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Global control strategies for arrays of qubits are a promising pathway to scalable quantum com-
puting. A continuous-wave global field provides decoupling of the qubits from background noise.
However, this approach is limited by variability in the parameters of individual qubits in the ar-
ray. Here we show that by modulating a global field simultaneously applied to the entire array,
we are able to encode qubits that are less sensitive to the statistical scatter in qubit resonance
frequency and microwave amplitude fluctuations, which are problems expected in a large scale sys-
tem. We name this approach the SMART (Sinusoidally Modulated, Always Rotating and Tailored)
qubit protocol. We show that there exist optimal modulation conditions for qubits in a global field
that robustly provide improved coherence times. We discuss in further detail the example of spins
in silicon quantum dots, in which universal one- and two-qubit control is achieved electrically by
controlling the spin-orbit coupling of individual qubits and the exchange coupling between spins
in neighbouring dots. This work provides a high-fidelity qubit operation scheme in a global field,
significantly improving the prospects for scalability of spin-based quantum computer architectures.

I. INTRODUCTION

Large-scale fault-tolerant quantum computing requires
a robust and readily scalable qubit architecture, includ-
ing initialisation, manipulation and measurement capa-
bilities, with error rates below 1% [1, 2]. This implies
that high-performance qubit gates and, ultimately, long
qubit coherence times are required. Several demonstra-
tions of qubit fidelities > 99 % exist for small-scale qubit
systems [3-10], however a major obstacle on the way to
realising a practical large-scale quantum computer is the
challenge of scaling up architectures while maintaining
high fidelities.

One strategy explored in the literature to overcome
this problem is the electromagnetic dressing of qubits.
By constantly driving the qubit, one can prolong the co-
herence times by continuously refocusing qubits against
slow fluctuations in Larmor frequency [11-14]. In ad-
dition, this is a scalable control scheme, since the driv-
ing microwave field can be applied globally to the entire
multi-qubit device [15-19], so long as individual control of
the Larmor frequencies to locally address qubits is possi-
ble. However, this type of global control is compromised
by variability in qubit characteristics.

Spin qubits in silicon [20] are well suited to dressing,
offer the prospect of individual addressability, and have
excellent potential for large-scale integration due to their
ability to leverage manufacturing from the microelectron-
ics industry [16, 21]. However, for silicon spin qubits,
even in an isotopically purified substrate [22], residual
nuclear spins [23] and spin-orbit-coupling [24, 25] due to
interface disorder reduce both the coherence time and the
homogeneity of the spin qubit properties.

Improvement in the robustness of dressed qubits can
be achieved via the use of pulse engineering. Numeri-
cal algorithms like GRadient Ascent Pulse Engineering
(GRAPE) [26] have, in earlier work, been applied to con-

struct optimal control pulses tackling such problems in
order to improve gate performance [6, 27]. A generalisa-
tion of the dressed qubit framework to the case of engi-
neered electromagnetic pulses can be achieved by target-
ing specific types of qubit errors that are most commonly
encountered across quantum computing platforms.

In this work we show that by combining microwave
dressing with pulse shaping, that is, by modulating the
amplitude of an always-on global field, we can realize a
Sinusoidally Modulated, Always Rotating and Tailored
(SMART) protocol for spin qubit operation that is read-
ily scalable, with greater robustness to qubit variability
and noise from microscopic sources, as well as noise from
the control and measurement setup. We begin by briefly
discussing dressed qubits in Sec. II. The main principle
of the SMART protocol is discussed in Sec. III, followed
by the strategies for SMART qubit two-axis control in
Sec. IV. The resulting one-qubit gate fidelities under a
model of Gaussian noise are presented in Sec. V. We then
discuss in further detail the implications of an always-on
field for other aspects of universal quantum computing,
taking as an example spins in silicon in Sec. VI. We fo-
cus on two-qubit gate fidelities in the presence of noise,
as well as initialisation and readout. Finally, a summary
of our conclusions regarding the feasibility of a quantum
computer architecture employing this SMART protocol
are presented in Sec. VII.

II. FOREWORD ON DRESSED QUBITS

Most qubit systems are defined by a physical two-level
system (such as a spin 1/2, or two levels in an atom,
for example) under static electromagnetic fields (either
intrinsic to the qubit device or applied externally). Os-
cillatory electromagnetic fields are then applied in order
to perform qubit control operations, which will serve as



the tools for implementing logical gates. Alternatively,
a qubit can be defined in terms of the dynamical states
of the two-level system as driven by the externally ap-
plied oscillatory electromagnetic field. This is the case
for a dressed qubit [11, 12, 28, 29|, which consists of a
qubit that is permanently driven by an always-on reso-
nant field.

