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Abstract

Determining the vibrational structure of a molecule is central to fundamental applications in

several areas, from atmospheric science to catalysis, fuel combustion modeling, biochemical imag-

ing, and astrochemistry. However, when significant anharmonicity and mode coupling are present,

the problem is classically intractable for a molecule of just a few atoms. Here, we outline a set

of quantum algorithms for solving the molecular vibrational structure problem for both near- and

long-term quantum computers. There are previously unaddressed characteristics of this problem

which require approaches distinct from most instances of the commonly studied quantum simula-

tion of electronic structure: many eigenstates are often desired, states of interest are often far from

the ground state (requiring methods for “zooming in” to some energy window), particle conserva-

tion is not required, and transition amplitudes with respect to a non-unitary Hermitian operator

must be calculated. We address each of these hurdles and consider problem instances of four

molecular vibrational Hamiltonians. Finally and most importantly, we give analytical and numer-

ical results which suggest that, to a given energy precision, a vibrational problem instance will be

simulatable on a quantum computer before an electronic structure problem instance. These results

imply that more focus in the quantum information community ought to shift toward scientifically

and industrially important quantum vibrational problems.
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I. INTRODUCTION

To date, the vast majority of chemistry- and materials-related quantum algorithms re-

search has focused on the electronic structure (ES) problem [1, 2]. Given a particular set of

nuclear coordinates, the goal is to solve the time-independent fermionic (electronic) many-

body problem to determine accurate energies. However, an accurate solution of the ES

problem is only one of the current challenges in computational chemistry and materials sci-

ence. There are properties of interest for which the computational bottleneck is not ES, but

rather an accurate quantum treatment of the molecular motion [3].

One such area is the simulation of vibrational structure (VS) and determination of vibra-

tional spectra, as there is a large subset of molecules for which ES is classically tractable

to subchemical accuracy while the quantum vibrational problem is not (see Figure 1). This

is true for small molecules and clusters [4–8] in several areas of spectroscopy: infrared spec-

tra, Raman spectra, vibronic spectra, and ultrafast vibrational spectra, to name just a few

[9–11].

Even qualitatively correct vibrational spectra often require a rigorous quantum treatment

because Fermi resonances, association bands, and other resonance effects can result from

small coupling terms [9, 13–15]. The ability to simulate vibrational structure has many

applications including fuel combustion [16], atmospheric science [17], astrochemistry [18,

19], and fundamental experiments in chemical physics [20, 21]. Other than vibrational

spectra, problems that lie in the lower-left quadrant of Figure 1 include low-temperature

thermodynamic calculations of some bulk solids [22] and quantum liquids [23].

Previous quantum computational studies in this area include analog quantum algorithms

for quantum vibrations [24–28], digital quantum algorithms for finding vibrational states

and/or overlaps [3, 29, 30], and approaches for which vibrational degrees of freedom are

coupled to other systems [31–34]. The present work is distinct in that we outline the several

conceptual peculiarities of simulating vibrational spectroscopy, we apply quantum algorithms

that had not previously been used in this context, and we study the complexity of VS relative

to ES.

In this work we present algorithms for calculating vibrational spectra on both near- and

long-term hardware, focusing on vibrational infrared spectra. One of our contributions is

identifying certain essential components that are required for this problem class, drawing
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FIG. 1. We categorize molecular simulation into four quadrants, depending on whether the elec-

tronic structure and vibrational structure of the problem are tractable on a classical computer.

This work’s focus is the lower-left quadrant—those molecules or complexes for which the potential

energy surface can be calculated on a modern classical computer, while the quantum vibrational

structure may require a quantum computer. Upper-left : small rigid molecules methane, water, and

nitrogen. Upper-right : the chromium dimer (dashed: calculation; solid: experiment) [12]. Lower-

right : A chromium-containing large molecule with non-rigid ligands. Lower-left : the prototypical

“fluxional” molecule CH+
5 , the water trimer, and malondialdehyde.

attention to the algorithmic objectives that would not appear in most other common prob-

lems that involve Hamiltonian simulation. Some aims of this class of problems, which we

introduce to the reader and demonstrate how to address, are significantly different from ES.

Finally and most importantly, we compare the problem’s complexity characteristics to ES.

The results lead us to cautiously predict that, for a given precision, a VS problem instance

will probably achieve quantum advantage before an ES one.

From a Hamiltonian simulation perspective, we note five conceptual differences between

the nature of the typical ES problem instance and that of vibrational spectroscopy, the first
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three of which to our knowledge have not been clearly stated previously in this context.

First, when it is said that the “spectrum” is being calculated in molecular ES, this normally

refers to only a few of the lowest-lying electronic states. In contrast, in a vibrational problem

one is almost always interested in many states. Second, the states of interest are often far

(in quanta) from the ground state—excited states above the 100th energy level are often of

interest.

The third conceptual difference is that one is often interested in calculating both vi-

brational energies and transition intensities, which necessitates calculating the transition

amplitudes with respect to a non-unitary coordinate-dependent operator. Though such

transition amplitudes are applicable to ES in some important areas [35, 36], their inclusion

has not been the norm in the context of quantum algorithms. Fourth, the problem requires

that vibrations (bosons) instead of fermions be encoded into the quantum device, a topic

that has been previously explored [3, 37–39]. Finally, particle conservation [40, 41] is not a

factor in vibrational spectroscopy, which may lead to simpler algorithm components.

II. THEORY

In arbitrary internal coordinates ~s (with corresponding momenta ~m), the Hamiltonian for

M vibrations in general form is written (with ~ = 1) H = 1
2

∑
gijmimj+V (~s) where gij is the

coupling between momenta (vanishing for i 6= j under normal or Cartesian coordinates) and

V (~s) is the potential energy term. In the harmonic approximation, one may diagonalize the

Hessian matrix at the equilibrium position, leading to a simplified approximate expression

with uncoupled coordinates, Hharm = 1
2

∑M
i ωi(q

2
i + p2

i ), where i denotes the vibrational

mode, M is the total number of modes, q and p are respectively the bosonic position and

momentum operators, and ωi is the energy of mode i. It is trivial to find eigenvalue-

eigenfunction pairs for the harmonic Hamiltonian on a classical computer, since excited

states in the Harmonic approximation are product states of separate modes.

The harmonic Hamiltonian can be systematically improved by including higher order

anharmonic terms,

Hanharm =
1

2

M∑
i

ωi(q
2
i + p2

i ) +
∑
{ijk}

hijkqiqjqk +
∑
{ijkl}

hijklqiqjqkql + · · · , (1)

where the index ordering is irrelevant and hijk··· = 0 if all indices are distinct. Computational
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difficulties arise when these higher-order terms are included, due to both the deviation from

harmonicity and the coupling between modes.

Even for a molecule of 5 to 8 atoms, the complete inclusion of anharmonic effects can be

computationally prohibitive. Though various forms of perturbation theory and dimension-

ality reduction sometimes yield good results, one must often resort to exact diagonalization

of the whole Hilbert space (which scales exponentially in the number of modes) or similarly

expensive methods [42–47]. In any molecule whose vibrational Hilbert space is too large for

a classical computer and which also requires exact diagonalization, one would likely require

the use of a quantum computer. Note we are not constrained to use the harmonic basis of

equation (1)—it will often be the case that choosing a specialized coordinate system allows

one to use a lower-order series expansion [30, 48–50].

