consider matrices X,Y of the same dimensions that
satisfy Tri(Y ) = 0;X = Xj ⊗ Ii. For p ≥ 2,

‖X + Y ‖2p ≤ ‖X‖2p + (p− 1)‖Y ‖2p. (A1)

The proof of this proposition, which adapts from proof in [53, Prop 4.3], is delayed slightly. We first recall the
following identity:

Proposition A.2 (Uniform smoothness for Schatten Classes[53, Fact 4.1]).[
1

2
(‖X + Y ‖pp + ‖X − Y ‖pp)

]2/p

≤ ‖X‖2p + Cp‖Y ‖2p (A2)

With these facts in hand, we are now ready to generalize Proposition 3.2 to the p-norm. We begin with the
following simple observation:

Proposition A.3. For Tri(Y ) = 0;X = X−i ⊗ Ii, p ≥ 2,

‖X‖p ≤ ‖X + Y ‖p (A3)

Proof. We employ a variational formulation for Schatten p-norms [54]:

‖Xj‖p = sup
‖Bj‖q≤1

Tr(X†jBj) (A4)

for 1/p+ 1/q = 1. Then we restrict to B which are proportional to the identity on site i: B ∝ B−i ⊗ Ii:

‖X + Y ‖p = sup
‖B‖q≤1

Tr((X + Y )†B) ≥ Tr

(
(X† + Y †)B−i ⊗

Ii
‖Ii‖q

)
= ‖X−i ⊗ I‖p (A5)

In the last inequality we used that TriY = 0 and that X−i ⊗ I has maximizer B−i ⊗ Ii/‖Ii‖q.

We can now prove Proposition A.1.

Proof. Observe that

‖X + Y ‖2p + ‖X‖2p
2

≤
‖X + Y ‖2p + ‖X − Y ‖2p

2
(A6)

≤
(‖X + Y ‖pp + ‖X − Y ‖pp

2

)2/p

≤ ‖X‖2p + Cp‖Y ‖2p. (A7)

The last line uses Lyapunov’s inequality, and then Proposition A.2. Rearranging terms yields a slightly worse
constant 2Cp. The advertised constant can be obtained via a more involved trick [53, Lemma A.1].

Now we can show submultiplicativity for arbitrary p-norms. We will also, for good measure, describe how to
generalize our result to k-local Hamiltonians as well. As in the main text, we need to properly normalize the
Schatten p-norms with the “bar norm" (4.14).

Proposition A.4. For k-local Hamiltonian

H =
∑

m≥ik>···>i1≥1

Hi1,··· ,ik (A8)

such that PjHi1,··· ,ik = I(j ∈ {i1, . . . , ik})Hi1,··· ,ik , for any operator O obeying ‖O‖ ≤ 1 and any p ≥ 2,

‖HO‖p̄ ≤ epk/2 · ‖H‖(2) · ‖O‖p̄
(
| ln‖O‖p̄|+ 1

)k/2 (A9)

where

‖H‖(2) :=

√ ∑
m≥ik>···>i1≥1

‖Hi1,··· ,ik‖2∞. (A10)

12 This particular form of uniform smoothness was perceived when this work and another work [39] was developing. We include the
same proof at both papers.
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Proof. Using Proposition 2.1,

‖HO‖p = ‖HO‖p ≤ ‖H‖p/(1−θ) · ‖O‖p/θ. (A11)

We now bound each of these norms in turn. We start with ‖H‖q (setq := p/(1− θ) in what follows):∥∥∥∥∥∥
∑

m≥ik>···>i1≥1

Hi1,··· ,ik

∥∥∥∥∥∥
2

q

≤

∥∥∥∥∥∥
∑

m−1≥ik>···>i1≥1

Hi1,··· ,ik

∥∥∥∥∥∥
2

q

+ Cq

∥∥∥∥∥∥
∑

m=ik>ik−1···>i1≥1

Hi1,··· ,ik

∥∥∥∥∥∥
2

q

≤
∑

m≥ik≥k

Cq

∥∥∥∥∥∥
∑

ik>ik−1···>i1≥1

Hi1,··· ,ik

∥∥∥∥∥∥
2

q

≤
∑

m≥ik>···>i1≥1

Cq
k‖Hi1,··· ,ik‖2q (A12)

≤ Cqk‖I‖2q
∑

m≥ik>···>i1≥1

‖Hi1,··· ,ik‖2∞ = Cq
k‖I‖2q‖H‖2(2) (A13)

In the first line we applied Prop. A.1 for Y =
∑
m=ik>ik−1···>i1≥1Hi1,··· ,ik and X =

∑
m−1≥ik>···>i1≥1Hi1,··· ,ik ,

i.e. we are “peeling off" any term traceless on the qudit ik = m. In the second inequality we peel off qudit
ik = m − 1, qudit ik = m − 2 all the way to ik = k.13 In the second line, we recursively repeat the first and
second line for ik−1, · · · , i1, each of which gives a factor of Cq. Lastly, we use Hölder’s inequality to bound the
q-norm by the ∞ norm with a ‖I‖p overhead.14

For the norm of O, a standard manipulation using Proposition 2.2, and ‖O‖∞ ≤ 1, allows us to handle

‖O‖p/θ ≤ ‖O‖θp‖O‖1−θ∞ ≤ ‖O‖θp (A14)

Now combining (A11), (A13) and (A14), we plug in q = p/(1− θ) to get

1

‖I‖p
‖HO‖p ≤

1

‖I‖p

((
p

1− θ
− 1

)k/2
‖H‖(2)‖I‖p/(1−θ)

)
‖O‖θp ≤

(
p

1− θ

)k/2
‖H‖(2)

(
‖O‖p
‖I‖p

)θ
. (A15)

where we explicit display the ‖I‖p and used that ‖I‖p = (Tr[I])1/p to normalize ‖O‖p. As in the main text, we
choose

n =
1

1− θ
:= max (1, | ln(‖O‖p̄|) ≤ | ln(‖O‖p̄|+ 1. (A16)

Then

‖HO‖p̄ ≤ pk/2‖H‖(2)‖O‖p̄ × nk/2‖O‖
−1/n
p̄ ≤ pk/2‖H‖(2)‖O‖p̄ × nk/2e| ln‖O‖p̄|/n. (A17)

Combining (A16) and (A17), we obtain the advertised result.

Appendix B: Extension of submultiplicaty to tensor product ensembles

Submultiplicativity also extends to special other choices of background density matrices ρ. We begin by
recalling the following results of [55]:

Proposition B.1. Let ρ be a density matrix. Define the norm

‖O‖q,ρ := ‖ρ1/2pOρ1/2p‖p =
[
Tr
∣∣∣ρ1/2pOρ1/2p

∣∣∣p]1/p . (B1)

Then the following properties hold:

‖I‖q,ρ = Tr(ρ) = 1, (proper normalization) (B2a)

Tr(
√
ρA†
√
ρB) ≤ ‖A‖p,ρ‖B‖q,ρ, (Hölder inequality with 1/p+ 1/q = 1) (B2b)

‖A‖qθ,ρ ≤ ‖A‖θq1,ρ‖A‖
1−θ
q2,ρ, (Riesz-Thorin interpolation with θ/q1 + (1− θ)/q2 = 1/qθ). (B2c)

Using this proposition, it is straightforward to begin to extend Proposition 3.2 to use this generalized norm.