For a dressed qubit, |0) and |1) states are described
in the laboratory frame as the qubit states that rotate
with either the same phase or the opposite phase with
relation to the driving field. Logical gates connecting
the two states are then implemented by either speeding
or delaying the precession of the qubit with regard to
the driving field, changing the relative phase. The main
advantage of encoding qubits in the driven state is that
it provides dynamical decoupling from the environmental
noise.

Two elements limit the ability of the dressing scheme
to refocus qubits under noise. Firstly, refocusing is only
efficient if the time correlations of the noise amplitude
exceed the Rabi period, which means that the spectral
components of noise with frequency similar and above
the Rabi frequency still impact the qubit coherence. Dy-
namical decoupling is unable to cope with this type of
noise.

The second limitation is noise causing large deviations
in qubit Larmor frequency, which would cause the qubit
to drift out of resonance with the microwave driving field
and jeopardise the driving mechanism. This type of high-
amplitude fluctuations usually occur in the form of a slow
drift, such that for a few qubits this can be compen-
sated by calibrating the microwave frequency between
experiments. For multiple qubits this strategy of recali-
bration becomes inefficient. Moreover, applying different
frequencies to each qubit will make the system suffer from
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frequency crowding and crosstalk in a full scale architec-
ture.

In the dressed qubit strategy, the tolerance for devia-
tions in resonance between the microwave and the qubit
(or, equivalently, the tolerance for slow noise amplitudes)
is set by the Rabi frequency. Pulse engineering [6, 26, 30],
however, can be used to develop improved driving strate-
gies that have superior tolerances and are able to ad-
dress noise in other parameters, such as fluctuations in
the Rabi frequency.

IIT. THE SMART QUBIT PROTOCOL

We introduce here a method of dressing the qubit with
an oscillatory driving field that has a time-dependent am-
plitude, effectively creating a time-dependent Rabi fre-
quency. Tailoring the amplitude modulation frequency
to be in a certain proportion with the Rabi frequency, we
are able to cancel different types of noise. The labora-
tory frame Hamiltonian of an arbitrary modulated driv-
ing field Q(t) is given here by

Hyp =

| >

(v(t)o. + Q(t)2cos (27 frnwt)oz) . (1)

In general, one can target multiple types of noise by
adding different frequency and phase components to the
amplitude modulation. We look at the special case where
the global field amplitude is modulated by a single sinu-
soid, in which case the laboratory frame Hamiltonian is
given by

. h
il =3 (V(t)az + QRV2Sin (27 fnodt)2 08 (27 fanet) 0
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FIG. 1. A qubit ensemble driven collectively by a global field consisting of (a) a continuous drive and (b) a sinusoidal
modulated field. The Bloch spheres for the continuous drive is shown in c) together with the transformation from the rotating
to the dressed spin frame. In d) the identity operator fidelity for a range of detuning offsets, corresponding to Larmor
frequency variability, is shown where the range with fidelities above 99 % has been shaded. The Bloch sphere and the identity
operator fidelities for the sinusoidal modulated case is given in e) and f).



Here, 0, and o, are Pauli matrices acting on the qubit
state and h is the Planck constant. The qubit Larmor
frequency v(t) has a time dependence that is controllable
by external fields, and will be used to tune the resonance
between the qubit and the driving field frequency fi,. for
controlled qubit rotations. The maximum amplitude of
the oscillatory field creates Rabi rotations of frequency
QrV?2 on the qubit. This amplitude is modulated by
the sin (27 fioat) term, where the modulation frequency
fmod 1s a parameter that is chosen in order to optimise the
noise cancelling properties of the driving field. The factor
of v/2 is a scaling factor in order to compare the result-
ing efficiency of the driving field in the cases of dressed
and SMART qubits when adopting the same root mean
square power of the global field. In Fig. 1 the fidelity
of an identity operation on a dressed and SMART qubit
ensemble is compared for different frequency detuning
offsets, showing higher robustness to Larmor frequency
variability in the qubit ensemble for the latter.

The mathematical description and computer simula-
tion of the qubit dynamics are significantly simplified
when the Hamiltonian is written in the rotating frame
that precesses with the same frequency as the driving
field fuw. In this case,

135 = (Av(t)o. + 0xVEsin @n fuoatior) . (3)

where Av(t) = v(t) — fmw is the detuning between the
controllable Rabi frequency and the driving field.

