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Quantum walks are a promising framework for developing quantum algorithms and quantum
simulations. They represent an important test case for the application of quantum computers. Here
we present different form of discrete-time quantum walks (DTQWs) and show their equivalence for
physical realizations. Using an appropriate digital mapping of the position space on which a walker
evolves to the multi-qubit states of a quantum processor, we present different configurations of
quantum circuits for the implementation of DTQWs in one-dimensional position space. We provide
example circuits for five-qubit processor and address scalability to higher dimensions as well as
larger quantum processors.

I. INTRODUCTION

There is a great interest in developing quantum algo-
rithms for potential speedups over conventional comput-
ers, and progress is being made in mapping such algo-
rithms to current technology [1, 2]. Device architecture,
qubit connectivity, gate fidelity, and qubit coherence time
are metrics that define the trade-off in designing device
specific circuits. Quantum walks [3, 4], exploiting quan-
tum superposition of multiple paths, have played an im-
portant role in development of a wide variety of quantum
algorithms. Examples include algorithms for quantum
search [5–9], graph isomorphism problems [10–12], rank-
ing nodes in a network [13–16], and quantum simulation
at low and high energy scales [17–26].

There are two main variants of quantum walks, the
discrete-time quantum walk (DTQW) [27, 28] and the
continuous-time quantum walk (CTQW) [29, 30]. The
DTQW is defined on a Hilbert space comprising internal
states of the single particle called coin space and position
space with the evolution being driven by a position shift
operator controlled by a quantum coin operator. The
CTQW is defined directly on the position Hilbert space
with the evolution being driven by the Hamiltonian of the
system and adjacency matrix of the position space. In
both variants, the probability distribution of the particle
spreads quadratically faster in position space compared
to the classical random walk [31–35].

Due to the Hilbert space configuration of DTQWs one
can define many different forms of quantum coin oper-
ators and position shift operators that controls the dy-
namics leading to variants such as the standard DTQW,
directed DTQW [36–38], split-step DTQW [39–41], and
the Szegedy walk [42]. These models have been success-

fully used to mimic different quantum phenomenon such
as Dirac cellular automata [41, 43, 44], strong and weak
localization [45, 46], topological phases [47, 48], and many
more.

Experimental implementations of quantum walks have
been reported in cold atoms [49, 50], NMR system [51, 52]
and photonic systems [53–57]. DTQW implementations
are ideally suited for lattice based quantum systems
where lattice site represents the position space. DTQW is
realised on ion-trap system by mapping position space to
the motional phase space [58, 59]. However, implemen-
tation of quantum walks on quantum circuit is crucial
to explore the practical realm of their algorithmic ap-
plications. The quantum circuit based implementation
of DTQWs was first performed on a multi-qubit NMR
system [52]. On any hardware, limitations in qubit num-
ber and coherence time restrict the number of steps that
can be implemented. For implemention of DTQW on
quantum circuit, one needs to map the position state to
the multi-qubit state. Protocols using one such mapping
on N + 1-qutrits superconducting system to implement
N -steps of DTQW has been reported [60]. Recently, an
optimal form of quantum circuit for realization of DTQW
on 5-qubit ion-trap quantum processor was presented and
used for digital simulation of Dirac cellular automata [61].
Here we present a complete theory beyond the optimal
form of quantum circuits that was used for realization of
Dirac cellular automata.

In this paper, we review different forms of DTQWs and
show their equivalence concerning physical implementa-
tions on quantum circuit. We also present various form of
quantum circuits that can be realized on five qubit quan-
tum processor for the implementation of one dimensional
DTQWs. The circuits provided are for two variants of
DTQW, standard QW and directed QW, respectively



2

and that can be used to realize other forms of DTQW
and Dirac cellular automata. They can be further scaled
up and generalized to implement multi-particle DTQWs,
and DTQW based algorithms.

−100 0 100
0

0.05

0.1

Position

P
ro

b
a
b
ili

ty

(a)

−100 0 100
0

0.05

0.1

(b)

Position

P
ro

b
a
b
ili

ty

−100 0 100
0

0.05

0.1
(c)

Position

P
ro

b
a
b
ili

ty

FIG. 1: Probability distribution after 100 time-steps of a
standard DTQW (SQW) for different initial states with the
coin parameter θ = π/4. Initial states are
|Ψin〉 = |↑〉 ⊗ |x = 0〉 for (a), |Ψin〉 = |↓〉 ⊗ |x = 0〉 for (b),
and |Ψin〉 = 1√

2
(|↑〉+ |↓〉)⊗ |x = 0〉 for (c). Alternate sites

will have have zero probability in a SQW irrespective of the
initial state.
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FIG. 2: Probability distribution for standard DTQW
(SQW), directed DTQW (DQW), and split-step quantum
walk (SSQW) with the coin parameter θ = π/4 after
100-steps. In the plot, the zero probability value at alternate
positions are discarded from the SQW. The spread in
position space for the SQW and SSQW are identical but the
peak values of the distribution are different. The spread is
different for SQW and DQW, but their peak values are
identical. The initial state is |Ψin〉 = 1√

2
(|↑〉+ |↓〉)⊗ |x = 0〉

for all cases.

II. VARIANTS OF DTQW AND ITS
EQUIVALENCE

A. Different forms of DTQW

DTQW is defined on the combination of particle
(coin) and position Hilbert space H = Hc ⊗ Hp.
Coin Hilbert space is defined by the particles internal
states Hc = span{|↑〉 , |↓〉} and one-dimensional position
Hilbert space is spanned byHp = span{|x〉}, where x ∈ Z

represents the labels on the position states. The generic
initial state of the particle, |ψ〉c, can be written as,

|ψ(δ, η)〉c = cos(δ) |↑〉+ e−iη sin(δ) |↓〉 . (1)

Each step of the walk evolves using a quantum coin op-
erator acting on the particle space followed by a condi-
tioned position shift operator acting on the entire Hilbert
space. By modifying the coin and shift operators, differ-
ent forms of DTQWs are achieved. The variants can
have same coin operation but have different shift oper-
ation. The coin operator with single parameter is given
by a rotation operator,

Ĉ(θ) =

[
cos(θ) −i sin(θ)
−i sin(θ) cos(θ)

]
⊗ Il. (2)

Here Il is the identity operator on the position space of
length l.