13 The ik = k term does not have the Cq coefficient, but we threw it in to simplify the expression.
14 This conversion to operator norm is tight when the spectrum is suitably flat, as is the case when dealing with a Pauli string

operator.
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Proposition B.2. Suppose that [H, ρ] = 0. Then

‖HO(t)‖22,ρ ≤ ‖H‖22p,ρ‖O‖
2/q
2,ρ

∥∥∥ρ−1/4O†
√
ρOρ−1/4

∥∥∥1−1/q

∞
. (B3)

Proof. Using the identities in Proposition B.1, and temporarily just writing O(t) = O:

‖HO‖22,ρ = Tr(O†H†
√
ρHO

√
ρ) = Tr(

(
ρ−1/4H†

√
ρHρ−1/4

)√
ρ
(
ρ−

1
4O
√
ρO†ρ−

1
4

)√
ρ)

≤ ‖ρ− 1
4H†
√
ρHρ−

1
4 ‖p,ρ · ‖ρ−

1
4O†
√
ρOρ−

1
4 ‖q,ρ

≤ ‖ρ− 1
4H†
√
ρHρ−

1
4 ‖p,ρ · ‖ρ−

1
4O†
√
ρOρ−

1
4 ‖1/q1,ρ · ‖ρ−

1
4O†
√
ρOρ−

1
4 ‖1−1/q
∞,ρ

≤ ‖ρ− 1
4H†
√
ρHρ−

1
4 ‖p,ρ · Tr(

√
ρO†
√
ρO)1/q · ‖ρ− 1

4O†
√
ρOρ−

1
4 ‖1−1/q
∞ . (B4)

In the third line we used interpolation for 1
q = 1/q

1 + 1−1/q
∞ , and in the fourth, we used that at ∞ it does not

depends on the background anymore: ‖A‖∞,ρ = ‖A‖∞. Lastly, when [H, ρ] = 0, we note that for any a, b, c:

ρaO(t)†ρbO(t)ρc = ρaeiHtO†e−iHtρbeiHtOe−iHtρc = eiHtρaO†ρbOρce−iHt, (B5)

and moreover we note that

‖A(t)‖p,ρ = ‖A‖p,ρ (B6)

for any A. Hence we obtain (B3).

We expect that this extension is most useful in the simple scenario where ρ is a simple tensor product. This
naturally arises in models with a conserved charge, where one can consider the “infinite temperature grand
canonical ensemble"

ρ ∝
⊗
i

e−µQi (B7)

where Qi represents the local charge on site i. Examples correspond to spin systems with conserved total z-spin,
or models like the Bose-Hubbard model in which total boson number is conserved. In these models, the infinity
norm ‖ρ− 1

4O†
√
ρOρ−

1
4 ‖∞ may not be too dangerous. Unfortunately, in a thermal ensemble with ρ ∝ e−βH , due

to the non-locality in H one must be extremely careful about factors of eβH when computing operator norms [].

Appendix C: Proof of Lemma 4.2

Observe that (for simplicity we will drop the explicit time dependence in L and H)

d

dt
(A0(t)|F|A0(t)) = (A0(t)|[F ,L]|A0(t)) = 2

∑
R≥j>i≥0

(A0(t)|Qj [F ,L]Qi|A0(t))

= 2
∑

R≥j>i≥0

(j − i)(A0(t)|QjLQi|A0(t)). (C1)

where the factor of 2 comes from the fact that j > i is restricted in the sum, yet the terms with j and i can have
either number on either side of the inner product. The antisymmetry of L and symmetry of F then allow us
to say (A|[F ,L]|A) = 2(A|FL|A). Our technical observation is that we can do a discrete integration by parts
mimicking E[X] =

∫
dt Q(X > t) for a real-valued random variable:

∑
R≥j>i≥0

(j − i)QjLQi =
∑

R≥j>i≥0

QjL
i∑

k=0

Qk. (C2)

In addition to combining these two results, we will want to split up the Liouvillian L using the same method of
[20]. Let us define the following sets:

Sq,k := {2qk, 2qk + 1, . . . , 2q(k + 2)− 1}. (C3)

We define

Kq =
R+ 1

2q
− 1 (C4)
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to be the largest possible value of k for Sq,k. As shown in Fig. 2, at each scale q, these sets form “double
partitions" of the domain [0, R] at every scale 0 ≤ q ≤ q∗. We define

Hq,k :=
∑

i,j∈Sq,k

I(i, j are not contained in Sq′,m for any q′ < q, for any m)Hi,j , (C5)

and Lq,k in the obvious way, by denoting Lij = i[Hij , ·] to be the Liouvillian associated with sites i and j, and
Lq,k = i[Hq,k, ·].

Now, with (C1),

d

dt
(A0(t)|F|A0(t)) = 2

R−1∑
i=0

R∑
j=i+1

i∑
k=0

(A0(t)|QjLQk|A0(t)) = (

q∗∑
q=0

Kq∑
n=0

∑
i∈Sq,n

)

R∑
j=i+1

i∑
k=0

(A0(t)|QjLq,nQk|A0(t))

=

q∗∑
q=0

Kq∑
n=0

∑
i∈Sq,n

(

2q(n+2)∑
j=i+1

)

i∑
k=2qn

(A0(t)|QjLq,nQk|A0(t))

≤
q∗∑
q=0

Kq∑
n=0

∑
i∈Sq,n

∥∥∥∥∥∥
2q(n+2)∑
j=i+1

Qj |A0(t))

∥∥∥∥∥∥
F

·

∥∥∥∥∥Lq,n
i∑

k=2qn

Qk|A0(t))

∥∥∥∥∥
F

. (C6)

In the first line we absorb the factor of 2 into the double partition of 0 ≤ i ≤ R− 1; in the second line, we have
used the fact that Lq,n is non-vanishing only on operators with support in Sq,n, and that if it extends a Pauli
string to the right, that Pauli string has rightmost site in Sq,n. In the third line, we use the Cauchy-Schwarz
inequality, keeping in mind that our inner product is already normalized to the Frobenius norm. Now, we wish
to further simplify this expression. To proceed,

Corollary C.1. For any operator O obeying ‖O‖∞ ≤ 1, there exists a constant 0 < C <∞ such that

‖Lq,k|O)‖F ≤ C‖O‖F
(
| ln‖O‖F|+ 1

)
× 2−q(α−1). (C7)

Proof. Observe that for each Hij contained in Hq,k, we have that (if i < j): i < 2q(k + 1) and j ≥ 2q(k + 1).
This means that we may apply Lemma 3.1:

‖Lq,k|O)‖F ≤ 2× 9× 2e

√∑
i,j

h2
ij‖O‖F

(
| ln‖O‖F|+ 1

)
(C8)

The first factor of 2 comes from considering either HO or OH, the factor of 9 comes from triangle inequality
over two sums of Paulis

∑3
a,b=1X

aXb. Now observe that

√∑
i,j

h2
ij ≤

√√√√ 0∑
i=−∞

∞∑
j=2q−1

1

|i− j|α
≤

√√√√ 0∑
i=−∞

∞∑
j=2q−1

1

|i− j|2α
≤ const.

√√√√ ∞∑
j=2q−1

1

j2α−1
≤ const.

2q(α−1)
. (C9)

where C0 and C are finite constants that depend on α. Thus we obtain (C7).

With Corollary C.1,

d

dt
(A0(t)|F|A0(t)) ≤ C

q∗∑
q=0

Kq∑
n=0

∑
i∈Sq,n

∥∥∥∥∥∥
2q(n+2)∑
j=i+1

Qj |A0(t))

∥∥∥∥∥∥
F

∥∥∥∥∥
i∑

k=2qn

Qk|A0(t))

∥∥∥∥∥
F

(
1− ln

∥∥∥∥∥
i∑

k=2qn

Qk|A0(t))

∥∥∥∥∥
F

)
2−q(α−1)

≤ C
q∗∑
q=0

Kq∑
n=0

∑
i∈Sq,n

∥∥∥∥∥∥
∑
j∈Sq,n

Qj |A0(t))

∥∥∥∥∥∥
F

∥∥∥∥∥∥
∑
j∈Sq,n

Qj |A0(t))

∥∥∥∥∥∥
F

1− ln

∥∥∥∥∥∥
∑
j∈Sq,n

Qj |A0(t))

∥∥∥∥∥∥
F

 2−q(α−1)

≤ 2C

q∗∑
q=0

Kq∑
n=0

pq,n

(
1− 1

2
ln pq,n

)
2−q(α−2) (C10)

In the second line, we used that the function x(1 − lnx) is increasing in the domain x ∈ [0, 1], and that the
Frobenius norm of a projected operator monotonically increases if we add orthogonal projectors Qis to the sum.
In the third line, we explicitly carried out the sum over i ∈ Sq,n, and defined

pq,n :=

∥∥∥∥∥∥
∑
j∈Sq,n

Qj |A0(t))

∥∥∥∥∥∥
2

F

. (C11)
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Namely, pq,n is the probability that the operator has its rightmost support in Sq,n. Note that

∑
n=0,2,4,...

pq,n ≤ 1,
∑

n=1,3,5,...

pq,n ≤ 1. (C12)

At this point, we first use the fact that for fixed q, the maximal value of the entropy like quantity (C10) is
attained when pq,n is uniform: pq,n = 2/(Kq + 1). Hence,

d

dt
(A0(t)|F|A0(t)) ≤ 2C

q∗∑
q=0

2

(
1− 1

2
ln

2

Kq + 1

)
2−q(α−2) ≤ 2C

q∗∑
q=0

(
2 +

1 + q∗ − q
2

ln 2

)
2−q(α−2). (C13)

Evaluating this sum leads to (4.9).

