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For a spinless quantum particle in a one-dimensional box or an electromagnetic wave in a one-
dimensional cavity, the respective Dirichlet and Neumann boundary conditions both lead to non-
degenerate wave functions. However, in two dimensions, the symmetry of the box or microstrip
antenna is an important feature, the details of which have often been overlooked in the literature.
In the high-symmetry cases of a disk, square, or equilateral triangle, the wave functions for both
boundary conditions are grouped into two distinct classes, which are one- and two-dimensional
representations of the respective point groups, C∞v, C4v, and C3v . Here we present visualizations
of representative wave functions for both boundary conditions and both one- and two-dimensional
representations of those point groups. For the non degenerate or doubly degenerate one-dimensional
representation wave functions, color contour plots are presented. The nominally doubly degenerate
two-dimensional representation wave functions are presented as common nodal points and/or lines,
the patterns of which are invariant under all operations of the respective point group. The wave
functions with the Neumann boundary conditions have important consequences for the coherent
terahertz emission from the intrinsic Josephson junctions in the high-temperature superconductor
Bi2Sr2CaCu2O8+δ: the enhancement of the output power from electromagnetic cavity resonances
is only strong for non degenerate wave functions.

*present address †corresponding author. email:
richard.klemm@ucf.edu

I. INTRODUCTION

The study of wave functions obtained from various ge-
ometries with Dirichlet and Neumann boundary condi-
tions has been a useful educational resource and also has
numerous applications in the construction of various de-
vices. A quantum particle in a one-dimensional infinite
square well potential, or “box”, for which the boundary
is a set of two points, is often the first problem studied
by undergraduate students early in their first course on
quantum mechanics [1]. Although three graduate texts
contain two problems on the degeneracies of the lowest
energies of a square two-dimensional (2D) box and of the
2D and 3D simple harmonic oscillators (SHOs) [2–6], the
solutions manuals for the first three texts and the 3D
SHO in the fourth text did not mention that the dou-
bly degenerate first excited state of the square box and
of the 2D SHO and the six-fold degenerate first excited
state of the 3D SHO were doubly or multiply degenerate,
two-dimensional representations of the appropriate point
group, each component of which can be represented by
an infinite number of spatial forms. Hence, there could

be considerable confusion on this issue. Weinberger also
included 2D box/antenna problems with a variety of dif-
ferent or mixed boundary conditions [6].
Here we focus upon high-symmetry 2D shapes, and will

return to the 2D and 3D SHO in the summary and con-
clusions section. For a spinless quantum particle of mass
M in a 2D infinite square well potential or box, the wave
function ψ(x, y, t) satisfies the Schrödinger equation,

− ~
2

2M
∇

2ψ + V ψ = i~
∂ψ

∂t
, (1)

where ~ = h
2π and h is Planck’s constant, for which the

potential V (x, y) = 0 inside the box and V (x, y) = ∞
outside it. Hence ψ(x, y, t) = 0 outside the box and on
its boundary, the simplest example of Dirichlet boundary
conditions. Here we only consider closed one-dimensional
boundaries, and focus upon the 2D shapes with the high-
est point-group symmetries, C∞v, C4v, and C3v, corre-
sponding to cylindrical, square, or equilateral triangular
boxes [7–10].
For a thin (nearly 2D) microstrip antenna (MSA), the

magnetic vector potential Az(x, y, t) normal to the an-
tenna satisfies the electromagnetic (EM) wave equation

∇
2Az −

1

v2
∂2Az

∂t2
= 0, (2)
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where v is the wave velocity that depends upon the
index of refraction in the antenna, and for transverse
magnetic (TM) modes, its normal derivative vanishes
on the boundary, the simplest example of Neumann
boundary conditions. Due to the oscillatory time de-
pendence of a light wave, Eq. (2) is usually rewritten as
∇

2Az + (k′)2Az = 0, where k′ is the wave vector in the
material of interest.
In particular, determining the symmetries and energy

states of wave functions with Neumann boundary con-
ditions is of great practical importance in the develop-
ment of a high-power terahertz (THz) laser, which has
many potential applications, such as for the detection of
skin or colon cancer in humans and in secure communi-
cations. This is due to the ac Josephson effect, in which
a dc voltage V is applied across a single junction, leading
to an ac current I and the emission of photons at the
frequency fJ = 2eV/h, where e is the charge of an elec-
tron [11]. Now there exist many layered superconductors
[12], a number of which exhibit Josephson effects, but
the most interesting one for the construction of a THz
laser is the high transition temperature Tc superconduc-
tor Bi2Sr2CaCu2O8+δ (Bi2212). This material consists
of a uniform stack of intrinsic Josephson junctions (IJJs)
[13–16]. The output power P1 of a single IJJ is about
1 pW, too small for most practical applications that re-
quire the actual power P to be at least 1 mW. But since
each IJJ is 1.533 nm thick, a single crystal of Bi2212 of
thickness 1 µm contains N ≈ 650 IJJs, reducing fJ to

fJ = (2e/h)(V/N), (3)

and when most of the N junctions emit coherently, ide-
ally, PN = P1N

2 ≈ 0.4µW. Moreover, in a thin mesa cut
from a single crystal of Bi2212, the shape of the mesa
acts as an electromagnetic cavity or MSA, which can en-
hance the output power an additional one to two orders
of magnitude [16–20]. The emission frequency has to be
larger than the Josephson plasma resonance frequency
fp ≈ 0.25 THz [21]. In principle, the maximum emission
frequency is the low temperature T value of the super-
conducting gap 2∆, which is about 15 THz [22–24].
However, a major issue affecting the reliability and the

upper limit of the emission frequency has been the Joule
heating of the mesas [25–27], especially when they have
Bi2212 substrates, since Bi2212 is a very poor thermal
conductor. But this problem has been mostly removed
by fabricating stand-alone mesas, in which the Bi2212
sample is doubly cleaved to a thickness of 1-2 microns
from a single crystal, and the top and bottom surfaces
are each coated with a thin layer of gold [18–20, 28–32].
These issues are discussed in Section VIII. When different
parts of a small stand-alone Bi2212 single crystal were
used both as the emitter and as the detector, emission
up to 11 THz was observed [23]. An array of three stand-
alone rectangular mesas was reported to emit coherently
with the combined P ≈ 0.61 mW [33], although an array
of two rectangular mesas did not behave coherently [34],
so the main concern for further development is the design

of arrays to increase that number.

For low-symmetry rectangular boxes or MSAs, the
wave functions are all nondegenerate, one-dimensional
representations (1DRs) of the point group C2v. How-
ever, for the higher symmetry square [35–38], equilateral
triangular [39–45], isosceles and right triangular [46, 47],
regular pentagonal [48], cylindrical, disk [49, 50], annular
[51], or singly slitted annular shapes [52], the situation
can be considerably more complicated. Although some
of the wave functions are non-degenerate 1DRs of the re-
spective point groups C∞v, C4v and C3v under considera-
tion here, a large fraction of the wave functions are nomi-
nally doubly degenerate two-dimensional representations
(2DRs) of those point groups, each component of which
can be represented by an infinite number of real space
forms [7–10]. In addition, for square boxes or MSAs,
many additional wave functions are doubly degenerate
1DRs, each component of which can only be represented
by a single spatial form. Previous works have calculated
the dimensionality of the symmetry groups for the sta-
tionary states of the various wave functions, but there
have not been thorough investigations of the features of
the 2DRs of all three of these cases. Although for 2D
boxes, such considerations are only experimentally rele-
vant for deep quantum wells, for nearly 2D MSAs, the
experimental consequences are very important, but have
not been clearly described in the literature.

We note that circularly polarized coherent THz emis-
sion can be obtained by breaking the symmetry of square
or disk MSAs [53–55], Bi2212 MSAs can be used both as
emitters and as detectors [23, 56], and commercial cry-
ocoolers can be used in cooling Bi2212 MSAs for many
potential applications [57, 58]. Six review articles on
Bi2212 IJJ-THz emitters have been published [59–64].

Here we present detailed studies of the wave functions
for the three highest-symmetry 2D shapes: cylindrical
boxes and disk MSAs, square boxes and MSAs, and
equilateral triangular boxes and MSAs, in which either
the wave function or its normal derivative vanishes on
the boundary. Character tables of the respective point
groups C∞v, C4v and C3v are given in textbooks on group
theory [7–10], but there are some minor differences in the
wave function tables with Dirichlet and Neumann bound-
ary conditions we present here, and some additions for
the 2DR wave functions. In Section II, we analyze the
square box. In Section III, we describe the thin square
MSA. In Section IV, we analyze the equilateral triangular
box. In Section V, we present the results for thin equi-
lateral triangular MSA wave functions. In Section VI,
we show the cylindrical box wave functions. In Section
VII, we describe the disk MSA wave functions. In Sec-
tion VIII, we compare our results for square, equilateral
triangular, and disk MSAs with published experimental
results. Finally in Section IX, we summarize our results
for these high-symmetry boxes and MSAs, and discuss
the possible relevance of the wave functions to degen-
erate perturbation theory in quantum mechanics and in
Bose-Einstein condensates [66, 67].
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II. THE SQUARE BOX

For a spinless quantum particle of mass M in a square
box of side a, the normalized wave functions are solutions
of the Schrödinger equation with V (x, y) = 0 for 0 <
x, y < a, V (x, y) = ∞ for x, y ≤ 0 and x, y ≥ a, which
are

Ψn,m(x, y) =
2

a
sin(nπx/a) sin(mπy/a), (4)

for integral n,m ≥ 1, all of which satisfy the Dirichlet
boundary conditions Ψn,m(x, y) = 0 for x = 0, a and
y = 0, a. The energy of that state is

En,m =
~
2(n2 +m2)π2

2Ma2
. (5)

Figure 1 displays color-coded plots of the wave func-
tions Ψn,m(x, y) for 1 ≤ n,m ≤ 4 of the square box.

FIG. 1. (color online) Table of color-coed plots of the normal-
ized wave functions Ψn,m(x, y) = 2

a
sin(nπx/a) sin(mπy/a)

for a square box of side a with Dirichlet boundary conditions
for (n,m) = 1, 2, 3, 4, each with its lower left corner at (0,0).
Here we set a = 1. n and m are respectively the column and
row numbers. The color code bar, which varies from -2.0 to
+2.0, applies to each of these figures. The black boundaries
and internal straight lines are nodes.

According to the C4v point group symmetry class [7–
10], there are four mirror planes: the horizontal σh and
vertical σv mirror planes that bisect the sides, and the
two diagonal mirror planes, σd1 and σd2, that bisect the
corners. In addition, two rotations (R4) by 2π/4 and one

(R2) by π about the centroid are also allowed [7–10]. The
wave functions fall into three basic classes. In the first
class, n = m, Ψn,n(x, y) is non degenerate. But there are
two subclasses of these non degenerate wave functions.
For n odd, the Ψn,n(x, y) are invariant under all of these
operations, whereas for n even, the Ψn,n(x, y) are even
about σd1, σd2 and under R2, but are odd about σh, σv
and under R4. According to Table I, the odd and even
n Ψn,n(x, y) are respectively elements of C4v symmetry
types A1 and B2. The C4v point group symmetry also
applies to the orbital symmetry of the pairing function
and of the distinct “pseudogap” (probably a charge den-
sity wave) in the cuprate superconductors, at least when
the structural symmetry of the cuprate planes is not or-
thorhombic [68–70], a subject of continued interest for
nearly three decades to date [24, 71, 74].

                            

(a)

(b) + = 0

FIG. 2. (color online)(a) Color-coded plots of one component
of the doubly degenerate 2DR square box wave function, each
component of which can be presented in an infinite number of

spatial forms, Ψ
(−θ,+)
1,2 (x, y) = cos θΨ1,2(x, y)−sin θΨ2,1(x, y),

for φ = 0, θ = 60◦ (left), 45◦ (center), and 30◦ (right). (b)
Color-coded illustration of the oddness of Ψ2,1(x, y) under
rotations about its centroid at ( a

2
, a
2
) by π.