Standard DTQW (SQW) : Each step of SQW is realized

by applying the operator, Ŵ = ŜĈ(θ) where, coin op-
eration for SQW is given by Eq. (2) and the conditioned

position shift operator Ŝ is given by,

Ŝ =
∑
x∈Z

(
|↑〉 〈↑|⊗|x− 1〉 〈x|+ |↓〉 〈↓|⊗|x+ 1〉 〈x|

)
. (3)

The state of the particle in extended position space after
t steps of SQW is given by,

|Ψ(t)〉 = Ŵ t

[
|ψ〉c ⊗ |x = 0〉

]
=

t∑
x=−t

[
ψ↑x,t
ψ↓x,t

]
. (4)

The probability of finding the particle at position and
time (x, t) is,

P (x, t) =
∥∥∥ψ↑x,t∥∥∥2 +

∥∥∥ψ↓x,t∥∥∥2 . (5)

Fig. 1 shows the probability distribution of a SQW for
different initial states for θ = π/4. The symmetry of the
probability distribution naturally depends on the partic-
ular choice of the initial state of the walker. The symme-
try and variance of the final distribution can also be af-
fected by adding phases and thus taking advantage of the
entire Bloch sphere for the coin operation in Eq. (2) [62].

Directed DTQW (DQW): On one-dimensional position
space each step of DQW is evolved by applying coin op-
eration as given by Eq. (2) on coin space followed by po-

sition shift operator Ŝd of the form,

Ŝd =
∑
x∈Z

(
|↑〉 〈↑| ⊗ |x〉 〈x|+ |↓〉 〈↓| ⊗ |x+ 1〉 〈x|

)
. (6)

The shift operator at time t retains the particle at the ex-
isting position state or translates to the right conditioned
on the internal state of the particle. Each step of the
walk is realized by applying the operator, Ŵd = ŜdĈ(θ).
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When the particle is in superposition of the internal state,
during each step of the walk, some amplitude of the par-
ticle will simultaneously remain at the existing position
state and translate to the right position state. In DQW,
the spread of probability amplitude is over half position
space than that of SQW.

Split-step DTQW (SSQW): In this variant, each step of
the walk is a composition of two half-step evolutions,

Ŵss = Ŝ+Ĉ(θ)Ŝ−Ĉ(θ). (7)

The single parameter coin operator is again given by
Eq. (2) and the two shift operators have the form,

Ŝ− =
∑
x∈Z

(
|↑〉 〈↑| ⊗ |x− 1〉 〈x|+ |↓〉 〈↓| ⊗ |x〉 〈x|

)
(8a)

Ŝ+ =
∑
x∈Z

(
|↑〉 〈↑| ⊗ |x〉 〈x|+ |↓〉 〈↓| ⊗ |x+ 1〉 〈x|

)
. (8b)

During each step of the SSQW, the particle remains
at the same position and also moves to left and right
positions conditioned on the internal state of the particle.
This leads to a probability distribution that is different
from the SQW. In addition to that, a different value of
θ can be used for each half step giving additional control
over the dynamics and probability distribution.

In Fig. 2 we show the probability distribution over po-
sition space after 100 steps of SQW, DQW and SSQW,
respectively. The position space explored in the DQW
is half the size compared to the SQW. The probability
of finding the particle at each position space is non-zero
for DQW when compared to SQW where the probabil-
ity of finding particle at every alternate position is zero.
Though the size of the position space is same for both,
SSQW and SQW, but non-zero probability of finding the
particle at all positions is seen in SSQW compared to
SQW resulting in correspondingly lower peak values.

B. Equivalence of variants of discrete-time
quantum walk

Among the three forms of the walk presented above,
SSQW comprises both features, extended position states
and non-zero probability at all positions. Therefore, one
can consider SSQW as the most general form of a DTQW
evolution. The state at any position x and time (t + 1)

after the operation of Ŵss at time t will be Ψx,t+1 =

ψ↑x,t+1 + ψ↓x,t+1, where

ψ↑x,t+1 = cos(θ)[cos(θ)ψ↑x+1,t − i sin(θ)ψ↓x+1,t]

− i sin(θ)[−i sin(θ)ψ↑x,t + cos(θ)ψ↓x,t] (9a)

ψ↓x,t+1 = −i sin(θ)[cos(θ)ψ↑x,t − i sin(θ)ψ↓x,t]

+ cos(θ)[−i sin(θ)ψ↑x−1,t + cos(θ)ψ↓x−1,t]. (9b)

In the description below, we show that the amplitudes of
the walker positions in the different quantum walk vari-
ants are identical after relabelling of the position state,
which establishes that they are all equivalent.

Equivalence of SQW and SSQW: If we evolve two steps
of SQW we will arrive at the state that is identical to
Eq. (9) with only a replacement of |x± 1〉 with |x± 2〉.
Without loss of generality we can show that,

Ŵss ≡ Ŵ 2

Ŝ+Ĉ(θ)Ŝ−Ĉ(θ) ≡
[
ŜĈ(θ)

]2
(10)

where,

Ŵss = Ŝ+Ĉ(θ)Ŝ−Ĉ(θ)

=
[(

cos2 θ |↑〉 〈↑| − i sin θ cos θ |↑〉 〈↓|)⊗
∑
|x− 1〉 〈x|

+ (−i sin θ cos θ |↓〉 〈↑| − sin2 θ |↓〉 〈↓|)⊗
∑
|x〉 〈x|

+ (− sin2 θ |↑〉 〈↑| − i sin θ cos θ |↑〉 〈↓|)⊗
∑
|x〉 〈x|

+(− i sin θ cos θ |↑〉 〈↓|+ cos2 θ |↓〉 〈↓|)⊗
∑
|x+ 1〉 〈x|

]
(11)

and

Ŵ 2 = ŜĈ(θ)ŜĈ(θ)

=
[
(cos2 θ |↑〉 〈↑| − i sin θ cos θ |↑〉 〈↓|)⊗

∑
|x− 2〉 〈x|

+ (−i sin θ cos θ |↓〉 〈↑| − sin2 θ |↓〉 〈↓|)⊗
∑
|x〉 〈x|

+ (− sin2 θ |↑〉 〈↑| − i sin θ cos θ |↑〉 〈↓|)⊗
∑
|x〉 〈x|

+(−i sin θ cos θ |↑〉 〈↓|+ cos2 θ |↓〉 〈↓|)⊗
∑
|x+ 2〉 〈x|

]
.