Appendix D: Proof of Theorem 4.4

As stated in the main text, we need to modify the technical proof given in [20] in a few places to prove
Theorem 4.4. Let us briefly review the proof strategy of [20]. As in the proof of Theorem 4.4, we divide up
the 1d lattice into boxes of size 2q for 0 ≤ q . log r. We then observe that if (using the main text notation)
Qr|A0(t)) 6= 0, then, if we write out

A0(t) = eLtA0 =

∞∑
n=0

tn

n!
LnA0 (D1)

as a Taylor series, we can look for the “irreducible" Ls in any given sequence of n Ls in Ln that “move the
operator forward": namely move an operator from the hyperplane of Qm to Qm+k for some k > 0. The key idea
of [20], using the formalism of [4], is that (1) reducible (i.e. not irreducible) Ls can be re-exponentiated to form
a new unitary transformation, and (2) we only need to count “irreducible" Ls in sequences that have sufficiently
many steps forward at the corresponding scale q (as if we pull down a small number of irreducible steps at scale
q′, we can just re-exponentiate Ls at this scale).
We will want to perform each of these 2 steps a little differently. However, to motivate why, it will help to

invert the logic and first think about what we wish to accomplish during the second step. At the longest scale
q∗, we only want to count one irreducible path. Let Lq∗ contains all terms in L corresponding to a commutator
[Hmn, · · · ] at the longest scale, L−q∗ = L−Lq∗ , and Lq∗,j contains all couplings in Lq∗ that end on site j. Using
the Duhamel identity, we write

eLt = eL−q∗ t +
∑
j>r/2

t∫
0

dseL(t−s)Lq∗,jeL−q∗s. (D2)

Now consider using the triangle inequality, which holds for all p-norms, to obtain

‖QreLt|O0)‖p̄ ≤ ‖QreL−q∗ t|O0)‖p̄ +
∑
j>r/2

t∫
0

ds‖QreL(t−s)Lq∗,jeL−q∗s|O0)‖p̄. (D3)

The first term in this inequality would correspond to all paths that make it from 0 to r without ultra-long
couplings, and can be bounded separately (as we will describe below). The second term corresponds to all of the
paths that invoked a long coupling to get to a site j more than halfway to r. We would be tempted to perform
the following simplifications:

‖QreL(t−s)Lq∗,jeL−q∗s|O0)‖p̄ . ‖Lq∗,jeL−q∗s|O0)‖p̄ . ‖Hq∗,j‖p̄‖eL−q∗s|O0)‖p̄. (D4)

The first step is very mild, contributing at worst an O(1) factor. The second step, however, can only be used once
as we have emphasized for the Frobenius light cone (3.7): To peel off ‖HO‖p̄ ∼ ‖H‖(2)‖O‖p̄, submultiplicativity
(Proposition A.4) requires a constraint ‖O‖∞ ≤ 1. For (D4) this criterion is satisfied, but it will not be whenever
there are 2 or more irreducible couplings in a sequence. Our remedy is the following. For illustration, consider
growing an operator O by L, and for simplicity assume the operator is supported entirely ≤ 0 and L is bipartite
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j > 0 > i. Then, uniform smoothness implies

‖L|O)‖2p̄ =

∥∥∥∥∥∥
∑
j>0>i

Lij |O≤0)

∥∥∥∥∥∥
2

p̄

(D5)

≤ (p− 1)
∑
j>0

∥∥∥∥∥∑
0>i

Lij |O≤0)

∥∥∥∥∥
2

p̄

(D6)

≤ (p− 1)
∑
j>0

∥∥∥∥∥2
∑
0>i

Hij

∥∥∥∥∥
2

· ‖|O≤0)‖2p̄ . (D7)

In words, the sum over the right site j leads to a sum of squares in operator weight (as in Frobenius light
cones) while the sum over left site i is bounded additively as in the Lieb-Robinson light cone. What we gain
from this sacrifice is that this triggers a recursion for the (normalized) p-norm. We will see that this leads to a
light cone of t ∼ rmin(1,α−3/2), in between the Frobenius light cone of t ∼ rmin(1,α−1) and Lieb-Robinson light
cone t ∼ rmin(1,α−2).

Having made this observation, we can now essentially reproduce the proof used in [20], except that we need to
modify a few of the constants as well as the equivalence classes used in that proof. Disect the interactions of
scale q and regroup the terms sharing the same site j for i < j (i.e. j is farther from the origin). Labeled by
sites r ≥ j ≥ 0, these are the building blocks we will use.

∑
k

Hq,k =
∑
k

∑
(i,j)∈Hq,k

Hij =
∑
j

∑
k

∑
i<j,(i,j)∈Hq,k

Hij

 =:
∑
j

Hq,j . (D8)

For any sequence, we can define and read out its forward sequence by the following recursive algorithm.
Suppose Lβn · · · Lβ1

has forward sequence fn = (Lβm , · · · ,Lβ1
). Then for Lβn+1

· · · Lβ1
, it has forward sequence

fn+1 =

{
(βn+1, fn), if jn+1 ≥ jm + 1

fn else.
(D9)

where βn ≡ (qn, kn, jn). In words, the jn+1 ≥ jm + 1 condition says a hop is forward if exceeds the farthest so
far.
For each forward sequence, we can isolate terms of some scale q to form a q-forward-subsequence. Such a

sequence is long if has at least

Nq :=


1

2

2−q(α−5/2) 2
3

q∗∑
q′=0

2−q
′(α−5/2) 2

3

r

2q+1


(D10)

terms. Note the size of a scale-q block is 2q+1. We then define characteristic function χq for each scale

χqLβn · · · Lβ1
:=

{
Lβn · · · Lβ1

if it contains a long q-forward subsequence
0 else,

(D11)

and for each forward subsequence β

χβLβn · · · Lβ1
:=

{
Lβn · · · Lβ1

if it contains the forward subsequence β
0 else.

(D12)

We denote with Fq the set of long q-forward (sub)sequences. The following combinatorial proposition will now
prove useful (See, e.g. [56], for its context in combinatorics):

Proposition D.1. Let Fq denote the set of all long forward q-sequences of length ≥ Nq. Then

χq =

r∑
k=Nq

 k∑
p=Nq

(−1)k−p
(
k

p

) ∑
β∈Fq :|β|=k

χβ . (D13)
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Proof. Suppose that we have a sequence S := Lβn · · · Lβ1 First note that χq clearly annihilates anything which
does not have a long q-forward subsequence, since χβS = 0 for any β ∈ Fq.
Hence we can assume that S does have a long q-forward subsequence β. Consider what happens at length

Nq + k. For simplicity, let χ̃q denote the right hand side of (D13). In general, we will have

χ̃qS = N · S, (D14)

where the integer N counts the number of χβs, weighted by their appropriate prefactor in (D13), which do not
annihilate S. We can straightforwardly calculate

N =

k∑
r=0

(
Nq + k
Nq + r

)
×

(
r∑
p=0

(−1)r−p
(
Nq + r

Nq + p

))
=

k∑
r=0

r∑
p=0

(−1)r−p
(Nq + k)!