For m = n + 2p + 1, the pair of wave functions
Ψn,n+2p+1(x, y) and Ψn+2p+1,n(x, y) are odd under R2,
and have I = 2, the trace of the rank 2 identity matrix
1. The full degeneracy may be represented by

Ψ
(θ,+)
n,n+2p+1(x, y) = cos θΨn,n+2p+1(x, y)

+eiφ sin θΨn+2p+1,n(x, y),

Ψ
(θ,−)
n,n+2p+1(x, y) = − sin θΨn,n+2p+1(x, y)

+eiφ cos θΨn+2p+1,n(x, y), (6)

which are the two orthonormal subsets of the degenerate
Ψn,n+2p+1(x, y) and Ψn+2p+1,n(x, y) wave functions, as
shown explicitly in the Appendix [36]. However, since
0 ≤ θ < 2π, θ can be any real mixing angle, this double
degeneracy has an infinite number of possible real space
forms. For simplicity, we could assume that φ = 0, so
that the wave functions would all be real. This is en-
tirely analogous to a spin 1

2 system in the absence of a
magnetic field, which is doubly degenerate from an infi-
nite number of possible measurement directions [3]. In

Fig. 2(a), this degeneracy is displayed for Ψ
(−θ,+)
1,2 (x, y)

for φ = 0 at the three mixing angles θ = 30◦, 45◦,
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and 60◦, each of which is degenerate with its respec-

tive Ψ
(−θ,−)
1,2 (x, y). In Fig. 2(b), the fact that such wave

functions are odd under R2 is evident for Ψ2,1(x, y) by
adding Ψ2,1(x, y) + R2Ψ2,1(x, y), which vanishes. The
only points at which such wave functions are invariant
under all of the operations of C4v are their common
nodal points. These wave functions are thus displayed
for 1 ≤ n,m ≤ 4 as the appropriate sets of nodal points
in Fig. 3. We note that in each of these cases, the com-
plete set of nodal points is invariant under each of the
operations of C4v (all four mirror planes and both rota-
tions).

  

     

       

           

FIG. 3. (color online) Table of color-coded plots of the square
box wave functions Ψn,m(x, y) with 1 ≤ n,m ≤ 4. The non-
degenerate Ψn,n(x, y) are along the table diagonal, the dou-
bly degenerate Ψ+

n,n+2p(x, y) and Ψ−
n,n+2p(x, y) are displayed

in the regions above and below the diagonal, respectively,
and the nominally doubly degenerate 2DR Φn,n+2p+1(x, y)
given by Eqs. (8)-(11) are represented by their common
nodal points. Each such set of common nodal points is a
one-dimensional representation of C4v with symmetry type
A1 that is even under each of its symmetry operations:
σh, σv, σd1, σd2, R4, and R2. The constant contours of the
1DR wave functions nearest to the boundary are parallel to
it, due to the Dirichlet boundary conditions.

Writing these 2DR wave functions in the Nambu rep-
resentation,

Ψθ
n,n+2p+1(x, y) =

(

Ψ
(θ,+)
n,n+2p+1(x, y)

Ψ
(θ,−)
n,n+2p+1(x, y)

)

, (7)

where the Ψ
(θ,±)
n,n+2p+1(x, y) are given by Eq. (6) and the

operations of C4v upon them are rank-2 matrices. It
is easy to show that R2 = −1, the trace of which is -
2. The other operations can be written in terms of the

σh, σd1,

Type Symmetry ψ
(±)
n,m(x, y) n I R2 2R4 σv σd2

A1 x2 + y2 Ψn,n,Ψ
(+)
n,n+2p o 1 +1 +1 +1 +1

A2 xy(x2 − y2) Ψ
(−)
n,n+2p e 1 +1 +1 -1 -1

B1 x2 − y2 Ψ
(−)
n,n+2p o 1 +1 -1 +1 -1

B2 xy Ψn,n,Ψ
(+)
n,n+2p e 1 +1 -1 -1 +1

A1* point nodes Ψ
(θ,±)
n,n+2p+1 e,o 2 -2 0 0 0

A1* nodal squares† Ψ
(θ,±)
n,n+2p+1 e,o 2 -2 0 0 0

TABLE I. Square box representation types, symmetries, al-

lowed 1DRs Ψn,n(x, y) and Ψ
(±)
n,n+2p(x, y) [Eq. (8)] for odd

or even n ≥ 1, 2DRs Ψ
(θ,±)
n,n+2p+1(x, y) [Eq. (6)] of the square

box, and operations of the C4v point group. σh, σv, σd1, and
σd2 are the mirror planes along the horizonal and vertical
axes and the two diagonals, Rn represents rotations by 2π/n
about the centroid, and I , usually written as E in texts [10]),
which could be confused with the energy, is the trace of the
identity matrix for the appropriate group dimension. For the
2DR wave functions, the listed elements are the traces of the
rank-2 matrices that describe the operations [10]. *Note that
for the 2DR wave functions with only odd R2 symmetry, their
sets of common point nodes and square nodes all appear to
have A1 symmetry. †Under special conditions. See Figs. 3
and 4 and the text.

      

(a) (b) (c) 

FIG. 4. Presentations of selected 2DRs with dots and squares.
(a) Ψ3,6(x, y),Ψ6,3(x, y). (b) Ψ3,12(x, y),Ψ12,3(x, y). (c)
Ψ9,12(x, y),Ψ12,9(x, y).

Pauli matrices σx, σy, and σz . In particular, the 2 R4

matrices are ±iσy, σh = σv = σz cos(2θ) − σx sin(2θ),
and σd1 = −σd2

= σz sin(2θ) + σx cos(2θ). Since the
Pauli matrices are traceless, the traces of the 2 R4, σv,
σh, σd1 and σd2 all vanish for any value of θ.
More generally, one can write these 2DR wave func-

tions for n′ = n+ 2p+ 1 as

Φn,n′(x, y) =

(

Φ
(1)
n,n′(x, y)

Φ
(2)
n,n′(x, y)

)

, (8)

where for i = 1, 2,

Φ
(i)
n,n′(x, y) =

∫ 2π

0

P (θ)dθ
[

AiΨ
(θ,+)
n,n′ (x, y)

+BiΨ
(θ,−)
n,n′ (x, y)

]

, (9)
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where P (θ) 6= C, and where C is a constant. P (θ) is an
arbitrary function whose only other restriction is that the
generated wave functions are finite inside the box, and

the Ai and Bi are chosen so that the Φ
(i)
n,n′(x, y) form

an orthonormal set. For the perfectly random θ case,

P (θ) = C, the Φ
(i)
n,n′(x, y) for i = 1, 2 both vanish every-

where inside the box, and cannot form an orthonormal
pair. This perfectly random θ case thus implies complete
wave function breakdown. Thus, P (θ) 6= C implies the θ
values are correlated. We have assumed the square box to
be perfect, without any imperfections such as cracks, dis-
torted corners, or a spatially dependent potential V (x, y)
inside it. Hence, P (θ) describes a particular selection of
the infinite number of degenerate spatial forms of the
particular 2DR wave function.
As shown in more detail in the Appendix, orthonor-

malization with P (θ) 6= C leads for both i = 1, 2 to

|Ai|2 + |Bi|2 = [I2e + I2o ]
−1,

A1A
∗
2 +B1B

∗
2 = 0, (10)

where

Ie =

∫ 2π

0

P (θ) cos θdθ,

Io =

∫ 2π

0

P (θ) sin θdθ. (11)

Form = n+2p, there are again two classes. For n odd,
Ψn,n+2p(x, y) is even under reflections about σh, σv and
under R2, but shows no symmetry under R4 and about
σd1, σd2. For n even, Ψn,n+2p(x, y) is odd under reflec-
tions about σh, σv and under R2, but shows no symmetry
under R4 and about σd1, σd2. However, we note that for
both n odd or even, R4Ψn,n+2p(x, y) = Ψn+2p,n(x, y).
This implies that there are two orthonormal members of
each subgroup,

Ψ±
n,n+2p(x, y) =

1√
2
[Ψn,n+2p(x, y)±Ψn+2p,n(x, y)],(12)

which are doubly degenerate 1DRs of C4v, each compo-
nent of which has a single real space form. These wave
functions for n = 1, 2 and p = 1 are also displayed in Fig.
3. Ψ+

1,3(x, y), which is shown in the top (first) row and
third column of Fig. 3, is even under all of the opera-
tions of C4v, and is therefore a 1DR of symmetry type
A1. Ψ

−
1,3(x, y), which is shown in the third row and first

column of Fig. 3, is even under σh and σv, odd under
σd1, σd2, and both R4 operations (rotations by ±2π/4,
and even under R2, is therefore a 1DR of C4v symmetry
type B1. Similarly, Ψ+

2,4(x, y), shown in the second row
and fourth column of Fig. 3, is a 1DR of C4v symme-
try type B2, and Ψ−

2,4(x, y), shown in the fourth row and
second column of Fig. 3, is a 1DR of C4v symmetry type
A2.
More generally, Ψ+

n,n+2p(x, y) for n odd is invariant

under all C4v operations, as seen in Fig. 3 for Ψ+
1,3(x, y).

Hence, such wave functions have C4v symmetry type A1,

and are listed as such in Table I. For n even, Ψ+
n,n+2p(x, y)

is even under reflections about σd1, σd2 and under R2,
but is odd under reflections about σh, σv and under the
2 R4, so has symmetry type B2. For n odd, Ψ−

n,n+2p(x, y)
is even under reflections about σh, σv and R2, but odd
under reflections about σd1, σd2 and under R4, so it has
symmetry type B1. Finally, for n even, Ψ−

n,n+2p(x, y) is
odd under reflections about all four mirror planes and
under R4, but is even under R2, so it has symmetry type
A2. These classifications are all listed in Table I.
In addition to the common nodal point structure of

each of the doubly degenerate 2DR wave functions, each
component of which has an infinite number of real space
forms, some higher index 2DR wave functions have mu-
tual nodal squares, a few of which are shown in Fig. 4.
For such common nodal squares to appear in the com-
mon nodal set of 2DRs, the lower quantum number n ≥ 3
must be odd. The lowest energy case is therefore the (3,6)
case pictured in Fig. 4(a). In Fig. 4(b), the (3,12) case
is shown. In addition, a more complicated nodal pattern
is obtained for the (9,12) case pictured in Fig. 4(c). In
this case, both numbers factor into 3 times an odd or an
even number, and this factorization allows for the square
common nodal structure, each of which encloses a finite
set of common nodal dots. Obviously as the lower odd
number increases, the common nodal patterns become
increasingly complicated. But it is noteworthy that in
every set of common nodal dots and/or squares that we
found, that set is invariant under all operations of C4v,
and hence has the A1 symmetry type. We have not tried
to prove the generality of these observations.

III. THE SQUARE MICROSTRIP ANTENNA

For a thin square microstrip antenna of the same ge-
ometry as for the square box, with its origin at the
lower left corner, but satisfying the EM wave equation
for Az(x, y, t), the normalized transverse magnetic wave
functions at a fixed time with the appropriate Neumann
boundary conditions,

∂Ψn,m(x, y)

∂x

∣

∣

∣

x=0,a
=
∂Ψn,m(x, y)

∂y

∣

∣

∣

y=0,a
= 0,

(13)

have the form

Ψn,m(x, y) =







2
a cos(nπx/a) cos(mπy/a), m, n ≥ 1√
2
a cos(nπx/a), m = 0, n ≥ 1√
2
a cos(mπy/a), n = 0,m ≥ 1

(14)

The enhanced emission frequencies fn,m from the square
thin MSA are

fn,m = c0

√
n2 +m2

2anr
, (15)

where c0 is the vacuum speed of light and nr is the index
of refraction, which for Bi2212 IJJ-THz emitter devices
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that are on the order of 1 µm thick, is about 4.2. The
case n = m = 0 must be excluded, since light must have
a finite frequency. In this case, the color-coded lowest
frequency square MSA wave functions are shown in Fig.
5.

FIG. 5. (color online) Color-coded plots of the square MSA
Ψn,m(x, y) given by Eq. (14) for 0 ≤ n,m ≤ 3, which are the
nominal representations of the lowest frequency wave func-
tions of a square microstrip antenna with Neumann boundary
conditions that are indicated by the green boundaries. n and
m are respectively the column and row numbers. Ψ0,0 = 1/a
shown in blue corresponds to frequency f0,0 = 0, so it is ex-
cluded. The color code bar, which varies from -2.0 to +2.0,
otherwise applies to each of these figures.

