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We consider the task of performing quantum state tomography on a d-level spin qudit, using
only measurements of spin projection onto different quantization axes. After introducing a basis of
operators closely related to the spherical harmonics, which obey the rotational symmetries of spin
qudits, we map our quantum tomography task onto the classical problem of signal recovery on the
sphere. We then provide algorithms with O

(
rd3

)
serial runtime, parallelizable down to O

(
rd2

)
, for

(i) computing a priori upper bounds on the expected error with which spin projection measurements
along r given axes can reconstruct an unknown qudit state, and (ii) estimating a posteriori the
statistical error in a reconstructed state. Our algorithms motivate a simple randomized tomography
protocol, for which we find that using more measurement axes can yield substantial benefits that
plateau after r ≈ 3d.

I. INTRODUCTION

Quantum state tomography, the task of reconstructing
a quantum state by collecting and processing measure-
ment data, is an essential primitive for quantum sensing,
quantum simulation, and quantum information process-
ing. The central importance of quantum state tomog-
raphy has led to the development of techniques based
on least-squares inversion [1], linear regression [2], maxi-
mum likelihood estimation [3, 4], Bayesian inference [5–
7], compressed sensing [8, 9], and neural networks [10],
among others. These techniques are typically developed
in a general, information-theoretic setting, and make
minimal assumptions about the physical medium of a
quantum state. As a consequence, even well-established
techniques can be ill-suited for physical platforms with
unique or limited capabilities.

Due to advancements in experimental capabilities to
address nuclear spin states (i.e. hyperfine levels) in ul-
tracold atomic systems [11–16], as well as developments
in the control of ultracold molecular systems [17–27], a
particular setting of growing interest is the spin qudit, or
a multilevel quantum angular momentum degree of free-
dom. Spin qudits can provide advantages over their qubit
counterparts for quantum sensing [28, 29], enable quan-
tum simulations of SU(d) magnetism [16, 30–34], and
offer unique capabilities for quantum computation and
error correction [35–37]. In all cases, quantum state to-
mography is necessary to take full advantage of a spin
qudita.

The problem of qudit tomography is not new, with an
extensive literature on a variety of techniques [29, 38–
48]. However, most existing protocols either rely on
infinite-dimensional representations of a quantum spin
[29, 41, 49], or require the capability to perform essen-
tially arbitrary operations on a qudit [42–48], generally
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a Note that the measurement of collective observables for quantum

sensing or simulation can be recast as a single-spin tomography
task.

resulting in tomographic protocols that can be highly
inefficient or unachievable in practice. The protocols
based on infinite-dimensional representations of a quan-
tum spin have the advantage of reconstructing its state
from measurements of spin projection onto different spa-
tial axes, which are generally accessible with any spin
qudit. Nonetheless, these protocols obfuscate the mini-
mal requirements for performing full state tomography,
provide no straightforward error bounds or guarantees of
accuracy, and (with the notable exception of Ref. [41])
generally extract only a small fraction of the information
contained in measurement data.

In this work, we consider the task of performing spin
qubit tomography using only measurements of spin pro-
jection onto different spatial axes. This sort of task was
first considered in Ref. [38], as well as a few later works
[39–41]. Specifically, Ref. [38] provided an explicit pro-
tocol for reconstructing a d-level spin qudit state from
measurements of spin projection along 2d − 1 axes, the
minimum number necessary for full tomography of an ar-
bitrary (possibly mixed) qudit state. However, the pro-
tocol in Ref. [38] involves a choice of a single (arbitrary)
angle θ, and provides no means for comparing different
choices of θ, which may result in wildly different statisti-
cal errors (i.e. precision) in a reconstructed state. Other
works provide insightful discussions into the problem of
spin qudit tomography, but either (i) require making as-
sumptions about the qudit state in question [41] (making
the tomographic protocol only valid for a restricted set of
possible states), (ii) do not address the question of sta-
tistical error [39], or (iii) provide a measure of statistical
error that is needlessly conservative and computationally
demanding [40]. We address these shortcomings in this
work, and identify remaining avenues for refining spin
qudit tomography protocols.

In Section II, we introduce a set of qudit operators that
are closely related to the spherical harmonics, and which
play a central role in our work. We then map the quan-
tum problem of spin qudit tomography onto the classical
problem of signal recovery on the sphere in Section III,
thereby providing an intuitive perspective on spin qudit
tomography. In Section IV we provide a priori upper
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bounds and a posteriori estimates of the statistical error
in a qudit state reconstructed from measurements of spin
projection along a given set of r measurement axes. The
capability to determine upper bounds on reconstruction
error a priori motivates a simple randomized tomogra-
phy protocol that we outline in Section V, and for which
we numerically find that using more measurement axes
yields substantial benefits that plateau after r ≈ 3d. To
facilitate the use of our protocols, we make all of our
codes publicly available at Ref. [50], which also contains
the best measurement axes we found for d ≤ 30 and
r = 3d.

II. POLARIZATION OPERATORS

We begin by introducing a set of qudit operators that
are closely related to the spherical harmonics (in a sense
that will be clarified below), and which play a central role
in our work. Consider a d-state spin qudit with total
spin s ≡ d−1

2 . The defining property of a spin qudit,
distinguishing it from other qudits, is that it describes an
angular momentum degree of freedom, which has specific
implications for how a spin qudit should transform under
the group SO(3) of rotations in 3D space. Due to the
central importance of these transformation rules for a
spin qudit, we seek a basis of operators that transform
nicely under 3D rotationsb. One such basis is that of the
polarization operators [51, 52], defined by

T`m ≡
√

2`+ 1

2s+ 1

s∑
µ,ν=−s

〈sµ; `m | sν〉 |ν〉〈µ| , (1)

where |µ〉 is an eigenstate of the axial spin projection
operator Sz |µ〉 = µ |µ〉; and 〈sµ; `m | sν〉 is a Clebsh-
Gordan coefficient that enforces ` ∈ {0, 1, · · · , d− 1} and
m ∈ {−`,−` + 1, · · · , `}, such that there are d2 polar-
ization operators in total. For brevity, we will generally
treat the value of d as constant but arbitrary throughout
this work, and we will suppress any explicit dependence
of quantities or operators such as T`m on d. The polariza-
tion operators are orthonormal with respect to the trace
inner product, and transform nicely under conjugation:

(T`m|T`′m′) = δ``′δmm′ , T †`m = (−1)
m
T`,−m, (2)

where for any d×d matrix X =
∑
µ,ν Xµν |µ〉〈ν| we define

the d2-component vector |X) ≡∑µ,ν Xµν |µν〉; (X| is the
conjugate transpose of |X), such that (X|Y ) = tr

(
X†Y

)
;

and δkk′ ≡ 1 if k = k′ and 0 otherwise. These proper-
ties of the polarization operators allow us to expand any
density operator ρ in the polarization operator basis as

ρ =

d−1∑
`=0

∑̀
m=−`

ρ`mT`m, ρ`m ≡
〈
T †`m

〉
ρ
, (3)

b Technically speaking, we seek a basis of operators that transform
as an irreducible representation of SO(3).

where 〈X〉ρ ≡ tr (ρX) = (ρ|X), and ρ† = ρ implies that
ρ∗`m = (−1)

m
ρ`,−m. The polarization operators can be

interpreted in terms of an absorption process, whereby
T`m |ψ〉 is (up to normalization) the state obtained after
a spin-s state |ψ〉 absorbs a particle with total spin `
and spin projection m onto a fixed quantization axis.
Similarly to the complex spherical harmonics Y`m, we
will refer to ` as the degree and m as the order of T`m.