(12)

Equivalence shown in Eq. (10) can be established by map-
ping position space |x ± 2〉 to |x ± 1〉. Equivalence of
Eq. (11) and Eq. (12) can also be obtained by using a
modified version of the shift operators S′− and S′+ where
|x ± 1〉 in S− and S+ [Eq. (8)] is replaced with |x ± 2〉.
That is,

Ŵ ′ss = Ŝ′+Ĉ(θ)Ŝ′−Ĉ(θ) =
[
ŜĈ(θ)

]2
. (13)

Since the operator Ŵss ≡ Ŵ ′ss =
[
ŜĈ(θ)

]2
, equivalance

shown in Eq. (10) can be established and all the three
operators will execute an identical transformation when
applied on any initial state.

Equivalence of SQW and DQW : Two SQW steps are
equivalent to two DQW steps followed by a translation
operator which executes a global shift on the position
space. For the choice of shift operator we have used,
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Ŵd
<latexit sha1_base64="rWlkNlulv7S1tuQwgbT8Bw42sPM=">AAAB83icdVDLSsNAFJ34rPVVdelmsAiuQpKGtu6KblxWsA9oQplMJu3QySTMTIQS8htuXCji1p9x5984aSuo6IELh3Pu5d57gpRRqSzrw1hb39jc2q7sVHf39g8Oa0fHfZlkApMeTlgihgGShFFOeooqRoapICgOGBkEs+vSH9wTIWnC79Q8JX6MJpxGFCOlJQ96U6TyQTHOw2Jcq1vmZbvpuE1omZbVsh27JE7LbbjQ1kqJOlihO669e2GCs5hwhRmScmRbqfJzJBTFjBRVL5MkRXiGJmSkKUcxkX6+uLmA51oJYZQIXVzBhfp9IkexlPM40J0xUlP52yvFv7xRpqK2n1OeZopwvFwUZQyqBJYBwJAKghWba4KwoPpWiKdIIKx0TFUdwten8H/Sd0y7YTq3br1ztYqjAk7BGbgANmiBDrgBXdADGKTgATyBZyMzHo0X43XZumasZk7ADxhvn3fXkfs=</latexit>

Ŵ
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FIG. 3: Systematic presentation of the equivalence of the
three forms of DTQW.

along with directed translation we can show that,

Ŵ 2 ≡ T̂−Ŵd
2[

ŜĈ(θ)
]2
≡ T−

[
ŜdĈ(θ)

]2
, (14)

where, the form of Ĉ(θ), Ŝ, and Ŝd are given in Eqs. (2),

(3), and (6), respectively and T̂− = (Ic ⊗
∑ |x− 1〉 〈x|).

This can be explicitly shown by expanding the operators,
Ŵ 2 is given in Eq. (12) and

ŴTD = T̂−Ŵd
2

= T̂−
[
ŜdĈ(θ)ŜdĈ(θ)

]
=
[
(cos2 θ |↑〉 〈↑| − i sin θ cos θ |↑〉 〈↓|)⊗

∑
|x− 1〉 〈x|

+ (−i sin θ cos θ |↓〉 〈↑| − sin2 θ |↓〉 〈↓|)⊗
∑
|x〉 〈x|

+ (− sin2 θ |↑〉 〈↑| − i sin θ cos θ |↑〉 〈↓|)⊗
∑
|x〉 〈x|

+(−i sin θ cos θ |↑〉 〈↓|+ cos2 θ |↓〉 〈↓|)⊗
∑
|x+ 1〉 〈x|

]
.

(15)

By replacing x±2 with x±1 in Eq. (12) we can show that

ŴTD ≡ Ŵ 2. Therefore, for all physical realizations map-
ping the position space of the walker onto multi-qubit
states of a quantum processor, one can ignore the alter-
nate positions with zero probability in SQW. A resulting
probability distribution is equivalent to the translated
DQW.

Equivalence of SSQW and DQW: A SSQW as described
by the operator Ŵss is equal to two DQW steps described
by Ŵd followed by a global translation operator of the
form T̂− = (Ic ⊗

∑ |x− 1〉 〈x|). The probability distri-
bution of 2t- time steps of the directed walk is the same as
the probability distribution of t− steps of the split-step

walk i.e.,

Ŵss = T̂−Ŵ
2
d (16)

where Ŵss and Ŵd are given in is given in Eq. (7) and Eq.

(6), respectively. T̂−Ŵ 2
d is given in Eq. (15). Therefore,

from Eq. (10), (14) and (16) we get,

Ŵss = T̂−Ŵ
2
d ≡ Ŵ 2. (17)

This implies that ψ
↑(↓)
x±1 = 0, i.e., the position with zero

probability in SQW. Thus, by discarding the positions
with zero probability and relabelling values of position
x± 2 as values of x± 1, the two-step SQW is equivalent
to SSQW [63].

Schematic representation of the equivalence of all the
three forms of DTQW is shown in Fig. 3 while Fig. 4
shows the probability distribution comparison for all the
three forms of DTQW. The probability distribution of
SSQW is equivalent to half of the time evolution of SQW
and DQW. The probability values are the same for all
three forms. Translation of DQW in position space re-
covers SSQW and discarding of position space with zero
probability in SQW reduces its spread in position space
and recovers SSQW.

Therefore, a quantum circuit which can implement one
form of DTQW is sufficient to recover the exact probabil-
ity distribution of the others by relabelling the position
state associated with the multi-qubit state on the pro-
cessor.

−100 −50 0 50 100
0

0.02

0.04

0.06

0.08

Position

P
ro

b
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ty

 

 

SQW

DQW

SSQW

FIG. 4: Eqivalence of probability distribution for the
different forms of DTQW, i.e., SQW and DQW for 100-steps
and SSQW for 50 steps with the coin parameter θ = π/4.
Alternate sites of SQW have zero probability and thus
100-steps of SQW are equivalent to 50 time-steps of SSQW.
The initial state is |Ψin〉 = 1√

2
(|↑〉+ |↓〉)⊗ |x = 0〉.
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III. QUANTUM CIRCUIT FOR
IMPLEMENTING DTQW

To implement the DTQW on a quantum circuit in one
dimensional position Hilbert space of size 2N , (N + 1)
qubits are needed. Among (N + 1) qubits, one qubit
acts as coin and the states of the remaining qubits are
mapped to the position states in DTQW. The basis for
each qubit is characterized by its internal states |0〉 and
|1〉. In principle, on 2N position space, (2N−1 − 1)-steps
of SQW, and (2N−1)-steps of DQW can be implemented.