Dressed qubit logical states are then the |[+) and |—)
states in the rotating frame, that is, the states parallel
and anti-parallel to the z axis in a rotating frame. We
highlight this fact by referring to a dressed basis, which
is simply a Hadamard transformation over the rotating
frame basis described in Eq. 3. This returns the logical
qubit states to the conventional z axis. Operating in the
dressed basis implies the following axes transformations
from the rotating frame basis: |[1) — |z,), |1} — |Z,),
[+) = [20), =) = 12, [8) = [7,) and [§) — [y,), hence
a rotation about the x-axis in the dressed basis is equiv-
alent to a rotation about the z-axis in the rotating basis
etc. This change of quantisation axis can be seen from
the Bloch sphere in Fig. 1(c) where the qubit states along
the conventional quantisation axis [1) and ||) now are in
the equatorial plane.

The Hamiltonian in the dressed basis reads

B = g (QR\@ Sin(27 fanodt) s + Az/(t)am> L)
In general, the amplitude and frequency of the modu-
lated global field determine its noise-cancelling proper-
ties. This example of a sinusoidal modulated global field
can be extended to more sophisticated combinations of
modulation components in order to cancel multiple types
of noise as well.

To understand why a SMART qubit can be superior to
a dressed qubit in terms of coherence time and gate per-

formance, we derive an analytical expression for a model

of quasi-static noise using the Magnus expansion series
and analyse the noise cancelling properties using the ge-
ometric formalism from Ref. 27. The geometric formal-
ism is based on a description of the time evolution of
the qubit U(¢) in terms of a three dimensional trajec-
tory 3(t) extracted from the first term in the Magnus
expansion series. This trajectory is directly related to
the microwave amplitude modulation €(¢) through its
curvature k (2(t) = k().

We start by looking at the Hamiltonian in the inter-
action picture, found by transforming the noise Hamil-
tonian (d80;) with the time evolution operator from the
noiseless driving Hamiltonian U(t). Here 04 is the fluc-
tuation parameter on axis i approximated as a constant
for slow noise

Hi(t) = U(t)To;U(t)dB. (5)

The first two orders of the Magnus expansion are given
by

Ay (t) = % /0 Hy(t1)dty, (6)
AQ(t) = T}/O dtl . 1 dtQ[HI(tl)vHI(t2)]v (7)

and the time evolution operator in the interaction picture
by

U (t) = exp (Z ((w)iAi(t)) . (8)
i=1

For perfect noise cancellation, U; equals identity and by
truncating the sum we can find solutions where certain
orders of noise cancel.

The space curve parametrisation from the geometric
formalism [27] is extracted from A;(t) according to

Ai(t) = z(t)os + y(t)oy + 2(t)o.. (9)

To achieve first order noise cancellation A;(7T") must be
zero. This corresponds to a closed space curve. We can
write Eq. 6 in the form of a supermatrix U(t) using the
identity vec(ABC) = CT ® A vec(B) to allow for arbi-
trary noise axis, where vec(M) indicates the row vectori-
sation of M

1t
A(t) = mat<5ﬁ/o UT(t)) @ UT(t1)08dt, Vec(ai)()l.o)

Here, mat(V) is the matricization of the vector V. An
arbitrary driving field Q(¢) about axis o, (the choice of
specific noise axis is merely for convenience, and also cor-
responds to dressed basis z-axis) gives us the time evo-
lution operator



U(t) diag(exp{iw/otﬁ(t)dt},exp {iﬂ/OtQ(t)dt}),

(11)
and the corresponding supermatrix

Ut)y=Ut)T aU)

— diag(1, exp { ~ %in /Ot Q(t)dt},exp {m /Ot Q(t)dt}, 1),

(12)
Now looking at detuning noise in the dressed basis by

setting i in Eq. 10 to = and by substituting U (t)T @ U (¢)T
with U(t) we find

1 [t
Alx(t)_mat<5ﬁ /0 U(t)opdt

JECE

For A1,(t) to be zero we have the following condition

/OT exp { + 2ir /Ot Q(tl)dtl}dt = 0. (14)

Choosing a sine wave driving field with one period dura-
tion we get

O = = O

1/f ¢
/ exp { + 2i7r/ Q sin(27rft1)dt1}dt =0 (15)
0 0

1/f 0
/ exp { T z? cos(27rft)}dt =0 (16)
0

This can be recognised as one of Bessel’s integrals with
solution Q/f = j;, where j; is the i-th root of the zeroth
order Bessel function and j; = 2.404826. It can be seen
that A; is zero for T' = % The second order term A, also
goes to zero when the time is chosen appropriately, which
is ? in this case with any integer n. This is because the
chosen control is a periodic and odd function, meaning
that the second order cancellation happens for any values
of 2/ f as long as the duration is a multiple of the period.
This corresponds to n loops through the corresponding
space curve.