(k − r)!(r − p)!(Nq + p)!

=

k∑
p=0

k−p∑
q=0

(−1)q
(k − p)!

(k − p− q)!q!
(Nq + k)!

(k − p)!(Nq + p)!
(D15)

where in the second line, we switched variables to r = p+ q in the sum. Clearly, the sum over q vanishes unless it
only runs over q = 0; namely, p = k. We conclude that only the k = p term above is non-zero, which immediately
leads to N = 1. Hence χ̃qS = S, which implies χ̃q = χq and thus (D13).

We will use the following simple bound in what follows:
k∑
p=q

(−1)k−p
(
k

p

)
≤ 2k. (D16)

Next, we let ∆`(t) denotes the `-simplex:

∆`(t) := {(t1, . . . , t`) ∈ [0, t]` : t1 ≤ t2 ≤ · · · ≤ t`}. (D17)

The following lemma helps us to use the indicator functions above to group all sequences in eLt into “irreducible"
sequences:

Lemma D.2.

χβeLt|A0) =

∫
∆`(t)

dt` · · · dt1eL(t−t`)Lβ`eL
β
` (t`−t`−1)Lβ`−1

eL
β
`−1(t`−1−t`−2) · · · Lβ1

eL
β
1 t1 |A0) (D18)

where ` = `(β),

Lβp := L −
∑

λ∈Yp(β)

Lλ (D19)

with the sets Y βp corresponding to the forbidden terms

Y qp (β) := {(q′, k, j) : j ≥ j(βp−1)}, (D20)

which would change the forwardness of the sequence, at any scale. j(βp) denotes the right site of coupling βp.

The proof of this lemma is found in [20]. In words, the intermediate unitaries Lβp contain the terms (at any
scale) which cannot possibly render the coupling Lβp a non-forward coupling. The following lemma allows us to
then bound the p-norm of the resulting sequences:

Lemma D.3. ∥∥∥∥∥∥
∑

β∈Fq,|β|=`

χβeLt|A0)

∥∥∥∥∥∥
p

≤
(
2
√
Cpr‖Hq,i‖t

)`
`!
√
`!

‖A0‖p. (D21)

Proof. The q-forward sequence can be enumerated by the right-most sites of the q-scale couplings: we denote
these as r ≥ j` > · · · > j1 ≥ 1, using the previous lemma:∑
β∈Fq,|β|=`

χβeLt|A0) =
∑

β∈Fq,|β|=`

∫
∆`(t)

dt` · · · dt1eL(t−t`)Lβ`eL
β
` (t`−t`−1)Lβ`−1

eL
β
`−1(t`−1−t`−2) · · · Lβ1

eL
β
1 t1 |A0)

=
∑

j`>···>j1

∫
∆`(t)

dt` · · · dt1eL(t−t`)Lj`eL(j`)
(t`−t`−1)Lj`−1

eL(j`−1)(t`−1−t`−2) · · · Lj1eL(j1)t1 |A0)

=

∫
∆`(t)

dt` · · · dt1eL(t−t`)
∑
j`

Lj`eL(j`)
(t`−t`−1)

∑
j`−1<j`

Lj`−1
eL(j`−1)(t`−1−t`−2) · · ·

∑
j1<j2

Lj1eL(j1)t1 |A0).

(D22)
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We use notation L(i`) to emphasize it is independent of the previous i`−1, · · · , i1(Lemma D.2), which then allows
us moves the sums inside of the integrals in the third equality. This nested sum then conveniently allows us to
use the invariance of p-norms under unitary evolution to remove all but the “irreducible" steps Lβp from our
bound: ∥∥∥∥∥∥eL(t−t`)

∑
j`

Lj`eL(j`)
(t`−t`−1)

∑
j`−1<j`

Lj`−1
eL(j`−1)(t`−1−t`−2) · · ·

∑
j1<j2

Lj1eL(j1)t1 |A0)

∥∥∥∥∥∥
2

p

≤ Cp
∑
j`

‖2Hj`‖2∞

∥∥∥∥∥∥eL(j`)
(t`−t`−1)

∑
j`−1<i`

Lj`−1
eL(j`−1)(t`−1−t`−2) · · ·

∑
j1<j2

Lj1eL(j1)t1 |A0)

∥∥∥∥∥∥
2

p

≤ (4Cp)
`
∑

j`>···>j1

‖Hj`‖2 · · · ‖Hj1‖2‖A0‖2p ≤
(4Cpr‖Hq,j‖2)`

`!
‖A0‖2p. (D23)

The first inequality uses uniform smoothness for each term Lj` · · · , which is non-trivial on site j` and trivial
beyond. Indeed, if we start with the right-most possible j`, we know that all other terms in the sum are trivial
on site j`, so uniform smoothness applies; we simply repeat this argument until we have summed over all j`.
The second line repeats this for i`−1 · · · i1. In the last line, we used the combinatorial bound∑

r≥i`>···>i1≥1

≤ r`

`!
. (D24)

Finally, we use one final triangle inequality to state that

‖
∑

β∈Fq,|β|=`

χβeLt|A0)‖p ≤
√

(4Cpr‖Hq,j‖2)`

`!
‖A0‖2p

∫
∆`(t)

dt` · · · dt1 1 =
(2
√
Cprt‖Hq,j‖)`

`!3/2
(D25)

which completes the proof.

We now generalize this result to sequences that have q-forward subsequences at multiple scales q, which we
index by set Z ⊂ (0, · · · , q∗). As before, we label with FZ the set of all such (sub)sequences (keep in mind that
the ordering of terms at different scales is important to keep track of), and we define

χZ :=
∏
q∈Z

χq. (D26)

Lemma D.4. ∥∥∥∥∥∥
∑

β∈FZ ,|βq|=`q

χβeLt|A0)

∥∥∥∥∥∥
p

≤ ‖A0‖p
∏
q∈Z

(
2
√
Cpr‖Hq,j‖t

)`q
`q!
√
`q!

(D27)

Proof. The proof is nearly identical, but is slightly more tedious due to the multiple scales. Let us first bound
the number of ways that different scales can weave through each other, which is bounded by the multinomial
coefficient ∑

β∈FZ ,|βq|=`q

1 ≤ `!
∏
q∈Z

1

`q!
(D28)

where

` :=
∑
q∈Z

`q. (D29)

For each sequence in Z, we obtain a factor of

∥∥χβeLt|A0)
∥∥2

p
≤ (4Cp)

`
∑

j`>···>j1

‖Hj`‖2 · · · ‖Hj1‖2‖A0‖2p ≤
(4Cpr)

`

`!
‖A0‖2p

∏̀
j=1

‖Hq,j‖2. (D30)

Following the last steps of the prior lemma, we find that∥∥∥∥∥∥
∑

β∈FZ ,|βq|=`q

χβeLt|A0)

∥∥∥∥∥∥
p

≤ ‖A0‖p
∑

β∈FZ ,|βq|=`q

t`

`!
≤ 1√

`!
‖A0‖p

∏
q∈Z

(2
√
Cpr‖Hq,j‖t)`q

`q!

√
(4Cpr)`

`!

∏̀
j=1

‖Hq,j‖.

(D31)
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To finish the proof, we simply use the loose bound

`! ≥
∏
q∈Z

`q!, (D32)

which leads to (D27).