Each step of SQW is evolved using a coin operation
Cθ followed by the shift operation S as given in Eq. (3).
Since S acts on the position state and the mapping of
position to qubit state is not unique, therefore the com-
position of gates for the design of S is also not unique.
The coin operation Cθ can be carried out by using a single
qubit gate operation on the coin qubit, while the position-
shift operation S can be subsequently applied with the
help of multi-qubit gates where the coin qubit acts as
the control. For instance, Fig. 5 presents a naive quan-
tum circuit for single step of SQW on 5-qubit quantum
processor [64]. The general form of this circuit depends
on the mapping of the position state to the qubit states
(see Table I).

1

|ψ〉C Cθ σx • • • • σx • • • •

q1

q2 • •

q3 • • • •

q4 • • • • • •

FIG. 5: Generic quantum circuit to implement one-step of
SQW on a 5-qubit system for the mapping given in Table I.
Repetition of this circuit will give us SQW on the position
Hilbert space with 16-sites. The shift operation S is
performed using increment and decrement circuit.

TABLE I: Mapping of position state to the multi-qubit
state for quantum circuit presented in Fig. 5. This
multi-qubit configuration identifies the even and odd
position states in the system with the help of |0〉 and |1〉 as
the state of the last qubit, respectively.

|x = 0〉 ≡ |0000〉
|x = 1〉 ≡ |0001〉 |x = −1〉 ≡ |1111〉
|x = 2〉 ≡ |0010〉 |x = −2〉 ≡ |1110〉
|x = 3〉 ≡ |0011〉 |x = −3〉 ≡ |1101〉
|x = 4〉 ≡ |0100〉 |x = −4〉 ≡ |1100〉
|x = 5〉 ≡ |0101〉 |x = −5〉 ≡ |1011〉
|x = 6〉 ≡ |0110〉 |x = −6〉 ≡ |1010〉
|x = 7〉 ≡ |0111〉 |x = −7〉 ≡ |1001〉

We can note that the mapping of position to qubit

state is not unique and the quantum circuit can be sim-
plified using different mapping. Here the odd (or even)
position state is identified with the configuration of last
qubit |1〉 (or |0〉). Repeating the circuit in Fig. 5, will
give 7-steps of SQW but it can be scaled to N -qubit
using increment and decrement circuit. However, for
this mapping the gate size and gate counting per step
of SQW increases with the number of qubits. At this
point, we have claimed that the quantum circuit com-
plexity of DTQW depends on the position space map-
ping. Therefore, we will now show that a mapping that
takes the architecture of the quantum processor into ac-
count reduce the gate size and gate count. Additional
reductions can be achieved by fixing the initial state of
the walk. Here, we present quantum circuit on five-qubit
system for SQW and DQW that can be easily realised
on present day quantum processors e.g., the five qubit
programmable trapped-ion quantum computer [61] or on
IBMQ’s five qubit quantum computer [65, 66].

TABLE II: Mapping of position state to the multi-qubit
state for quantum circuits presented in Figs. 6, 7, 8, and 9.
Here, also the multi-qubit configuration identifies even and
odd numbered positions in the system with respect to |0〉
and |1〉 state of the last qubit, respectively.

|x = 0〉 ≡ |0000〉
|x = 1〉 ≡ |0001〉 |x = −1〉 ≡ |0011〉
|x = 2〉 ≡ |0110〉 |x = −2〉 ≡ |0010〉
|x = 3〉 ≡ |0111〉 |x = −3〉 ≡ |0101〉
|x = 4〉 ≡ |1100〉 |x = −4〉 ≡ |0100〉
|x = 5〉 ≡ |1101〉 |x = −5〉 ≡ |1111〉
|x = 6〉 ≡ |1010〉 |x = −6〉 ≡ |1110〉
|x = 7〉 ≡ |1011〉 |x = −7〉 ≡ |1001〉

1

Cθ σx • • • σx Cθ • • •

• •

• • • •

σx σx

(a) (b)

FIG. 6: Generic quantum circuit for two steps of SQW on
a 5-qubit system for the mapping given in table II. It can be
used to implement up to seven steps of SQW by alternating
circuit (a) and (b). If the initial position-state is even,
circuit (a) is applied first, and if the initial position-state is
odd circuit (b) is applied first.
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1

Cθ • • • •

• •

• • •

FIG. 7: Generic quantum circuit for a DQW on 5-qubit
system for the mapping given in table II. Concatenation of
this circuit will give the probability distribution of DQW for
upto 15-steps.

TABLE III: Mapping of position state to the multi-qubit
state for quantum circuits presented in Fig. 10 and Fig. 11.

|x = 0〉 ≡ |0000〉
|x = 1〉 ≡ |0001〉 |x = −1〉 ≡ |0111〉
|x = 2〉 ≡ |0010〉 |x = −2〉 ≡ |0110〉
|x = 3〉 ≡ |0011〉 |x = −3〉 ≡ |0101〉
|x = 4〉 ≡ |1100〉 |x = −4〉 ≡ |0100〉
|x = 5〉 ≡ |1101〉 |x = −5〉 ≡ |1011〉
|x = 6〉 ≡ |1110〉 |x = −6〉 ≡ |1010〉
|x = 7〉 ≡ |1111〉 |x = −7〉 ≡ |1001〉

Fig. 6, shows quantum circuit for two-steps of SQW for
the mapping presented in table II. Similar to the previous
case, the state of the last qubit defines the even and odd
positions. This allows us to keep the rest of the qubits
mapped identical for each pair of even and odd positions.
For a generic initial position state |x〉 of the particle on a
five-qubit system, the alternation of circuit (a) and (b),
as given in Fig. 6, implements the seven steps of SQW.
If the initial position |x〉 is even (or odd), circuit (a) (or
(b)) is applied first. When compared to the quantum
circuit in Fig. 5 for a naive mapping, we see a significant
decrease in gate count and gate size for each step. The
gate count reduces to almost half for each step. Simi-
larly, Fig. 7 shows quantum circuit for each step of DQW
for mapping presented in table II for any arbitrary initial
position state |x〉 and by repeated application of this cir-
cuit, one can implement 15-steps of DQW, in principle.