The optimal modulation frequency of a driving field
providing first and second order noise cancellation is
therefor given by

Foma = QrV2/ji, (17)

and the duration of one period of the global field is de-
noted Tod- In Fig. 2(a~d) Q(t) and 5(¢) are shown in the
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FIG. 2. Geometric formalism describing noise-cancelling
properties. (a-b) Global field amplitude modulation ()
and (c-d) the corresponding space curve §(t), for the dressed
and SMART qubit with Timoa = 1.7 us. The ideal
modulation condition is plotted with a solid line color-coded
according to the time and a non-ideal condition with a
dashed black line. The slope of the space curve at the
end-point for the ideal (beige/light) and non-ideal case
(blue/dark) is plotted in (c-d) together with a thicker black
arrow representing the slope at the starting point. The
evolution of a qubit initialised to |Z,) is shown in (e-f).

cases of dressed and SMART qubits. Both cases show a
closed space curve (solid black line) indicating first or-
der noise cancellation, a circle for the dressed case and
a figure eight for the SMART case. The figure eight is
achieved by synchronising the modulation frequency fioq
in a certain proportion to the Rabi frequency Q. The
dashed lines in Fig. 2(a,b) show examples where the am-
plitude is offset by some form of noise (such as fluctuation
in source power) for the same gate time, resulting in a
non-closed space curve or equivalently only partial first
order noise cancellation. In order for second order noise
to cancel as well, the area projected from the trajectory
3(t) onto the zy-, xz- and yz-plane must all equal zero.
The sign of a projected area is determined by the wind-
ing direction of the trajectory. Hence, the figure eight
trajectory followed by the SMART qubit in Fig. 2(d)
has a positively signed lobe in the fourth quadrant and
a negatively signed lobe in the second quadrant. The
projected areas therefore sum to zero for the SMART
qubits, but not for the dressed qubits. This higher order



of noise cancellation translates into an improved toler-
ance to noise amplitudes in the case of SMART qubits,
while the dressed qubit only provides first order noise
cancellation.

For a SMART qubit initialised in the plane perpendic-

ular to the global field axis, driven at fo*', with ampli-

tude Qrv2 and Av(t) = 0, a positive rotation of ~ 37 /2
followed by a negative rotation of the same angle occur
for every Tioq of the global drive. The dressed qubit, on
the other hand, continuously rotates without change in
angular velocity. This is shown in Fig. 2(e,f). The back-
and-forth rocking of the SMART qubit and the contin-
uous rotation of the dressed qubit about the global field
axis both contribute to the continuous echoing of low fre-
quency noise in these encoding strategies. Information
about the single-qubit gate can be found in the slope of
§ at t = 0 relative to t = T. Parallel slopes correspond
to the identity operator and perpendicular slopes corre-
spond to VX and VY gates etc.
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FIG. 3. Filter function formalism applied to (a) the dressed
and (b) the SMART qubit showing noise frequency
susceptibility and equivalently controllability. The y-axis is
given by |F|? = |A1.|* + |A1,|* + | A%.| from Eq. 10 with 68
replaced by 68 exp(—2iw ft). Here Qr = 1 MHz.

Note that what we refer here as quasi-static noise could
be originated in the stochastic electromagnetic fields of
the quantum processor, but it may also have its origin
in other non-idealities, such as crosstalk between qubits,
fabrication variability and small unaccounted Hamilto-
nian terms (such as long-range dipolar coupling be-
tween spins or cross-Kerr interactions in superconducting
qubits coupled through a bus cavity).

By substituting the fluctuation parameter in Eq. 10
with a tone of variable frequency (08(f,t) =
§Bexp(—2imft)) we can probe the noise susceptibility
of the SMART qubit at different frequencies (or simi-
larly the controllability at certain control frequencies),
according to filter function formalism. This is shown in
Fig. 3(a-b) for the dressed and SMART protocol and ex-
plains the rationale behind the Stark shift modulation
frequencies required for control in Sec. IV. Due to the
higher susceptibility to control at frequencies correspond-

ing to lower harmonics of the global field, we will be using
the first two harmonics exclusively in the next section for
two-axis control.

IV. SMART QUBIT TWO-AXIS CONTROL

Rotations using the SMART protocol in the dressed
basis are achieved by applying frequency detuning Av(t)
to the qubit with sinusoidal modulation at certain fre-
quency and phase. The global field is always on, provid-
ing dynamically protected gates.

Detuning of individual qubits can be implemented, for
example, by pulsing the gate electrode above a spin qubit
in semiconductors with spin-orbit coupling, effectively
shifting the gyromagnetic ratio [15, 31]; by modulating
the hyperfine coupling between an electron and the static
spin of the nucleus [31-33]; by locally changing the mag-
netic flux in a Josephson junction [34]; and so on.