In order to make our discussion concrete, we consider infrared spectroscopy, though simi-

lar mathematical methods would be used for other experiments such as Raman, microwave,

or ultrafast multidimensional vibrational spectroscopy [9, 10]. The dipole moment oper-

ator is necessary for simulation of light-matter interaction, e.g. for calculating transition

intensities. It is denoted µ(α) where α ∈ {x, y, z} is a Cartesian direction, and may also be

expanded in a power series,

µ(α) = µ
(α)
0 +

M∑
i

∂µ(α)

qi

∣∣∣∣
qi=0

qi +
1

2

M∑
ij

∂2µ(α)

qiqj

∣∣∣∣
qi,qj=0

qiqj + · · ·

= µ
(α)
0 +

M∑
i

miqi +
M∑
ij

mijqiqj + · · ·

(2)

The objective is to calculate the spectrum

f(ω) =
∑
α

∑
j

|〈0|µ(α)|j〉|2L(ωj − ω), (3)

where |0〉 is the initial eigenstate (ground state when beginning from zero temperature),

and L(ω) is a line shape function, approximated as a delta function when one does not

consider broadening effects. Though in this work we consider transitions from the ground

state, the initial state of interest is often a Gibbs state (i.e. thermal state). Existing

quantum algorithms for thermal state preparation [51–55] may be used in conjunction with

the approaches summarized here.

Both the Hamiltonian and the dipole operator may be mapped to a qubit-based Hamil-

tonian using the bosonic commutation relations, where a practical choice is to use the
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Pauli operator basis: Hanharm 7→
∑NP

k akPk =
∑

k ak
⊗Nq

g σgk and µ(α) 7→
∑N

(α)
R

k bkαRkα =∑
k bkα

⊗Nq
g σgkα, where g labels the qubit, σ ∈ {I,X, Y, Z} is the identity or a Pauli opera-

tor, α labels the Cartesian direction, NP (NR) is the number of Pauli strings in the encoded

Hamiltonian (dipole operator), and Nq is the number of qubits. Approaches for performing

this mapping have been discussed previously [3, 31, 37, 38].

A near-term algorithm for the vibrational spectroscopy problem requires several elements:

(a) mapping of bosons to qubits, (b) finding unitaries Ui to produce eigenstates, (c) deter-

mining state overlaps |〈ψi|ψj〉|2, (d) calculating transition amplitudes with respect to a

non-unitary Hermitian operator, and (e) efficiently finding eigenstates far above the ground

state. We first present the noisy intermediate-scale quantum (NISQ) approach for these

problem requirements in Sections II A and II B, then provide commentary and approaches

regarding partial spectra in Sections II C and II D, before briefly summarizing a long-term

approach that addresses all algorithmic requirements in Section II E.

A. Eigenfunction finding on near-term hardware

In this Section we briefly summarize existing NISQ methods for finding eigenvalues; more

importantly, we elaborate on three of the essential ways in which the simulation of vibrational

spectroscopy is conceptually different from problems in ES.

Using near-term quantum hardware, ground and excited states may be found by using

previously published variational methods [40, 53, 56–59]. For a given vibrational eigenstate

|ψj〉, a variational method used with a classical optimizer will lead to a circuit unitary Uj

yielding Uj|0〉 = |ψj〉. This stored circuit Ui is then used to find transition amplitudes, as

described below.

An important characteristic of this problem is that (unlike in ES) there is no need for

particle conservation. Any state |ψ〉 produced by an arbitrary (even error-prone) quantum

circuit is valid. This may imply that such problems can be solved in shorter depth than

particle-conserving problems like ES or the Bose-Hubbard model [32], since (a) one has more

freedom in choosing a quantum ansatz and (b) hardware errors will never lead to deviations

from the manifold of valid states (since the whole manifold is valid).

The second difference between VS and ES to reiterate is that one is often interested in

many vibrational states in one energy region, as opposed to just a few in ES. Sometimes even
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a somewhat coarse-grained spectrum is sufficient for vibrational spectroscopy applications.

This is discussed further in Section II E. The third distinction is that in VS one is often

interested in very high-lying states, including the 100th excited state or higher, as discussed

in Section II C. Most of the standard NISQ methods for finding eigenvalues cited above are

not efficient for overcoming these two hurdles, highlighting these areas as fruitful for new

research.

B. Near-term algorithms for transition amplitudes

Before discussing a method for calculating arbitrary transition amplitudes, we give two

known methods for calculating |〈ηi|ηj〉|2, an important primitive. In the first method, one

implements U †i Uj. Thereafter, the fraction of measurements that equal the all-zero vector

|0〉⊗Nq is equal to the overlap squared [60]. This method does not require additional qubits,

though the final circuit depth is equal to the sum of the two unitaries’ depths. The second

method is to use a SWAP test [61] or destructive SWAP test [62], which doubles the number

of qubits but increases the depth only by a small constant factor.

In order to calculate arbitrary transition amplitudes |〈ψi|A|ψj〉|2 on near-term hardware,

a naive approach would require a method for considering cross-terms in addition to their

absolute values squared. This is a nontrivial task, since quantum computers naturally output

overlaps squared. Though inner products may be calculated with so-called Hadamard tests

that require a substantially increased circuit depth if only one- and two-qubit gates are

allowed [63], Ibe et al. recently found a much shorter-depth method [64] for calculating

transition amplitudes of arbitrary operators.

Tailoring the latter work to vibrational spectroscopy, one may use an additional set of

unitaries, V
(α)
kl,± = 1

2
(I ± iRkα)(I ± iRlα) = e±iRkαπ/4e±iRlαπ/4, for all l, k < N

(α)
R , where N

(α)
R

is the number of Pauli terms in µ(α). One then proceeds to reproduce |〈i|µ(α)|j〉|2 from

many measurements on the circuit set U †i Vkl,±Uj|0〉. Thus one increases the depth of two

state preparation circuits by a small constant factor and collects measurement statistics

from many different circuits. This procedure is performed on every eigenstate for which one

wishes to calculate the transition amplitude. The fact that this algorithm increases circuit

depth by only a small factor makes it ideal for near-term hardware.
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The full expression for the transition amplitudes is

|〈i|µ(α)|j〉|2 =
∑
k

b2
kα|〈i|Rkα|j〉|2

+
∑
k<l

bkαblα

[
2|〈i|V (α)

kl,+|j〉|
2 + 2|〈i|V (α)

ij,−|j〉|2 − |〈i|Rkα|j〉|2 − |〈i|Rlα|j〉|2 − |〈i|RlαRkα|j〉|2
]
.

(4)

Terms such as |〈i|Rkα|j〉|2 are determined by preparing state U †i exp(iπ
2
Rkα)Uj|0〉 before

counting zero strings. Expressions exp(±iθRkα) can be implemented in short depth using

well known primitives [65]. The number of required circuits scales quadratically with the

number of Pauli strings N
(α)
R in the dipole operator.

The advantage of Ibe et al.’s approach is that Hadamard tests [63] are not needed;

Hadamard tests would require controlled-Ui unitaries. Assuming the quantum hardware uses

one- and two-qubit gates, this would require each three-qubit gate to be decomposed into

many one- and two-qubit gates [65], considerably increasing the circuit depth. However, this

reduction in circuit depth comes at the cost of requiring a larger number of measurements.

Some comments on hardware noise is merited. The effect of noise and other errors on near-

term quantum algorithms has been studied in the context of quantum chemistry [40, 66, 67],

and methods have been developed for partially mitigating such errors [68–70]. We do not

study noise in this work, partly because we find it unlikely that the inclusion of noise would

affect VS and ES differently enough to eliminate the large numerical difference observed in

Section IV A. However, we note that the most important heuristic for dealing with noise in

near-term hardware is to use shorter circuit depths, as this allows less time for decoherence

to reduce fidelity. Hence in near-term hardware it will usually be worth trading a reduction

in circuit depth for an increase in another resource, e.g. the above-mentioned increase in

the number of required measurements.