The polarization operators are spherical tensor opera-
tors, whose degree is preserved under 3D rotations gen-
erated by the spin operators Sx, Sy, Sz. Moreover, the
degree-` polarization operators T`m transform similarly
to spin-` particles and spherical harmonics Y`m under 3D
rotations (see Appendix A). Specifically, for any triplet of
angles ω = (α, β, γ), we can define the rotation operator

R (ω) ≡ e−iαSze−iβSye−iγSz , (4)

and expand rotated polarization operators as

Tω`m ≡ R (ω)T`mR (ω)
†

=
∑̀
n=−`

D`
mn (ω̄)

∗
T`n, (5)

where ω̄ = (γ, β, α) is the reversal of ω, and

D`
mn (ω̄) ≡ 〈`m |R (ω̄) | `n〉 (6)

are (Wigner) rotation matrix elements. For reasons that
will become clear shortly, throughout this work we will
primarily consider rotations of the sphere that take the
north pole to a point v = (α, β) at azimuthal angle α and
polar angle β. For ease of notation, we therefore define
R (v) ≡ R (α, β, 0), Tv`m ≡ T(α,β,0),`m, and D`

mn (v) ≡
D`
mn (0, β, α).
The polarization operators T`m share a connection to

the spherical harmonics Y`m that goes beyond the rules
for their transformation under 3D rotations. In fact, the
phase-space representation of T`m is proportional to Y`m.
The phase-space representation of a spin qudit operator
X assigns, to each point v on the sphere, the complex
number

XPS (v) ≡ 〈sv |X | sv〉 , (7)

where |sv〉 ≡ R (v) |s〉 is the state of a spin qudit polar-
ized along v. This representation is faithful in the sense
that X is uniquely determined by the phase-space values
XPS (v) at all points v on the sphere. The transforma-
tion rules for polarization operators in Eq. (5), together
with the fact that 〈s |T`m | s〉 = 0 unless m = 0, suffice
to show that

TPS
`m (v) = c`Y`m (v) , (8)

where the scalar c` simply enforces (T`m|T`m) = 1 (see
Appendix A). The polarization operators T`m are thus a
quantum analogue of the spherical harmonics Y`m, and
play an important role in phase-space formalisms for spin
qudits [53].
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As a special case, the phase-space representation ρPS

of a spin qudit state ρ is commonly known as its Husimi
distribution. Performing tomography on an unknown
qudit state ρ is therefore equivalent to reconstructing
the unknown distribution ρPS on the sphere. In princi-
ple, the representation ρPS of a finite-dimensional qudit
state ρ can be reconstructed from the values ρPS (v) =
〈sv | ρ | sv〉 at a finite number of points v. In practice, the
value 〈sv | ρ | sv〉 is determined by measuring spin projec-
tion along v, which also provides measurement data on all
spin projections 〈µv | ρ |µv〉 with µ ∈ {s, s − 1, · · · ,−s}
and |µv〉 ≡ R (v) |µ〉; one would like to make use of this
additional data as well. We clarify the connection be-
tween the quantum problem of reconstructing ρ from spin
projection measurements and the classical problem of re-
constructing ρPS from its values ρPS (v) in the following
section.

III. SPIN TOMOGRAPHY AS SIGNAL
RECOVERY ON THE SPHERE

Our goal is to reconstruct an arbitrary state ρ of a
spin qudit from measurements of spin projection onto
different quantization axes. We are thus nominally re-
stricted to measuring projectors Πvµ ≡ |µv〉〈µv|, where
|µv〉 ≡ R (v) |µ〉 is a state with spin projection µ onto the
measurement axis v. For any fixed axis v, the sets {Πvµ}
and {Tv`,0} (i.e. all Tv`m with m = 0) are both com-
plete bases for the space of operators that are diagonal
in the basis {|µv〉}. Measuring the projectors {Πvµ} is
therefore equivalent to measuring the polarization opera-
tors {Tv`,0}, and provides data on the expectation values
〈Tv`,0〉ρ.

In order to reconstruct an arbitrary density operator ρ
from the expectation values 〈Tv`,0〉ρ, we essentially need
to find a set of coefficients C`mk (v) that would allow us
to recover any matrix element ρ`m of ρ through

ρ∗`m = 〈T`m〉ρ =
∑
v,k

C`mk (v) 〈Tvk,0〉ρ . (9)

Expanding the rotated polarization operators Tvk,0 into
a sum of un-rotated polarization operators T`n according
to Eq. (5), we find that the recovery condition in Eq. (9)
is satisfied when

T`m =
∑
v,k,n

C`mk (v)Dk
0,n (v)

∗
Tkn. (10)

Orthogonality of the polarization operators then implies
the decomposition C`mk (v) = δ`kC`m (v), and in turn∑

v

C`m (v)D`
0,n (v)

∗
= δmn (11)

for all `.
In fact, the problem of finding suitable axes V and co-

efficients C`m (v) to satisfy Eq. (11) can be mapped onto

FIG. 1. Signal recovery on the sphere is the problem of re-
constructing an unknown function f (red distribution) from
its values f (v) at specific points v ∈ V (blue dots) on the
sphere. For almost all choices of V , reconstruction of f is
possible if there are at least as many points in V as there are
degrees of freedom in f .

the well-studied problem of signal recovery on the sphere
(see Figure 1) [54–57]. The signal recovery problem can
be stated as follows: given a square-integrable function
f on the sphere, with the spherical harmonic expansion

f (v) =
∑
`,m

f`mY`m (v) , (12)

where f`m are complex coefficients, find a set of points
V = {v} and associated coefficients C̃`m (v) with which
we can reconstruct f , or equivalently its coefficients f`m,
from knowledge of the function’s value f (v) at all points
v ∈ V ; that is

f`m =
∑
v

C̃`m (v) f (v) =
∑
v,k,n

C̃`m (v)Ykn (v) fkn.

(13)

Reconstruction of functions with arbitrary coefficients
f`m implies that∑

v

C̃`m (v)Ykn (v) = δ`kδmn, (14)

which is a stronger version of the condition that we found
for the spin qudit tomography problem in Eq. (11). We
will refer to Eq. (14) as the full recovery problem, and
Eq. (11) as the reduced recovery problem. Due to the
fact that D`

0,m (v) =
√

4π
2`+1 Y`m (v), any solution to the

full recovery problem automatically solves the reduced
recovery problem by setting C`m (v) =

√
2`+1
4π C̃`m (v)

∗.
In principle, this mapping allows us to import a host of
existing signal recovery algorithms [54–57] for the task of
spin qudit tomography. In practice, spin qudits typically
have only a modest dimension d, which allows for simpler
and optimized tomography protocols that are practical
despite worse scaling with d (see Section V). A natural
avenue to develop better spin qudit tomography protocols
would therefore be to build on the existing classical signal
recovery algorithms, tailoring them to solve the reduced
recovery problem in Eq. (11) rather than the full recovery
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problem in Eq. (14). We leave these developments to
future work.

If the function f is band-limited at degree L, which
is to say that f`m = 0 for all ` ≥ L, then the full re-
covery problem in Eq. (14) is provably solvable with a
suitable choice of |V | = L2 points on the sphere [58, 59].
The existence of these solutions to the full recovery prob-
lem in turn implies the existence of d2 measurement axes
that suffice to reconstruct arbitrary states of d-level spin
qudit, whose possible states (or rather, phase-space rep-
resentations) are band-limited at degree d. Moreover, for
any fixed degree `, finding solutions to the reduced recov-
ery problem in Eq. (11) is equivalent to the recovery of
a degree-` function f` =

∑
m f`mY`m, which is provably

possible with |V | = 2`+1 samples [58]. In the case of spin
qudit tomography, the degree ` takes a maximal value of
`max ≡ d − 1, so state recovery requires as many mea-
surement axes as there are polarization operators with
degree `max, namely 2`max + 1 = 2d− 1.