At this point, we invoke the inclusion-exclusion of different scales found in [20]:

∥∥PreLt|A0)
∥∥
p

=

∥∥∥∥∥∥Pr
∑
Z 6=∅

(−1)|Z|−1χZeLt|A0)

∥∥∥∥∥∥
p

≤
∑
Z 6=∅

∥∥PrχZeLt|A0)
∥∥
p
. (D33)

Together with Proposition D.1 (which immediately generalizes to multi-scale Z), with

NZ :=
∑
q∈Z

Nq, (D34)

we find that

∥∥PrχZeLt|A0)
∥∥
p

=

∥∥∥∥∥∥
r∑

`=NZ

 ∑̀
p=NZ

(−1)`−p
(
`
p

) ∑
β∈FZ :|β|=`

χβeLt|A0)

∥∥∥∥∥∥
p

≤
r∑

`=NZ

2`
∑

β∈FZ :|β|=`

∥∥χβeLt|A0)
∥∥
p
≤
∑
Z

∏
q∈Z

∞∑
`q=Nq

(4
√
Cpr‖Hq,j‖t)`q

`q!3/2
. (D35)

In the second line we used (D16), followed by Lemma D.4.
Now, let us suppose that

1 ≥
4
√
Cpr‖Hq,i‖t
N

3/2
q

(D36)

for every scale q. Assuming this inequality (which will fix the values of t for which our bound is valid), then
(D35) becomes

∥∥PreLt|A0)
∥∥
p
≤ 2

∑
Z

∏
q∈Z

(4
√
Cpr‖Hq,j‖t)Nq

Nq!3/2
≤ −1 + exp

(
2
∑
q

(4
√
Cpr‖Hq,j‖t)`q

`q!3/2

)
. (D37)

It is useful to determine the first value q1 at which a long q-forward path has a single coupling: Nq = 1 for
q ≥ q1. (Recall Nq’s definition in (D10).) This occurs when

M

r
≥ 1

4

1

(2q1)(α−1) 2
3

, (D38)

where we defined

M =

q∗∑
q=0

2−q(α−5/2) 2
3 . (D39)

Then, noting that for any j, there exists a constant 0 < c′1 <∞ such that

‖Hq,j‖ ≤
j−1∑
i=0

I(Hij ∈ Hq,k)‖Hij‖ ≤
c′1

4(2q)α−1
, (D40)

we find that there exist constants 0 < c′2, c2 <∞ such that

∑
q

2

(
4
√
Cpr‖Hq,i‖t

)Nq
Nq!3/2

≤
∑
q

(
c′2
√
prt

2q(α−1)N
3/2
q

)Nq

≤
q1−1∑
q=0

(
c2
√
ptM3/2

r

)Nq
+ c3
√
prt

q∗∑
q=q1

1

2q(α−1)
. (D41)
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We now analyze this sum for different ranges of α.
Case: α > 5/2. First, we note that M does not depend on r, since even as r → ∞ the sum in (D38) is

convergent. Secondly, we observe that N1 > N2 > · · · > Nq∗ , which follows from (D10) and the fact that Nq
(before the floor function) changes by a factor of at least 2

2
3 (α−1) > 2 each time. These two inequalities imply

that there exist constants 0 < c4,5,6 <∞ which do not depend on r such that

q1−1∑
q=0

(
c2
√
ptM3/2

r

)Nq
+ c3
√
prt

q∗∑
q=q1

1

2q(α−1)
≤
∞∑
n=2

(
c2
√
ptM3/2

r

)n
+

c3
√
prt

2q∗(α−1)

≤ c4
√
pt

r − c5
√
pt

+
c6
√
pt

r
. (D42)

Observe that (D36) holds so long as

t ≤ N
3/2
q

4
√
pr

2q(α−1) ≤ k′1
r3/2

2q(α−1)√pr(4M)3/2
2q(α−1) ≤ k1r√

p
, (D43)

for constants 0 < k′1, k1 <∞ that do not depend on r.
Case: 3/2 ≤ α < 5/2. Now we find that (for constants 0 < c7 <∞ and an integer m independent of r):

M =

q∗∑
q=0

2−q(α−5/2) 2
3 = c7r

(5/2−α) 2
3 , (D44)

and

q1 = q∗ −m. (D45)

Then note that N1 > N4 > N7 · · · , because the argument of (D10) now only varies by 2(α−1)2/3 ≥ 21/3 each
time q varies by 1. Hence, we obtain (for constants 0 < c8,9,10 <∞ independent of r):

q1−1∑
q=0

(
c2
√
ptM3/2

r

)Nq
+ c3
√
prt

q∗∑
q=q1

1

2q(α−1)
≤ 3

∞∑
n=2

(
c2
√
ptM3/2

r

)n
+ c3
√
prt

q∗∑
q=q1

1

2q(α−1)

≤
c8
√
pt

rα−3/2 − c9
√
pt

+
c10
√
pt

rα−3/2
. (D46)

Observe that (D36) holds so long as

t ≤ N
3/2
q

4
√
pr

2q(α−3/2) ≤ r3/22q(5/2−α)2−3q/2

√
prM3/2

2q(α−1) = k2
r
√
p
r5/2−α = k2

rα−3/2

√
p

. (D47)

for 0 < k2 <∞.
Case : α = 5/2. We obtain

M = q∗ + 1. (D48)

For r-independent constant 0 < c11 <∞,

2q1 = c11
r

log2 r
. (D49)

Again we have N1 > N2 > · · · > Nq1−1 > 1, for the same reason as when α > 5/2. Hence for 0 < c12,13,14 <∞,

q1−1∑
q=0

(
c2
√
ptM3/2

r

)Nq
+ c3
√
prt

q∗∑
q=q1

1

2q(α−1)
. ≤

∞∑
n=2

(
c2
√
pt ln(r)3/2

r

)n
+ c3
√
prt

q∗∑
q=q1

1

2q(α−1)
(D50)

≤
c12
√
pt

r ln−3/2 r − c13
√
pt

+
c14
√
pt ln r

r
. (D51)

Lastly, observe that (D36) is satisfied so long as

t ≤ N
3/2
q

4
√
pr

2q ≤ k3
r3/2

ln3/2 r

2q−q
√
pr

=
k3√
p

r

ln3/2 r
(D52)

for some constant 0 < k3 <∞.
Now let us summarize our results. Recall the definition of R(r) in (4.17). We have shown that for constants

0 < k4,5 <∞, for times t < k4R(r),

‖PreLt|A0)‖p
‖A0‖p

≤ k5t

R(r)
. (D53)

This completes the proof.
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Appendix E: Proof of Proposition 5.2

Step 1: We begin by developing the “super-density matrix" picture of operator growth, following [57]. If H
is the quantum mechanical Hilbert space, and (with a slight abuse of notation) H ⊗H is a Hilbert space of
all normalizable operators on H (in what follows, we will restrict to Hermitian operators), the super-density
matrix is a normalizable element of (H⊗H)⊗ (H⊗H). It is easier to visualize with bra-ket notation: using
the operator ket |A) introduced above, the pure super-density matrix corresponding to A becomes |A)(A|. It is
straightforward to build a good basis for super-operators. Using the fact that the space of Hermitian operators
acting on a single qubit is spanned by the orthonormal basis

|Xa) (a = 0, 1, 2, 3) := |I), |X), |Y ), |Z) ∈ R1+3 (E1)

endowed with the canonical inner product in R1+3, a basis for super-operators on a single qubit is evidently
|Xa)(Xb| for a, b = 0, 1, 2, 3. The standard tensor product between lattice sites then allows us to build up a
good basis for our super-operator space.