C. Spectral window focusing

Not only are we often interested in many vibrational eigenstates—it is also often the

case that one is concerned only with high-lying excited states (for instance the 100th excited

state and above). This may be the case when: part of a spectrum is blocked by background

noise; an astronomical telescope is able to read only part of the infrared spectrum; or only
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a specific band is technologically relevant. Therefore it may be a waste of computational

effort to find eigenstates outside the energy window of interest.

We point this out because it means the goal of the vibrational spectrum problem often

differs from other Hamiltonian simulation problems, leading to important considerations in

algorithm design that have not been widely investigated.

The notable consequence is that most hereto proposed near-term algorithms for excited

states are not always viable. This is because in their canonical forms, most existing near-term

approaches [53, 56, 57, 59, 71, 72] require one to find the low-energy eigenvector subspace

as a way to build up to the desired excited state.

We highlight one possible (previously proposed) near-term algorithmic solution for de-

termining high-lying excited states, that may be used in conjunction with the previously

mentioned methods. This is to use the folded spectrum method [40, 58], which easily allows

one to select any energy neighborhood. The folder Hamiltonian is defined as

Hfold = (H − ζI)2 (5)

where ζ is an arbitrary constant. The lowest eigenstates of Hfold are those eigenstates of H

which are closest in energy to ζ. This approach quadratically increases the number of Pauli

terms in the effective Hamiltonian, allowing one to “zoom in” on an arbitrary portion of

the spectrum. We do not rule out more efficient near-term methods for high-lying excited

states.

D. The utility of incomplete vibrational spectra

When using variational algorithms and NISQ hardware to determine portions of the

spectra, one may be able to calculate only incomplete spectra. This is due to the nature

of many hybrid quantum-classical algorithms; it is usually not possible to guarantee that

all eigenstates in a given energy region have been found. Hence it is important to note

that even a spectrum with missing peaks is often useful. First, one may be interested

in only a few specific spectral features in the region, in which case one may focus efforts

converging to those specific transitions. Second, and perhaps more importantly, the goal is

often to determine whether a candidate molecule matches an experimental result. If some

spectral features in the computed spectrum of the candidate molecule are not present in the
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experimental spectrum, then the candidate molecule may be removed from consideration.

E. Long-term approaches

In the more typical use of QPE, one first attempts to prepare a state with as much

overlap as possible with a particular eigenstate, e.g. the ground state. In the context of this

work, QPE is used differently, in a way that allows one to calculate a full response spectrum

[29, 73, 74], i.e. determining |〈η0|Â|ψi〉|2, where Â|η0〉 is generally not an eigenstate of the

Hamiltonian but the {|ψi〉} are eigenstates. First consider the case of Â = Î. One runs the

same QPE algorithm, but sets the initial state to |η0〉 (in general not an eigenstate) such

that |η0〉 =
∑

i ci|ψi〉. After running QPE, one is left with a superposition of eigenstate-

eigenphase pairs, as shown in the expression

∑
ci|ψi〉|0〉

QPE−−→
∑

ci|ψi〉|φ̃i〉. (6)

In contrast to the standard use of QPE, in this case we are interested in more than

just one eigenstate. The algorithm proceeds as follows. The state is stored in register S

and the eigenphase in register E. One performs many repetitions of the circuit, measuring

register E after each run, yielding a phase φ̃i. From many measurements one then composes

a histogram where each bin is an NE-bit value φ̃i. This histogram is the desired response

spectrum with resolution determined by NE, and the process terminates once the histogram

has converged.

One advantage of this method is that it combines many eigenstates into a single mea-

surement, effectively coarse-graining the eigenstates to a desired precision (Section II A)

[29, 73, 74]. This is especially useful for vibrational spectroscopy, where it is often ac-

ceptable to combine the intensities of many eigenstates in a narrow energy range. For a

particular NE, there is a subset of eigenstates Dj = {ψj1, ψj2 · · · } all of which yield φ̃j.

Hence if the measurement yields φ̃j, this means register S has collapsed to the superpo-

sition N
∑

k∈Dj ck|ψk〉, where N is a normalization constant. The beneficial result is that

the probabilities of many nearby eigenenergies are combined, and the number of required

measurements is dependent on NE but independent of the size of the problem Hamiltonian.

As discussed, vibrational (e.g. infrared) spectroscopy requires calculating the action of

an arbitrary non-unitary operator µ(α) on a prepared state. Roggero et al. [74] solved the
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problem of linear response with respect to a non-unitary operator. We adapt their method

here. After adding one ancilla qubit, one may apply the operator

Uµ,α,γ =

cos γµ(α) − sin γµ(α)

sin γµ(α) cos γµ(α)

 (7)

to an arbitrary state |ψ〉, which will yieldNµ(α)|ψ〉 with probability Psuccess = 〈ψ| sin(γµ(α))|ψ〉,

where N = ||µ(α)|ψ〉||−1 is a normalization constant. This unitary probabilistically produces

the desired state |Φ(α)
0 〉 ≡ µ̂(α)|η0〉/‖µ̂(α)|η0〉‖. If the ancilla is measured to be |0〉 then the

state preparation has succeeded; a |1〉 measurement indicates failure and the procedure is

repeated. The remainder of the algorithm then proceeds as in the Â = Î case, with |η0〉

replaced by |Φ(α)
0 〉.

Finally, we posit that there are promising strategies for “spectral window focusing” in

long-term hardware as well. For the QPE-based method, the goal would be to make the

histogram measurements fall primarily within a particular energy window, as measurements

outside the window are not of interest. In principle one may use amplitude amplification

methods [75, 76] to boost the probability of the desired eigenenergy window. The result is

that fewer measurements would be required to produce the histogram in the energy window

of interest, at the cost of an increase in circuit depth. We leave a full description to future

work.

III. COMPARISON TO ELECTRONIC STRUCTURE PROBLEMS

The first physics simulation to achieve quantum advantage is likely to be a nearest-

neighbor toy model such as an Ising model [77], because onlyO(N) two-body interactions are

present. But it is important to consider what will be the first real-world non-toy simulation

to show quantum advantage. Here we argue that, to a given energy precision, the first such

simulation of a molecule is more likely to be a vibrational problem instance than an electronic

one. The ES Hamiltonian may be written as HES =
∑
hija

†
iaj +

∑
hijkla

†
ia
†
jakal where a†i

and ai are fermionic creation/annihilation operators for the ith orbital. In real molecules

one effectively observes nearly all-to-all connectivity between the electronic orbitals (see SI).

The quantum resources required for the vibrational problem depend on the order of the

expansion needed for sufficient precision in equation (1). We observe that early molecular
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targets for quantum computing ought to be those for which (a) classical computational

approaches (e.g. perturbation theory) fail and (b) sufficient accuracy can be achieved by

including at most three-body terms. Both requirements are likely to hold for a substantial

set of molecules [78, 79].

A third-order vibrational Hamiltonian in normal coordinates has four types of terms: p2
i ,

q2
i , q

3
i , q

2
i qj. A fourth-order Hamiltonian has eight types, with the inclusion of q4

i , q
3
i qj, q

2
i q

2
j ,

and q2
i qjqk. A key insight is that vibrational Hamiltonians that include at most three-body

terms will scale at most as O(M3) in the number of modes M . However, depending on the

choice of coordinate system [48–50, 79] it is often possible to exclude three-body interactions,

leading to a scaling of O(M2) terms. This scaling is more favorable than molecular ES, for

which near-term implementations would require approximately O(N4) Hamiltonian terms

in the number of orbitals N . Notably, it is more common to see sparser interactions in VS

problems than in ES problems.