On comparison of the two quantum circuit for SQW,
one step of naive mapping shown in Fig. 5 has double
of each Toffoli-3 gate, Toffoli-2 gate, Toffoli gate and

CNOT gate along with three single qubit gates, respec-
tively while each step of generic circuit shown in Fig. 6 for
mapping in table II has only one Toffoli-2 gate, one Tof-
foli gate and one CNOT gate along with few single qubit
gates. Hence, this shows that for a smart position state
mapping, the gate count drops significantly and hence
the circuit complexity reduces.

Fixing the initial state of the walker helps in reducing
the gate count in the quantum circuit and also reduces
the circuit complexity. For example, if the initial state
is fixed to |0〉 ⊗ |0000〉 ≡ |↑〉 ⊗ |x = 0〉 then the quantum
circuit for first seven steps of SQW and DQW is shown
in Fig. 8 and Fig. 9, respectively. But for the implemen-
tation of SSQW, two different shift operators are needed.
The same results can be reconstructed from the equiva-
lence relation between SSQW and SQW, which will need
two steps of SQW to reproduce the results of SSQW.
Therefore, using SQW and reconstructing the results of
the corresponding SSQW from it is more efficient than
the direct implementation of SSQW.

We have also considered a different configuration of
position space mapping onto multi-qubit states. As in
table II the last qubit states |0〉 and |1〉 are set to iden-
tify the even and odd position of the position state here
too. The mapping shown in table III and Fig. 10 and 11
shows the quantum circuits for SQW and DQW for the
mapping choices, respectively, which implements seven
steps for the initial state |0〉 ⊗ |x = 0〉. At alternate sites
of the SQW we have zero probability, and our mapping
allows the value of the last qubit to identify odd or even
positions. Alternatively, the step number can be classi-
cally tracked in the quantum circuits shown in Fig. 6, 8
and 10 to reduce the number of σx operations on the last
qubit to zero or one.

Among the quantum circuits presented, the one given
in Fig. 8 is optimal for implementing the SQW. Although
table IV gives a comparison of the number of gates in the
optimized circuits in Fig. 8, 9, 10 and 11, respectively.

TABLE IV: Gate count for mapping in Table II and III,
respectively and for corresponding SQW and DQW circuits
with fixed initial state |0〉 ⊗ |0000〉 and after seven steps on
five-qubit quantum processor.

SQW DQW
Table II 22 single-qubit 7 single-qubit

7 two-qubit 7 two-qubit
6 three-qubit 6 three-qubit
4 four-qubit 10 four-qubit

Table III 22 single-qubit 7 single-qubit
8 two-qubit 6 two-qubit
6 three-qubit 6 three-qubit
4 four-qubit 8 four-qubit
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1

|0〉 Cθ σx • σx Cθ • • Cθ σx • • σx Cθ • • • Cθ σx • • • σx Cθ • • • Cθ σx • • • σx

|0〉
|0〉 • • • •
|0〉 • • • • • • • • • •

|0〉 σx σx σx σx σx σx σx

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

FIG. 8: Quantum circuit for first seven steps of the SQW on a 5-qubit system with a fixed initial state
|↑〉 ⊗ |x = 0〉 ≡ |0〉 ⊗ |0000〉 for the mapping given in table II. This circuit has a reduced gate count compared to the generic
circuit shown in Fig. 6. We note that the sequence of σx in the last qubit can be replaced by classically tracking the number
of steps.

1

|0〉 Cθ • Cθ • • • Cθ • • • Cθ • • • • Cθ • • • • Cθ • • • • Cθ • • • •

|0〉
|0〉
|0〉 • • • • • • • • • •
|0〉 • • • • • • • • • • • • • • • •

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

FIG. 9: Quantum circuit for first seven steps of the DQW on a 5-qubit system with a fixed initial state
|↑〉 ⊗ |x = 0〉 ≡ |0〉 ⊗ |0000〉 for the mapping given in table II. It has reduced gate count compared to the generic circuit shown
in Fig. 7.

1

|0〉 Cθ σx • • σx Cθ • • Cθ σx • • σx Cθ • • • Cθ σx • • • σx Cθ • • • Cθ σx • • • σx

|0〉
|0〉 • • • •
|0〉 • • • • • • • • • •

|0〉 σx σx σx σx σx σx σx

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

FIG. 10: Quantum circuit for SQW for the first seven steps on 5-qubit system for the fixed initial state
|↑〉 ⊗ |x = 0〉 ≡ |0〉 ⊗ |0000〉 for the mapping given in table III. Here also, the sequence of σx in the last qubit can be
completely replaced by classical tracking the step-number.
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|0〉 Cθ • Cθ • • Cθ • • Cθ • • • • Cθ • • • • Cθ • • • • Cθ • • • •

|0〉
|0〉
|0〉 • • • • • • • •
|0〉 • • • • • • • • • • • • • •

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

FIG. 11: Quantum circuit for first seven steps of the DQW on a 5-qubit system with a fixed initial state
|↑〉 ⊗ |x = 0〉 ≡ |0〉 ⊗ |0000〉 for the mapping given in table III.

IV. DISCUSSION

By digitally encoding the walker’s position space onto
qubits state in various ways, we have shown different
equivalent quantum walk circuits. The examples illus-
trate how the encoding methods and initial state depen-
dent circuits can reduce the required gate depth (gate
count) for implementing quantum walks.

The circuits can be scaled to implement more num-
ber of steps on a larger system using higher order Toffoli
gates. The implementation of n steps of a SQW will need
at least (log2(n+1)+2) qubits. Similarly, for implement-
ing n steps of a DQW, at least (log2(n + 1) + 1) qubits
are required.