Observe that the Frobenius norm is now simply (up to square) the super-operator trace

Tr[|A)(A|] := (A|A) = ‖A‖2F. (E2)

The latter equality follows from (2.5). As a consequence, evaluating the Frobenius norms of projected operators
in this super-operator language will be particularly simple – we simply pick out the basis operators which we
wish to keep, and sum the coefficients of the diagonal elements of the pure super-density matrix. In particular,
given the growing operator X0(t), we can define the probabilities pS(t) (for subsets S ⊂ Λ) as (recall (2.9))

|X0(t))(X0(t)| :=
∑
S⊂Λ

pS(t)|X0(t)S)(X0(t)S |+ off-diagonal terms. (E3)

Much of the proof that follows will amount to bounding (sums of) pS(t) throughout the protocol. To avoid
confusing the super-operator spaces from operators, we here define the adjoint operation acting on operators
H⊗H → H⊗H

AdjiA(X) := |i[A,X]). (E4)

and the conjugation operation

ConjB |X) := |B†XB). (E5)

We define the super-depolarizing channel, acting on super-operators (H⊗H)⊗ (H⊗H)→ (H⊗H)⊗ (H⊗H) as

D := ED
[
(ConjD) (·) (ConjD)

†
]
. (E6)

Recall the depolarizer D is a random tensor product unitary defined in the main text. To give a concrete
example:

D[|X)(Y |] = ED|D†XD)(D†Y D|. (E7)

We define the q-scale growth channel as

Vq := EJ
[(

ConjVq

)
(·)
(

ConjVq

)†]
. (E8)

Expectation values are taken over the random Dx in (5.15), and random Jxy in (5.19), respectively. We thus
see that our (averaged) protocol as a “quantum super-channel", defined via the analogue of (5.10):

Mq :=Mq−1DVqMq−1. (E9)

Step 2: We now turn to the analysis of the super-depolarizing channel D. Let us define the “maximally mixed
non-trivial operator" (on a single site)

µ :=
|X)(X|+ |Y )(Y |+ |Z)(Z|

3
. (E10)

In a nutshell, the essence of this proof is that all we need to keep track of is whether or not each site has a µ or
the trivial operator

I = |I)(I| (E11)

on it: namely, we will show that after each step of the random protocol,

DVq|X0)(X0| =
∑
S⊂Λ

ρS
⊗
i∈S

µi
⊗
j∈Sc

Ij . (E12)

The depolarizing channel is what makes this simplification possible, as formalized via the following:
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Proposition E.1. For any a, b = 1, 2, 3 (and on every site independently),

D|I)(I| = |I)(I|, (E13a)
D|I)(Xa| = D|Xa)(I| = 0, (E13b)

D|W a)(W b| = δabµ. (E13c)

Proof. The key idea behind this proof is to use the group theoretic structure of the random unitaries Dx (for
simplicity in what follows, we drop the x subscript, since D is simply a tensor product of the channel defined via
(E13) on every site anyway). By definition in our protocol,

D :=
1

48

∑
D∈G

[
(ConjD) (·) (ConjD)

†
]
, (E14)

as 48 is the number of group elements in G, defined in (5.16). By construction, D takes any 4× 4 matrix M
acting on the space of operators on a qubit, defined in (E1), and projects it onto G-invariant maps.
To find these irreducible representations, we first observe that G is isomorphic to the “double cover" of the

group of rotations which leave invariant a three-dimensional cube, which is in turn isomorphic to S4 × Z2 (a
subgroup of SU(2)). By standard representation-theoretic computation, we find that R1+3 decomposes into two
irreducible representations of G:

span(I,X, Y, Z) = span(I)⊕ span(X,Y, Z) (E15)

By Schur’s Lemma, the only G-invariant matrices obeying DM = M are therefore of the form

M = a|I)(I|+ b|X)(X|+ b|Y )(Y |+ b|Z)(Z| = aI + 3bµ. (E16)

We then obtain (E13) by using the fact that D is a probability-weighted linear sum of unitary operators, and
therefore is completely positive and trace preserving. This condition fixes a = 1 and b = 1

3 .

Combining this proposition with (E9), we immediately find:

Corollary E.2. For any super-operator ρ,

Dρ =
∑
S⊂Λ

ρS
⊗
i∈S

µi
⊗
j∈Sc

Ij . (E17)

In our random protocol, (E12) holds, even in intermediate protocol steps, after any application of D.

Step 3: Corollary E.2 shows that the only information we need to keep track of, after depolarizing, is the
probability pS that our growing operator is supported on the subset S. We define the number super-operators:

N̂ =
∑
x∈Λ

N̂x, (E18a)

N̂x :=
(
|X)(X|+ |Y )(Y |+ |Z)(Z|

)
x

= 3µx. (E18b)

However, due to Corollary E.2, we can actually think of each of these as classical random variables. In particular,
after applying (averaged) super-channel DU (for any U), the probability distribution P̂ on the variables N̂x ∈ {0, 1}
can be defined (with a slight abuse of notation) via

P̂[N̂x1
= N̂x2

= · · · = N̂xm = 1, N̂y1
= · · · = N̂yn = 0]

:= Tr
[
N̂x1
· · · N̂xm(1− N̂y1

) · · · (1− N̂yn)DU|X0)(X0|
]
. (E19)

In words, we consider the basis which all N̂ are simultaneously digonalized. The classical probability distribution
P̂ counts the weight of DU|X0)(X0| that satisfies the boolean quantifiers represented by the product of N̂s and
(1− N̂)s above: namely, the sum of all diagonal elements of DU|X0)(X0| compatible with N̂x1

= 1, etc. The
well-posedness of P̂ is guaranteed by the fact that DU is completely positive and trace preserving, and the
observables N are commuting. Knowing the classical probabilities pS (corresponding to the probability that
N̂x = 1 if and only if x ∈ S) is enough to know DU|X0)(X0|.

Armed with this knowledge, we are ready to lay out the foundations for the remainder of our inductive proof.
The induction hypothesis we begin with is that for any set S ⊂ C0 ∈ Bq−1, with C0 the (q − 1)-scale cube
containing the origin,

P̂

(
N̂Mq−1

⊗
i∈S

µi ≥ λ1,q−1R
d
q−1

)
≥ η1,q−1. (E20)



30

�ℳq −1

�# ∘ %q

�ℳq

�Cq

�ℳq −1
�η1,q −1

�1 −η1,q −1

�η2,q −1

�1 −η2,q −1

�η3,q −1
�1 −η3,q −1

�Cq −1

Figure 4. The rigorous operator growth protocol, in which we no longer guarantee full occupancy of all sites. Instead, we
only get to keep a fraction of occupancy at each recursion, albeit with high probability. Using the central limit theorem,
the failure probabilities 1− η is suppressed by rate of expansion e−O(m). The choice of m ∼ exp(

√
ln r) is large enough to

render these probabilities mild, and leave us with (5.24).

Here 0 < λ1,q−1, η1,q−1 < 1 are constants that we will obtain a little later; in particular though, η1,q−1 will be
interpreted as a lower bound on the success probability of Mq−1 – namely, the probability that it grows an
operator to have support on S ⊂ C0 with S containing fraction ≥ λ1,q−1 of all sites in C0.
Next, we condition on the assumption that at least s := λ1,q−1R

d
q−1 sites are occupied. This throws away a

fraction of at most 1− η1,q−1 of the operator (an amount that we will see is small). We will then show that if we
run the unitary Vq for sufficiently long time, we will seed more than 3.3% of the (q − 1)− cubes in the q-cube
containing the origin, with probability η2,q−1: see Lemma E.3. We note that 1− η2,q−1 decays exponentially
with md and s.

Lastly, we applyMq−1, which will attempt to grow the operators in (q−1)-cubes Cq−1(k) that we seeded above
into large Pauli strings. Conditioned on there are at least ns seeded blocks Cq−1, we will show in Proposition
E.5 that with probability η3,q−1, a rather large number of sites (to be quantified later) will be occupied (when
considering all (q − 1)-cubes together). This proves the inductive hypothesis. We summarize the way that
operators grow throughout this process in Figure 4.
Step 4. We now analyze the Vq operator growth step of our protocol in detail. The key observation is that,

upon averaging over all possible Vq, the superchannel Vq takes an arbitrary operator of sufficient size in any
(q − 1)-cube Cq−1 ⊂ Cq, and “seeds" new µs in a finite fraction of the remaining (q − 1)-cubes C ′q−1 ⊂ Cq which
are contained within the q-cube Cq (see Figure 4). More precisely, we have:

Lemma E.3. Let Cq ∈ Bq. For any subset S ⊆ Cq of size |S| ≥ s, set the time

τq :=
Rαq√

2sRdq−1

. (E21)



31

Define the superoperator

ρ′ = Vq
(
µ⊗SI⊗(Cq−S)

)
. (E22)

Let C ∈ Bq−1 denotes one of the (q − 1)-cubes contained within Cq, and define the classical random variables

ŷC := I

(∑
x∈C

N̂x > 0

)
. (E23)

Then

1− η2,q−1 := P̂ρ′

 md∑
C=1

ŷC ≤
md

30

 ≤ exp

(
−m

d

120

)
+ exp

(
− s

72

)
(E24)

where P̂ρ′ denotes the probability distribution obtained from (E22). For notational simplicity, we have labeled the
md (q − 1)-cubes in Cq as C = 1, . . . ,md.