Our case hinges on the notion that a Hamiltonian with more terms and with higher Pauli

lengths is likely to require more resources to simulate, regardless of whether one is using

near- or long-term hardware. (The Pauli length of a string is the number of single-qubit

terms it contains; e.g. X0X3Z5 has a Pauli length of 3.) However, the asymptotic scaling

on its own does not provide enough evidence. One must still investigate (a) whether the

pre-factor to the vibrational Hamiltonians’ term count is sufficiently small for lower qubit

counts, (b) the locality of the Hamiltonians, and (c) Hamiltonian magnitudes, all of which

we study below.

An essential comment is merited regarding the direct comparison between these two

problem classes. For the comparison between vibrational and electronic problems, the ap-

propriate independent variable is indeed the number of qubits (not the number of electron

orbitals or vibrational modes). This is because most of the earliest problem instances for

which one would need a quantum computer are likely to be those for which exact diagonal-

ization is required (because we are assuming that even methods such as perturbation theory

fail). Hence to compare different problem types it is appropriate to make direct comparisons

only between two problem instances with similarly sized Hilbert spaces, which is the same

as saying similar qubit counts. And as a practical matter, available quantum hardware will

have a given qubit count and maximum circuit depth, and the question at hand would be

whether that given hardware would be able to perform some classically intractable problem
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FIG. 2. Left: Number of Pauli strings in each Hamiltonian class. Circles denote electronic structure

Hamiltonians; triangles denote analytical results for fourth-order vibrational Hamiltonians. In

the case of electronic structure, the number of qubits is equal to twice the number of spatial

orbitals, while in vibrational structure the number of qubits is equal to log2 d times the number

of modes. Center: Probability distributions of Pauli lengths in six Hamiltonian classes. BK and

JW respectively denote the Bravyi-Kitaev and Jordan-Wigner mappings. Right: The Hamiltonian

magnitude W , which should be compared only between Hamiltonians with Hilbert spaces of the

same size.

instance.

Notably, there has been considerable recent progress in reducing the asymptotic scal-

ing of quantum algorithms for ES [80–83]. However, due to these newer algorithms’ need

for a larger basis set and/or an increase in the number of required qubits, these methods

are unlikely to be amenable to accurate molecular simulation for qubit counts below 1000

[83]. Further, even if one assumes that error-corrected hardware is required for solving any

instance of both the vibrational and electronic problems, it appears likely that the subset

of vibrational problems with O(M2) or O(M3) Pauli terms will be solvable before any ES

instance, based on our analysis. SI Section S5 include extensive additional discussion.

IV. RESULTS

A. Proxies for quantum resource comparisons

All our vibrational data is for fourth-order Hamiltonians, where we use bosonic trunca-

tions d = 4 or 8 and have considered both the exclusion and inclusion of 3-body terms q2
i qjqk.
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The left panel of Figure 2 shows the number of terms in various ES and VS Hamiltonians,

plotted against qubit count. For the majority of cases considered here, these results show

that the ES Hamiltonians contain more terms for qubit counts great than ∼20.

For simplicity, we consider only cases in which all modes have equal d. In reality, each

mode would require a different truncation, meaning that the number of Pauli strings would

lie in between the plotted trends. For the electronic problem instances, the analytical results

(filled circles) are comparable to the numerical results (open circles) obtained from 3D grids

of hydrogen atoms (see SI). Note that the number of Pauli terms is equal for the Jordan-

Wigner (JW) [84] and Bravyi-Kitaev (BK) [85] encodings, though their length distributions

are unequal.

The center panel of Figure 2 shows the distribution of Pauli lengths, another important

indicator of a problem Hamiltonian’s simulation complexity. For the subset of vibrational

problem instances considered (fourth-order Hamiltonians with truncations of d ≤ 8), vibra-

tional problems are more local than electronic problems, even for low qubit counts and when

compared against the logarithmically scaling BK mapping.

A third factor determining simulation complexity is the magnitude of the Hamiltonian.

There are different matrix norms used in quantum algorithm analysis, and resource bounds

are usually derived in terms of both a norm and the desired precision, among other con-

siderations [77, 86–89]. In addition, the number of measurements for VQE depends on the

magnitude of the terms [40, 90], which is closely related to our expression below. For a

simple and easily computed comparison of Hamiltonian magnitudes, we use the quantity

W =
√∑

k 6=kI a
2
k where k 6= kI signifies that the coefficient preceding the identity operator

is excluded. Notably, W2Nq/2 is an upper bound to the Frobenius norm. W should be used

for comparisons only between Hamiltonians on the same number of qubits.

We constructed minimal-basis ES model Hamiltonians for transition metals Vx, Crx,

Mnx, and Fex, where x = 2, 3, and 4 correspond to 24, 36, and 48 qubits, respectively (see

SI). These were meant to provide typical order-of-magnitude matrices for transition metal

elements. Molecules containing these elements are likely to be the early candidates for

quantum advantage in ES [91–93], especially since classical methods are already sufficiently

accurate for main-group elements (i.e. not transition metal elements) up to a thousand

orbitals [93–95]. We constructed vibrational Hamiltonians with deliberately pessimistically

large couplings. Harmonic values were evenly spaced between 1000 and 4000 cm−1, every
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third-order vibrational term was set to 400 cm−1, and every fourth-order term was set to 40

cm−1.

Despite the intentionally complex vibrational Hamiltonians, W values for the two-body

Hamiltonian are close to an order of magnitude smaller than the four types of electronic

model Hamiltonians, while W for the three-body vibrational Hamiltonians remain several

times smaller (right panel of Figure 2).

We note again that the required quantum resources are dependent on required precision,

which in turn is application-dependent. A reasonable candidate for the first practical vibra-

tional problem is the calculation of zero-point energy or low-lying transitions in a vibrational

problem to sub-chemical precision (see SI Section S4). Detailed resource estimates are be-

yond the scope of this work, but these order-of-magnitude differences between vibrational

and electronic Hamiltonians are noteworthy.

To summarize, there are four preliminary supporting pieces of evidence for our postulate

that (for a given precision) quantum advantage will take place for a real-world VS problem

instance before any ES problem instance:

• As mentioned in Section II A, vibrational Hamiltonians do not require particle num-

ber conservation, which may lead to less complex quantum circuits in near-term algo-

rithms.

• There are fewer Pauli terms in the vibrational Hamiltonians, which leads to fewer

operations in most quantum algorithms.

• VS Hamiltonians are more local, again leading to fewer operations and shorter circuit

depths in most quantum algorithms.

• The Hamiltonian magnitude parameter W is smaller in our worst-case vibrational

model than in typical-case classically difficult ES models, which implies that fewer

measurements are required in near-term algorithms and that shorter circuit depths

are needed in long-term algorithms.

Our argument applies only to the subset of vibrational problems for which at most three-

body couplings are required.
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B. Simulated molecular infrared spectra

As a proof of concept, we performed numerical simulations and error analyses on four

vibrational Hamiltonians: carbon monoxide (CO), the isoformyl radical (COH), ozone (O3),

and a model Hamiltonian of Fermi resonance. We choose the first three molecules because

they exhibit substantial anharmonicity and (for the triatomics) mode coupling, and we study

the model Hamiltonian because Fermi resonances are pathological for classical methods,

unless one uses a very poorly scaling algorithm such as exact diagonalization. Additionally,

a conceptual reason for simulating COH is that, being a radical, it is difficult to isolate

and study in the laboratory; this example highlights the need for theoretical modeling when

laboratory methods fail.