Controlled rotations about one axis v using sinusoidal
local detuning of the qubit are described in the dressed
basis by the Hamiltonian

H;;} = Hglobal + Hiocal
h, . (18)
= llglobal + 5(1/1) Sln(27rfmodt + ¢1nod)am)-

The first term Hgopal is the global field with sinusoidal
modulations %QR\@ Sin(27 finoat)o . from Eq. 4. Now we
add a local control term H),c, that will be responsible for
addressing an individual qubit by modulating its Larmor
frequency at the same frequency as the global field. Here
®mod is the phase offset between the microwave and the
qubit Larmor frequency modulation and v, the detuning
amplitude of the local control term. Note that the direc-
tion for this rotation axis v in principle is not one of the
Cartesian axes defined before.

For two-axis control a second rotation axis w can be
found with a Hamiltonian of the same form as H, but
with the detuning modulated at twice the frequency

h .
H;U - global + 5 (Vw Sln(47rfmodt + ¢mod)0:c) . (19)

The direction of w is, again, not correlated to the Carte-
sian directions in the general case. Any other combi-
nation of odd and even harmonics would also achieve
two axes control, as long as the modulation remains syn-
chronised with the global field echoing condition. How-
ever, higher harmonics exhibit lower rotation efficiency
(see filter function formalism in Sec. III). Small devia-
tions in the local Stark shift modulation frequency away
from fi0q can also be used as a control knob for two-axis
control. This would, however, require calculation of the
exact rotation as a function of detuning amplitude (pe-
riods of global field per gate). Using the harmonics of
fimoa with small detuning amplitude, on the other hand,
gives straight forward solutions.
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FIG. 4. Rotation axis parameters for axes v (top) and w (bottom) of the SMART qubit for different values of the control
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perpendicular axes of rotation are illustrated on Bloch spheres in (d) and (h) with a relative angle of ¢, = 0.834 radians to

the dressed zy axis system. Here Qg = 1 MHz.

The effective rotation is calculated from the time-
evolution operator

U,-(x) = cos (g) I—isin (%) (reos +ryoy +1.02),
(20)

by substituting the left hand side with the numeri-
cally calculated time evolution operator from Eq. 18
and Eq. 19. Here # = [rg,ry,7.] is the unit rotation
vector. The rotation angle x can be calculated from
the trace of U,, and 7 reconstructed when the trace
has been subtracted using the trace of the products of
the Pauli matrices. The polar and azimuthal angles
are found using the identities 0, = arctan(r,/r;) and
¢r = arctan(r,(r2 + r2)~/2). In Fig. 4 ¢y, 6, and the
rotation efficiency 7 is given as a function of ¢4 and
Uy for axes v and w. The rotation efficiency is calcu-
lated for sinusoidal control terms according to

Pout X12) w
nv,w = = 100% X ( : ) >a (21)
P (27Tmoa)” (222)°

where Py, is given by the squared angular velocity of
the resulting rotation and P, by the root mean square of
the sinusoidal control amplitude. The rotation efficiency
is 100% for square pulse control of an undressed qubit
and 50% for frequency modulation resonance control of
a dressed qubit [12, 17]. This shows that both v and w
rotations have comparable control strength to the dressed
qubit.

By choosing appropriate values for v, ,, and ¢mod, the
two axes v and w can be made perpendicular. These val-
ues correspond to vy, < Qr and @meq = /2, giving
Gw — Oy = /2 and 8, ., ~ 7/2, as shown in Fig. 4(d,h).
Hence, we have constructed two-axis control by tailor-
ing the amplitude and phase of two sinusoidal driving
fields of frequency fmoa and 2fnoq. By combining the
two driving field in a weighted sum arbitrary two-axis
control, including Cartesian zy-axes, can be engineered
as discussed in the following paragraph.

From now on we will assume ¢,04 = /2 and replace
the sine from the local control term in Eq. 18 and Eq. 19
with a cosine. The condition on v,,, and ¢moq from
Fig. 4 only guarantees that the two rotation axes v and
w are perpendicular, they do not coincide with |z,) and
ly,) on the Bloch sphere in Fig. 4(d,h). Instead, they are
rotated —0.834 radians (—47.8 degrees) in relation to the
Cartesian axes. For the sake of completeness, we show
that, in order to produce actual z- and y-rotations, the
control terms of v and w can be combined in a linear
fashion

h
H,f’y = Hglobal + = (V,f’y(COS<27Tfmodt> - 1)+

? (22)

vy ( cos(47 frmoat) — 1)) Oy

Here, additional —1 terms are added in order to force
the control amplitude to start and end at zero, which
is advantageous for experimental reasons as the control
fields are limited by a finite rise time and power. In



TABLE I. Coefficients used to construct vX and V'Y gates
with Eq. 22 for different duration and Q2r = 1 MHz.