As for the square box wave functions, the n = m MSA
wave functions are all non-degenerate 1DRs of the C4v

point group, and the m = n + 2p + 1 MSA wave func-
tions are doubly degenerate 2DRs of C4v, having the

Φ
(i)
n,n+2p+1(x, y) component forms of Eqs. (8)-(11), which

can be presented by an infinite number of spatial forms,
except that the wave function components are given by
Eq. (14) instead of Eq. (4). This second point is il-
lustrated in Fig. 6. In addition, since the MSA wave
functions satisfy Ψn,n+2p(x, y) = R4Ψn+2p,n(x, y), ex-
actly as for the square box, these wave functions are
doubly degenerate 1DRs, each component of which has a
single spatial form, and satisfy Eq. (12), although again
with the wave function components given by Eq. (14).
The symmetry table of the square MSA wave functions
is therefore shown in Table II. The only differences be-
tween Table II and Table I for the square box is that the

σh, σd1,

Type Symmetry ψ
(±)

n,n′(x, y) n I R2 2R4 σv σd2

A1 x2 + y2 Ψn,n,Ψ
(+)
n,n+2p e 1 +1 +1 +1 +1

A2 xy(x2 − y2) Ψ
(−)
n,n+2p o 1 +1 +1 -1 -1

B1 x2 − y2 Ψ
(−)
n,n+2p e 1 +1 -1 +1 -1

B2 xy Ψn,n,Ψ
(+)
n,n+2p o 1 +1 -1 -1 +1

A1 point nodes* Ψ
(θ,±)
n,n+2p+1 e,o 2 -2 0 0 0

TABLE II. Square MSA representation types, symmetries, al-

lowed 1DRs Ψn,n(x, y) and Ψ
(±)
n,n+2p(x, y) = [Ψn,n+2p(x, y)±

Ψn+2p,n(x, y)]/
√
2 for odd or even n ≥ 1, 2DRs

Ψ
(θ,±)
n,n+2p+1(x, y), which have the forms of Eqs. (6)-(11), ex-

cept that their components satisfy Eqs. (13) and (14), and
the same operations of the C4v point group as in Table I. For
the 2DR wave functions, the listed values are the traces of
the rank-2 matrices that describe the operations [10]. *Note
that the 2DR wave functions have only odd R2 symmetry,
but each of their sets of common fixed point nodes appears
to have A1 symmetry. See text [36].

oddness or evenness of the quantum number n is pre-
cisely the opposite, and there are no nodal squares for
the square MSA 2DR wave functions. The matrices that
describe the symmetry operations upon the 2DR MSA
wave functions are identical to those presented for the
square quantum box wave functions following Eq. (7).

We then redisplay those and additional MSA wave
functions in the array shown in Fig. 7. As for the square
box, the diagonal n = m square MSA wave functions
are all non degenerate 1DRs of C4v, and are displayed in
color-coded contour plots. The doubly degenerate 2DR
m = n + 2p + 1 cases, each component of which has an
infinite number of spatial forms, are again displayed as a
set of mutually common nodal points, but in this MSA
case, as discussed in more detail in the following, there
are no mutual nodal lines for any index number. Fur-
thermore, the m = n + 2p cases are doubly degenerate
1DRs, with the Ψ±

n,n+2p(x, y) given by Eq. (12) with the

appropriate MSA wave functions, and with the Ψ+
n,n+2p

displayed above the diagonal, and the Ψ−
n,n+2p displayed

below the array diagonal, exactly as in Fig. 3 for the box.
Note that in Fig. 7, Ψ+

0,2(x, y) and Ψ−
0,2(x, y) have respec-

tive C4v symmetry types A1 and B1, and Ψ+
1,3(x, y) and

Ψ−
1,4(x, y) have respective C4v symmetry types B2 and

A2.

For the square box 2DR wave functions with n,m > 0
without any line nodes, the number of point nodes is
N(n,m) = (n − 1)2 + (m− 1)2. Similarly, for n,m ≥ 0,
the number of square MSA point nodes in a 2DR is
N(n,m) = n2 +m2. However, as argued in the follow-
ing, no nodal lines or squares appear in the square MSA
2DRs. But as for the square box, the set of common
nodal points for each 2DR is invariant under all opera-
tions of C4v, and hence obeys the A1 symmetry table.
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(a)

(b) + = 0

FIG. 6. (color online) (a) Color-coded plots of the square

MSA 2DR Ψ
(−θ,+)
0,1 (x, y) for θ = 30◦, 45◦, and 60◦ from left to

right. (b) Plot of Ψ0,1(x, y) +R2Ψ0,1(x, y), which equals 0.

A nodal line could occur along the x direction if
cos(nπx/a) = 0 for 0 < x < a and along the y direc-
tion if cos(mπy/a) = 0 for 0 < y < a. These require
x/a = (2p+1)/(2n) and y/a = (2q+1)/(2m) for integer
p and q. For them to occur together and the pattern to
be invariant under the operations of C4v, including R4,
which interchanges x and y, we then require

2p+ 1

2n
=

2q + 1

2m
. (16)

As noted from Table II, if n = m, Ψn,n(x, y) is a non-
degenerate 1DR, and if n and m are either both odd
or both even, then Ψ±

n,n+2p(x, y) is a doubly degenerate
combination of two 1DRs. But if either n orm is odd and
the other is even, then the Φn,n+2p+1(x, y) wave functions
are doubly degenerate 2DRs, each component of which
can be presented in an infinite number of spatial forms,
and the corresponding box wave functions can have ad-
ditional nodal boxes. However, for the square MSA, by
rewriting Eq. (16) as (2p+1)m = (2q+1)n, it is easy to
see that this criterion for additional nodal boxes cannot
be satisfied with either n or m odd and the other even.

IV. THE EQUILATERAL TRIANGULAR BOX

Previous studies have focused on the 1DR wave func-
tions of equilateral triangular MSAs [45]. Here we calcu-
late the quantum wave functions and normalization con-
stants for the equilateral triangle of side a in an infinite
potential well. The Schrödinger equation admits even
and odd wave function solutions about any of the sym-
metry axes. Here we choose the horizontal axis as the
axis of symmetry from which the wave functions can be
generated. The equilateral triangular box wave functions
even and odd about that axis may be written as

              

      

FIG. 7. (color online) Shown are plots of the array of square
MSA wave functions Ψn,m(x, y) with Neumann boundary
conditions for 0 ≤ n,m ≤ 3. 1DR wave functions of non de-
generate Ψn,n (for n ≥ 1) and doubly degenerate 1DR wave
functions Ψ±

n,n+2p, each component can only be shown in a
single spatial form, are shown in color-coded plots along the
array diagonal and in the appropriate positions above (be-
low) that diagonal. Plots of the nominally doubly degenerate

2DRs Ψ
(θ,±)
n,n+2p+1, each component of which can be presented

in an infinite number of ways, are represented as arrays of
black mutual nodal points, all appearing to be invariant un-
der all C4v operations. The constant contours nearest to a
boundary intersect it normally due to the Neumann bound-
ary conditions.

Ψe
ℓ,m,n(x, y)=A

e
m,n

{

sin

[(

2πx√
3a

+
2π

3

)

ℓ

]

× cos

[

2π(m− n)y

3a

]

+sin

[(

2πx√
3a

+
2π

3

)

m

]

cos

[

2π(n− ℓ)y

3a

]

+sin

[(

2πx√
3a

+
2π

3

)

n

]

cos

[

2π(ℓ−m)y

3a

]}

(17)
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and

Ψo
ℓ,m,n(x, y)=A

o
m,n

{

sin

[(

2πx√
3a

+
2π

3

)

ℓ

]

× sin

[

2π(m− n)y

3a

]

+sin

[(

2πx√
3a

+
2π

3

)

m

]

sin

[

2π(n− ℓ)y

3a

]

+sin

[(

2πx√
3a

+
2π

3

)

n

]

sin

[

2π(ℓ−m)y

3a

]}

.(18)

Since each of the three terms for the even and odd
wave functions must satisfy the Schrödinger equation

− ~
2

2M∇
2Ψ = EΨ = ~

2k2

2M Ψ = 0, this is equivalent to

the EM wave equation, ∇2Ψ + k2Ψ = 0. Since for each
wave function form, each term must separately satisfy
that wave equation, we find

(n−m)(ℓ + n+m) = 0, (19)

as for the equilateral MSA [45]. As for the antenna, the
n = m cases can be shown to not produce any additional
wave functions, so we assume ℓ = −n−m. However, in
this case, both the odd and even wave functions vanish
on the entire equilateral triangular boundary.
The energies for a quantum particle of mass M in an

equilateral triangular quantum box are then found to be

En,m =
(4π~)2

2M(3a)2
(m2 + n2 +mn), (20)

which is ∝ k2 for the equilateral triangular MSA. The
corresponding normalization coefficients are obtained by
integrating |Ψo,e

ℓ,m,n|2 with ℓ = −n −m over the area of
the equilateral triangle, and dividing by that area. We
find

Ae
m,n =

{ 4
33/4a

, m > n 6= 0, n > m 6= 0
2
√
2

33/4a
, m = n 6= 0 ,

Ao
m,n =

4

33/4a
, m > n 6= 0, n > m 6= 0. (21)

These equilateral triangular box normalization constants
are remarkably similar to those obtained for the equilat-
eral triangular MSA [45], as shown in Section IV.
To illustrate examples of the equilateral triangular box

wave functions that are even or odd about only one ver-
tex, we show pictorially for 2DR equilateral triangular
box wave functions that

|Ψ(e,o)
2,3 (x, y)〉+R3|Ψ(e,o)

2,3 (x, y)〉+R2
3|Ψ

(e,o)
2,3 (x, y)〉=0,(22)

where we have used the Dirac ket notation.
These equations show that only two of the wave func-

tions even or odd about only one vertex are linearly
independent, demonstrating that these wave functions
are 2DR wave functions. Thus, we could choose as the

general basis |Ψ(e,o)
n,m (x, y)〉 and R3|Ψ(e,o)

n,m (x, y)〉, where
m 6= n+ 3p.

 

            

FIG. 8. (color online) Array of color coded plots of the lowest
energy, normalized equilateral triangular box wave functions
with n,m = 1, 2, 3, 4 from Eqs. (17), (18), and (21). The ar-
ray diagonal consists of 1DR wave functions that are invariant
under all C3v operations. The figures above and below the
diagonal are respectively even and odd about the horizontal
axis. The color code bar that varies from -2.1 to +2.1 applies
to each of these figures.

(a)

(b)

FIG. 9. (color online) Even (a) and odd (b) examples of 2DR
equilateral triangular box wave functions pictured in Fig. 8,
each satisfying the picture equation |Ψ〉+R3|Ψ〉+R2

3|Ψ〉 = 0.
In these examples, (n,m) = (2, 3).

But since these wave functions are not orthonormal,
we set

|Ψ(e,o,1)
n,m (x, y)〉=A|Ψ(e,o)

n,m (x, y)〉+BR3|Ψ(e,o)
n,m (x, y)〉,

|Ψ(e,o,2)
n,m (x, y)〉=C|Ψ(e,o)

n,m (x, y)〉+DR3|Ψ(e,o)
n,m (x, y)〉,(23)

for constants A,B,C, and D, and force them to form an
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Type Symmetry ψ
(e,o)
n,m (x, y) I 2R3 3σv

A1 x2 + y2 Ψe
n,n+3p(x, y) 1 +1 +1

A2 y(3x2 − y2) Ψo
n,n+3p(x, y) 1 +1 -1

A1∗ nodal points Ψ
(o,e,θ)
n,m6=n+3p, 2 -1 0

n,m not both even

A1∗ nodal points Ψ
(o,e,θ)
n,m6=n+3p, n,m both even 2 -1 0

and triangles

TABLE III. Representation types, symmetries, allowed 1DRs

Ψe,o
n,n+3p(x, y) and 2DRs Ψ

(o,e,θ)
n,m6=n+3p(x, y) of the equilateral

triangular box, and operations of the C3v point group. For
1DR wave functions, there are 3 mirror planes σv that bisect
each angle, two rotations R3 by ±2π/3 about the centroid,
and I is the trace of the identity matrix for the appropriate
group dimension [10]. The 2DR wave functions have only one
σv. *common nodal structure. See Figs. (9) - (11) and the
text.

orthonormal set.
To do so, we first take the inner product of Eq. (22)

with 〈Ψ(e,o)
n,m (x, y)|R†

3, and it is easily seen that

〈Ψ(e,o)
n,m (x, y)|R†

3|Ψ(e,o)
n,m (x, y)〉 = −1

2
. (24)

Although complex coefficients are possible, especially
for |A| > 2√

3
, under the assumption that all coefficients

are real, it is then easy to show that the orthonormal set
may be written as

|Ψ(e,o,1,θ,±)
n,m 6=n+3p(x, y)〉 =

2√
3
cos θ|Ψ(e,o)

n,m (x, y)〉

+
( 1√

3
cos θ ± sin θ

)

R3|Ψ(e,o)
n,m (x, y)〉,

|Ψ(e,o,2,θ,±)
n,m 6=n+3p(x, y)〉 = − 2√

3
sin θ|Ψ(e,o)

n,m (x, y)〉

−
( 1√

3
sin θ ∓ cos θ

)

R3|Ψ(e,o)
n,m (x, y)〉,

(25)

where 0 ≤ θ < 2π is arbitrary. These wave functions can
be represented with either the two upper signs or the
two lower signs, but not both, so that they are doubly
degenerate 2DR wave functions that can be pictured in
an infinite number of spatial forms.
When acting on the Nambu form of these 2DR wave

functions analogous to that in Eq. (7) for the square box,

|Ψ(e,o,θ,±)
n,m 6=n+3p(x, y)〉 =

(

|Ψ(e,o,1,θ,±)
n,m 6=n+3p(x, y)〉

|Ψ(e,o,2,θ,±)
n,m 6=n+3p(x, y)〉

)

, (26)

the matrices R3 and R†
3 are

R3 = −1

2
1± i

√
3

2
σy, (27)

and its Hermitian conjugate, both traces of which are -1,
as indicated in Table III.
With regard to the mirror symmetry operations of a

2DR wave function about a single vertex, the even wave

functions satisfy σ
(e)
v |Ψ(e,θ)

n,m 〉 = |Ψ(e,θ)
n,m 〉, σ(e)

v R3|Ψ(e,θ)
n,m 〉 =

R2
3|Ψ

(e,θ)
n,m 〉 and σ(e)

v R2
3|Ψ

(e,θ)
n,m 〉 = R3|Ψ(e,θ)

n,m 〉, as evidenced
from Fig. 9(a). Combining these equations with Eq.
(22), it is then straightforward to show that the mirror

plane matrix σ
(e)
v when acting on the Nambu form of Eq.