IV. STATE RECONSTRUCTION ERROR

For the practically minded, proving the existence of
solutions to a problem is less interesting than the expo-
sition of a particular solution. On a high level, a spin
qudit tomography protocol consists of (i) selecting a set
of measurement axes, (ii) collecting measurement data on
spin projection onto these axes, and then (iii) processing
the collected data to reconstruct the state of the spin
qudit. Whereas step (ii) can involve a host of platform-
dependent technical challenges, in the following sections
we discuss the steps to take before and after collecting
measurement data.

To this end, we begin by asking a question: what is a
“good” choice of measurement axes? Intuitively, a good
choice of axes should minimize the error with which one
can reconstruct an unknown quantum state from associ-
ated measurement data. If we can quantify this intuition,
then we can optimize over different choices of measure-
ment axes to find a set that (approximately) minimizes
the error in reconstructed states.

A set of measurement axes V = {v} nominally induces
a set of projectors {Πvµ} that will be measured in an ex-
periment. By a simple change of basis, measuring these
projectors is equivalent to measuring the polarization op-
erators {Tv`,0}. Flattening each d × d matrix Tv`,0 into
the d2-component column vector |Tv`,0), we construct the
measurement matrix

MV ≡
∑
v,`

|v`〉 (Tv`,0| . (15)

Here v and ` label a row of MV , or equivalently label
a standard (“one-hot”) basis vector |v`〉 of a (|V | × d)-
dimensional vector space, and (Tv`,0| is the conjugate
transpose of |Tv`,0). A necessary and sufficient condition
for V to allow for full state tomography is that the mea-
sured polarization operators Tv`,0, or equivalently the

rows of MV , span the entire (d2-dimensional) space of
operators on a d-level spin qudit. In this case MV must
be full rank, with d2 nonzero singular values. Indexing
these singular valuesMV

k and the corresponding (normal-
ized) left singular vectors xVk ≡

∑
j x

V
kj |j〉 by an integer

k ∈ {1, 2, · · · , d2}, we can construct the orthonormal qu-
dit operators

QVk ≡
∑
j

(
qVkj
)∗
Tj , qVkj ≡

xVkj
MV
k

, (16)

where for shorthand we use a combined index j = (v, `)
to specify both a measurement axis v and a degree
`, which identify the polarization operator Tj ≡ Tv`,0.
These operators allow us to expand any state ρ of a d-
level spin qudit in the form

ρ =

d2∑
k=1

ρVk Q
V
k , ρVk ≡

〈
QVk
†〉
ρ
. (17)

Given empirical estimates T̃j of the expectation values
〈Tj〉ρ, an empirical estimate ρ̃V of ρ is then

ρ̃V ≡
∑
k

ρ̃Vk Q
V
k , (18)

where, using the fact that Tj = T †j (because they are
diagonal polarization operators with degree m = 0),

ρ̃Vk ≡
∑
j

qVkj T̃j ≈
∑
j

qVkj 〈Tj〉ρ =
〈
QVk
†〉
ρ

= ρVk . (19)

The measurement matrix MV allows us to make con-
crete statements about the statistical error between the
empirical estimate ρ̃V and the true state ρ. Assume, for
example, that the estimates T̃j are equal to 〈Tj〉ρ up to
uncorrelated noise with variance no grater than ε2:

T̃j = 〈Tj〉ρ + εj , 〈〈εjεj′〉〉 ≤ ε2δjj′ . (20)

Here {εj} are independent random variables, and we use
the double brackets 〈〈·〉〉 to denote statistical averaging
over experimental trials that estimate 〈Tj〉ρ. In this case,
the mean squared error with which ρ̃Vk approximates ρVk
is 〈〈∣∣ρ̃Vk − ρVk ∣∣2〉〉 =

〈〈(
ρ̃Vk − ρVk

)∗ (
ρ̃Vk − ρVk

)〉〉
(21)

=
∑
j,j′

(
qVkj
)∗
qVkj′ 〈〈εjεj′〉〉 (22)

≤
∑
j

∣∣qVkj∣∣2ε2 =

(
ε

MV
k

)2

. (23)

Using the fact that the operators QVk are orthonormal,
we can therefore bound the mean squared (Euclidean)
distance between ρ̃V and ρ as

EV (ρ)
2 ≡

〈〈
‖ρ̃V − ρ‖2

〉〉
≤ ε2S2V , (24)
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where ‖X‖2 ≡ (X|X) = tr
(
X†X

)
is the squared (Eu-

clidean, Frobenius, or Hilbert-Schmidt) norm of X, and
the classical error scale SV is defined by

S2V ≡
∑
k

(
MV
k

)−2
=
∥∥M−1V ∥∥2, (25)

where M−1V is the left inverse of MV , satisfying
M−1V MV = 1. We refer to the error scale SV as “classi-
cal” because the bound in Eq. (24) applies in the presence
of classical sources of measurement error. Note that the
classical error scale SV diverges if the measurement ma-
trix MV is singular, which indicates that measuring spin
projections along all axes in V does not provide sufficient
information to reconstruct arbitrary quantum states.

Computing the classical error scale SV and estimates
ρ̃Vk ≈ ρVk requires building the measurement matrix MV

and computing its singular value decomposition. The
complexity of this task can be greatly reduced by the
fact that the degree ` of a polarization operator T`m is
preserved under rotations, which implies that the unitary

U ≡
d−1∑
`=0

∑̀
m=−`

|T`m) 〈`m| , (26)

with vectors |T`m) in a column indexed by integers (`,m),
block-diagonalizes the measurement matrix into d blocks
indexed by the degree `:

MV U =

d−1∑
`=0

|`〉〈`| ⊗MV `, (27)

where the |V | × (2`+ 1)-sized blocks are

MV ` ≡
∑
v,m

|v〉 (Tv`,0|T`m) 〈m| =
∑
v,m

D`
0,m (v) |v〉〈m| .

(28)

Here D`
0,m (v) is a Wigner rotation matrix element, de-

fined in Eq. (6). As the singular values of MV are invari-
ant under unitary transformations, it follows that

S2V =
∑
`

S2V `, S2V ` ≡
∥∥M−1V ` ∥∥2, (29)

where M−1V ` is the left inverse of MV `. Constructing the
block MV ` and computing its singular value decompo-
sition takes at most O(|V |d2) time. If we assume that
|V | ∼ d, then computing the classical error scale SV takes
O(d4) serial or O(d3) parallel runtime (see Figure 2).

The assumption that observables can be estimated up
to uncorrelated noise with maximal variance ε2, summa-
rized by Eq. (20), is reasonable when measurement error
is dominated by classical sources of experimental noise.
However, this assumption breaks down when measure-
ment error is limited by fundamental quantum shot noise
(i.e. finite sampling error). We relax the assumption of
Eq. (20) in Appendix B, where we instead assume that

101 102

qudit dimension d

10−3

10−1

101

ti
m

e
(s

ec
on

d
s)

SV
εV

EV (ρ)

FIG. 2. Serial runtime to compute SV , εV , or EV (ρ) with
|V | = 2d − 1 randomly chosen measurement axes and a ran-
domly chosen qudit state ρ. Each point is an average over 103

calculations or 5 minutes of runtime, whichever comes first.
These results do not count fixed runtimes to pre-compute
quantities that can be recycled for every new choice of V
and ρ. Dashed lines show fits to a runtime t = cdα for the 20
largest values of d, finding α ≈ 3.8± 0.1.