In order to study parameters relevant to quantum algorithms, we calculated Suzuki-

Trotter errors for both the approximate unitary used in QPE and the approximate imaginary

time evolution (ITE) operator appropriate for some nearer-term algorithms. These results

are specific to quantum algorithms, as Suzuki-Trotter errors based on Pauli decompositions

are not relevant for classical algorithms. The results may guide the choice of time step

or approximate resource counts when implementing Suzuki-Trotter decompositions in small

organic molecules. For the former case, we constructed the unitary matrix

Ũ(∆τ) =

NP∏
k

e−i∆τakPk . (8)

where ∆τ is the time step. This is a first-order Trotter approximation to the quantum

propagator U(∆τ) ≡ exp(−i∆τH). We then diagonalized Ũ(∆τ) and compared the ordered

eigenvalues to the exact result.

In our simulation of ITE, we instead constructed the operator

M̃(∆β) =

NP∏
k

e−∆βakPk (9)

where ∆β is an ITE step. For all but the ground state, formula (9) used the Pauli repre-

sentation of the folded Hamiltonian, not of the original Hamiltonian. Folded Hamiltonians

were used in order to highlight the use of a method that allows one to skip irrelevant eigen-

states, effectively implementing spectral window focusing. Calculations were implemented

with in-house code, using the QubitOperator class of Openfermion [96] and linear algebra

routines from SciPy [97].
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FIG. 3. Vibrational infrared spectra for carbon monoxide (CO), the isoformyl radical (COH),

ozone (O3), and a Fermi resonance model Hamiltonian. The first column shows the infrared spectra

(lower blue spectra) and their harmonic approximation (upper black spectra) in arbitrary units,

summing intensities in all Cartesian directions. Peaks were broadened with Gaussians of arbitrary

standard deviation 10 cm−1. The second column shows Trotterization error in the quantum time

propagator, which is relevant to long-term algorithms. The third column shows Trotterization error

in the imaginary time evolution operator, relevant to some NISQ approaches. Excited states in the

third column are found using the folded Hamiltonian method. Horizontal dotted lines are drawn

at 5 cm−1, an arbitrary high-accuracy threshold required for many spectroscopy applications; and

at 209 cm−1, equal to kBT at room temperature and approximately half of chemical accuracy.
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Figure 3 shows results for all simulated molecules. The harmonic approximations (black)

are plotted with the numerically exact results (blue); the contrast between the two plots

demonstrates the importance of including higher-order anharmonic terms that are hard

to simulate classically. Qualitative differences such as the the extra peaks that appear

(e.g. at 2940 cm−1 in the Fermi resonance Hamiltonian) tend to be difficult to obtain

classically, often failing under perturbation theory [14, 79]. The second column shows the

first-order Trotterization error in the quantum propagator Ũ(∆τ) ≈ exp(−i∆τH), in a

selection of intense transitions’ eigenvalues against increasing ∆τ . These are related to

long-term algorithms, both in running QPE and in dynamical simulations. The third column

approximates the ITE operator’s M̃(∆β) ≈ exp(−∆βH) error by Trotterization with finite

length ∆β. These are more relevant to noisy intermediate-scale quantum (NISQ) algorithms,

both for ITE [53] and variational anstazae based on ITE [98].

Errors in U are mostly independent of the eigenstates, while errors in M are distributed

over many orders of magnitude even for fixed ∆β. This may be partly because each folded

Hamiltonian is in fact a different Hamiltonian. Notably, all non-monotonic behavior in the

ITE error plots arise only in folded Hamiltonians—the cause of this behavior is unclear. CO

requires the smallest (i.e. worst) time step, which we hypothesize might be due to the lack

of favorable error cancellation, as cancellation may be more prominent in Hamiltonians with

more terms. There was no clear trend with respect to the (Froebenius) norms of the Hamil-

tonians (data not shown), though in the worse case (carbon monoxide) the error becomes

unacceptably large approximately when ∆τ and ∆β have order of magnitude comparable to

the inverse norm of the Hamiltonian (1/‖H‖). The resulting error trends give an indication

of the step sizes needed for accurate quantum simulation of small molecules, though further

study is needed to determine broadly applicable relationships between vibrational problem

instances and Trotter error.

V. OUTLOOK

Although molecular electronic structure is often the first candidate offered for near-term

quantum simulation of a real-world substance, we have provided evidence suggesting that

molecular vibrational structure will likely, for a given energy precision, achieve quantum

advantage first. After considering previously unidentified requirements in designing quan-
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tum algorithms for vibrational spectra, we have presented approaches for solving this class

of problems on both near-term and long-term quantum computers, addressing the compo-

nents that make this mathematically distinct from more standard Hamiltonian simulation

problems: calculating transition amplitudes with respect to a non-unitary operator and cal-

culating high-lying excited states. Future research should focus on more detailed resource

counts including estimates of circuit depth and gate complexity, as well as inclusion of ro-

tational and other degrees of freedom. This work advances the applicability of quantum

computation for atmospheric science, many biomolecular interactions, fuel combustion, gas-

phase reactions, and astrochemistry, while implying that more focus for near-term quantum

applications ought to shift to scientifically relevant vibrational problems.
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Appendix A: Vibrational operators and mappings to qubits

Both the Hamiltonian and µ(α) must be mapped to a set of qubits. The operator for a

single d-level particle (included a truncated bosonic mode) may be expressed as

A =
d−1∑
l,l′=0

cl,l′ |l′〉〈l|. (A1)

In order to use a qubit-based quantum computer, each level must first be mapped to a

bit representation, before the operator is mapped to a sum of products of Pauli matrices.

For example, a 4-level particle with an operator B = |2〉〈3|+ |3〉〈2| would map to

|2〉〈3|+ |3〉〈2| Std. Binary7−−−−−−→|10〉〈11|+ |11〉〈10|

=|1〉〈1| ⊗ |0〉〈1|+ |1〉〈1| ⊗ |1〉〈0|

=
1

2

(
X̂0 − Ẑ1X̂0

) (A2)

where the least significant bit (qubit) is labelled 0. In the last step, the following identities

are used: |0〉〈1| = 1
2
(X̂ + iŶ ); |1〉〈0| = 1

2
(X̂ − iŶ ); |0〉〈0| = 1

2
(I + Ẑ); and |1〉〈1| = 1

2
(I − Ẑ).

In the case of vibrational (bosonic) degrees of freedom, one would truncate at a level of

d that preserves the accuracy one requires [99, 100]. We use the Gray code for the numerics

presented in this work; for a more thorough study of the choice and tradeoffs for different

mappings, see reference [38].

Appendix B: Counting for fermionic operators

Here we summarize how the Pauli string counts were determined for molecular Hamilto-

nians. The electronic structure Hamiltonian takes the form

HES =
∑
pσqτ

hpσ,qτa
†
pσaqτ +

∑
pqrsστµν

hpσ,rµ,sν,qτa
†
pσa
†
rµasνaqτ (B1)

where Latin letters label spatial orbitals and Greek letters label the spin.