Proof. First, we re-write Vq in a more elegant way, using the fact that all ZZ terms in HZZ
q commute with each

other:

Vq = EJ

exp

 τq
Rαq

∑
{i,j}⊂Cq

JijAdjiZiZj

 (·)

exp

 τq
Rαq

∑
{i,j}⊂Cq

JijAdjiZiZj

†

= EJ
∏

{i,j}⊂Cq

[
exp

[
τq
Rαq

JijAdjiZiZj

]]
(·)
[
exp

[
τq
Rαq

JijAdjiZiZj

]]†
, (E25)

Since Z terms commute with Zs, but not with Xs or Y s, let us define

ν =
|X)(X|+ |Y )(Y |

2
, Z = |Z)(Z| (E26)

such that

µ =
2

3
ν +

1

3
Z. (E27)

From (E25), we can first calculate what a single ZiZj coupling does to µi or µiµj ; the application of Vq will
then correspond to repeating this procedure on all pairs of sites in the cube Cq. It is straightforward to show
that (temporarily denoting θij := JijτqR

−α
q )

exp[θAdjiZiZj ] IiIj exp[θAdjiZiZj ]
† = IiIj , (E28a)

exp[θAdjiZiZj ] νiνj exp[θAdjiZiZj ]
† = νiνj . (E28b)

Moreover, since

exp[θAdjiZiZj ]

(
|XiIj)
|YiZj)

)
=

(
cos(2θ) sin(2θ)
− sin(2θ) cos(2θ)

)(
|XiIj)
|YiZj)

)
, (E29)

we conclude that

E
[
exp[θAdjiZiZj ]

(
|XiIj)(XiIj |
|YiZj)(YiZj |

)
exp[θAdjiZiZj ]

†
]

=

(
1− p1 p1

p1 1− p1

)(
|XiIj)(XiIj |
|YiZj)(YiZj |

)
(E30)

where

p1 = E[cos2(2θij)] =
1

2
− 1

2
E
[
e4iJijτq/R

α
q

]
=

1

2

[
1− F

(
4τq
Rαq

)]
(E31)

where

F (x) :=
sinx

x
. (E32)

The following Taylor expansion estimate for F (x) will prove useful:

1− x2

6
≤ F (x) ≤ 1− x2

6
+

x4

120
. (E33)
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Combining (E30) and (E33), we obtain

E
[
exp[θAdjiZiZj ]

(
νiIj
νiZj

)
exp[θAdjiZiZj ]

†
]

=

(
1− p1 p1

p1 1− p1

)(
νiIj
νiZj

)
(E34)

where, upon plugging in for θij , we obtain

4

3

τ2
q

R2α
q

> p1 >
4

3

τ2
q

R2α
q

− 16

15

τ4
q

R4α
q

. (E35)

An important consequence of all of these identities is that if we write out an initial operator density in the
form

ρ̂ =
∏
i∈Sν

νi
∏
j∈SZ

Zj
∏

k∈Cq−S

Ik, (E36)

where Sν and SZ form a partition of S, then this tensor product structure is preserved under the average of the
time evolution. This is because νis are invariant, while Zs and Is convert between each other in a Markovian
fashion independently on each site. Using the independence of the Jijs, we see that if ` = |Sν |, then

Vqρ̂ =
∏
i∈Sν

νi
∏
j∈Sz

[(1− p`)Zj + p`Ij ]
∏

k∈Cq−S

[(1− p`)Ik + p`Zk] , (E37)

where we define p` via (
1− p1 p1

p1 1− p1

)`
=

(
1− p` p`
p` 1− p`

)
. (E38)

More concretely, we may bound p` as follows:

p` =
∑̀

j=1,3,5,...

(
`
j

)
pj1(1− p1)`−j =

1

2

[
(1− p1 + p1)` − (1− p1 − p1)

`
]
≥ 1− e−2p1`

2
. (E39)

Now, of the md cubes Cq−1(k) ⊂ Cq, we must count how many of them contain either a ν or a Z on at least
one site, after applying E[Vq]ρ̂. Consider Bernoulli random variables x̂j ∈ {0, 1} on sites j ∈ Cq, with

P̂[x̂j = 1] :=

 1 j ∈ Sν
1− p` j ∈ Sz
p` otherwise

. (E40)

The interpretation of x̂j is the probability that we find a non-identity operator on site j in E[Vq]ρ̂. Since p` ≤ 1/2,
we can easily see that for any (q − 1)-cube C ⊂ Cq,

P̂

[∑
k∈C

x̂k = 0

]
= P̂ [ŷC = 0] ≤ (1− p`)|Q| := 1− p∗ (E41)

where Q is any subset of Cq, which will be taken as Cq−1(k) ⊂ Cq. This inequality follows from the independence
of x̂k, regardless of the set Q. We can now bound the probability that at least λ2,q−1m

d
q of the cubes Cq−1 have

at least one operator in them using the standard Chernoff bounds:

Proposition E.4 (Chernoff bounds). Let A be a discrete set. For i ∈ A, let xi ∈ {0, 1} be independent Bernoulli
random variables. If

S :=
∑
i∈A

xi, (E42)

then

P(S ≤ (1− δ)E[S]) ≤ exp

(
−1

2
δ2E[S]

)
. (E43)

In our calculation, the Bernoulli random variables of interest are ŷC , which obey E[ŷC ] ≥ p∗. Choosing

λ2,q−1 :=
p∗
2
, (E44)
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we arrive at

P̂

[∑
C

ŷC ≤
p∗m

d

2

]
≤ exp

(
−p∗m

d

8

)
. (E45)

To conclude the proof, note that the above calculation was based on the number of νs. By our initial
assumption, the initial operator will have ≥ s µs, which can be anywhere in cube Cq. Breaking up µ into ν and
Z(E27), we see that our initial operator is binomial distributed: on each of (at least) s sites, the probability of ν
is 2/3. Using Chernoff bounds on an initial operator of s µ, the probability of having ` ≥ s/2 is extremely high
when s is large:

P̂
(
` ≥ s

2

)
≥ 1− exp

(
− s

72

)
. (E46)

This inequality holds regardless of the number of sites in the set S on which our operator is initially supported,
so long as |S| ≥ s.
Now, we proceed as follows. Using the simple fact that in classical probability theory, for any two events A

and B, P(A) ≥ P(A and B), we will lower bound the probability η2,q−1 by calculating

P̂ρ′

 md∑
C=1

ŷC ≤
md

30

 ≥ P̂ρ′

 md∑
C=1

ŷC ≤
md

30
and ` ≥ s

2


≥ P̂ρ′

 md∑
C=1

ŷC ≤
md

30

∣∣∣∣∣∣ ` ≥ s

2

 P̂ρ′
[
` ≥ s

2

]
. (E47)

To bound the conditional probability above, we start with (E39) and (E41):

p∗ = 1− (1− p`)R
d
q−1 ≥ 1− exp

(
−p`Rdq−1

)
≥ 1− exp

(
−1− e−p1s

2
Rdq−1

)
(E48)

Note that we have used that ` ≥ s/2. Now, observe that for x < 1, e−x ≤ 1− x
2 . Since

p1s ≤
4s

3

τ2
q

R2α
q

≤ 2

3Rdq−1

≤ 1, (E49)

we may further simplify (E48) to

p∗ ≥ 1− exp

(
−
p1sR

d
q−1

4

)
≥
p1sR

d
q−1

6
, (E50)

noting that (E49) implies the argument of exp above is ≤ 1/6, in which case 1− e−x ≥ 2
3x. Now using (E21)

and (E35), we find

p∗ ≥
sRdq−1

6

(
2

3sRd−1
q

− 4

15s2R
2(d−1)
q

)
≥
sRdq−1

6

2

3sRd−1
q

(
1− 2

5sRd−1
q

)
≥ 1

15
. (E51)

Combining (E45) and (E51), we find that

P̂ρ′

 md∑
C=1

ŷC ≤
md

30

∣∣∣∣∣∣ ` ≥ s

2

 ≥ 1− exp

(
−m

d

120

)
. (E52)

Combining (E46), (E47) and (E52), we obtain (E24).