(25) may be written for the even functions as

σ(e)
v =

σz
2

[

cos(2θ)∓
√
3 sin(2θ)

]

−σx
2

[

sin(2θ)±
√
3 cos(2θ)

]

, (28)

which is traceless, as indicated in Table III. On the
other hand, the 2DR wave functions odd about one ver-

tex satisfy σ
(o)
v |Ψ(o,θ)

n,m 〉 = −|Ψ(o,θ)
n,m 〉, σ(o)

v R3|Ψ(o,θ)
n,m 〉 =

−R2
3|Ψ

(o,θ)
n,m 〉 and σ

(o)
v R2

3|Ψ
(o,θ)
n,m 〉 = −R3|Ψ(o,θ)

n,m 〉, as
sketched in Fig. 9(b). Again, combining these equations
with Eq. (22), when acting upon the odd Nambu form

of Eq. (25), σ
(o)
v = −σ(e)

v , which is given by Eq. (28), so

that both traces of σ
(e)
v and σ

(o)
v vanish, as indicated in

Table III.
But in generalizing to an arbitrary function P (θ) 6=

C, which is only further restricted to require the wave
functions to be finite in magnitude inside the equilateral
triangular box, as was done in Eqs. (8)-(11) for the 2DR
square box wave functions and the square MSA, we then
may write

|Φ(e,o,±)
n,m (x, y)〉 =

(

|Φ(e,o,1,±)
n,m (x, y)〉

|Φ(e,o,2,±)
n,m (x, y)〉

)

, (29)

for m 6= n+ 3p, where

|Φ(e,o,i,±)
n,m (x, y)〉 =

∫ 2π

0

dθP (θ)
[

Ai|Ψ(e,o,1,θ,±)
n,m (x, y) +

+Bi|Ψ(e,o,2,θ,±)
n,m (x, y)〉

]

, (30)

which is a linear combination of the two types of ± wave
functions. The wave functions form an orthonormal set,
provided that the Ai and Bi satisfy Eqs. (10) and (11),
as for the square box and MSA.
As for the square box, we then redraw the 2DR equi-

lateral triangular box wave functions in terms of their
common sets of nodes. This results in the array pictured
in Fig. 10. We note that Ψe

1,4(x, y) and Ψo
1,4(x, y) pic-

tured in the top right and bottom left array positions are
1DRs, as are all four of the Ψe

n,n(x, y) along the array
diagonal. In addition, Ψe

2,4(x, y) and Ψo
2,4(x, y) are both

2DRs that contain an identical set of nodal points plus a
single equilateral triangular nodal figure in their center.
We note that both with and without the equilateral

triangular nodal lines inside the box, the loci of points
and lines in each 2DR is invariant under all of the op-
erations of C3v. Therefore, we classify those nodal loci
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FIG. 10. (color online) Plots of the same equilateral triangular
box wave functions pictured in Fig. 8, but displaying the 2DR
wave functions in terms of their loci of common nodes.

                            

(a) (b) (c) (d) 

FIG. 11. Shown are some examples of higher index equilateral
triangular box 2DR wave functions represented by both com-

mon points and equilateral triangles. (a) Ψ
(e,o)
2,4 . (b) Ψ

(e,o)
2,6 .

(c) Ψ
(e,o)
4,6 . (d) Ψ

(e,o)
4,8 .

as having symmetry A1 in Table III. We note that the
common internal equilateral triangular nodal figures only
arise for (n,m 6= n+ 3p) both even.

V. THE EQUILATERAL TRIANGULAR

MICROSTRIP ANTENNA

Although the wave functions for the thin equilateral
triangular MSA were given previously [45], those authors
only plotted the 1DR wave functions, and calculated the
angular distributions of the output power from those res-
onant cavity modes and from the uniform Josephson cur-
rent source at those mode frequencies. Here we are pri-
marily interested in contrasting the pictorial representa-
tion of the 1DR and 2DR wave functions. We have

Type Symmetry |Ψ(e,o)
n,m (x, y)〉 I 2R3 3σv

A1 x2 + y2 |Ψe
n,n+3p(x, y)〉 1 +1 +1

A2 y(3x2 − y2) |Ψo
n,n+3p(x, y)〉 1 +1 -1

A1∗ fixed point nodes |Ψ(o,e,θ)
n,m6=n+3p〉 2 -1 0

TABLE IV. Representation types, symmetries, allowed 1DRs

Ψe,o
n,n+3p(x, y) and 2DRs Ψ

(o,e)
n,m6=n+3p(x, y) of the thin equilat-

eral triangular MSA, and operations of the C3v point group.
For the 1DR wave functions, there are 3 mirror planes σv

that bisect each angle, two rotations R3 by ±2π/3 about the
centroid, and I is the trace of the identity matrix for the
appropriate group dimension. For the 2DR wave functions,
there are the same rotations, but only one σv [10]. *common
nodal points. See Fig. 13 and text.

 

FIG. 12. (color online) Array of color-coded plots of the low-
est frequency equilateral triangular microstrip antenna wave
functions, generated from Eqs. (31), (32), and (35), with
n,m = 0, 1, 2, 3. The upper left solid red figure has f0,0 = 0,
so it can be excluded. The diagonal of the array represents
Ψe

n,n(x, y), which for n > 0 are 1DRs. The n 6= m even and
odd wave functions lie respectively above and below the array
diagonal. The green boundaries indicate the Neumann condi-
tions. The color code bar displayed in Fig. 8 applies to each
of these figures except the excluded (0,0) case.
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Ψe
ℓ,m,n(x, y)=A

e
m,n

{

cos

[(

2πx√
3a

+
2π

3

)

ℓ

]

× cos

[

2π(m− n)y

3a

]

+cos

[(

2πx√
3a

+
2π

3

)

m

]

cos

[

2π(n− ℓ)y

3a

]

+cos

[(

2πx√
3a

+
2π

3

)

n

]

cos

[

2π(ℓ−m)y

3a

]}

(31)

and

Ψo
ℓ,m,n(x, y)=A

o
m,n

{

cos

[(

2πx√
3a

+
2π

3

)

ℓ

]

× sin

[

2π(m− n)y

3a

]

+cos

[(

2πx√
3a

+
2π

3

)

m

]

sin

[

2π(n− ℓ)y

3a

]

+cos

[(

2πx√
3a

+
2π

3

)

n

]

sin

[

2π(ℓ−m)y

3a

]}

.

(32)

Each of the three terms for the even and odd wave func-
tions must satisfy the EM wave equation∇

2Ψ+(k′)2Ψ =
0, as for the square MSA. These forms can be shown to
also obey the Neumann boundary conditions. As for the
equilateral triangular box, we again have

(n−m)(ℓ + n+m) = 0, (33)

and the same arguments for n = m in Section IV lead to
the conclusion ℓ = −n−m [45].
The emission frequencies fn,m from an equilateral tri-

angular MSA with index of refraction nr are then found
to be

fn,m =
2c0
3anr

√

m2 + n2 +mn. (34)

The corresponding normalization coefficients are ob-
tained by integrating |Ψo,e

ℓ,m,n|2 over the area of the equi-
lateral triangle, and dividing by that area. As was found
previously [45],

Ae
m,n =

{ 4
33/4a

, m, n ≥ 1,m 6= n
2
√
2

33/4a
, m > n = 0, n > m = 0, orm = n ,

Ao
m,n =

{ 4
33/4a

, m, n ≥ 1,m 6= n,
2
√
2

33/4a
, m > n = 0, or n > m = 0,

(35)

and all of the odd equilateral triangular MSA wave func-
tions with m = n vanish. As shown in the previous sec-
tion, these normalization constants are remarkably simi-
lar to those obtained for the equilateral triangular box.
As for the 2DR wave functions for the equilateral trian-

gular box that satisfy Eq. (22), the 2DR wave functions
for the thin equilateral triangular MSA exhibit the same

(a)

(b)

FIG. 13. (color online) (a) Even |Ψe
3,4(x, y)〉 and odd (b)

|Ψo
3,4(x, y)〉 examples of 2DR equilateral triangular MSA wave

functions not pictured in Fig. 12 that each satisfy the picture
equation |Ψ〉+R3|Ψ〉+R2

3|Ψ〉 = 0

symmetries. For example, in Fig. (13), we show pictori-
ally that

|Ψ(e,o)
3,4 (x, y)〉+R3|Ψ(e,o)

3,4 (x, y)〉+R2
3|Ψ

(e,o)
3,4 (x, y)〉=0,(36)

the only difference being the wave functions are not
the box wave functions with Dirichlet boundary condi-
tions given by Eqs. (17)-(21), but are instead given by
Eqs. (31)-(35) for the MSA, which satisfy the Neumann
boundary conditions with the normal derivative vanish-
ing on each of the triangle’s sides. Therefore, the 2DR
wave functions can be constructed exactly by analogy
with Eqs. (22)-(25), also leading the analogous Nambu
representation and to the rank 2 matrices representing

the identical symmetry operations R3 and σ
(e,o)
v given

by Eqs. (27) and (28). These thin equilateral MSA wave
functions are also doubly degenerate 2DRs of the C3v

point group, as they also contain the arbitrary analogous
mixing angle θ and can be pictured in an infinite number
of spatial forms.
Thus, of the equilateral triangular MSA wave func-

tions pictured, those in color are 1DRs, and those along
the array diagonal and in the upper right figure have A1

symmetry, and the figure in the lower left has A2 symme-
try. The rest of the figures are 2DRs, and the pattern of
nodal points has A1 symmetry that is invariant under all
operations of point group C3v. The matrices representing
the 2R3 and single σv operations of the C3v point group
acting upon the 2DR wavefunctions are identical to those
described for the equilateral triangular box, except that
the spatial parts of the wave functions are given by Eqs.
(31) and (32).
As for the 2DR wave functions for the square box and

MSA, the 2DR wave functions for the equilateral triangu-
lar MSA have the same forms as for the equilateral trian-
gular box, obeying Eqs. (24)-(30), except that the bare
wave functions are given by Eqs. (31)-(35). Thus, the
2DR wave functions for the equilateral triangular MSA
also have two (±) alternative ways of writing the com-
ponents, each of which can be presented by an infinite
number of spatial forms, to the corresponding doubly
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FIG. 14. (color online) Plots of the same equilateral triangular
MSA wave functions pictured in Fig. 12, but displaying the
2DR wave functions in terms of their loci of common nodes.

degenerate wave functions. The only difference between
Tables III and IV for the equilateral triangular box and
the thin equilateral triangular MSA is that some (with m
and n both even) of the 2DR box wave functions contain
both common nodal points and internal equilateral tri-
angles (as well as on the boundary), but the 2DR MSA
wave functions only contain common nodal points. In
both cases, the loci of the sets of nodal points and/or tri-
angles are invariant under all operations of point group
C3v.

VI. THE CYLINDRICAL BOX

For the quantum particle in a cylindrical box of ra-
dius a, the Schrödinger equation is written in polar co-
ordinates. V (ρ) = 0 for 0 ≤ ρ < a, and V (ρ) = ∞
for ρ ≥ a. Using separation of variables and assuming
Ψ(ρ, φ + 2π) = Ψ(ρ, φ), one obtains the Bessel equation
with solutions of the first kind. Since Ψ(ρ, φ) must be
finite inside the cylindrical box, we only have the integer
Bessel functions of the first kind, Jm(kmρ) multiplied by
sin(mφ) or cos(mφ). Therefore a general state may be
written

Ψm(ρ, φ) = [Bm cos(mφ) + Cm sin(mφ)]Jm(kmρ).(37)

For the disk box of radius a, we require Ψm(a, φ) = 0, or

Jm(kma) = 0. (38)

FIG. 15. (color online) Color coded plots of the 16 lowest
energy cylindrical box wave functions, all oriented with θ = 0
and ranked in order from the top left to the bottom right array
positions, listed as (m, p): Top row: (0,1), (1,1), (2,1), (0,2).
Second row: (3,1), (1,2), (4,1), (2,2). Third row: (0,3), (5,1),
(3,2), (6,1). Fourth row: (1,3), (4,2), (7,1), (2,3). Each figure
has a qualitatively similar but numerically distinct color code
bar. The color code bar that varies from -0.96 to +0.96 is
for the (2,2) mode. Colors for the (0,1) mode only represent
different wave function magnitudes.