Recently, different ways of expanding the increment-
ing and decrementing part of the generic quantum cir-
cuit show in Fig.5 was explored in detail [67]. To reduce
the circuit complexity, generalized controlled inversions
approach and the other one by effectively replacing them
with rotation operations around the basis states was pre-
sented. If the circuits are implemented on a device with
large number of qubits then generalised controlled inver-
sions would be a good option as it has less circuit depth
due to the use of ancilla qubits or else the other way
would be better. In our work the focus has been on reduc-
ing the circuit complexity by careful choice of mapping
of qubit state to the position space and optimizing the
circuit after choosing the initial state. Combining both
these approaches may results in further reduction of cir-
cuit complexity and that needs to be carefully explored
in future works.

DTQW in two-dimensional position space [68, 69], can
also be implemented by scaling the scheme presented in
work with an appropriate mapping of qubit states with
the nearest neighbour position space in both dimensions.
It can be achieved on a device with access to larger num-
ber of qubits. By assigning the equal number of qubits
to both the dimensions in the two-dimensional position
space and then by optimally mapping the qubit state to
the position state. All the circuits presented can be ex-

tended to implement two or more particle DTQWs by
introducing two or more coin qubits into the system, re-
spectively. In such cases, the control over the target or
position qubit increases with the number of coin qubits.
Another way of scaling the scheme for SQW on a N -
qubit system, one can fix one-qubit for coin as usual and
another one to represent the ±-sign for the positive and
negative direction of the initial state |x〉 and the state
of the rest of the (N − 2) qubit can be mapped to posi-
tion state. Now using the quantum adder circuit [70], the
scheme can be extended to N -qubits and a generalized
quantum circuit for quantum walk can be worked out.

One can also use ancilla qubits to reduce the circuit
complexity. In the appendix, we have shown a hybrid-
circuit with the help ancilla qubit for DQW. DQW can be
implemented with the help of CNOT gate and interfer-
ence in the walk can be included with help of controlled-
SWAP gate and ancilla qubit just before the measure-
ment. Fig. 14 and 15 shows the hybrid circuit for three-
steps and four-steps of DQW. Detail is given in the
Apendix.

Therefore, with an appropriate choice of quantum coin
operation and the equivalence of variants of DTQW,
any quantum algorithm based on DTQW can be ex-
perimentally realized on quantum computer. Dirac
cellular automata can be recovered using SSQW, which
reproduces the dynamics of the Dirac equation in the
continuum limit [41]. One such example of simulating
Dirac cellular automata on an ion-trap processor using
one of the various configurations of the circuits pre-
sented has been demonstrated recently [71]. With the
appropriate use of position dependent coin operation
and additional higher order Toffoli gates to our circuits,
other DTQW based algorithms, such as spatial search
can also be implemented.
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[40] J. K. Asbóth, “Symmetries, topological phases, and
bound states in the one-dimensional quantum walk,”
Physical Review B, vol. 86, no. 19, p. 195414, 2012.

[41] A. Mallick and C. M. Chandrashekar, “Dirac cellular au-
tomaton from split-step quantum walk,” Scientific Re-
ports, vol. 6, p. 25779, 2016.

[42] M. Szegedy, “Quantum speed-up of markov chain based
algorithms,” in Foundations of Computer Science, 2004.
Proceedings. 45th Annual IEEE Symposium on, pp. 32–
41, IEEE, 2004.

[43] D. A. Meyer, “From quantum cellular automata to quan-
tum lattice gases,” Journal of Statistical Physics, vol. 85,
no. 5-6, pp. 551–574, 1996.
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Appendix

DQW circuit with naive mapping

A naive mapping can result in an inefficient quantum circuit. One example of this is given in table V and Fig. 12.

TABLE V: Mapping of position state onto multi-qubit states for DQW circuit presented in Fig. 12.

|x = 0〉 ≡ |0000〉
|x = 1〉 ≡ |1000〉 |x = 4〉 ≡ |1111〉
|x = 2〉 ≡ |1100〉 |x = 5〉 ≡ |0111〉
|x = 3〉 ≡ |1110〉 |x = 6〉 ≡ |1011〉

1

|0〉 Cθ • Cθ • • Cθ • • • Cθ • • • • Cθ • • • • •

|0〉 • • • • • • • • •

|0〉 • • • • • •

|0〉 • • •

|0〉 •
Step 1 Step 2 Step 3 Step 4 Step 5

FIG. 12: Quantum circuit for DQW for first five steps with the fixed initial state |Ψin〉 = |↑〉 ⊗ |x = 0〉 ≡ |0〉 ⊗ |0000〉 for the
naive mapping shown in table V. This circuit has a simple structure but it consists of many additional higher order Toffoli
gates compared to the circuits shown in Sec. III and Appendix.

The simplest quantum circuit for the mapping given above with fixed initial state, |0〉 ⊗ |0000〉 is shown in Fig. 12.
This circuit implements five steps of the DQW. In the same system one can implement upto 15 steps since the available
position states are 24 = 16. This circuit looks straightforward to construct and scale but an actual implementation
would require higher-order Toffoli gates even for a small number of steps and fixed initial position, making it inefficient
for near term quantum processors.
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Simplified quantum circuit with ancilla

There has been a significant increase in the number of qubits available on platforms like trapped ion and supercon-
ducting qubits [72–75]. However, limited coherence time is still an hindrance to increase the number of gates that can
be implemented. To make an explicit use of the all available qubits, one has to develop a low depth quantum circuits.
Here we will present quantum circuits with reduced number of gates to implement DQWs at the cost of requiring
additional ancilla qubits. But the given circuit is still inefficient as it will only include outputs with ancilla qubit state
|0〉. In a system with access to more qubits, one can implement more steps of the DQW at the same circuit depth but
the efficiency decreases as the number of output states that can be included is when all the ancilla qubit state is |0〉 .

For a five qubit system, we again use the first qubit to represent the coin and the other four qubits to represent
position space. The mapping is given in table VI. This is a classical circuit as it does not include the superposition or
interference in the system directly. The output of the DQW and that of the quantum circuit in Fig. 13 is compared
in table VII for each step. To keep track of the contribution from each time evolution, we have introduced subscript
to indicate different time steps. To turn this circuit into a DQW implementation, CNOT, Fredkin (controlled-Swap)
gates and a Hadamard gate involving additional ancilla qubits are applied before measurement as shown in Fig. 15.
After measurement only selective outputs with ancilla qubit state |0〉 are included.