Step 5. Now that we know at least 1/30th of the (q− 1)-cubes in a q-cube are seeded after the first application
of Vq, we must now ask what happens after applyingMq−1 again (recall Figure 4). The answer is provided by
the following proposition:

Proposition E.5. Consider a tensor product superoperator of the form

ρ = µ⊗SI⊗S
c

, (E53)

where S ⊂ Λ is finite. Then

1− η3,q−1 := P̂ρ

N̂ ≤ wη1,q−1λ1,q−1R
d
q−1

2

∣∣∣∣∣ ∑
C∈Bq−1

ŷC = w

 ≤ exp
(
−wη1,q−1

8

)
(E54)



34

Proof. By our inductive hypothesis (E20), for any C ∈ Bq−1,

P̂

[∑
x∈C

N̂xMq−1ρ ≥ λ1,q−1R
d
q−1

∣∣∣∣∣Tr (ŷCρ) = 1

]
≥ η1,q−1. (E55)

So, letting x̂C denote a Bernoulli random variable denoting whether or not the criterion above is satisfied, we
observe that E[x̂C ] ≥ η1,q−1. Moreover, x̂C form independent Bernoulli random variables for each cube C. So
again, we may use the Chernoff bounds to show that

P̂

 ∑
C∈Bq−1

x̂C ≤
wη1,q−1

2

 ≤ exp
(
−wη1,q−1

8

)
. (E56)

Since we are guaranteed that the event in (E54) does not occur if the event in (E56) does not occur (since for
each x̂C ≥ 1, we get a contribution of at least λ1,q−1R

d
q−1 to N̂), (E56) implies (E54).

Step 6. We now must combine the results from the previous two steps to prove that we may choose η1,q such
that (E20) continues to hold at scale q. As in Figure 4, we can conclude from our discussion above that if we
choose

λ1,q :=
η1,q−1λ1,q−1

60
, (E57)

then the success probability at scale q is given by

η1,q := P̂

Tr

N̂M[
⊗

i∈S⊂Cq

µi]

 ≥ λ1,qR
d
q

 ≥ η1,q−1η2,q−1η3,q−1, (E58)

where η1,q−1 is the probability that the first Mq−1 is successful (namely, the induction event in (E20) has
occurred), η2,q−1 is the probability that the first DVq is successful (given in Lemma E.3), and η3,q−1 is the
probability that the secondMq−1 is successful (given in Proposition E.5).

To start off this recursive relation, we first discuss what happens at scale q = 1. This scale is somewhat special,
since the operator starts off with probability 1 being a Pauli X at the origin. Because it is a Pauli X, the bound
in Lemma E.3 can be simplified (only for this very first application of V1, before any depolarizing channel!). It is
in fact simplest to convert |X0)(X0|, the initial super-operator, into ν0 (this simplifies some equations, but does
not change the protocol’s performance). Using (E37), we see that

V1|X0)(X0| = ν0

∏
x∈C1−0

((1− p1)Ix + p1Zx) . (E59)

where C1 denotes the 1-cube containing the origin, and, using (E35),

p1 >
2

3
− 4

15
=

6

15
. (E60)

Using the Chernoff bounds, we can easily see that

1− η2,0 = P̂
[
Tr
(
N̂M1ν0

)
≤ md

30

]
≤ exp

(
−m

d

120

)
. (E61)

Note also that η1,0 = η3,0 = 1, since there is noM0, so

η1,1 = η2,0 ≥ 1− exp

(
−m

d

120

)
. (E62)

This corresponds to the base case of our inductive proof.
Given this base case, the following lemma demonstrates that η1,q is indeed (for all q ≤ q∗) finite.

Lemma E.6. For large enough r, the recursion relation

η1,q = η1,q−1η2,q−1η3,q−1 (E63)

admits a solution obeying, for all 1 ≤ q ≤ q∗,

η1,q ≥
1

2
. (E64)
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Proof. The key idea of this proof is that m is (perhaps surprisingly) sufficiently large so that η2,k and η3,k are so
close to 1 that the repeated multiplication of η probabilities above converges to a non-zero result (for q ≤ q∗).
To see this concretely, let us use Lemma E.3 and Proposition E.5 to note that

αq−1 := η2,q−1η3,q−1 ≥

(
1− exp

(
−
λ1,q−1R

d
q−1

72

)
− exp

(
−m

d

120

))(
1− exp

(
−m

dη1,q−1

240

))
. (E65)

We wish to analyze the nonlinear recursion relation

η1,q = η1,q−1αq−1. (E66)

Happily, to demonstrate the lemma, we can assume that (E64) holds when evaluating αq−1. The reason for this
is that αq−1 monotonically increases with η1,q−1; hence setting η1,q−1 = 1/2 when evaluating αq−1 gives us a
lower bound on αq−1, and in turn on η1,q. From (E57) and (E61), we can bound

λ1,q ≥ λ1,11201−q =
4

120q
. (E67)

We thus find that for q > 1,

αq−1 ≥ 1− exp

(
−m

d

480

)
− exp

(
−m

d

120

)
− exp

(
− 1

18

(
md

120

)q−1
)

≥ 1− exp

(
−m

d

480

)
− exp

(
−m

d

120

)
− exp

(
− md

2160

)
. (E68)

We conclude that for all q ≤ q∗,

η1,q ≥
[
1− exp

(
−m

d

480

)
− exp

(
−m

d

120

)
− exp

(
− md

2160

)]q∗
. (E69)

Let us now show that (E69) is compatible with (E64). To do this, we simply recall the definitions of
m ∼ exp(

√
ln r) in (5.14), and q∗ ∼

√
ln r in (5.21). In fact, since for sufficiently (and not very) large r,√

ln r > ln(ln r),

exp
(
−md

)
≤ exp

(
−ed

√
ln r
)
≤ exp

(
−ed ln(ln r)

)
≤ exp

(
−(ln r)d

)
≤ 1

r
. (E70)

Thus we observe that for sufficiently large m (and hence r),[
1− exp

(
−m

d

480

)
− exp

(
−m

d

120

)
− exp

(
− md

2160

)]q∗
> 1− 3q∗ exp

(
− md

2160

)
> 1− 3(1 +

√
ln r)

r1/2160
. (E71)

For sufficiently large r, this is larger than 1/2. This ensures (E64).

The final step in the proof of Proposition 5.2 is very simple. We have shown that on average, we can take a
single Pauli X0 supported on one site, and have half of the operator weight supported on a fraction of sites

N̂ ≥ λ1,q∗R
d
q∗ ≥

(
md

120

)q∗
≥

(
ed
√

ln r

120

)√ln r

≥ rd

120
√

ln r
. (E72)

Setting r = L1+ε/2, we find

N̂ ≥ Ld · Ldε/2

120
√

(1+ε/2) lnL
> Ld (E73)

for sufficiently large r and L. Combining (E64) with (E73), we obtain that (5.24) holds on average in our
ensemble of random unitaries:

E [‖P≥L|X0(t))‖F] ≥ 1

2
. (E74)
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Since ‖P≥L|X0(t))‖F ≤ 1, with at least 50% chance a unitary drawn from the ensemble has grown an operator
to be large:

P
[
‖P≥L|X0(t))‖F ≥

1

2

]
≥ 1

2
. (E75)
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