ρ̃V is built from n independent measurements of spin
projection along every axis v ∈ V , with shot noise the
dominant source of error. In this case, the constraints
that tr (ρ) = 1 and 〈Πvµ〉ρ ≥ 0 allow us to bound the
mean squared distance between ρ̃V and ρ as

EV (ρ)
2
<
ε2V
n
, ε2V ≡

∑
`

Γ2
`S2V `, (30)

where the quantum error scale εV is defined in terms of
the spectral range of T`,0:

Γ` ≡
maxµ t`µ −minµ t`µ

2
, t`µ ≡ 〈µ |T`,0 |µ〉 . (31)

If d is even or ` is odd, then Γ` = maxµ t`µ. For compar-
ison with the “classical” error bound in Eq. (24), we note
that ε2V < S2V /2, so the previous bound still holds with
the replacement ε2 → 1/2n. The factors Γ2

` are quick to
compute and can be recycled for every new choice of axes
V , so the complexity of computing εV is the same as that
of SV (see Figure 2).

Though straightforward to compute, the bound in
Eq. (30) is not tight, as it is acquired by bounding the sta-
tistical error εv` in the empirical estimate T̃v`,0 of 〈Tv`,0〉ρ
by 〈〈ε2v`〉〉 ≤ Γ2

` . The individual bounds on 〈〈ε2v`〉〉 for each
axis v and degree ` are tight, but these bounds cannot all
be achieved simultaneously. There is therefore still room
for improvement on the bound in Eq. (30) by maximizing
EV over the set of all physical qudit states ρ. We discuss
this maximization problem in Appendix C, but leave its
full solution to future work. We also note that the re-
construction error bound in Eq. (30) obeys the “standard
quantum limit” of ∼ 1/n scaling in the number of mea-
surements. In principle, this scaling can be improved to
∼ 1/n2 by preparing and measuring entangled copies of
many qudits [60].
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The error scales SV and εV provide pessimistic upper
bounds on statistical error, which can be calculated with-
out prior knowledge of the true qudit state ρ. The ac-
tual error in the reconstruction ρ̃V of a particular state ρ
may be considerably smaller, and may depend on ρ itself.
Written out in full, the mean squared distance between
ρ̃V and ρ is (see Appendix B)

EV (ρ)
2

=
∑
v,w,`

〈
v
∣∣∣ (M−1V ` )†M−1V ` ∣∣∣w〉 〈〈εv`εw`〉〉. (32)

The covariances 〈〈εv`εw`〉〉 are generally determined by
the sources of measurement error in any given experi-
ment, but will typically satisfy 〈〈εv`εw`〉〉 = δvw〈〈ε2v`〉〉
because measurements along v are independent of mea-
surements along w. If measurement error is limited by
shot noise, then (see Appendix C)

EV (ρ)
2 SNL

=
1

n

∑
`

[〈χV ` | ρ`〉 − 〈ρ` | NV ` | ρ`〉] , (33)

where SNL
= indicates equality in the “shot-noise-limited”

regime; |ρ`〉 ≡
∑
m ρ`m |m〉 is a vector of the polarization

operator components ρ`m of ρ, defined in Eq. (3); and the
matrix NV ` and vector |χV `〉 are defined below. While
the true shot-noise-limited error in ρ̃V cannot be known
exactly without knowing ρ, this error can be estimated
a posteriori by EV (ρ) ≈ EV (ρ̃V ). After constructing an
estimate ρ̃V of ρ, the complexity of computing the error
EV (ρ̃V ) from Eq. (33) is the same as that of computing
SV or εV (see Figure 2).

We now define NV ` and |χV `〉 for the sake of com-
pletion, but note that these definitions can be skipped
without consequence for the remaining discussions in this
paper. The matrix NV ` is

NV ` ≡M†V ` diag
[(
M−1V `

)†
M−1V `

]
MV `, (34)

where diag [X] sets the off-diagonal parts of X to zero.
The vector |χV `〉 ≡

∑
m χ

V
`m |m〉 is defined by

χVLM ≡
∑
`

(NV `|DM |g̃L`) , (35)

g̃L` ≡
∑
m,m′

(TL,m+m′ |T †`mT`m′) |m〉〈m′| , (36)

DM ≡
∑
m,m′

δM,m′−m |mm′〉〈mm′| . (37)

Here g̃L` is essentially a matrix of structure constants for
the polarization operator algebra (see Appendix D), and
DM simply picks off the M -th diagonal of the matrix it
acts on.

V. TOMOGRAPHY PROTOCOL

The ability to certify a statistical error bound on the
empirical estimate ρ̃V of an unknown quantum state ρ

motivates the following protocol for spin qudit tomogra-
phy:

(i) Select a random set of measurement axes V by uni-
formly sampling points on the spherec, and use any
standard minimization algorithm to optimize the
2|V | parameters in V (two angles for each point
v ∈ V ) by minimizing the quantum error scale εV
in Eq. (30). If |V | is too large for such optimiza-
tion, you can simply generate many sets of ran-
dom measurement axes, and then choose the set
with the smallest quantum error scale εV . Note
that computing the error scale εV requires, for each
` ∈ {0, 1, · · · , d−1}, constructing the measurement
matrix MV ` in Eq. (28) and computing its singular
value decomposition. Save all measurement matrix
data associated with the final measurement axes V
for later use.

(ii) For each axis v ∈ V , make n measurements of spin
projection, and set Π̃vµ ≈ 〈Πvµ〉ρ to the fraction of
times in which the measurement outcome was µ.

(iii) Use the estimates Π̃vµ of 〈Πvµ〉ρ to compute esti-
mates of 〈Tv`,0〉ρ,

T̃v`,0 ≡
∑
µ

〈µ |T`,0 |µ〉 Π̃vµ, (38)

where the matrix elements of T`,0 are provided in
Eq. (1).

(iv) Denoting the nonzero singular values of MV ` by
MV
`k and the corresponding left singular vectors by

xV`k =
∑

v x
V
`kv |v〉, compute the operators and co-

efficients

Q`k ≡
1

MV
`k

∑
v

(
xV`kv

)∗
Tv`,0, (39)

ρ̃V`k ≡
1

MV
`k

∑
v

xV`kv T̃v`,0, (40)

and combine them into the estimate

ρ̃V =
∑
`,k

ρ̃V`kQ`k ≈ ρ. (41)

The expected reconstruction error in ρ̃V , or its root-
mean-square distance from ρ, is provided by Eq. (32). If
measurement error is shot-noise-limited, then the error in
ρ̃V is approximately EV (ρ) ≈ EV (ρ̃V ) and can be com-
puted from Eq. (33). If ρ̃V has negative eigenvalues, its
distance from ρ can be reduced with maximum-likelihood

c To sample a point (α, β) from the uniform distribution on the
sphere (with azimuthal angle α and polar angle β), you can sam-
ple a point (a, b) ∈ [0, 1]× [0, 1] from the uniform distribution on
the unit square, and then set α = 2πa and β = arccos (1− 2b).
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FIG. 3. Empirical measurement-adjusted error scales β̃(p)
with p excess measurement axes, determined by minimiz-
ing over 103 choices of measurement axes V or 5 minutes
of runtime (for each p), whichever comes first. Marker and
color indicates the qudit dimension d. The rapid initial
drop in β̃(p) implies that using more measurement axes can
substantially lower the upper bound on reconstruction er-
ror provided in Eq. (30), and that these benefits plateau
after p ≈ d. Horizontal reference lines mark the smallest
measurement-adjusted error scales minθ βθ/β̃(0) achievable
with the method in Ref. [38], which is parameterized by an
arbitrarily chosen angle θ.

corrections [4], which will additionally guarantee that ρ̃V
satisfies all requirements for being a physical state.

The tomography protocol outlined above leaves open
the question of how many measurement axes to use.
Though 2d − 1 measurement axes may be sufficient to
perform full state tomography, this is not necessarily the
best choice of |V |. Increasing the number of measurement
axes generally decreases the quantum error scale εV , but
comes at the cost of having to estimate more observables.
At a fixed total number of measurements, increasing |V |
reduces the number of measurements n devoted to each
axis v ∈ V . This trade-off begs the question: how should
one choose the number of measurement axes, |V |?