Since there are many possible zeroes of Jm(x), we index
them with km,p values. Thus, we set

Jm(km,pa)=0, (39)

Ψm,p(ρ, φ)=[Bm,p cos(mφ) + Cm,p sin(mφ)]Jm(km,pρ).(40)

It is immediately obvious that the casesm = 0 andm ≥ 1
are qualitatively different. For m = 0, the wave func-
tions Ψ0,p(ρ) are 1DRs independent of φ. For m ≥ 1,
the wave functions are all 2DRs. Since cos(mφ) and
sin(mφ) are orthogonal when integrated over φ from 0
to 2π, we could write either Bm,p = Am,p cos(mθ) and
Cm,p = Am,p sin(mθ) or Bm,p = −Am,p sin(mθ) and
Cm,p = Am,p cos(mθ). Thus, the wave functions that are
2DRs of the C∞v point group can be written in Nambu
form as

Ψθ
m,p(φ, ρ) =

(

Ψ
(θ,1)
m,p (φ, ρ)

Ψ
(θ,2)
m,p (φ, ρ)

)

= Am,pJm(km,pρ)

(

cos[m(φ− θ)]
sin[m(φ− θ)]

)

, (41)
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where θ satisfying 0 ≤ θ < 2π is a 2DR wave func-
tion mixing angle as for the 2DR wave functions of the
square and equilateral triangular boxes, and the Am,p

are found by normalization of both |Ψ(1)
m,p(ρ, φ)|2 and

|Ψ(2)
m,p(ρ, φ)|2over the cross-sectional area of the cylinder,

Am,p =







1

a
√

π
∫

1

0
xdxJ2

m(χm,px)
, m ≥ 1

1

a
√

2π
∫

1

0
xdxJ2

0
(χ0,px)

, m = 0
,

χm,p = km,pa. (42)

The energy of the (m, p) mode for a spinless quantum

FIG. 16. (color online) Color-coded plots of Ψ2,2(ρ, φ) with
θ = 0◦ (left), and θ = 53◦ (right).

particle of mass M in the cylindrical box is given by

Em,p =
~
2χ2

m,p

2Ma2
. (43)

A list of χm,p values for 0 ≤ m ≤ 8 and 1 ≤ p ≤ 4 is
given in Table V.
As for the 2DR wave functions for the square and equi-

lateral triangular boxes, we can also generalize Eq. (41)
to include an arbitrary distribution of θ values, rewriting
it for m ≥ 1 as

Ψm,p(φ, ρ) =

∫ 2π

0

P (θ)dθ[AΨ(θ,1)
m,p (φ, ρ)

+BΨ(θ,2)
m,p (φ, ρ)], (44)

where again P (θ) 6= C is restricted to yield finite 2DR
wave functions inside the disk box. In this case the nor-
malization of the 2DR wave functions includes both Eq.
(42) and

|A|2 + |B|2 = [I2m,e + I2m,o]
−1, (45)

where

Im,e =

∫ 2π

0

dθP (θ) cos(mθ),

Im,o =

∫ 2π

0

dθP (θ) sin(mθ). (46)

In Fig. 15, we have presented an array of the 16 lowest
energy wave functions for a quantum particle in a cylin-
drical box. However, from Eq. (41), it is evident that
the angle θ is arbitrary. Since 0 ≤ θ < 2π, it can take
on an infinite number of values, and hence cylindrical

FIG. 17. Representing the cylindrical box wave functions
in Fig. 15 to emphasize the differences between the non-
degenerate Ψ0,p(ρ, φ) and the infinitely degenerate Ψm,p(ρ, φ)
for m ≥ 1.

m χm,1 χm,2 χm,3 χm,4

0 2.4048 5.52007 8.65372 11.79153
1 3.8317 7.01558 10.1734 13.32369
2 5.13562 8.41724 11.61984 14.795981
3 6.38016 9.76102 13.01520 16.22346
4 7.58834 10.64709 14.3725
5 8.77148 12.3386 15.70017
6 9.936109 13.58929 17.0038
7 11.08637 14.821268
8 12.22509 16.03777

TABLE V. Table of χm,p = km,pa for the cylindrical box of
radius a. Missing table entries correspond to higher energy
states than pictured in Fig. 15.

box eigenstates with m 6= 0 are doubly degenerate 2DRs
of the C∞v point group, each component of which can
be presented in an infinite number of spatial forms. In
Fig. 16, this arbitrary θ value is illustrated by compar-
ing Ψ2,2(ρ, φ) with θ = 0 and with its orientation with
θ = 53◦. Hence, those cylindrical box wave functions
with straight line nodes passing through their centroids
are indeed 2DRs of the C∞v point group. Other than
the circular line nodes at fixed ρ, the straight line nodes
that can be rotated only have the single node at their
common origin, the centroid. This is illustrated in Fig.
17.

In order to construct the symmetry table, we first note
that for m ≥ 1, Eq. (41) contains two components,
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circular
Type Symmetry m nodes I R±mϕ

A1 x2 + y2 0 p 1 1
A1* centroid node ≥ 1 p 2 2 cos(mϕ)

TABLE VI. Representation types, symmetries, and opera-
tions of the C∞v point group for the cylindrical box. The
number of circular nodes depends upon p. R±mϕ is a rota-
tion about the centroid by the angle ±mϕ and I is the trace
of the identity matrix for the appropriate group dimension
[10]. See Fig. 17 and text. *common nodal pattern.

Ψ
(θ,1)
m,p (φ, ρ) and Ψ

(θ,2)
m,p (φ, ρ), which form the orthonor-

mal components of a 2DR wave function. When the two
rotation matrices R±mϕ for rotations by ±mϕ about the
z-axis normal to the centroid act on this Nambu form
for the 2DR wave function, they are easily found to be
R±mϕ = 1 cos(mϕ)±iσy sin(mϕ), the traces of which are
2 cos(mϕ). This rotation matrix changes θ to θ ± ϕ in
the Nambu representation. Since the bottom of the box
is not a symmetry plane, there are no reflection planes.

VII. THE DISK MICROSTRIP ANTENNA

The thin disk microstrip antenna has been studied pre-
viously [19]. Here we include it for two reasons: to com-
pare the wave functions forms with those of the cylindri-
cal box, and to use the degeneracy of the low-energy wave
functions to correctly identify the experimentally mea-
sured resonant cavity mode emitted from a disk Bi2212
IJJ-THz emitter, which will be described in Section VIII.
For the disk MSA, the wave functions also have the

form of Eq. (37), but the boundary condition is different:

dJm(kmρ)

dρ

∣

∣

∣

ρ=a
= 0. (47)

As for the cylindrical box wave functions, there are an
infinite number of such wave functions, which have the
same forms as in Eqs. (40)-(42), but with the different
χm,p values appropriate for the disk MSA. The emission
frequencies fm,p from the 1DR cavity modes (with m =
0) and nominally from the 2DR cavity modes (with m ≥
1) of the disk MSA are given by [19]

fm,p =
c0χm,p

2πanr
, (48)

where the lowest group of χm,p values are listed in Table
VII.
With regards to the 2DR wave functions with m ≥ 1,

the wave functions may be written in Nambu form or
for a general P (θ) 6= C mixing angle distribution, as in
Eqs. (44)-(46). Thus the 2DR disk MSA wave functions
are all doubly degenerate functions, each component of
which can be presented by an infinite number of spatial

FIG. 18. (color online) Lowest frequency wave functions for
the disk MSA [19]. fm,p values increase from the top left to
the bottom right. Top row, left to right: (1,1), (2,1), (0,1),
(3,1). Second row: (4,1), (1,2), (5,1), (2,2). Third row: (0,2),
(6,1), (3,2), (1,3). Fourth row: (7,1),(4,2),(8,1),(2,3). The
green boundaries indicate the Neumann condition. The color
code bars are qualitatively similar but numerically distinct for
each of these figures. The color code that varies from -0.92 to
+0.92 is for the (2,1) mode.

FIG. 19. (color online) Comparison of Ψ2,2(ρ, φ) of the disk
MSA with θ = 0◦ (left) and θ = 31◦ (right).

forms. Figures 18-20 for the disk MSAs are analogous to
Figs. 15-17 for the cylindrical boxes.
In conclusion, for the cylindrical box and disk MSA,

there are only two types of wave functions: Non-
degenerate wave functions with m = 0 that have no
nodal lines passing through the centroid, and a much
larger class of wave functions with m ≥ 1 that have one
or more nodal lines passing through the centroid. When
there is no experimental reason, such as by symmetry-
breaking hot spots in a cylindrical MSA, to prefer a par-
ticular nodal line direction, there are an infinite number
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m χm,1 χm,2 χm,3 χm,4

0 3.8317 7.0156 10.1735 13.3237
1 1.8412 5.3314 8.5363 11.7060
2 3.0542 6.7061 9.9695
3 4.2012 8.0152 11.3459
4 5.3176 9.2824
5 6.4156 10.5199
6 7.5013 11.7349
7 8.5778
8 9.6474
9 10.7114
10 11.7709

TABLE VII. Table of χm,p = km,pa for the disk microstrip an-
tenna of radius a. Missing table entries correspond to higher
energy states than pictured in Fig. 18.

FIG. 20. (color online) Plots of the same disk MSA wave func-
tions as in Fig. 18, but with the straight nodal lines passing
though the centroid represented by a dot at the centroid for
all of the 2DR wave functions.

of such possible nodal line directions. The rotation matri-
ces R±mϕ for the 2DR MSA wave functions are identical
to Eq. (41) for the 2D cylindrical box, with the MSA
km,p values, the lowest energy values of which are given
by Table VII. The only difference in symmetry Tables VI
and VIII for the cylindrical box and the thin disk MSA is
in the number of circular nodes for their 2DR wave func-
tions, which is one more for the box due to the boundary
condition. Thus, we conclude that for the thin MSAs,
the only modes that can build up a cavity resonance are
those of the 1DR wave functions with m = 0.

circular
Type Symmetry m nodes I R±mϕ

A1 x2 + y2 0 p 1 1
A1* centroid node ≥ 1 p− 1 2 2 cos(mϕ)

TABLE VIII. Representation types, symmetries, and opera-
tions of the C∞v point group for the disk MSA wavefunctions
Ψm,p(φ, ρ). The number of circular nodes depends upon p.
The R±mϕ are rotations about the z axis normal to the cen-
troid by ±mϕ and I is the trace of the identity matrix for
the appropriate group dimension [10]. See Fig. 20 and text.
*common nodal pattern.

FIG. 21. Frequency dependence of the emission from a stand-
alone Bi2212 disk mesa [50]. Reprinted with permission
of T. Kashiwagi, K. Sakamoto, H. Kubo, Y. Shibano, T.
Enomoto, T. Kitamura, K. Asanuma, T. Yasui, C. Watan-
abe, K. Nakade, Y. Saiwai, T. Katsuragawa, M. Tsujimoto,
R. Yoshizaki, T. Yamamoto, H. Minami, R. A. Klemm, and
K. Kadowaki, A high-Tc intrinsic Josephson junction emitter
tunable from 0.5 to 2.4 terahertz, Appl. Phys. Lett. 107,
082601 (2015). ©2015 AIP Publishing LLC.

VIII. COMPARISON WITH EXPERIMENTS

Since the original discovery of coherent THz emission
from the IJJs in Bi2212 [16], a variety of experimental
groups in many countries have been working on the topic,
trying to understand its properties and to increase the
output power. There have so far been six review articles
on the subject [59–64]. In the early work, the first type
of Bi2212 mesas were formed by subjecting a cleaved sin-
gle crystal of Bi2212 to an Ar beam with a mask, that
cut into the unmasked region of the crystal, leaving a
standing mesa with the remainder of the Bi2212 crystal
as the substrate. A second type was a groove mesa, ob-
tained by simply cutting a groove into the top of a cleaved
Bi2212 crystal, which was first done for groove rectangu-
lar, square, and disk mesas [49], and subsequently for a
groove equilateral triangular mesa [42]. In those experi-
ments, the emission frequencies for 3 groove disk mesas,
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FIG. 22. Frequency dependence of the emission from a square
stand-alone Bi2212 mesa [37]. Reprinted with permission of
H. Sun, R. Wieland, Z. Xu, Z. Qi, Y. Lv, Y. Huang, H. Zhang,
X. Zhou, J. Li, Y. Wang, F. Rudau, J. S. Hampp, D. Koelle,
S. Ishida, H. Eisaki, Y. Yoshida, B. Jin, V. P. Koshelets, R.
Kleiner, H. Wang, and P. Wu, Compact high-Tc supercon-
ducting terahertz emitter operating up to 86 K, Phys. Rev.
Appl. 10, 024041 (2018). ©2018 American Physical Society.

the rectangular, the square, and 3 groove equilateral tri-
angular mesas were all consistent with their respectively
lowest-frequency TM(1,1) and TM(0,1) modes [42, 49].
For the rectangular mesa, the TM(0,1) mode with a nodal
line bisecting the mesa length is non degenerate, and as
expected, was the first shape to be shown to build up
a cavity resonance [16]. However, as discussed in Sec-
tions II, V, and VII, the wave functions of those low-
est frequency TM(0,1) square and equilateral triangu-
lar modes and the lowest frequency TM(1,1) disk modes
are all doubly degenerate 2DR wave functions of their
respective point groups, each component of which can
be presented by an infinite number of real space forms.
Therefore, if the groove mesas were sufficiently accurately
constructed for those symmetries to be relevant, they
shouldn’t build up cavity resonances at those frequen-
cies [18, 19]. The fact that the lowest frequency, doubly
degenerate 2DR wave function cavity modes, each com-
ponent of which can be presented by an infinite number
of spatial forms, were observed in those experiments is
therefore most likely due to the breaking of the square,
equilateral triangular, or disk symmetry due to some phe-
nomenon that was not understood at the time of those
early experiments.