VX VY
vy (MHz) vg, (MHz) ¢ (MHz) vy (MHz) t (Tmod)
0.1515 0.3336 -0.2154 0.2224 1
0.0893 0.1579 -0.1056 0.1136 2
0.0620 0.0921 -0.0701 0.0760 3
0.0271 0.0366 -0.0300 0.0327 7
0.0190 0.0254 -0.0210 0.0229 10

order to find the optimal values for v, and v,,, GRAPE
is applied [6, 26].
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FIG. 5. Coefficients v, and v,, times the duration of a gate
for (a) VX and (b) V'Y gates for different gate duration
according to Table I. The dashed horizontal line indicates
the convergence value. Note that in (b) the y-axis is
discontinuous.

The duration of a one-qubit gate using the SMART
protocol must equal a multiple n of Ty,q. For every
n, the optimal values of v, and v, can be found from
GRAPE. That is, each gate can be made to last for any
integer number of Ty,0q. This is convenient as different
systems can be limited by, for example, Larmor frequency
tunability range or coherence times, in which case one
would need longer or shorter gate duration, respectively.

The same data multiplied by the gate duration is plotted
in Fig. 5(a,b), where the values clearly converge at longer
gate duration. This convergence comes from the rotat-
ing wave approximation (RWA), where for large driving
amplitudes (corresponding to short times in Fig. 5) the
approximation breaks down [35]. There is a compromise
between accurate rotation axes and fast control, as choos-
ing a small integer number n for the gate duration forces
v, and v, to be higher in order to achieve the same ro-
tation angle, affecting the accuracy of the rotation axis
angles 6, and ¢, found from Fig. 4. The fastest possible
gate is limited by the amplitude of the Larmor frequency
controllability in the system.

It turns out that by modulating the global field with a
cosine instead of a sine according to

. h
HE™ = §(QR\/§ c0S(27 fmoat)o. + Av(t)o,),  (23)

x- and y-rotations can be achieved by simply single har-
monic control terms without having to combine several
harmonics in a linear fashion with coefficient extracted
with GRAPE. However, the method developed here is
useful for finding optimal parameters for arbitrary gate
control strategies. The global microwave modulation and
the Stark shift modulation for z-, y-, v- and w-rotation
is shown in Fig. 6 for the dressed and SMART qubit.

V. SMART QUBIT PROTOCOL GATE
FIDELITIES

In order to assess gate robustness to frequency de-
tuning and microwave amplitude fluctuations using the
SMART protocol, a noise analysis is carried out. Our
noise model is a quasi-static Gaussian noise implemented
in the system Hamiltonian as follows

H, = (14 60)QrV?2sin (27 fmoat)o. + (Av(t) + 3,)0

In Table I, values of v, and v,, are given for a range of n. (24)

(a) ) (b) ) ) (c) ) (d)

Dressed qubit SMART qubit protocol (sin) SMART qubit protocol (cos) y
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FIG. 6. Global microwave field modulation and Stark shift control terms for (a) continuous drive v/X and /Y gate and (b,c)
SMART qubit N, VW, VX and VY gates. The gate durations are 10/Qr for the dressed case and 7 X Tmoa for the SMART
case, and the relative microwave and Stark shift amplitude is to scale. In (d) the four axes are shown.
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FIG. 7. Gate fidelities for different values of amplitude and detuning offset/noise for the bare, dressed and SMART qubit.
(a-c) show the identity gate fidelities for the bare and dressed qubit and a VX gate for the dressed qubit, respectively. In
(d-f) SMART qubit identity, v'X and v/Y is shown. Row (i) shows Bloch spheres with the relevant global field, local control
field and rotation axis. In row (ii) the fidelity for offset values of amplitude and detuning is shown, and finally row (iii) and
(iv) show Gaussian distributed noise in linear and log scale, respectively. Here Qg is 1 MHz and the gate durations are
according to Fig. 6. The bare qubit identity gate has the same duration as the dressed gates.

Here, 6 and §, represent the amplitude and detuning
offset caused by the noise, respectively. The frequency
detuning noise is considered as a simple offset, while the
amplitude noise is taken to be proportional to the ampli-
tude of the driving field.

In Fig. 7(a-b) the fidelity of an identity gate is given for
the bare (undressed) and the dressed qubit. A dressed
VX is shown in (c).The SMART qubit identity, v/X and
VY gate is presented in (d-f). The first row shows fi-
delities corresponding to an operation generated by one
fixed value of the offsets d and §,, which represents one
realisation of the noise. In the second and third rows,
Gaussian averaging over several realisations has been ap-
plied, and it is shown in linear and logarithmic scales,
respectively. The calculated fidelity for m/2 rotations are
similarly given for (d) the dressed and (e,f) the SMART
qubit protocol. More details on generating the 2D noise
maps and 2D noise maps for vV and vW are provided
in Appendix A and Appendix B, respectively.