We assume that a real (as opposed to complex) basis is used. Fermionic commutation

rules and spin orthogonality lead to the following symmetries [101]. First,

hPQRS = hRSPQ (B2)
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and

hPQRS = hQPRS = hPQSR = hQPSR, (B3)

which leads to an eight-fold symmetry. Including orthogonality of spin degrees of freedom

leads to

hpσ,qτ,rµ,sν = hpqrsδστδµν . (B4)

Finally, the following terms vanish:

{a†ia
†
iajaj, a

†
ja
†
jaiai} → 0, (B5)

a†ia
†
iaiai → 0, (B6)

a†ia
†
iajak → 0. (B7)

For each category of fermionic Hamiltonian term, we now consider the number of Pauli

strings resulting from the Jordan-Wigner mapping, though the Pauli string count (but not

the locality) is the same for the Bravyi-Kitaev mapping. The Jordan-Wigner encoding

maps fermionic degrees of freedom to qubits such that fermionic commutation relations are

retained. The mapping is defined as

a†p 7→

(∏
m<p

Zm

)
σ+
p

a†p 7→

(∏
m<p

Zm

)
σ−p

(B8)

where σ± ≡ (X ∓ iY ) /2.

In our counting procedure, we avoid double-counting Pauli terms. For instance, terms

like Zi appear in both one- and two-electron operators, but they are counted only once.

The one-electron terms lead to

a†iai → Z + I =
1

2
(I − Zi) (B9)

and

a†iaj + a†jai →
1

2
(XiZ

⊗
j−i−1Xj + YiZ

⊗
j−i−1Yj). (B10)

25



Non-vanishing two-orbital two-electron terms lead to

a†ia
†
jajai + a†ja

†
iaiaj → {I, Zi, Zj, ZiZj} (B11)

Based on the above symmetries, non-vanishing three-orbital terms lead to

{a†ia
†
jakai, · · · }(4) ∪ {a†ia

†
jaiak, · · · }(4) → 4 Pauli strings

Example: {a†0a
†
1a2a0, · · · }(4) ∪ {a†0a

†
1a0a2, · · · }(4)

→ {Z0X2X3, Z0Y2Y3, X2X3, Y2Y3}

(B12)

where each set of four operators leads to the same set of Pauli strings. Subscripts denote

the number of Pauli strings in the bracketed set.

Finally, consider four-orbital terms with 8-fold symmetry. One such set of terms leads to

four Pauli strings:

{a†ia
†
kalaj, · · · }(4) → 4 Pauli strings

Example: {a†1a
†
3a5a7, ...}(4) → {X1Z2X3Y5Z6Y7,

X1Z2Y3Y5Z6X7,

Y1Z2X3X5Z6Y7,

Y1Z2Y3X5Z6X7})

(B13)

The above formulas were used to write a simple function that “manually” counts the

upper bound to the number of Pauli terms in electronic structure problems for a given

number of orbitals. Next, to numerically validate our manual counting procedure, we used

OpenFermion [96] and Psi4 [102] to calculate the number of Pauli strings required for the

electronic structure problem of a collection of hydrogen atoms. Hydrogen atoms were placed

on a cubic lattice with spacing 0.6 Å, with a random perturbation in each direction drawn

from a Gaussian of standard deviation 0.05 Å. We used the minimal STO-3G basis, resulting

in a number of qubits equal to 4 times the number of hydrogen atoms. The canonical orbitals

used were determined from the Hartree-Fock calculation of Psi4. All Pauli string counts were

within 10% to 30% of our manual analytical counts, a difference that we attribute primarily

to the software truncating terms smaller than 10−6.
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Appendix C: Counting for bosonic operators

All of our mappings use the Gray code [38]. Here we provide the Pauli mappings or Pauli

counts for the different types of many-body terms, for both d=4 and 8. These are used for

counting the number of terms in each type of Hamiltonian.

Harmonic:

p2
0 + q2

0
d=4−−→ 4I − 1Z0Z1 − 2Z1

d=8−−→ 8I − 1Z0Z1Z2

(C1)

3rd-order:

q3
i
d=4−−→ {X0, X0Z1, Z0X1, X1}
d=8−−→ (16 Pauli strings)

(C2)

q2
i qj

d=4−−→ (20 Pauli strings)

d=8−−→ (144 Pauli strings)
(C3)

4th-order:

q4
i

d=4−−→ (I & 5 Pauli strings)

d=8−−→ (I & 18 Pauli strings)
(C4)

q3
i qj

d=4−−→ (16 Pauli strings)

d=8−−→ (192 Pauli strings)
(C5)

q2
i q

2
j
d=4−−→ (I & 24 Pauli strings)

d=8−−→ (144 Pauli strings)
(C6)

q2
i qjqk

d=4−−→ (80 Pauli strings)

d=8−−→ (1728 Pauli strings)
(C7)

The above formulas were used to write a function that manually counts the number

of Pauli strings, for a given truncation d and number of modes. In order to numerically
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FIG. 4. Pauli string counts, including both analytical (“manual”) and numerical (random vibra-

tional Hamiltonian) results.

validate our counting procedure, we prepared model vibrational Hamiltonians with random-

ized non-zero couplings for all possible second-, third-, and fourth-order terms. These model

Hamiltonians represent the worst possible case, are used only for counting terms, and do not

correspond to real molecules; real-world Hamiltonians are used only for the four problems

solved later in the paper. After creating the model Hamiltonians, we used the automated

procedure described in Section A and previous work [38]. As in the case of the electronic

results, we attribute discrepancies with our analytic results to the software’s truncation of

intermediate terms smaller than 10−6. We omitted these “numerical” vibrational results

from the main text in order to avoid over-crowding the figure. The analytical and numerical

results for all Hamiltonians are shown in Figure 4.

Appendix D: Coefficients and precision

As discussed in the main text, for both near- and long-term Hamiltonian simulation the

required computational resources depend partly on the desired precision and some measure
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of the Hamiltonian’s magnitude (such as a matrix norm). For instance, as Gonthier et al.

recently pointed out [90], it is not just the Pauli counts and lengths but also the coefficients

of each term that are relevant to determining computational resource estimates. Their work

mentioned this in the context of the measurements required for VQE, though it is true for

most other Hamiltonian simulation techniques as well.

For a set of electronic and vibrational Hamiltonians described below, we calculate the

following quantity (reproduced from the main text) as a way to compare matrix magnitudes:

W =

√∑
k 6=kI

a2
k, (D1)

where k 6= kI signifies that the coefficient in front of the identity operator is excluded.

W2Nq/2 is an upper bound to the Frobenius norm, defined as |H|F =
√∑

b2
ij, where bij

is element of the ith row and jth column of the Hamiltonian. We choose this metric because

it is trivial to calculate and because it directly relates to resource estimates, such as the

number of measurements required in VQE [90].

It is beyond the scope of this work to provide actual resource estimates, as extensive

calculations and the choice of specific molecules would be needed (indeed, entire studies

have been dedicated estimating resources for a few molecules or a single molecule [91–

93]). Instead, we have considered three metrics that are rough proxies for computational

complexity: term counts, Pauli length, and W . Support for our postulate of vibrational

quantum advantage comes from the fact that these approximations (which are pessimistic

for the vibrational case) show approximately an order of magnitude smaller values (in term

counts and in W ), for problems larger than 40 qubits.

As stated, we used pessimistic assumptions to construct vibrational Hamiltonians, partly

in order to mitigate the fact the electronic structure calculations are approximate models. As

before, we include up to either 2- or 3-body mode coupling terms and d = {4, 8}. Harmonic

modes were set to evenly spaced values from 1000 to 4000 cm−1. Every possible third-

order term was given a coefficient of 400 cm−1 and every possible fourth-order term given

40 cm−1. It is unlikely that a molecule would include such dense mode coupling, and the

first vibrational problem to exhibit quantum advantage will by definition be a problem with

lower coupling density.