The problem turned out to be that the introduction
of a dc V and current I across the stack of IJJs in
Bi2212 leads to severe Joule heating effects, resulting in
hot spots, spatial regions in which T > Tc [25–27, 32].
For a rectangular Bi2212 mesa, these hot spots were ob-
served by laser scanning [25, 26], SiC photoluminescence
[27], and thermoreflectance microscopy [32], and when a

hot spot develops away from the center of a square, equi-
lateral triangular, or disk mesa, it breaks the symmetry,
and allows for the emission of photons at the lowest fre-
quency from the respective doubly degenerate 2DR wave
function modes, each component of which can be pre-
sented by an infinite number of real space forms. But
it was suggested that removing the mesa from its super-
conducting substrate and coating the top and bottom
with a perfect electric conductor such as Au, the output
power could be enhanced [18, 19]. After doubly cleaving
a Bi2212 sample from a single crystal, the top and bot-
tom surfaces are first covered with about 50-100 nm of
Ag, followed by about 50-100 nm of Au. These mesas
with thin Au layers on their top and bottom surfaces are
presently known as either as “stand-alone” mesas [30], or
as “GBG” for “gold-Bi2212-gold” mesas [37]. Since Au is
a superior thermal conductor, as long as the stand-alone
mesas are not much thicker than 1-2 µm, it is usually
possible to avoid most of the heating problems, includ-
ing the development of hot spots. An efficient procedure
to manufacture the stand-alone Bi2212 mesas was pub-
lished [30]. In such mesas, the amount of Joule heating
was greatly reduced, and it became possible to investi-
gate experimentally the effects of mesa symmetry upon
the cavity resonances observed.

In Fig. 21, the frequency dependence of the emission
from a Bi2212 stand-alone disk mesa is shown. Unlike
the emission data from three groove disk mesas studied
earlier [49], the stand-alone disk mesa did not build up a
cavity resonance at the doubly degenerate, 2DR TM(1,1)
disk MSA mode, each component of which can be pre-
sented by an infinite number of real space forms. In-
stead, a strong cavity resonance appeared at 1.0 THz,
in-between the predicted resonance frequencies of the
TM(0,1) and TM(2,1) modes. However, since the stand-
alone Bi2212 disk mesa was sandwiched in-between two
sapphire substrates, the substrates might cause a slight
shift in the cavity resonance frequency. Although we are
not aware of calculations for a MSA sandwiched between
two substrates, when a MSA is sitting atop a sapphire
substrate, there is a slight downward shift in the emis-
sion frequency [65]. In addition, since the doubly de-
generate, 2DR TM(1,1) mode, each component of which
can be presented by an infinite number of spatial forms,
was not excited, it seems reasonable to assume that the
doubly degenerate, 2DR TM(2,1) mode, each component
of which can be presented by an infinite number of real
space forms, would also not be excited. For those two
reasons, we assign the strong emission at 1 THz to the
non degenerate TM(0,1) disk MSA mode. From the data,
it appears that the downward frequency shift due to the
two sapphire substrates is approximately 3% for emission
at 1.0 THz.

We note that the non-degenerate TM(0,2) mode was
not excited to form a resonance. Although not pictured
in Fig. 21, the authors of that work noted that a small
but very narrow resonance-like peak was observed at 2.4
THz. This is about 10-11% lower that the predicted reso-
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(n,m) g fn,m (THz) f ′
n,m (THz)

(1,0) ∞ 0.179* 0.174*
(1,1) 1 0.253* 0.245*
(2,0) 2 0.357 0.346
(1,2) ∞ 0.399 0.387
(2,2) 1 0.505 0.490
(3,0) ∞ 0.536 0.520
(3,1) 2 0.564 0.547
(3,2) ∞ 0.644 0.625
(4,0) 2 0.714 0.693
(4,1) ∞ 0.736 0.714
(3,3) 1 0.758 0.735
(4,2) 2 0.799 0.775
(4,3) ∞ 0.892 0.865
(5,0) ∞ 0.892 0.865
(5,1) 2 0.910 0.883
(5,2) ∞ 0.962 0.933
(4,4) 1 1.010 0.980
(5,3) 2 1.04 1.01
(5,4) ∞ 1.146 1.116
(5,5) 3† 1.266 1.228

TABLE IX. Predicted cavity mode frequencies fn,m from Eq.
(10), the estimated f ′

n,m = 0.97fn,m due to the substrate
in THz, the degeneracy g of the (n,m) mode for a square
stand-alone Bi2212 mesa of side 200µm and nr = 4.2. *At or
below the Josephson plasma frequency fp ≈ 0.250 THz [21].
† This mode has an accidental degeneracy with the doubly
degenerate (1,7) and (7,1) modes, all three of which are 1DR
wave functions. See text.

nant frequency of the non degenerate TM(0,3), so if that
downward frequency shift were to be due to the sapphire
substrate, the substrate shift would have to be rather
non-linear in frequency.
More recently, the emissions from a stand-alone square

Bi2212 mesa with a = 200 µm sandwiched between sap-
phire substrates was studied [37], and the frequency de-
pendence of the emission from that mesa is shown in Fig.
22. From Eq. (11), it is possible to analyze the emission
spectrum in terms of the possible mode frequencies. We
note that the authors originally misidentified the cavity
resonance mode indices, but corrected them in an er-
ratum [37]. A table of mode indices, the degeneracies,
and calculated frequencies without and with a 3% sub-
strate effect is given in Table IX. We note that the low-
est two frequencies are at or below the low-temperature
Josephson plasma frequency fp ≈ 0.250 THz [21], and
are screened out by the Josephson plasma.
It is not clear that one should assume the substrate

reduction factor to be the same percentage for each fre-
quency measured. But the resonances near to 1.0 THz
are likely to have nearly the same shift in the two exper-
iments. Hence a strong case can be made that the res-
onances are mostly associated with the non-degenerate
(n, n) modes. It is certainly true that the doubly degen-
erate (n, n+2p) modes have orthogonal 1DR symmetries,
so on some time scale, it would be difficult for the sys-

tem to stick with one symmetry and to ignore the other
one. That is, if the system oscillates between the two
symmetries on a time scale inverse to the common mode
frequency, there would be no cavity resonance. The data
are consistent with this notion [37].
But an interesting question arises about the non-

observation of the 1DR (5,5) mode. Since its emission
frequency is predicted to be identical to the doubly de-
generate (1,7) and (7,1) modes, this triple degeneracy
is “accidental”. In the case of the “accidental” degen-
eracy between the (0,5), (5,0), (4,3), and (3,4) modes,
the unobserved excitation was not predicted to be seen,
because each of the four wave functions is a doubly de-
generate 2DR of the C4v point group, each component
of which can be presented by an infinite number of real
space forms. But the three 1DR MSA wave functions
Ψ5,5(x, y), and Ψ+

1,7(x, y), Ψ−
1,7(x, y) respectively have

C4v symmetry types A1, B2, and A2, as indicated in
Table II. However, we note that the non-degenerate (6,6)
mode was also not observed, and this weakening of the
resonant modes with increasing frequency was also seen
for the disk stand-alone mesa, some of the emission data
from which are shown in Fig. 21. So it would be in-
teresting for future experiments to study square stand-
alone mesas both smaller and larger in lateral size, in
order to respectively examine the resonances from the
(1,1) and (6,6) modes, and to verify experimentally the
predicted absence of a resonance from the accidentally
triply-degenerate Ψ5,5(x, y) and Ψ±

1,7(x, y) modes.

IX. SUMMARY AND CONCLUSIONS

We studied the wave functions of high-symmetry two-
dimensional quantum boxes and electromagnetic mi-
crostrip antennas (or cavities). The symmetries stud-
ied are those of a square, an equilateral triangle, and
a disk. Each of these symmetries has one- and two-
dimensional representations of its wave functions. The
two-dimensional representations are doubly degenerate
wave functions, each component of which can be pre-
sented by an infinite number of spatial forms [10]. The
only C4v point group symmetry operation common to
these wave functions is their oddness under R2, rotations
by π about their centroids. In addition, for square boxes
and microstrip antennas, there are also doubly degener-
ate one-dimensional representation wave functions, each
component of which can be presented by a single spatial
form, the wave functions of which can be written in terms
of two orthogonal one dimensional representations of the
C4v point group, differently satisfying all of its symmetry
operations.
Although the two-dimensional quantum box might

have some approximate experimental relevance to quan-
tum wells, the main interest from the experimental side
is for thin microstrip antennas. This is particularly of im-
portance for the coherent THz emission from the intrin-
sic Josephson junctions in the layered high-temperature
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FIG. 23. (a) Sketch of an annular stand-alone mesa with a
single slit. (b) Sketch of an array of 84 stand-alone mesas.
Seven stand-alone disk mesas are fixed in a hexagonal close
packed array, and are equally cut circularly with either a laser
or an atomic beam into smaller disks and annulli. Then, with
straight line slits, the original disks are each cut into 12 mesas,
and the entire array of 84 mesas could be close enough to one
another to emit coherently. [64]

superconductor, Bi2Sr2CaCu2O8+δ, or Bi2212. To date,
six review articles have been written on the THz emission
from Bi2212 single crystals [59–64]. In the early days of
the coherent THz emission from Bi2212, there were severe
heating effects that interfered with accurate comparisons
of theory with experiment. Now that thermally-managed
stand-alone Bi2212 (or Au-Bi2212-Au) mesas are the pri-
mary devices under study, the effect of the degeneracies
of the modes is important to consider. The comparison of
the experimental outputs from stand-alone Bi2212 disk
and square mesas provide experimental evidence that the
non-degenerate modes are the ones that can be excited in
order to increase the output power. This suggests that
the experimenters should either use stand-alone mesas
that have only or predominantly non-degenerate modes,
or use a low-symmetry external resonator [38].

The simplest example is that of a rectangle in which
the ratio of length to width is not that of two integers,
stand-alone mesas of which showed excitations at many
frequencies [31]. A singly-slitted annulus has been sug-
gested as another possibility [64], and our independent
analysis has shown that the modes odd and even about
the slit are not degenerate [52]. But another possibility
is a disk that is cut into 12 pieces of two different types:
The disk is first cut into a smaller disk and an annulus
by a He or Ar beam or a laser, and those two objects
are cut with three straight cuts at angles 60◦ apart, di-
viding the smaller disk and annulus into six equivalent
pie-shaped wedge mesas and six equivalent hexaslitted
annuli. These would all fit closely together, allowing for
the possibility of coherent emission from a much larger
number of intrinsic Josephson junctions, increasing the
output power well above 1 mW. Our studies showed that
all of the modes for both mesa shapes are non degenerate
[52].

Such a device has been proposed recently [64], and is

redrawn in Fig. 23. In order to maximize the proba-
bility of matching the resonant frequencies of the inner
pie-shaped wedge mesas with the outer hexaslitted annu-
lar mesas, the ratio of ρi/ρo is varied, and the resonant
frequencies can be calculated to find if at least two fre-
quencies from both shapes will match in the 1-2 THz
range for which the output power of compact continuous
wave coherent sources that to date has been generally
less than the 1 mW necessary for practical applications
[64].

Since the only equilateral triangular microstrip anten-
nas of Bi2212 were made prior to the construction of
stand-alone mesas [42, 43], they most likely exhibited hot
spots, breaking the symmetry and allowing the ideal dou-
bly degenerate, 2DR TM(0,1) mode, each component of
which can be presented in an infinite number of ways,
to be observed. We therefore encourage experiments on
stand-alone equilateral triangular Bi2212 mesas to com-
pare with our predictions that the lowest observable fre-
quency from a perfect stand-alone equilateral triangular
microstrip antenna should be the non-degenerate 1DR
TM(0,3) mode, as was done with stand-alone disk and
square mesas [37, 50].