TABLE VI: Position state mapping used to construct the quantum circuit presented in Fig. 13. This mapping requires
ancilla qubits to induce interference by merging equivalent multi-qubit states.

|x = 0〉 ≡ |0000〉
|x = 1〉 ≡ {|1000〉 , |0100〉 , |0010〉 , |0001〉}
|x = 2〉 ≡ {|1100〉 , |1010〉 , |1001〉 ,

|0110〉 , |0101〉 , |0011〉}
|x = 3〉 ≡ {|1110〉 , |1101〉 , |1011〉 , |0111〉}
|x = 4〉 ≡ |1111〉

TABLE VII: Output after each step of DQW and output of quantum circuit shown in Fig. 13 without the interference step
provided by the ancilla circuit. Here c1, c2, ... represents the contribution of cos(θ)-term from the coin operation in the first,
second ... time-evolutions and similarly s1, s2, ... represents the contribution of sin(θ)-term from the coin operation in the
first, second ... time-evolutions, respectively in the circuit.

Steps Directed quantum walk output Circuit (Fig. 13) output without ancilla
0. |0〉 ⊗ |x = 0〉 |0〉 ⊗ |0000〉
1. c1 |0〉 ⊗ |x = 0〉+ s1 |1〉 ⊗ |x = 1〉 c1 |0〉 ⊗ |0000〉+ s1 |1〉 ⊗ |1000〉
2.

c2c1 |0〉 ⊗ |x = 0〉 + s2c1 |1〉 ⊗ |x = 1〉 +
s2s1 |0〉 ⊗ |x = 1〉 − c2s1 |1〉 ⊗ |x = 2〉

c2c1 |0〉 ⊗ |0000〉 + s2c1 |1〉 ⊗ |0100〉 +
s2s1 |0〉 ⊗ |1000〉 − c2s1 |1〉 ⊗ |1100〉

3.

c3c2c1 |0〉⊗|x = 0〉+s3c2c1 |1〉⊗|x = 1〉+
s3s2c1 |0〉⊗|x = 1〉−c3s2c1 |1〉⊗|x = 2〉+
c3s2s1 |0〉⊗|x = 1〉+s3s2s1 |1〉⊗|x = 2〉−
s3c2s1 |0〉 ⊗ |x = 2〉+ c3c2s1 |1〉 ⊗ |x = 3〉

c3c2c1 |0〉 ⊗ |0000〉+ s3c2c1 |1〉 ⊗ |0010〉+
s3s2c1 |0〉 ⊗ |0100〉 − c3s2c1 |1〉 ⊗ |0110〉+
c3s2s1 |0〉 ⊗ |1000〉+ s3s2s1 |1〉 ⊗ |1010〉 −
s3c2s1 |0〉 ⊗ |1100〉+ c3c2s1 |1〉 ⊗ |1110〉

4.

c4c3c2c1 |0〉 ⊗ |x = 0〉 + s4c3c2c1 |1〉 ⊗
|x = 1〉 + s4s3c2c1 |0〉 ⊗ |x = 1〉 −
c4s3c2c1 |1〉 ⊗ |x = 2〉 + c4s3s2c1 |0〉 ⊗
|x = 1〉 + s4s3s2c1 |1〉 ⊗ |x = 2〉 −
s4c3s2c1 |0〉 ⊗ |x = 2〉 + c4c3s2c1 |1〉 ⊗
|x = 3〉 + c4c3s2s1 |0〉 ⊗ |x = 1〉 +
s4c3s2s1 |1〉 ⊗ |x = 2〉 + s4s3s2s1 |0〉 ⊗
|x = 2〉 − c4s3s2s1 |1〉 ⊗ |x = 3〉 −
c4s3c2s1 |0〉 ⊗ |x = 2〉 − s4s3c2s1 |1〉 ⊗
|x = 3〉 + s4c3c2s1 |0〉 ⊗ |x = 3〉 −
c4c3c2s1 |1〉 ⊗ |x = 4〉

c4c3c2c1 |0〉 ⊗ |0000〉 + s4c3c2c1 |1〉 ⊗
|0001〉 + s4s3c2c1 |0〉 ⊗ |0010〉 −
c4s3c2c1 |1〉 ⊗ |0011〉 + c4s3s2c1 |0〉 ⊗
|0100〉 + s4s3s2c1 |1〉 ⊗ |0101〉 −
s4c3s2c1 |0〉 ⊗ |0110〉 + c4c3s2c1 |1〉 ⊗
|0111〉 + c4c3s2s1 |0〉 ⊗ |1000〉 +
s4c3s2s1 |1〉 ⊗ |1001〉 + s4s3s2s1 |0〉 ⊗
|1010〉 − c4s3s2s1 |1〉 ⊗ |1011〉 −
c4s3c2s1 |0〉 ⊗ |1100〉 − s4s3c2s1 |1〉 ⊗
|1101〉 + s4c3c2s1 |0〉 ⊗ |1110〉 −
c4c3c2s1 |1〉 ⊗ |1111〉
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TABLE VIII: Output after the three steps of a DQW using the quantum circuit shown in Fig. 13 and output of the
quantum circuit with ancilla as shown in Fig. 14 after the interference step. Here c1, c2, ... represents the contribution of
cos(θ)-term from the coin operation in the first, second ... time-evolutions and similarly s1, s2, ... represents the contribution
of sin(θ)-term from the coin operation in the first, second ... time-evolutions, respectively in the circuit.

Step Circuit output without ancilla Circuit output with ancilla

3.

(
c3c2c1 |0〉⊗ |0000〉+s3c2c1 |1〉⊗ |0010〉+
s3s2c1 |0〉 ⊗ |0100〉 − c3s2c1 |1〉 ⊗ |0110〉+
c3s2s1 |0〉 ⊗ |1000〉+ s3s2s1 |1〉 ⊗ |1010〉 −
s3c2s1 |0〉⊗|1100〉+c3c2s1 |1〉⊗|1110〉

)
⊗

|0〉

(
c3c2c1 |0〉 ⊗ |0000〉 ⊗ |0〉 + s3c2c1 |1〉 ⊗
|0010〉 ⊗ |0〉 + s3s2c1 |0〉 ⊗ |0100〉 ⊗ |0〉 +
c3s2s1 |0〉 ⊗ |0100〉 ⊗ |1〉 + s3s2s1 |1〉 ⊗
|0110〉 ⊗ |1〉 − c3s2c1 |1〉 ⊗ |0110〉 ⊗ |0〉 −
s3c2s1 |0〉 ⊗ |1100〉 ⊗ |1〉 + c3c2s1 |1〉 ⊗
|1110〉 ⊗ |1〉

)

TABLE IX: Output after the four steps of a DQW using the quantum circuit shown in Fig. 13 and output of the quantum
circuit with ancilla as shown in Fig. 15 after the interference step. Here c1, c2, ... represents the contribution of cos(θ)-term
from the coin operation in the first, second ... time-evolutions and similarly s1, s2, ... represents the contribution of
sin(θ)-term from the coin operation in the first, second ... time-evolutions, respectively in the circuit.