The reconstruction error bound in Eq. (30) nominally
provides a straightforward answer: at a fixed total num-
ber of measurements, N = n|V |, the number of measure-
ment axes should be chosen to minimize the (squared)
reconstruction error EV (ρ)

2
< ε2V /n ∝ ε2V |V |. We there-

fore consider the measurement-adjusted error scale β(p)
defined by

β(p)2 ≡ min
V

{
ε2V |V | : |V | = 2d− 1 + p

}
, (42)

where p is the number of “extra” measurement axes ex-
ceeding 2d−1. Though we cannot minimize over all suit-
able choices of measurement axes V to compute β(p), we
can compute an empirical upper bound β̃(p) ≥ β(p) by

minimizing over a large number of randomly chosen V .
Figure 3 shows the results of such empirical minimization,
where we find that β̃(p) drops substantially with p be-
fore plateauing at p ≈ d, after which there are only minor
benefits to using more measurement axes. In the interest
of reducing experimental complexity as well as the run-
time of our randomized tomography protocol, which grow
linearly in |V |, we therefore conclude that this protocol
should be performed with |V | ≈ 3d measurement axes.
We provide the best measurement axes that we found
for a randomized tomography protocol with d ≤ 30 and
|V | = 3d in Ref. [50].

For reference, Figure 3 also shows the smallest
measurement-adjusted error scales βθ achievable with
the method of Ref. [38], which is comparable to those
achieved with our randomized protocol at |V | ≈ 3d. The
method of Ref. [38] requires choosing an angle θ, namely
the polar angle of all measurement axes, and provides no
prescription for making this choice. We therefore find the
optimal choice of θ by minimizing the error scale βθ over
all θ (see Appendix E), and show minβθ/β̃(0) in Figure
3. Empirically, we find that the optimal angle for the
method of Ref. [38] is θopt ≈ π

2 (1− 1
1.34d ) (see Appendix

E), which approaches π/2 as d → ∞. However, the er-
ror scale βπ/2 = ∞, reflecting the fact that full state
tomography is impossible with measurement axes lying
in a single plane. The method of Ref. [38] therefore re-
quires extremely careful fine-tuning of measurement axis
orientations for large spin dimensions. For this reason,
we expect our randomized tomography protocol be be
more robust to errors in axis orientation. We leave a de-
tailed analysis of robustness to errors in axis orientation
and the effect of these errors on state reconstruction to
future work.

As a final point, we note that any information about an
unknown qudit state ρ, obtained from prior knowledge or
preliminary measurement data, can be used to construct
tailored or adaptive measurement protocols [5, 7, 61, 62]
that are more efficient in terms of the number of mea-
surements required to estimate ρ to a fixed precision.
We leave the development of tailored and adaptive mea-
surement protocols to future work as well.
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Appendix A: Rotating polarization operators

Denoting the state of a spin-s particle spin spin projection µ onto a quantization axis by |sµ〉, we define

Sz ≡
s∑

µ=−s
µ |sµ〉〈sµ| , S± ≡

s∑
µ=−s

√
s (s+ 1)− µ (µ± 1) |s, µ± 1〉〈sµ| , (A1)

as well as

Sx ≡
1

2
(S+ + S−) , Sy ≡ −

i

2
(S+ − S−) , S ≡ (Sx, Sy, Sz) . (A2)

The spin vector S generates rotations of a spin-s system in 3D space. Specifically, the operator e−iθS·n̂ rotates a
spin-s system by an angle θ about the unit vector n̂.

Observing that Sz = T1,0 and S± ∝ T1,±1, we can use the operator product expansion of the polarization operators
(see Appendix D), the properties of Clebsch-Gordan coefficients, the properties of Wigner 6-j symbols, and a computer
algebra system to simplify the commutators

[Sz, T`m] = mT`m, [S±, T`m] =
√
` (`+ 1)−m (m± 1)T`,m±1, (A3)

which implies that T`m is a spherical tensor operator, whose degree degree ` is preserved under rotations generated
by S. Moreover, by comparing Eqs. (A1) and (A3) we see that the polarization operators T`m transform identically
to spin-` particles under the (adjoint) action of the spin operators Sz and S±. For any triplet of angles ω = (α, β, γ),
we can therefore define the rotation operator

R (ω) ≡ e−iαSze−iβSye−iγSz , (A4)

and expand rotated polarization operators as

Tω`m ≡ R (ω)T`mR (ω)
†

=
∑̀
n=−`

D`
mn (ω̄)

∗
T`n, (A5)

where ω̄ = (γ, β, α) is the reversal of ω, and

D`
mn (ω̄) ≡ 〈`m |R (ω̄) | `n〉 = (T`n|R (ω)⊗R (ω)

∗ |T`m)
∗

= (T`m|R (−ω̄)⊗R (−ω̄)
∗ |T`n) (A6)

are matrix elements of the rotation operator R (ω) for spin-` particles.
For any angle doublet v = (α, β), we define R (v) ≡ R (α, β, 0) and D`

mn (v) = D`
mn (0, β, α) for shorthand. The

transformation rules in Eq. (A5) imply that we can expand the phase-space representation of T`m as

TPS
`m (v) ≡ 〈sv |T`m | sv〉 =

〈
s
∣∣∣R (v)

†
T`mR (v)

∣∣∣ s〉 = D`
0,m (v) 〈s |T`,0 | s〉 , (A7)

where

〈s |T`,0 | s〉 =

√
2`+ 1

2s+ 1
〈ss; `, 0 | ss〉 =

√
2`+ 1

2s+ `+ 1

(
(2s)!

(2s+ `)!

)(
(2s)!

(2s− `)!

)
, (A8)

and the properties of the rotation matrix elements D`
mn imply that

D`
0,m (v) =

√
4π

2`+ 1
Y`m (v) , (A9)

so

TPS
`m (v) =

√
4π

2s+ `+ 1

(
(2s)!

(2s+ `)!

)(
(2s)!

(2s− `)!

)
Y`m (v) . (A10)

In this way, the polarization operators are a quantum analogue of the spherical harmonics.
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Appendix B: An improved reconstruction error bound

In Section IV of the main text, we provided a reconstruction error bound using the assumption of Eq. (20), namely
that expectation values derived from spin projection measurements can be estimated up to uncorrelated errors with
maximal variance ε2. This assumption is reasonable if measurement error is dominated by experimental sources of
noise, and it yields a simple derivation of the reconstruction bound in Eq. (24). Nonetheless, there are two problems
with the assumption of Eq. (20): (i) there is no a priori guarantee for the value of ε, which must be inferred from
experimental outcomes, and (ii) the assumption that all measurement errors are uncorrelated is unjustified (and
generally false). Here, we relax the assumption of Eq. (20) and derive an explicit error bound in terms of the qudit
dimension d and the number of spin projection measurements made along every measurement axis.