For electronic structure, our goal was to obtain order-of-magnitude estimates for some

chemical elements that might be the first to see quantum advantage. It is reasonable to
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speculate [91, 93] that the first electronic structure simulation to show quantum advantage

will be for a molecule containing transition metal elements, because the classical coupled

cluster algorithm class, e.g. CCSD(T), accurately treats many main group molecules (e.g.

hydrocarbons and water clusters) up to more than a thousand orbitals [93–95]. CCSD(T)

and other state-of-the-art methods often cannot accurately treat molecules with transition

metal elements, which is part of the reason that quantum computational resource estimates

to date have focused on such compounds [91–93]. Notably, the toy Hx (hydrogen box) model

we used to calculate term counts in fact showed much greater values of W than those of the

transition elements, though Hx is not a particularly useful chemical system and may not

require a quantum computer to begin with.

We created simple electronic structure models of twelve transition metal molecules: Vx,

Crx, Mnx, Fex, where x ∈ {2, 3, 4} and closed-shell anions were used for V−3 and Mn−3 . All

molecules were constrained to have singlet multiplicity. Using a minimal STO-3G basis, we

ran OpenFermion [96] and Psi4 [102] to determine the canonical orbitals. We then froze

the canonical orbitals corresponding to atomic orbitals 1s2 2s2 2p6 3s2 3p6. We chose an

active space of 6 orbitals (12 spin-orbitals) per atom, the lowest-energy orbitals excluding

the frozen core.

As is well known to chemists but perhaps less well-known in the physics community,

different chemistry applications require dramatically different precisions. A qualitative un-

derstanding of some electronic structure problems may require a low accuracy of just 10

milliHartrees (mHa), thermodynamics observables (for both electronic and vibrational calcu-

lations) often require an accuracy of 1 mHa, and interpreting transition lines in a vibrational

spectrum may require precisions as low as 5 µHa.

Table I shows matrix magnitudes W and the maximum non-identity Pauli coefficient for

each Hamiltonian. W ought to be compared only between Hamiltonians of the same qubit

count. The far right columns in table I give the quotient W/ε for three different values

of ε. As different applications require different levels of precision, this quotient is useful

because it provides a comparison between matrix magnitude and ε. Time complexity for

different Hamiltonian simulation algorithms are dependent on both ε and matrix magnitude

[77, 86–89], though the relationship is non-trivial and normally uses a more standard metric

of matrix magnitude such as the spectral norm.

As a sanity check we show the maximum Pauli coefficient of a published fermionic Hamil-
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tonian for the FeMoco cofactor (Li et al. [92]), a widely studied biological molecule contain-

ing several transition metal elements. We include this value because their careful procedure

for choosing the orbitals and active space is nearer to what one would do for a real quantum

calculation. We are cautious not to make direct comparisons, due to the higher qubit counts

(154 qubits) and presence of the fifth-row element molybdenum.

The first ε of 100 cm−1 ≈ 0.455 mHa is just below “chemical accuracy” of 1.6 mHa, an

energy precision that is acceptable for many applications. The stated goal of many electronic

structure calculations, including above-mentioned work in quantum computational resource

estimates, is to achieve sub-chemical accuracy. This is a reasonable goal for electronic

structure calculations containing transition metals. Notably, kBT is ∼0.6 kcal/mol or ∼209

cm−1at room temperature, implying that thermal fluctuations in a typical laboratory are on

the same order as this common standard for computational accuracy.

There will be molecules and complexes for which a highly accurate PES may be achieved

using CCSD(T) or other methods, but for which the vibrational zero-point energy (ZPE) is

classically intractable [16, 103]. Calculating this ground-state energy (i.e. ZPE) is a good

first place to look for quantum advantage, because it might require no better than chemical

accuracy (discussed below) for some applications. However, if a quantum device is capable

of solving ZPE, the device is not far from being able to calculate low-lying transitions. Only

a doubling of depth (or alternatively a doubling of qubits) would be required in order to use

the variational quantum deflation method to obtain low-lying excited states and transitions

[56].

Notably, “chemical accuracy” of 1.6 mHa is not sufficient for some applications. For

instance, because of the exponential behavior of the Arrhenius equation, rate constants may

be incorrect by about an order of magnitude. Another example for which chemical accuracy

is insufficient is vibrational eigenstates, between which the spacing is often much smaller

than 100 cm−1.

The higher accuracy of 1 cm−1 ≈ 4.55 µHa is sometimes referred to as spectroscopic

accuracy, though the term does not have a universally accepted definition [5, 78, 104].

The important point is that the interpretation of vibrational spectra often requires a high

accuracy of between 1 cm−1 and 10 cm−1. Notably, when a PES is being calculated using

electronic structure, the accuracy of the PES cannot be worse than the accuracy required

for the spectroscopic problem.
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It is not just the precision and the norm or magnitude of the Hamiltonian, but also its

locality that determines the required resources. Complexity theoretic results have shown

that a more local Hamiltonian will require fewer resources [77, 86–89]. Hence the advantage

from the lower magnitude of the vibrational Hamiltonians will be improved even further

relative to electronic Hamiltonians due to the lower locality, suggesting that focusing only

on W is again pessimistic against the vibrational case.

A comment on the number of measurements required in VQE is merited as well. Gonthier

et al. recently studied the number of measurements required for estimating the electronic

energy of a set of organic molecules [90]. The quantity W is closely related to the factor

that Gonthier et al. calculate to determine measurement counts. If one were to take the

naive route of measuring only one Pauli term expectation value per circuit run, then
(
W/ε

)2

would be proportional to the number of measurements. (As a side note, we do not necessarily

consider the number of measurements to be the limiting factor for VQE. We would argue

that the primary concern for near-term hardware should be circuit depth, which would also

be dependent on desired accuracy. Measurements in principle can be parallelized across

devices; on the other hand, if the required circuit depth is too great for the hardware, there

is little one can do.)

In practice, for the near-term VQE algorithm one desires as few circuit runs as possible.

Gonthier et al. report numerical results fitted to a simple power law, showing for a set of

organic molecules that the number of required measurements growing as O(N5.1
q ) to O(N5.8

q )

when Pauli terms are grouped together, and growing as O(N2.3
q ) to O(N3.6

q ) when using the

so-called basis rotation grouping [90, 105]. (The latter method requires additional circuit

depth that grows with the number of qubits, appended to the end of the state preparation

ansatz.)

For vibrational Hamiltonians, on the other hand, the number of VQE circuit repeti-

tions for two-body vibrational Hamiltonians is upper bounded by O(N1
q ). This is be-

cause two-body terms can be measured simultaneously; one may measure terms on modes

((0, 1), (2, 3), · · · ) followed by ((0, 2), (1, 3), · · · ) and so on, where integer pairs correspond

to mode pairs. Analogously, the number of circuit repetitions for three-body vibrational

Hamiltonians scale at worst as O(N2
q ). Hence both the lower values of W and the appar-

ently lower measurement scaling suggest that fewer measurements will be required for the

vibrational case, for a given precision.
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In summary, the three quantities of term count, locality, and W suggest that vibrational

problems will require fewer quantum resources for a given precision. As chemical accuracy

(order of ∼ 1 mHa) is required for order-of-magnitude accuracy in rate constants (due

to the Arrhenius equation [106]) regardless of which which type of degree of freedom is

being simulated, we suggest that vibrational zero-point energy calculations and/or low-lying

vibrational transitions are a reasonable place to look for early quantum advantage.

Appendix E: Comparing Hamiltonians

We use this section to elaborate on some points made in the main text, regarding com-

parisons between vibrational and electronic problems.