VI. SMART PROTOCOL FOR SPIN QUBITS

We now focus on the particular example of electron
spin qubits in electrostatically confined quantum dots,
in which the global driving can be performed through
an oscillating magnetic field or, alternatively, an oscillat-
ing electric field that couples to spins through spin-orbit
coupling. This spin-orbit coupling can also be used to
control locally the value of the Rabi frequency through
the Stark shift of the spin resonance frequency, which is a
result of the influence of gate voltage bias on the effective
g-factor of a spin in a given quantum dot.

All our numbers are chosen in the range of spin-orbit
effects found in Si/SiO2 electrostatic quantum dots, for
which abundant literature exists to inform the expected
variability and degree of controllability of the interface-
induced spin-orbit coupling [12, 19, 24, 36].

For other qubit architectures the particular physical
aspects of two-qubit gates, initialisation and readout may
differ significantly and the feasibility of these operations
under an always-on global field needs to be assessed case-
by-case.
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FIG. 8. Two-qubit VSWAP gate fidelities for different values of amplitude and detuning offset/noise for (a) the dressed qubit
and (b) the SMART qubit. In (c) and (d) the gate fidelities for CNOT is given and in (e) and (f) for CNOTx. Row (i) shows
two qubits with a common global field and local Stark shift fields. In Row (ii) and (iii) the gate fidelities with Gaussian noise
applied are shown on a linear and log scale, respectively. Here Qg is 1 MHz.

A. Two-qubit gates nificantly compared to the bare and dressed case.

Two-qubit gates between spins based on exchange cou-

pling can be implemented with a strategy similar to B. Initialisation and readout
that of bare qubits. Applying voltage bias pulses to the
electrostatic gates, the overlap between wavefunctions of High fidelity initialisation and readout are necessary

neighbouring electrons can be tuned. In the example of  for error-corrected quantum computing strategies. The
bare qubits, the resulting spin-spin interaction depends  constant driving field creates oscillations between the |0)
on the ramp rates of the gate biases and the difference  apq |1) states, which limit the range of strategies that can
between qubit Larmor frequencies. be used for initialisation and readout — strategies based
For the case of a driven qubit, such as the dressed or ~ on energy-dependent transitions are hard to harmonise
SMART qubit, the impact of the driving field on the re- with a driving field. Both initialisation and readout are
sulting gate operation is also set by the exchange control ~ studied here in the context of strategies leveraging the
ramp rates. The difference is that the relevant time scale Pauli spin blockade.
is determined by the difference between Larmor and Rabi Initialisation of two-qubit SMART states is done simi-
frequencies of the qubits. Further detail on the onset of  larly to the dressed spin qubit [17], by ramping from neg-
the different operations for various ramp rates can be ative to positive detuning at different rates. In Fig. 9(a)
obtained in Ref. 17 in the case of dressed qubits. the energy diagram of the system as a function of charge

Fidelity maps for the two-qubit gates vSWAP, CNOT de_tuning .is shown at finite global.ﬁeld mic%"owave am-
and CNOTy are given in Fig. 8. The vSWAP gate plitude with zero frequency detuning, and in (b) with
is implemented assuming exchange gate control, where Ayl. = —Ar = O'Q.MHZ' For non-zero frequepcy de-
SWAP-like operation is the native two-qubit gate for tunlng,. an anticrossing appears Bfnd the ramping rate
qubits having the same resonance frequency [17]. The deterrplnes.whether or not the_ Spit Crosses this energy
meaning of CNOTx here is a NOT operation on the gap diabatically. The syst.em is initialised to an S(l,l.)
target qubit conditional on the control qubit being |z) state from a 5(0,2) state with a ramp centered about ei-

or |7) instead of |0) or |1). The CNOT and CNOTx ther (c) the minimum or (d) the.rr.laximum microwave
r n amplitude (A and B). The transition from positive to
gate sequences used here are (VY ® )VSWAP(VX' @ negative detuning consists of a step before and after the