To this end, we fix a particular set of measurement axes V , and consider performing n measurements of spin
projection along every axis v ∈ V , for a total of N = |V |×n measurements. Such a procedure is equivalent to making
N local measurements of the N -fold product state ρ⊗N . For convenience, we index the tensor factors of ρ⊗N by the
integers (i, j), with i ∈ {1, 2, · · · , |V |} specifying a measurement axis vi ∈ V , and j ∈ {1, 2, · · · , n} specifying the
copy of ρ prepared for the j-th measurement spin projection along a particular axis. We then define the projectors
Πiµ ≡ |µvi

〉〈µvi
| onto single-qudit states |µvi

〉 with definite spin projection µ along axis vi ∈ V , and define Πj
iµ to be

an N -qudit operator with Πiµ on the (i, j)-th tensor factor and the identity elsewhere. We denote the experimental
outcome of measuring Πiµ in the (i, j)-th copy of ρ by Π̃j

iµ ∈ {0, 1}. In other words, Π̃j
iµ is the “single-shot estimate”

of Πiµ, with Π̃j
iµ = 1 if outcome µ was observed on the (i, j)-th experimental trial, and Π̃j

iµ = 0 otherwise. An
empirical estimate of the expectation value 〈Πiµ〉ρ is provided by the fraction of times that outcome µ was observed
when measuring spin projection along axis vi, that is

Π̃iµ ≡
1

n

n∑
j=1

Π̃j
iµ ≈

1

n

n∑
j=1

tr
(
ρ⊗NΠj

iµ

)
= tr (ρΠiµ) . (B1)

For reasons that will be clarified shortly, it will be useful to think of Π̃iµ as an empirical estimate of
〈
Π̄iµ

〉
ρ⊗N , where

Π̄iµ ≡
1

n

n∑
j=1

Πj
iµ (B2)

is the average of Πiµ applied to all copies of ρ for which spin projection is measured along the axis vi. Eq. (B1)
implies that

Π̃iµ ≈
〈
Π̄iµ

〉
ρ⊗N = 〈Πiµ〉ρ . (B3)

1. Errors in the spin-projection basis

Finite sampling error (i.e. shot noise) generally induces statistical error εO into the empirical estimate Õ of an
observable O:

εO ≡ Õ − 〈O〉 , (B4)

where the single brackets 〈·〉 denote an expectation value with respect to the measured quantum state. On average,
this statistical error will be zero, which is to say that

〈〈εO〉〉 = 〈〈Õ − 〈O〉〉〉 = 〈O − 〈O〉〉 = 0, (B5)

where the double brackets 〈〈·〉〉 to denote statistical averaging over experimental trials that estimate 〈O〉. However,
the covariance between statistical errors εO and εQ on the empirical estimates Õ and Q̃ of observables O and Q is

〈〈εOεQ〉〉 =
〈〈(
Õ − 〈O〉

)(
Q̃ − 〈Q〉

)〉〉
= 〈(O − 〈O〉) (Q− 〈Q〉)〉 = 〈OQ〉 − 〈O〉 〈Q〉 . (B6)

In the context of spin qudit tomography, we can therefore define the statistical error

εiµ ≡ Π̃iµ − 〈Πiµ〉ρ = Π̃iµ −
〈
Π̄iµ

〉
ρ⊗N (B7)
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in the empirical estimate of 〈Πiµ〉ρ, and use Eq. (B2) to expand

〈〈εiµεi′µ′〉〉 =
〈
Π̄iµΠ̄i′µ′

〉
ρ⊗N −

〈
Π̄iµ

〉
ρ⊗N

〈
Π̄i′µ′

〉
ρ⊗N =

1

n2

n∑
j,j′=1

[〈
Πj
iµΠj′

i′µ′

〉
ρ⊗N
−
〈

Πj
iµ

〉
ρ⊗N

〈
Πj′

i′µ′

〉
ρ⊗N

]
. (B8)

If (i, j) 6= (i′, j′), then Πj
iµ and Πj′

i′µ′ address different tensor factors of the product state ρ⊗N , so the expectation
value of their product factorizes due to the fact that tr [(A⊗B) (A′ ⊗B′)] = tr (AA′)× tr (BB′). This factorization
can also be seen as a consequence of the fact that if (i, j) 6= (i′, j′), then Πj

iµ and Πj′

i′µ′ are “spatially separated”
on ρ⊗N , which means that their expectation values cannot have quantum correlations. The terms in Eq. (B8) with
(i, j) 6= (i′, j′) therefore vanish, so

〈〈εiµεi′µ′〉〉 = δii′ ×
1

n2

n∑
j=1

[〈
Πj
iµΠj

iµ′

〉
ρ⊗N
−
〈

Πj
iµ

〉
ρ⊗N

〈
Πj
iµ′

〉
ρ⊗N

]
(B9)

= δii′ ×
1

n

[
〈ΠiµΠiµ′〉ρ − 〈Πiµ〉ρ 〈Πiµ′〉ρ

]
(B10)

= δii′ ×
1

n
covρ (Πiµ,Πiµ′) , (B11)

where covρ (X,Y ) ≡ 〈XY 〉ρ − 〈X〉ρ 〈Y 〉ρ.

2. Errors in the polarization operator basis

Rather than the statistical errors εiµ ≡ Π̃iµ − 〈Πiµ〉ρ in the estimates Π̃iµ of the projectors Πiµ, we now consider
the statistical errors εi` ≡ T̃i` − 〈Ti`〉ρ in the estimates T̃i` of the polarization operators Ti` ≡ Tvi`,0. We can expand
the polarization operators Ti` as a sum over projectors Πiµ as

Ti` =
∑
µ

t`µΠiµ, t`µ ≡ 〈µ |T`,0 |µ〉 =

√
2`+ 1

d
〈sµ; `, 0 | sµ〉 , (B12)

and likewise T̃i` ≡
∑
µ t`µΠ̃iµ. The covariance between errors in the polarization operator basis is then

〈〈εi`εi′`′〉〉 =
∑
µ,µ′

t`µt`′µ′〈〈εiµεi′µ′〉〉 = δii′ ×
1

n

∑
µ,µ′

t`µt`′µ′ covρ (Πiµ,Πiµ′) = δii′ ×
1

n
covρ (Ti`, Ti`′) , (B13)

where we used the fact that the covariance covρ (X,Y ) is linear in both X and Y . Due to the appearance of δii′ above
and the orthogonality of polarization operators Ti` and Ti′`′ with degrees ` 6= `′, it turns out that only the variances
〈〈ε2i`〉〉 will ultimately contribute to reconstruction error (see Appendix B 3). We therefore seek to find an upper bound
on 〈〈ε2i`〉〉.

To this end, we define the probability piµ ≡ 〈Πiµ〉ρ, collect these probabilities into the classical probability distri-
bution pi =

∑
µ p

i
µ |µ〉, and define the vector t` ≡

∑
µ t`µ |µ〉. We then observe that

〈〈ε2i`〉〉 =
1

n
× σ2

pi (t`) , σ2
p (X) ≡

∑
µ

pµX
2
µ −

(∑
µ

pµXµ

)2

, (B14)

where σ2
p (X) is the weighted variance of X. This variance is maximal when p has equal weight on the largest and

smallest values of X, which implies that

σ2
p (t`) ≤ Γ2

` , Γ` ≡
maxµ t`µ −minµ t`µ

2
, so 〈〈ε2i`〉〉 ≤

1

n
× Γ2

` . (B15)

Note that this bound on 〈〈ε2i`〉〉 is tight, as equality is achieved by the state

ρ?i =
1

2
(Πiµmax + Πiµmin) , (B16)



12

where µmax (µmin) is the index that maximizes (minimizes) t`µ.
To find an analytical bound on 〈〈ε2i`〉〉 that is easier to interpret, we can use normalization of the polarization

operators, (Ti`|Ti`) =
∑
µ t

2
`µ = 1, and the fact that all probabilities pµ ≤ 1 to bound

σ2
p (t`) ≤

∑
µ

pµt
2
`µ ≤

∑
µ

t2`µ = 1, so 〈〈ε2i`〉〉 <
1

n
. (B17)

We can get a tighter bound by considering the fact that t2`µ = t2`,−µ due to the symmetries of the Clebsch-Gordan
coefficients. It follows that if µmax 6= 0 then

σ2
p (t`) ≤

∑
µ

pµt
2
`µ ≤ t2`µmax

=
1

2

(
t2`µmax

+ t2`,−µmax

) µmax 6=0

≤ 1

2

∑
µ

t2`µ =
1

2
. (B18)

If µmax = 0, then similarly

t2`µmax
+ 2t2`µmin

= t2`µmax
+ t2`µmin

+ t2`,−µmin

µmax=0

≤
∑
µ

t2`µ = 1, so |t`µmin |
µmax=0

≤

√
1− t2`µmax

2
, (B19)

which lets us bound

Γ` =
1

2
(t`µmax − t`µmin) ≤ 1

2
(t`µmax + |t`µmin |)