Note that the 3rd- and 4th-order vibrational Taylor terms in Hanharm (defined in the

main text) in fact yield at most 2- and 3-body interactions, respectively, as every higher-

order term necessarily includes q2
i in the product if one is using normal modes. This leads

to either a O(M2) or O(M3) scaling in the number of terms for this subset of molecules,

compared to O(N4) for electronic structure of an arbitrary molecule, where N is the number

of spin-orbitals. Though we discuss high-lying excited states in our work, note that for

this consideration of quantum advantage we are assuming that only low-lying vibrational

states are being calculated. Very high-lying vibrational states may require larger numbers

of vibrational levels or the use of more costly methods such as folded Hamiltonians.

It is important to point out that one should assume that state-of-the-art methods will be

used to reduce the number of qubits required to simulate whichever problem is considered,

leading to substantial reductions in the number of effective vibrational modes or electronic

orbitals. In vibrational problems, one may choose a coordinate system that is efficient in

terms of having low truncation requirements and fewer appreciable coupling terms [11, 79].

For electronic structure, one carefully chooses the active space of orbitals [83, 91, 92]. The

point is, the use of “qubit reduction” methods does not change the overall argument unless

the modified problem changes one of the stated criteria, e.g. if the problem is no longer well-

described by a fourth-order Hamiltonian, in which case we exclude such a problem from

the discussion anyway. Methods for reducing qubit count in electronic structure should

intuitively still produce a Hamiltonian with a similar number of terms and with similar

magnitude. The appropriate comparison to make is still between two Hamiltonians of similar
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qubit counts. Further, it may be the case that some qubit reduction techniques would work

equally well for bosonic and fermionic problems.

Note that several encoding choices are possible. Instead of using the Gray code, one may

choose to use the unary encoding (also called direct mapping or one-hot encoding) with

vibrational degrees of freedom, which would tend to reduce circuit depth at the expense of

increasing the number of qubits [3, 38]. We note that if we had used the unary encoding,

the Hamiltonians would have been even simpler (fewer terms and shorter Pauli lengths, and

similar matrix magnitude W ). In principle this simpler Hamiltonian would either strengthen

our conclusion (because the Hamiltonian can be simulated in shorter depth) or be a moot

case (if the unary mapping requires too many qubits for whatever device characteristics you

happen to be assuming).

Finally, we stress again that our argument holds for only some subset of vibrational

problems; some vibrational problems would require inclusion of e.g. four- or five-body

terms for accurate simulation, and some vibrational problems require more coupling terms

than others.

Appendix F: Potential energy surfaces and dipole surfaces

The potential energy surface and dipole derivatives for CO and COH were calculated

at the CCSD(T)/ANO1 level with the CFOUR package, version 2.1 [107]. We used the

package’s documented scripts for calculating anharmonic frequencies by finite difference.

Energies were calculated in parallel to obtain the quadratic, cubic, and quartic (including

three-body) force constants, all automatically produced by CFOUR during the anharmonic

frequency calculations.

All energy units below are in cm−1. The resulting fourth-order Hamiltonian for carbon

monoxide is

HCO = 2157.96
q2 + p2

2
− 736.66 q3 + 210.97 q4. (F1)

The fourth-order Hamiltonian for the isoformyl radical is
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HCOH = 1143.24
q2

1 + p2
1

2
+ 1393.46

q2
2 + p2

2

2
+ 3530.65

q2
3 + p2

3

2

+−16.83 q1q1q1 + 51.76 q1q1q2 + 40.02 q1q2q2 + 87.05 q2q2q2

+ 413.74 q1q1q3 − 116.13 q1q2q3 − 35.26 q2q2q3 − 92.65 q1q3q3

− 119.29 q2q3q3 − 489.34 q3q3q3 + 22.83 q1q1q1q1 − 10.84 q1q1q1q2

− 10.48 q1q1q1q3 − 0.49 q1q1q2q2 − 40.20 q1q1q2q3 − 252.07 q1q1q3q3

+ 7.00 q1q2q2q2 − 3.37 q1q2q2q3 + 6.96 q2q2q2q2 − 6.15 q2q2q2q3

− 17.44 q2q2q3q3 + 26.32 q1q2q3q3 − 3.13 q1q3q3q3 − 4.33 q2q3q3q3

+ 66.64 q3q3q3q3,

(F2)

where q1 is the bending mode, q2 is the CO stretch, and q3 is the OH stretch.

The first-order transition dipoles were found to be

µ(x) ∼ −0.33854 q1 − 0.268687 q2 − 0.011334 q3

µ(y) ∼ −0.057874 q1 − 0.023912 q2 + 0.175823 q3

(F3)

where the equilibrium dipole is irrelevant because it cancels out due to orthogonality. Units

are in Debye, though we considered only relative intensities in our calculations.

For ozone (isotope 16O3) we used previously published PES [108] and DMSs [109].

Our model Hamiltonian for Fermi resonances has two vibrational modes, taking the form

ĤFR = ω0

(
a†0a0 +

1

2

)
+ ω1

(
a†1a1 +

1

2

)
+ h001q

2
0q1 (F4)

We choose frequencies and couplings that are typical for the bending and stretching

modes of two CH stretches within a methyl (CH3) functional group, a well-known example

of Fermi resonance. We set ω0 = 1470 cm−1(bend), ω1 = 2890 cm−1(stretch), and h001 = 30

cm−1[14]. A necessary condition for Fermi resonance is that ω1 ≈ 2ω0, which is met here

as ω1/ω0 ≈ 1.966. In our model calculations, for the first-order Taylor terms of dipole

moment surface µ we set m0 = m1. The Fermi resonance leads to the extra peak at ∼2940

cm−1 appearing in Figure 3 of the main text, a peak which is not present in the harmonic

approximation.
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# Qubits max ({|ak|} \ |aI | ) W 10−6 W/ε

(Ha) (Ha) ε = 100 cm−1 ε = 10 cm−1 ε = 1 cm−1

455 µHa 45.5 µHa 4.55 µHa

Vibrational 24 0.045 0.146 0.321 3.21 32.1

2-body 36 0.066 0.244 0.536 5.36 53.6

d = 4 48 0.088 0.358 0.787 7.87 78.7

Vibrational 24 0.045 0.187 0.411 4.11 41.1

3-body 36 0.066 0.387 0.851 8.51 85.1

d = 4 48 0.108 0.695 1.53 15.3 153

Vibrational 24 0.087 0.276 0.607 6.07 60.7

2-body 36 0.126 0.450 0.989 9.89 98.9

d = 8 48 0.166 0.651 1.43 14.3 143

Vibrational 24 0.087 0.336 0.738 7.38 73.8

3-body 36 0.126 0.675 1.48 14.8 148

d = 8 48 0.192 1.197 2.63 26.3 263

V2 model 24 0.471 2.41 5.30 53.0 530

V3 model 36 0.639 3.35 7.36 73.6 736

V4 model 48 0.752 4.72 10.4 104 1040

Cr2 model 24 0.142 1.70 3.74 37.4 374

Cr3 model 36 0.193 2.41 5.30 53.0 530

Cr4 model 48 0.280 3.08 6.77 67.7 677

Mn2 model 24 0.647 2.75 6.04 60.4 604

Mn3 model 36 0.901 3.79 8.33 83.3 833

Mn4 model 48 1.067 4.74 10.4 104 1040

Fe2 model 24 1.38 5.47 12.0 120 1200

Fe3 model 36 1.84 7.97 17.5 175 1750

Fe4 model 48 1.73 10.1 22.1 221 2210

FeMoco [92] 154 11.8

TABLE I. Comparing the magnitudes of Hamiltonians. W =
√∑

k 6=I a
2
k is related to the Frobenius

norm and also relates to the number of measurements required for VQE.
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