In addition, we noted in the beginning of the introduc-
tion that there has been some confusion regarding the
degeneracies in the elementary quantum mechanical 2D
box (or infinite square well potential) and in the 2D and
3D simple harmonic oscillator [2–5]. The solutions man-
uals to the first three texts state that the degeneracy of
the first excited state of the 2D box and of the 2D SHO is
2 [2–4], and in Gottfried, the degeneracy of the first ex-
cited state of the 3D SHO was listed as 6 [5]. Although
those degeneracies are technically correct, there is a big
difference between doubly degenerate 1DR and doubly
degenerate 2DR wave functions. The former have only
a finite number of possible spatial forms, but each com-
ponent of the nominally doubly degenerate 2DR wave
functions for those particular quantum systems can be
presented in an infinite number of spatial forms. This
can be shown to be true by including arbitrary mixing
angles, such as in Eqs. (6)-(11).

It is interesting to consider perturbation theory that
breaks the symmetry of either an infinitely degenerate
state or a doubly degenerate 2DR eigenstate with an in-
finite number of real space forms. That is given in past
and current texts for the low-lying states of the 2D box
and 2D SHO [2–4], although as stated above, those au-
thors did not appear to recognize the full implications of
the degeneracies of those first excited states. This prob-
lem is central to many problems in quantum mechanics
and for the breaking of the degeneracy of the infinitely-
degenerate ground state of a Bose-Einstein condenstate
[66, 67]

As noted in Sections II and III on the square box and
square microstrip antenna, there is a distinct difference
between a double degeneracy, the wave functions of which
obey all of the operations of the relevant point group, in
which case the degeneracy is 2, and each of those doubly



19

degenerate wave functions is a one-dimensional represen-
tation of the C4v point group, each component of which
can be presented by a single spatial form, as shown in
Figs. (3) and (7), and those wave functions that are dou-
bly degenerate, two-dimensional representations of that
point group, each component of which can be presented
in an infinite number of ways, and should properly only
be pictured by either just sets of nodal points or sets
of nodal points and square boxes, all of which appear
to be invariant under all of the operations of C4v. For
the equilateral triangular box, the wave functions that
are two-dimensional representations of the relevant point
group C3v can be represented by either their common
nodal points or their common nodal points and equilat-
eral triangular boxes. No such common square or equi-
lateral triangular boxes occur for the square and equilat-
eral triangular microstrip antennas. For the cylindrical
box and disk microstrip antenna, there are only non-
degenerate, rotationally invariant one-dimensional rep-
resentations of the point group C∞v, or doubly degen-
erate, two-dimensional representation wave functions of
that point group, each component of which can be pre-
sented by an infinite number of real space forms.

For all three box shapes we studied, the ground state
is non degenerate, but the first excited state is a dou-
bly degenerate, two-dimensional representation of its re-
spective point group, each component of which can be
presented in an infinite number of ways. For all three
thin microstrip antennas we studied, the ground state is a
doubly degenerate, two-dimensional representation of the
appropriate point group, each component of which can
be presented by an infinite number of spatial forms. This
has strong experimental consequences, which were shown
for the square and disk microstrip antennas. For the
square microstrip antenna, the doubly degenerate, one-
dimensional representation wave functions, each compo-
nent of which can only be presented in a single spatial
form, did not generate a strong cavity resonance. We em-
phasize that emission experiments on stand-alone equi-
lateral triangular microstrip antennas have not yet been
made, and should be made, in order to test our predic-
tions.

Finally, the C4v point group has long been considered
to be relevant to the classes of the orbital symmetry of the
superconducting order parameter in the cuprates, which
includes Bi2212 [24, 68–71]. Since in the transition metal
dichalcogenide 2H-TaS2, the hexagonal symmetry with
two or more unit cells normal to the layers gives rise to
a nodal charge density wave with an onset at TCDW =
77 K,[72, 73] well above the superconducting Tc ≈ 0.6
K [12], it seems that such nodal charge density waves
could complicate the analysis of many of the existing ex-
periments on Bi2212, particularly if the so-called nodal
“pseudogap” that occurs in nanodomains of a monolayer
of CuO2 on top of a freshly cleaved underdoped Bi2212
crystal that survives well above Tc [24], is in fact primar-
ily a charge density wave state, for which the C4v point
group would also apply in the absence of orthorhombic

splitting of the CuO2 planes. However, since the pseudo-
gap does not appear in overdoped Bi2212 [74], such ex-
periments should definitely be performed on overdoped
samples that are free of the charge-density wave, as was
first done by Li et al. [68].
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XI. APPENDIX

Here we demonstrate that the 2DR wave functions for
all three two-dimensional boxes and thin MSAs consid-
ered here are orthogonal for any mixing angle θ. First,
both for the cylindrical box and thin disk MSA, the com-
ponents of the upper and lower elements of the Nambu
form are for m ≥ 1 proportional to cos[m(φ − θ)] and
sin[m(φ− θ)], as in Eq. (35). Obviously, the inner prod-

uct 〈Ψ(θ,1)
m,p (φ, ρ)|Ψ(θ,2)

m,p (φ, ρ)〉 is proportional to

I =

∫ 2π

0

dφ sin[m(φ− θ)] cos[m(φ− θ)]

=
1

2

∫ 2π

0

dφ sin[2m(φ− θ)]

=
1

2

∫ 2π

0

dφ sin(2mφ)

= 0, (49)

so these wave functions are orthogonal for any mixing
angle θ. For the square box or square microstrip an-
tenna, the 2DR wave functions are given by Eq. (6) with
Ψn,n+2p+1(x, y) and Ψn+2p+1,n(x, y) respectively given
by Eqs. (4) and (10) for the square box and MSA. To
treat the square box and MSA together, it is useful to
define

Ψn,m(x, y) = Fn(x)Fm(y), (50)

where for the box Fn(x) =
√

2/a sin(nπx/a) for n,m ≥ 1

while for the square MSA, Fn(x) =
√

2/a cos(nπx/a)
and n ≥ 0, except that both the x and y functions can-
not have F0(x)F0(y). Then, the inner product in Dirac
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notation is I = 〈Ψ(θ,+)
n,n+2p+1|Ψ

(θ,−)
n,n+2p+1〉, where

I =

∫ a

0

dx

∫ a

0

dyΨ
(θ,+)∗
n,n+2p+1(x, y)Ψ

(θ,−)
n,n+2p+1(x, y)

=

∫ a

0

dx

∫ a

0

dy[cos θFn(x)Fn+2p+1(y)

+e−iφ sin θFn+2p+1(x)Fn(y)]

×[− sin θFn(x)Fn+2p+1(y) + eiφ cos θFn+2p+1(x)Fn(y)]

= (cos2 θeiφ − sin2 θe−iφ)

×
∫ a

0

dxFn(x)Fn+2p+1(x)

∫ a

0

dyFn(y)Fn+2p+1(y)

−1

2
sin(2θ)

(

∫ a

0

dxF 2
n(x)

∫ a

0

dyF 2
n+2p+1(y)

−
∫ a

0

dyF 2
n(y)

∫ a

0

dxF 2
n+2p+1(x)

)

.

(51)

The last line proportional to sin(2θ) is easily seen to van-
ish by interchanging the integration variables x and y.
So we have to evaluate the remaining term (cos2 θeiφ −
sin2 θe−iφ)K2, where

K =

∫ a

0

dxFn(x)Fn+2p+1(x)

=

∫ a

0

dx

2

(

cos[(2p+ 1)πx/a]± cos[(2n+ 2p+ 1)πx/a]
)

=
1

2

a

π(2p+ 1)
sin[(2p+ 1)πx/a]

∣

∣

∣

a

0

±1

2

a

π(2n+ 2p+ 1)
sin[(2n+ 2p+ 1)πx/a]

∣

∣

∣

a

0

= 0, (52)

where the ± refers respectively to the MSA (+) and box
(-) wave functions. The same conclusion also applies for
one of the MSA wave functions independent of position
(with n = 0), as is easily seen by setting n = 0 in the
last equation. Hence, all of these 2DR wave functions are
indeed orthogonal and infinitely deformable by changing
the arbitrary mixing angle θ.
We now generalize this orthornomality to an arbitrary

mixing of the two 2DR wave functions Ψ
(θ,±)
n,n′ (x, y), where

n′ = n+ 2p+ 1, defining

Φ
(1,2)
n,n′ (x, y) =

∫ π

−π

dθP (θ)
[

A1,2Ψ
(θ,+)
n,n′ (x, y)

+B1,2Ψ
(θ,−)
n,n′ (x, y)

]

,

(53)

where the only two restrictions upon P (θ) are that
P (θ) 6= C, for which all of the 2DR wave functions would
vanish, and that the integrals in Eq. (11) are finite. Thus,
for example, P (θ) could in principle be an infinite set of
Dirac delta functions, as long as the sum of their inte-
grated set was finite.

Using the orthonormality of the 2DR wave functions
for either the square box or the MSA, the orthogonality
being given in Eq. (52) and the normality equation being
given in elementary textbooks, we may force the above

Φ
(1,2)
n,n′ (x, y) to form a much more general orthonormal

set that spans the infinite set of possible θ values. The
orthonormality equations are then easily seen for i = 1, 2
to be

1 =

∫ π

−π

dθ

∫ π

−π

dθ′P (θ)P (θ′)
[

(|Ai|2 + |Bi|2) cos(θ − θ′)

+(AiB
∗
i −BiA

∗
i ) sin(θ − θ′)

]

(54)

= (J2
e + J2

o )(|Ai|2 + |Bi|2), (55)

and

0 =

∫ π

−π

dθ

∫ π

−π

dθ′P (θ)P (θ′)
[

(A1A
∗
2 +B1B

∗
2) cos(θ − θ′)

+(A1B
∗
2 −B1A

∗
2) sin(θ − θ′)

]

(56)

= (J2
e + J2

o )(A1A
∗
2 +B1B

∗
2 ). (57)

By interchanging θ and θ′, it is easily seen that the terms
containing sin(θ − θ′) vanish. Hence, we have for a com-
pletely arbitrary P (θ), that

A1A
∗
2 +B1B

∗
2 = 0, (58)

and for i = 1, 2, the two identical normalization condi-
tions,

|Ai|2 + |Bi|2 = [I2e + I2o ]
−1, (59)

where Ie and Io are given by Eq. (11).
We now provide more details about the orthonormality

of the 2DR equilateral triangular box and MSA wave
functions. From Eqs. (23) and (24) of the text. For

simplicity of notation, we set |Ψ1〉 = |Ψ(e,o,1)
n,m (x, y)〉 and

|Ψ2〉 = |Ψ(e,o,2)
n,m (x, y)〉 for both the equilateral triangular

box and MSA with m 6= n + 3p. Then, forcing the two
2DR wave functions to be orthonormal, we require

A2 +B2 −AB = 1, (60)

C2 +D2 − CD = 1, (61)

AC +BD − 1

2
(BC +AD) = 0. (62)

Solving Eqs. (60) and (61) for B in terms of A and D in
terms of C, we have

B =
A

2
±
√

1− 3A2/4, (63)

D =
C

2
±
√

1− 3C2/4. (64)

These equations force the 2DR equilateral triangular
wave functions to be normalized. To force the orthog-
onality, we have

AC +BD − 1

2
(BC +AD) = 0. (65)
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Then, substituting Eqs. (63) and (64) into Eq. (65), we
obtain

3

4
AC +

√

(1− 3A2/4)(1− 3C2/4) = 0, (66)

Subtracting the first term from both sides of Eq. (66),
squaring both sides of that equation, and simplifying, we
obtain

A2 + C2 =
4

3
. (67)

We then choose

A =
2√
3
cos θ, (68)

C = − 2√
3
sin θ, (69)

which allows for the solutions of both Eqs. (66) and (67).
Then, from Eqs. (63) and (64), we have

B =
1√
3
cos θ ± sin θ, (70)

D = − 1√
3
sin θ ± cos θ, (71)

and the orthonormal set of 2DR wave equations for the
equilateral triangular box of the MSA both indeed form
two sets of orthorhombic wave functions, each of which
is infinitely deformable by changing the arbitrary mixing
angle θ. In the following, we show explictly that the
wave functions in Eq. (25) form an orthonormal set. For

simplicity of notation, we write |Ψ1〉 = |Ψ(e,o,1,θ,±)
n,m 6=n+3p(x, y)〉

and |Ψ2〉 = |Ψ(e,o,2,θ,±)
n,m 6=n+3p(x, y)〉. From Eqs. (60), (61), and

(62), we then have

〈Ψ1|Ψ1〉 = A2 +B2 −AB

=
4

3
cos2 θ +

( 1√
3
cos θ ± sin θ

)2

− 2√
3
cos θ

( 1√
3
cos θ ± sin θ

)

= cos2 θ
(4

3
+

1

3
− 2

3

)

+ sin2 θ

sin θ cos θ
(

± 2√
3
∓ 2√

3

)

= 1, (72)

〈Ψ2|Ψ2〉 = C2 +D2 − CD

=
4

3
sin2 θ + (− 1√

3
sin θ ± cos θ)2

−
(

− 2√
3
sin θ

)(

− 1√
3
sin θ ± cos θ

)

= sin2 θ
(4

3
+

1

3
− 2

3

)

+ cos2 θ

+sin θ cos θ
(

± 2√
3
∓ 2√

3

)

= 1, (73)
and

〈Ψ1|Ψ2〉 = AC +BD − 1

2
(BC +AD)

= −4

3
sin θ cos θ

+
( 1√

3
cos θ ± sin θ

)(

− 1√
3
sin θ ± cos θ

)

−1

2

( 1√
3
cos θ ± sin θ)

)(

− 2√
3
sin θ

)

−1

2

2√
3
cos θ

(

− 1√
3
sin θ ± cos θ

)

= cos2 θ
(

± 1√
3
∓ 1√

3
)
)

+sin2 θ
(

± 1√
3
∓ 1√

3

)

+sin θ cos θ
(

−4

3
− 1

3
+ 1 +

1

3
+

1

3

)

= 0. (74)

As shown in the text, it is then elementary to show that
all of the 2DR wavefunctions for the square box and
MSA, the equilateral triangular box and MSA, and for
the disk box and MSA, are all doubly degenerate, each
component of which is infinitely degenerate. For the equi-
lateral triangular box and MSA, the 2DRs also have the
± extra degeneracy.
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K. Kadowaki, Efficient fabrication of intrinsic-Josephson-
junction terahertz oscillator with greatly reduced self-
heating effect, Phys. Rev. Appl. 4, 054018 (2015).