µmax=0

≤ 1

2
t`µmax +

1

2

√
1− t2`µmax

2
≡ λ (t`µmax) . (B20)

It is straightforward to show that λ (x) is maximally λ? ≡ maxx λ (x) =
√

3/8, so

Γ2
`

µmax=0

≤ (λ?)
2

=
3

8
<

1

2
. (B21)

Altogether, we thus find that in all cases

σ2
p (t`) ≤

1

2
, so 〈〈ε2i`〉〉 ≤

1

2n
. (B22)

3. Revisiting the reconstruction error bound

We now revisit the derivation of reconstruction error in Section IV to make use of the bounds on variances 〈〈ε2i`〉〉.
To recap, for a set of measurement axes V = {v} and degrees ` ∈ {0, 1, · · · , d − 1} we construct the measurement
matrix

MV ≡
∑
v,`

|v`〉 (Tv`,0| , (B23)

which can be block diagonalized as

MV U =
∑
`

|`〉〈`| ⊗MV `, U ≡
∑
`,m

|T`m) 〈`m| , MV ` =
∑
m,v

D`
m,0 (v) |v〉〈m| , (B24)

where D`
mn (v) ≡ 〈`m |R (v) | `n〉 is a (Wigner) rotation matrix element for a spin-` particle. The block-diagonal

structure of MV allows us to index its singular values MV
`m and corresponding (normalized) left singular vectors

xV`m =
∑
i x

V
`mi |vi〉 by the indices (`,m), where the integer |m| ≤ `. These singular vectors and values define the

orthonormal operators

QV`m ≡
∑
i

(
qV`mi

)∗
Ti`, qV`mi ≡

xV`mi
MV
`m

, (B25)

where i ∈ {1, 2, · · · , |V |} indexes an axis vi ∈ V , with Ti` ≡ Tvi`. The state ρ can be expanded in the basis of these
operators as

ρ =
∑
`,m

〈
QV`m

†〉
ρ
QV`m, (B26)
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and the estimates T̃i` of 〈Ti`〉ρ can be used to construct the following estimate ρ̃V of ρ:

ρ̃V ≡
∑
`,m

[∑
i

qV`miT̃i`

]
QV`m ≈

∑
`,m

[∑
i

qV`mi 〈Ti`〉ρ

]
QV`m =

∑
`,m

〈
QV`m

〉
ρ
QV`m = ρ. (B27)

Recalling that εi` ≡ T̃i` − 〈Ti`〉ρ, we can use orthonormality of all QV`m to expand the mean squared distance between
ρ̃V and ρ as

EV (ρ)
2 ≡

〈〈
‖ρ̃V − ρ‖2

〉〉
=

∑
`,m,i,i′

(
qV`mi

)∗
qV`mi′〈〈εi`εi′`〉〉 =

∑
`,m,i

∣∣qV`mi∣∣2〈〈ε2i`〉〉 < 1

n

∑
`

Γ2
`S2V `, (B28)

where we used the fact that 〈〈ε2i`〉〉 ≤ Γ2
`/n, and∑

m,i

∣∣qV`mi∣∣2 =
∑
m

(
MV
`m

)−2
=
∥∥M−1V ` ∥∥ = S2V `. (B29)

Here M−1V ` is the left inverse of MV `. The fact that 〈〈ε2i`〉〉 < 1/2n also implies that

EV (ρ)
2
<

1

2n

∑
`

S2V ` =
S2V
2n

. (B30)

Note that the bound in Eq. (B28) is not tight, as the individual bounds on the variances 〈〈ε2i`〉〉 cannot all be achieved
simultaneously. There is therefore still room for improvement on the bound in Eq. (30) by maximizing EV over the
set of physically achievable qudit states ρ.

Appendix C: Exact reconstruction error

Here we find exact expressions for reconstruction error, which can be used to estimate the error in a given recon-
struction ρ̃V of an unknown state ρ after performing tomography. To this end, we start with Eq. (B28) from Appendix
B 3 to write

EV (ρ)
2

=
∑

`,m,i,i′

(
qV`mi

)∗
qV`mi′〈〈εi`εi′`〉〉 =

1

n

∑
`,i

|q̃`i|2 covρ (Ti`, Ti`) , |q̃`i|2 =
∑
m

|q`mi|2, (C1)

where q̃`i =
∑
m (q`mi)

∗ |m〉, and we used the fact that 〈〈εi`εi′`〉〉 = δii′ × covρ (Ti`, Ti`) /n. Identifying the singular
value decomposition MV ` = UV `ΣV `W

†
V `, we then we observe that q̃`i = Σ−1V `U

†
V ` |vi〉, which allows us to simplify

|q̃`i|2 =
〈
vi

∣∣∣UV `Σ−2V `U†V ` ∣∣∣vi〉 =
〈
vi

∣∣∣ (M−1V ` )†M−1V ` ∣∣∣vi〉 . (C2)

Using the fact that all Ti` = T †i`, we can also expand

covρ (Ti`, Ti`) = covρ

(
T †i`, Ti`

)
=
∑
m,m′

D`
0,m (vi)D

`
0,m′ (vi)

∗
covρ

(
T †`m, T`m′

)
, (C3)

which implies that

EV (ρ)
2

=
1

n

∑
`,i,m,m′

D`
0,m′ (vi)

∗ |q̃`i|2D`
0,m (vi) covρ

(
T †`m, T`m′

)
. (C4)

Altogether, this reconstruction error can be expressed more compactly by defining the covariance matrix

C` [ρ] ≡
∑
m,m′

covρ

(
T †`m, T`m′

)
|m〉〈m′| , (C5)

and the noise matrix

NV ` ≡M†V ` diag
[(
M−1V `

)†
M−1V `

]
MV `, (C6)
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where diag [X] sets all off-diagonal entries of X to zero, in terms of which

EV (ρ)
2

=
1

n

∑
`

(NV `|C` [ρ]) , (C7)

where (X|Y ) = tr
(
X†Y

)
is a trace inner product.

The result in Eq. (C7) essentially expresses reconstruction error as a weighted sum of the covariances
covρ (T`m, T`m′), where the weights are given by the corresponding matrix elements of the noise matrix NV `. This
expression is perhaps the most physically meaningful form of the reconstruction error EV (ρ) that we will consider in
this work, but in practice it turns out that Eq. (C7) is inconvenient and inefficient to evaluate for any given state ρ.
To find a more practical expression of reconstruction error, we use the fact that〈

T †`m

〉
ρ

= (ρ|T †`m) = tr
(
ρT †`m

)
= tr

(
T †`mρ

)
= (T`m|ρ) , (C8)

to expand the covariance matrix as

C` [ρ] =
∑
m,m′

|m〉〈m′|
[
(ρ|T †`mT`m′)− (ρ|T †`m) (ρ|T`m′)

]
(C9)

=
∑
m,m′

|m〉〈m′|
[
(T †`m′T`m|ρ)− (T`m|ρ) (T †`m′ |ρ)

]
(C10)

=
∑
m,m′

|m〉〈m′| I [(T`m′T`m|ρ)− (T`m|ρ) (T`m′ |ρ)] (C11)

where we define the inversion operator I ≡∑m (−1)
m |−m〉〈m|. We then expand the product T`m′T`m as

(T`m′T`m|ρ) =
∑
L

gL`m′m (TL,m′+m|ρ) , gL`m′m ≡ (TL,m′+m|T`m′T`m) = fL,m
′+m

`m′;`m , (C12)

where the (real) factors fL,m
′+m

`m′;`m are provided in Appendix D. Substituting the covariance matrix back into Eq. (C7)
and replacing (T`m|ρ)→ ρ`m, we get