VX)VSWAP(VY ®1) and v SWAP(ﬁT(@\/X)\/ SWAP.  slow ramp to achieve lower ramp rate, as seen from e-
Here the assumption that the two qubits experience the  ramp in Fig. 9(c,d). The state probability of S(0,2) and
same noise level is made (see Appendix A for more de-  S(1,1) is given for different ramp times in Fig. 9(e-h) for
tails). For both one- and two-qubit gates the robustness the two cases. For comparison two-qubit dressed initial-
to detuning and amplitude noise is seen to improve sig- isation is shown in Fig. 10. To show the robustness to
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FIG. 9. SMART two-qubit initialisation and readout. a) Energy diagram of the SMART two-qubit system for zero frequency
detuning and for (b) Avy = —Av = 0.2 MHz. Initialisation of S(1,1) from S(0,2) with ramping centered about (c) the
minimum microwave amplitude and (d) the maximum microwave amplitude of the global field. The results with different
ramp rates and fixed charge detuning ramp range 50 GHz — —50 GHz (~0.2meV) is shown in (e-h) where the probability of
S(0,2) and S(1,1) is plotted against ramp time. Fixed offsets in frequency detuning (Awv1, Avs) are introduced, with
magnitudes given by the colorbar (two-colored dashed line representing the two qubits). Parameters used here include

Qr1

QRra

resonance frequency variability different combinations of
Avy and Avy € {0,£0.05,£0.1} MHz are simulated. A
S(1,1) state is achieved with > 99% fidelity after ap-
proximately 0.1ps for case A and 1ps for case B (at
worst-case frequency offset). Centering the ramp about
the minimum microwave amplitude (A) looks to be a
more robust options causing less mixing with the triplet
states. This can be explained by looking at the effective
echoing as a result of the global field after the ramp. For
case A close to a full period of the global field follows
the ramp, whereas for case B less than three quarters of
a period.

Readout can be performed similarly by reversing the
process described above and relying on Pauli Spin block-
ade in the dressed frame [17]. In that case, the spin
blockade is guaranteed for the duration of the spin re-
laxation time, and readout can be performed using some
charge sensing technique. Note, however, that both the
spin relaxation time and the charge readout bandwidth
can be impacted by the field of the global driving, which
can impose some engineering challenges. Further discus-
sions on the engineering aspects of globally driven spin
architecture are out of the scope of the present work,
and some initial results in this direction can be seen in

Refs. [18] and [37].

VII. SUMMARY

In this paper we propose to combine pulse engineering
with electromagnetic dressing of qubits, in what we de-

1MHz, (Avi, Avs) € {0,40.05,40.1} MHz, t. = 0.5 GHz. The total time is 2 X Tmod-
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FIG. 10. Dressed two-qubit initialisation for different ramp
times and frequency detuning offsets. The state probability
of (a) S(0,2) and (b) S(1,1) is shown with Qg = 1 MHz and
the total time 2/Qg.

note the SMART protocol. We have shown that qubits
can be made more robust to detuning and amplitude vari-
ability caused by noise and/or sample inhomogeneity by
applying a sinusoidal modulation to the global field, can-
celling both first and second order noise terms in a Mag-
nus expansion. By applying more complex modulation
such as multi-tone driving, higher order noise terms can
be cancelled as well. This is left for future work. We
have analysed two-qubit gates, initialisation and readout
in the particular example of spin qubits in quantum dots,
however the SMART protocol can be applied to other sys-
tems with global coherent driving. The SMART protocol
provides a clear and scalable path in terms of engineering
constraints, making it a potential strategy for large-scale
quantum computing.
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Appendix A: Simulation details of 2D noise maps

For the 2D noise maps in Fig. 7 and Fig. 8 the Hamil-
tonian given in Eq. 24 is used. In order to generate the
maps the following steps are executed:

1. Construct time-dependent Hamiltonian, H with
certain detuning and amplitude offset (d,,dq) ac-
cording to Eq. 24.

2. Time-evolve H into time-evolution operator U at a
certain time.

3. Calculate the fidelity of the resulting operator U by
looking at the overlap with the target operator.
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4. Repeat the steps above for different amplitude and
detuning offset values to create a 2D fidelity map

F(5,,00).

5. Apply Gaussian averaging across the fixed noise
map generated above, where the width of the ap-
plied Gaussian distribution is set by the noise level.
That is, multiply the fixed noise map by a nor-
malised 2D Gaussian around zero offset with widths
(0v,0q) given by the noise levels (See Fig. 11).

For the two-qubit case the noise levels of the two qubits
are assumed to be the same. The same procedure as for
the one-qubit gates is then followed, but integrating over
all four noise dimensions (d,1,0,2,001,002). Note that
we assume there is no noise on the exchange coupling for
the simulation.
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FIG. 12. Gate fidelity maps for (a) the v/V gate and (b) the
VW gate. Row (i) shows Bloch spheres with the relevant
global field, local control field and rotation axis. In row (ii)
the fidelity for offset values of amplitude and detuning is
shown, and finally row (iii) and (iv) show Gaussian
distributed noise in linear and log scale, respectively.

Appendix B: 2D noise maps for axis v and w

The 2D noise maps of /2 rotation about the v and
w axes in Fig. 12 are found to be similar to the SMART

VX and VY gates.
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