[31] T. Kashiwagi, T. Yuasa, Y. Tanabe, T. Imai, G. Kuwano,
R. Ota, K. Nakamura, Y. Ono, Y. Kanako, M. Tsujimoto,
H. Minami, T. Yamamoto, R. A. Klemm, and K. Kad-
owaki, Improved excitation mode selectivity of high-Tc

superconducting terahertz emitters, J. Appl. Phys. 124,
033901 (2018).

[32] T. Kashiwagi, T. Tanaka, C. Watanabe, H. Kubo, Y.
Komori, T. Yuasa, Y. Tanabe, R. Ota, G. Kuwano K.
Nakamura, M. Tsujimoto, H. Minami, T. Yamamoto,
R. A. Klemm, and K. Kadowaki, Thermoreflectance mi-
croscopy measurements of the Joule heating character-
istics of high-Tc superconducting terahertz emitters, J.
Appl. Phys. 122, 233902 (2017).

[33] T. M. Benseman, K. E. Gray, A. E. Koshelev,



23

W.-K. Kwok, U. Welp, H. Minami, K. Kadowaki,
and T. Yamamoto, Powerful terahertz emission from
Bi2Sr2CaCu2O8+δ mesa arrays, Appl. Phys. Lett. 103,
022602 (2013).

[34] B. Gross, F. Rudau, N. Kinev, M. Tsujimoto, J. Yuan, Y.
Huang, M. Ji, X. J. Zhou, D. Y. An, A. Ishii, P. H. Wu, T.
Hatano, D. Koelle, H. B. Wang, V. P. Koshelets, and R.
Kleiner, Electrothermal behavior and terahertz emission
properties of a planar array of two Bi2Sr2CaCu2O8+δ in-
trinsic Josephson junctions stacks, Supercond. Sci. Tech-
nol. 28, 055004 (2015).

[35] R. A. Klemm, A. E. Davis, and Q. X. Wang, Tera-
hertz emission from thermally managed square intrin-
sic Josephson junction microstrip antennas, IEEE J. Sel.
Top. Quant. Electron. 23, 41489108 (2017).

[36] R. A. Klemm, A. E. Davis, Q. X. Wang, T. Yamamoto,
D. P. Cerkoney, C. Reid, M. L. Koopman, H. Minami, T.
Kashiwagi, J. R. Rain, C. M. Doty, M. A. Sedlack, M. A.
Morales, C. Watanabe, M. Tsujimoto, K. Delfanazari,
and K. Kadowaki, Terahertz emission from the intrin-
sic Josephson junctions of high-symmetry thermally-
managed Bi2Sr2CaCu2O8+δ microstrip antennas, Proc.
IOP Conf. Mater. Sci. Eng. 279, 012017 (2017).

[37] H. Sun, R. Wieland, Z. Xu, Z. Qi, Y. Lv, Y. Huang, H.
Zhang, X. Zhou, J. Li, Y. Wang, F. Rudau, J. S. Hampp,
D. Koelle, S. Ishida, H. Eisaki, Y. Yoshida, B. Jin, V. P.
Koshelets, R. Kleiner, H. Wang, and P. Wu, Compact
high-Tc superconducting terahertz emitter operating up
to 86 K, Phys. Rev. Appl. 10, 024041 (2018).

[38] Y. Ono, H. Minami, G. Kuwano, T. Kashiwagi, M. Tsu-
jimoto, K. Kadowaki, and R. A. Klemm, Superconduct-
ing emitter powered at 1.5 terahertz by an external res-
onator, Phys. Rev. Appl. 13, 064026 (2020).

[39] J. Helszajn and D. S. James, Planar triangular resonators
with magnetic walls, IEEE Trans. Microw. Theory Techn.
MTT-26, 95-100 (1978).

[40] P. L. Overfelt and D. J. White, TE and TM modes of
some triangular cross-section waveguides using superpo-
sition of plane waves, IEEE-MTT 34 (1) 161 (1986).

[41] K. Delfanazari, M. Tsujimoto, T. Kashiwagi, T. Ya-
mamoto, R. Nakayama, S. Hagino, T. Kitamura, M.
Sawamura, T. Hattori, H. Minami, and K. Kadowaki,
THz emission from a triangular mesa structure of Bi-
2212 intrinsic Josephson junctions, J. Phys. Conf. Ser.
400, 022014, (2012).

[42] K. Delfanazari, H. Asai, M. Tsujimoto, T. Kashiwagi,
T. Kitamura, T. Yamamoto, M. Sawamura, K. Ishida,
C. Watanabe, S. Sekimoto, H. Minami, M. Tachiki, R.
A. Klemm, T. Hattori, and K. Kadowaki, Tunable tera-
hertz emission from the intrinsic Josephson junctions in
acute isosceles triangular Bi2Sr2CaCu2O8+δ mesas, Opt.
Express 21 (2) 2171-2184 (2013).

[43] K. Delfanazari, H. Asai, M. Tsujimoto, T. Kashiwagi,
T. Kitamura, T. Yamamoto, M. Sawamura, K. Ishida,
M. Tachiki, R. A. Klemm, T. Hattori, and K. Kadowaki,
Study of coherent and continuous terahertz wave emis-
sion in equilateral triangular mesas of superconducting
Bi2Sr2CaCu2O8+δ intrinsic Josephson junctions, Physica
C 491, 16-19 (2013).

[44] R. A. Klemm, K. Delfanazari, M. Tsujimoto, T. Kashi-
wagi, T. Kitamura, T. Yamamoto, M. Sawamura, K.
Ishida, T. Hattori, and K. Kadowaki, Modeling the elec-
tromagnetic cavity mode contributions to the THz emis-
sion from triangular Bi2Sr2CaCu2O8+δ mesas, Physica C

491, 30-34 (2013).
[45] D. P. Cerkoney, C. Reid, C. M. Doty, A. Gramajo, T.

D. Campbell, M. A. Morales, K. Delfanazari, M. Tsu-
jimoto, T. Kashiwagi, T. Yamamoto, C. Watanabe, H.
Minami, K. Kadowaki, and R. A. Klemm, Cavity mode
enhancement of terahertz emission from equilateral trian-
gular microstrip antennas of the high- Tc superconduc-
tor Bi2Sr2CaCu2O8+δ, J. Phys.: Condens. Matter 29,
015601 (2017).

[46] K. Delfanazari, H. Asai, M. Tsujimoto, T. Kashiwagi, T.
Kitamura, M. Sawamura, K. Ishida, T. Yamamoto, T.
Hattori, R. A. Klemm, and K. Kadowaki, Experimen-
tal and theoretical studies of mesas of several geometries
for terahertz wave radiation from the intrinsic Josephson
junctions in superconducting Bi2Sr2CaCu2O8+δ, Proc.
37th Int. Conf. Infrared Millimeter Terahertz Waves
(2012).

[47] K. Delfanazari, H. Asai, M. Tsujimoto, T. Kashiwagi,
T. Kitamura, K. Ishida, C. Watanabe, S. Sekimoto, T.
Yamamoto, H. Minami, M. Tachiki, R. A. Klemm, and
K. Kadowaki, Terahertz oscillating devices based upon
the intrinsic Josephson junctions in a high temperature
superconductor, J. Infrared Milli Terahz Waves 35, 131-
146 (2014).

[48] K. Delfanazari, H. Asai, M. Tsujimoto, T. Kashiwagi,
T. Kitamura, T. Yamamoto, W. Wilson, R. A. Klemm,
T. Hattori, and K. Kadowagi, Effect of bias electrode
position on terahertz radiation from pentagonal mesas
of superconducting Bi2Sr2CaCu2O8+δ, IEEE Trans. THz
Sci. Technol. 5, 504-511 (2015).

[49] M. Tsujimoto, K. Yamaki, K. Deguchi, T. Yamamoto,
T. Kashiwagi, H. Minami, M. Tachiki, K. Kadowaki,
and R. A. Klemm, Geometrical resonance conditions for
THz radiation from the intrinsic Josephson junctions in
Bi2Sr2CaCu2O8+δ, Phys. Rev. Lett. 105, 037005 (2010).

[50] T. Kashiwagi, K. Sakamoto, H. Kubo, Y. Shibano,
T. Enomoto, T. Kitamura, K. Asanuma, T. Yasui, C.
Watanabe, K. Nakade, Y. Saiwai, T. Katsuragawa, M.
Tsujimoto, R. Yoshizaki, T. Yamamoto, H. Minami, R.
A. Klemm, and K. Kadowaki, A high-Tc intrinsic Joseph-
son junction emitter tunable from 0.5 to 2.4 terahertz,
Appl. Phys. Lett. 107, 082601 (2015).

[51] S. Bonnough, Terahertz emission from the intrin-
sic Josephson junctions of high-symmetry thermally-
managed Bi2Sr2CaCu2O8+δ annular microstrip anten-
nas, M. S. Thesis, University of Central Florida, USA
(2018).

[52] N. Shouk, R. Shouk, S. Bonnough, and R. A. Klemm,
Terahertz emission from thin annular and slitted annu-
lar Bi2212 microstrip antennas, 2020 International Con-
ference on UK-China Emerging Technologies (UCET),
2020, pp. 1-4, doi: 10.1109/UCET51115.2020.9205488.

[53] H. Asai and S. Kawabata, Control of circularly polarized
THz waves from intrinsic Josephson junctions by local
heating, Appl. Phys. Lett. 110, 132601 (2017).

[54] A. Elarabi, Y. Yoshioka, M. Tsujimoto, and I. Kakeya,
Monolithic superconducting emitter of tunable circularly
polarized terahertz radiation, Phys. Rev. Appl. 8, 064034
(2017).

[55] A. Elarabi, Y. Yoshioka, M. Tsujimoto, and I. Kakeya,
Circularly polarized terahertz radiation monolithically
generated by cylindrical mesas of intrinsic Josephson
junctions, Appl. Phys. Lett. 113, 052601 (2018).

[56] A. Irie, D. Oikawa, and G. Oya, Generation and detec-



24

tion of THz radiation using intrinsic Josephson junctions,
Phys. Procedia 36, 199-204 (2012).

[57] K. Nakade, T. Kashiwagi, Y. Saiwai, H. Minami, T. Ya-
mamoto, R. A. Klemm, and K. Kadowaki, Applications
using high-Tc superconducting terahertz emitters, Sci.
Rep. (UK) 6, 23178 (2016).

[58] Y. Saiwai, T. Kashiwagi, K. Nakade, M. Tsujimoto, H.
Minami, R. A. Klemm, and K. Kadowaki, Liquid helium-
free high-Tc superconducting terahertz emission system
and its applications, Jap. J. Appl. Phys. 59, 105004
(2020).

[59] T. Kashiwagi, M. Tsujimoto, T. Yamamoto, H. Minami,
K. Yamaki, K. Delfanazari, K. Deguchi, N. Orita, T.
Koike, R. Nakayama, T. Kitamura, M. Sawamura, S.
Hagino, K. Ishida, K. Ivanović, H. Asai, M. Tachiki, R.
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