EV (ρ)
2

=
1

n

∑
`,m

(
χV`m

)∗
ρ`m −

∑
`,m,m′

〈m′ | INV ` |m〉 ρ`mρ`m′

 , (C13)

where

χVLM ≡
∑
`,m,m′

δM,m′+m 〈m′ | INV ` |m〉∗ gL`m′m (C14)

=
∑
`,m,m′

δM,−m′+m 〈m | NV ` |m′〉 (−1)
m′
gL`,−m′,m (C15)

=
∑
`

(NV `|DM |IgL`) (C16)

can be written in terms of the matrices

gL` ≡
∑
m,m′

gL`m′m |m′〉〈m| , DM ≡
∑
m,m′

δM,−m′+m |m′m〉〈m′m| . (C17)

Here DM simply picks off the M -th diagonal of the matrix it acts on, such that (NV `|DM |IgL`) is an inner product
of the M -th diagonal of IgL` with the (−M)-th diagonal of NV `. Defining the (2`+ 1)-component vectors

|ρ`〉 ≡
∑
m

ρ`m |m〉 , |χV `〉 ≡
∑
`,m

χV`m |m〉 , (C18)

we can write the expansion in Eq. (C13) in the vectorized form

EV (ρ)
2

=
1

n

∑
`

[〈χV ` | ρ`〉 − 〈ρ` | NV ` | ρ`〉] . (C19)
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Comments on a tight reconstruction error bound

In principle, maximizing the reconstruction error in Eq. (C19) over all qudit states ρ would provide a tight upper
bound on reconstruction error for any set of axes V . To simplify this task somewhat, we first maximize Eq. (C19)
over all ρ with tr (ρ) = 1: this maximum occurs at a “state” σ?V whose components are given by

|σ?V `〉
` 6=0≡ 1

2
N−1V ` |χV `〉 , |σ?V,0〉 ≡

1√
d
|0〉 . (C20)

The corresponding maximum of EV is given by

EV (σ?V )
2

=
1

n

∑
`>0

[
1

4

〈
χV `

∣∣N−1V `

∣∣χV `〉− 1

d
tr (NV `)

]
, (C21)

where the tr (NV `) terms above come from simplifying the ` = 0 terms of Eq. (C19) with ρ→ σ?V . While EV (σ?V ) is
a strict upper bound on EV (ρ) over all ρ with tr (ρ) = 1, this bound turns out to be useless in practice, because σ?V
will generally be a non-physical “state” with negative eigenvalues. To find tight bound on EV (ρ) over the space of
physical qudit states ρ, we also need to constrain ρ to have no negative eigenvalues. Equipped with σ?V and EV (σ?V ),
we can expand

EV (ρ)
2

= EV (σ?V )
2 − 1

n
‖ρ− σ?V ‖2V , ‖X‖2V ≡

∑
`

〈X` | NV ` |X`〉 , (C22)

where X` ≡
∑
m (T`m|X) |m〉 is a vector of the degree-` components of X in the polarization operator basis, and ‖X‖V

is a noise-weighted norm of X. Maximizing EV over all qudit states ρ thus amounts to finding the closest physical
qudit state ρ to σ?V , with distance measured by the metric DV (X,Y ) ≡ ‖X − Y ‖V . We leave this minimization
problem to future work, and note that solving it will likely require making use of the positivity conditions derived in
Ref. [51]. A loose lower bound on ‖ρ− σ?V ‖V can be found by minimization under the constraint ‖ρ‖ ≤ 1, which may
provide a tighter upper bound on EV (ρ) than that in Eq. (30) of the main text.

Appendix D: Polarization operator product expansion

The polarization operators on the d-dimensional Hilbert space of a spin-s system (with s ≡ d−1
2 ) are defined by

T`m ≡
√

2`+ 1

2s+ 1

s∑
µ,ν=−s

〈sµ; `m | sν〉 |ν〉〈µ| , (D1)

where 〈sµ; `m | sν〉 is a Clebsh-Gordan coefficient that enforces ` ∈ {0, 1, · · · , 2s} and m ∈ {−`,−` + 1, · · · , `}. We
wish to compute the coefficients of the operator product expansion

T`1m1
T`2m2

=
∑
L,M

fLM`1m1;`2m2
TLM , fLM`1m1;`2m2

≡ (TLM |T`1m1
T`2m2

) , (D2)

which allow us to simplify the commutators in Eq. (A3) of Appendix A. Using the symmetry properties of Clebsch-
Gordan coefficients, namely

〈`1m1; `2m2 |LM〉 = (−1)
`2+m2

√
2L+ 1

2`1 + 1
〈L,−M ; `2m2 | `1,−m1〉 (D3)

〈`1m1; `2m2 |LM〉 = (−1)
`1+`2−L 〈`1,−m1; `2,−m2 |L,−M〉 , (D4)

we can find that the polarization operators transform under conjugation as

T †`m =

√
2`+ 1

2s+ 1

∑
µ,ν

(−1)
m 〈sν; `,−m | sµ〉 |µ〉〈ν| = (−1)

m
T`,−m, (D5)

which implies that

fLM`1m1;`2m2
= (−1)

M

√
(2L+ 1) (2`1 + 1) (2`2 + 1)

(2s+ 1) (2s+ 1) (2s+ 1)

∑
µ,ν,ρ

〈sν;L,−M | sµ〉 〈sρ; `1m1 | sν〉 〈sµ; `2m2 | sρ〉 . (D6)
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Replacing Clebsch-Gordan coefficients by Wigner 3-j symbols with the identity

〈`1m1; `2m2 |LM〉 = (−1)
2`2 (−1)

L−M √
2L+ 1

(
L `2 `1
−M m2 m1

)
, (D7)

we can use the fact that 2`2 is always even (because `2 is always an integer) to expand

fLM`1m1;`2m2
= (−1)

M
√

(2L+ 1) (2`1 + 1) (2`2 + 1)

×
∑
µ,ν,ρ

(−1)
3s−µ−ν−ρ

(
s L s
−µ −M ν

)(
s `1 s
−ν m1 ρ

)(
s `2 s
−ρ m2 µ

)
. (D8)

This sum can be simplified by the introduction of Wigner 6-j symbols, giving us

fLM`1m1;`2m2
= (−1)

2s+M
√

(2L+ 1) (2`1 + 1) (2`2 + 1)

(
L `1 `2
M −m1 −m2

){
L `1 `2
s s s

}
(D9)

= (−1)
2s+L

√
(2`1 + 1) (2`2 + 1) 〈`1m1; `2m2 |LM〉

{
`1 `2 L
s s s

}
. (D10)

Appendix E: Optimizing the method of Newton and Young

Ref. [38] constructs an explicit protocol for spin qudit tomography, which involves measuring spin projection along
2d − 1 axes equally spaced at a polar angle θ. However, this method does not provide any prescription for choosing
θ. Here, we show the importance of making a good choice of θ, and empirically find the optimal value of θopt that
minimizes the corresponding quantum error scale εθ, which controls state reconstruction error. To this end, Figure
4 shows the quantum error scale εθ as a function of the polar angle θ in the tomography method of Ref. [38] for a
few qudit dimensions d. While a good choice of θ yields an error scale εθ ≈ d (for the dimensions shown), this error
scale can increase by orders of magnitude for poor choices of θ. In turn, Figure 5 shows the optimal angle θopt as a
function of the qudit dimension d, together with a fit to θopt = π

2 (1− 1
xd ) finding x ≈ 1.34.
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FIG. 4. Quantum error scale εθ as a function of the polar angle θ in the tomography method of Ref. [38] for a few qudit
dimensions d.
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FIG. 5. Optimum angle θopt as a function of qudit dimension d for the tomography method of Ref. [38], and a fit to θopt =
π
2
(1− 1

xd
) finding x ≈ 1.34.
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