Step Circuit output without ancilla Circuit Output with ancilla

4.

(
c4c3c2c1 |0〉 ⊗ |0000〉 + s4c3c2c1 |1〉 ⊗
|0001〉 + s4s3c2c1 |0〉 ⊗ |0010〉 −
c4s3c2c1 |1〉 ⊗ |0011〉 + c4s3s2c1 |0〉 ⊗
|0100〉 + s4s3s2c1 |1〉 ⊗ |0101〉 −
s4c3s2c1 |0〉 ⊗ |0110〉 + c4c3s2c1 |1〉 ⊗
|0111〉 + c4c3s2s1 |0〉 ⊗ |1000〉 +
s4c3s2s1 |1〉 ⊗ |1001〉 + s4s3s2s1 |0〉 ⊗
|1010〉 − c4s3s2s1 |1〉 ⊗ |1011〉 −
c4s3c2s1 |0〉 ⊗ |1100〉 − s4s3c2s1 |1〉 ⊗
|1101〉 + s4c3c2s1 |0〉 ⊗ |1110〉 −
c4c3c2s1 |1〉 ⊗ |1111〉

)
⊗ |000〉

c4c3c2c1 |0〉⊗|0000〉⊗|000〉+s4c3c2c1 |1〉⊗
|0001〉 ⊗ |000〉 + s4s3c2c1 |0〉 ⊗ |0100〉 ⊗
|001〉 + c4s3s2c1 |0〉 ⊗ |0100〉 ⊗ |000〉 +
c4c3s2s1 |0〉⊗|0100〉⊗|100〉+s4c3s2s1 |1〉⊗
|0101〉 ⊗ |100〉 − c4s3c2c1 |1〉 ⊗ |0101〉 ⊗
|001〉 + s4s3s2c1 |1〉 ⊗ |0101〉 ⊗ |000〉 +
s4s3s2s1 |0〉⊗|0110〉⊗|101〉−s4c3s2c1 |0〉⊗
|0110〉 ⊗ |001〉 − c4s3c2s1 |0〉 ⊗ |0110〉 ⊗
|010〉 + c4c3s2c1 |1〉 ⊗ |0111〉 ⊗ |001〉 −
c4s3s2s1 |1〉⊗|0111〉⊗|101〉−s4s3c2s1 |1〉⊗
|0111〉 ⊗ |110〉 + s4c3c2s1 |0〉 ⊗ |1110〉 ⊗
|111〉 − c4c3c2s1 |1〉 ⊗ |1111〉 ⊗ |111〉

1

|0〉 Cθ • Cθ • Cθ • Cθ •

|0〉

|0〉

|0〉

|0〉

Step 1 Step 2 Step 3 Step 4

FIG. 13: Quantum circuit for DQW for first four steps without interference. Each step of this quantum circuit is given by a
controlled-NOT gate because of the mapping chosen (see table VI). To include interference in the circuit, ancilla operations
are needed before the measurement (see Fig. 15).

After the first three steps, a single ancilla qubit introduces the equivalence of the states with two qubits in state
|1〉 to position space at |x = 2〉 as shown in Fig. 14. After the operation on ancilla qubit, the DQW distribution after
3 steps is recovered. Table VIII, shows the equivalence of the output of the third step of the DQW to the circuit
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output after the first three steps with an ancilla qubit operation before the Hadamard operation is performed on
ancilla qubit. Similarly, to include interference after four steps, we need 3 ancilla qubits as shown in Fig. 15 and the1

|0〉 C1 • C2 • C3 •

|0〉 • ×

|0〉 ×

|0〉

ancilla |0〉 • H

FIG. 14: Quantum circuit for DQW with the ancilla operation to include interference after first three steps. The ancilla
qubit is left unobserved in the circuit. Here C1 = C2 = C3 = Cθ.

output equivalence is shown in table IX before the Hadamard gate is performed on the ancilla qubit. The Hadamard
operation helps in un-entangling the ancilla qubit with the real qubits in the circuit.

1

|0〉 C1 • C2 • C3 • C4 •

|0〉 • × • ×

|0〉 × ×

|0〉 × • ×

|0〉

|0〉 • H

|0〉 • H

|0〉 • H

FIG. 15: Quantum circuit for DQW with ancilla operation to include interference after the first four steps. The ancilla
qubits are left unobserved in the circuit. With a larger number of steps, the number of ancilla qubits also increases. Here
C1 = C2 = C3 = C4 = Cθ.

The number of ancilla qubits as well as Fredkin (CSWAP) gates for the circuit in Fig. 13 increases as n−1C2 where, n
is the step number after which the measurement is done. The ancilla operation is needed only before the measurement.

From Fig. 15, it can be seen that for the first four steps of DQW, the number of CNOT-gate required is 7 along
with 3 Fredkin- gates. Each Fredkin- gate can be decomposed into 5 two-qubit gate [76]. Therefore, total number of
two-qubit gates required for first four steps of DQW using ancilla qubits are 22. Compared to this, if we look at the
DQW circuit without ancilla, for the first four steps the number of CNOT gate required is 4, number of Toffoli gate
is 3, and number of controlled-Toffoli (CCCNOT) gate is 2 as can be seen in Figs. 9 and 11. Each Toffoli gate can be
decomposed into 6 CNOT-gates and each CCCNOT gate can be further decomposed into two qubit gate and Toffoli
gates [77]. The number of two-qubit gates required for first four steps of DQW without use of ancilla qubits will be
far more than the 22. Therefore, a processor with access to large number of qubits with an possibility to leave anclilla
qubit unobserved [78, 79] can be effective in reducing the gate counts to implement DTQW.
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