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An electron wave packet tunneling through a barrier has a transmission (or “group delay”) time
τg that, for a rectangular barrier, is commonly held to become independent of the barrier width L
as the width increases (the McColl-Hartman effect). In the present study, it is shown that: first,
the McColl-Hartman effect for a rectangular barrier is dependent upon L as the Gamow tunneling
factor θ(k) vanishes, and τg is only independent of L when θ(k) is large; and second, for a triangular
barrier to model field emission, although τg can be large for small field, it vanishes when the energy
matches the barrier height.
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I. INTRODUCTION

The question of how long an electron spends tunneling
through a barrier has taken on increasing importance for
nanogap devices [1–6] such as nanoantennas for which
field emission occurs across an anode-cathode (AK) gap
of 50 nm [7] down to 8 nm [8] (where the anode-cathode
transit time [9] is on the order of femtoseconds), and atto-
second experiments [10–12]. In his consequential study of
tunneling across thin insulating layers using a model for
which an incident wave packet encounters a rectangular
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barrier, Hartman [13] and earlier, McColl [14] found that
the transmission time for a metal-insulator-metal (MIM)
thin film was given by the group delay τg = ~/

√
µΦ in

the limit of large barrier width, where µ is the Fermi
level and Φ is the vacuum work function: for a generic
case where µ = Φ = 1 eV, then τg = 0.65821 fs and,
parenthetically, is smaller than but comparable to the
barrier width-dependent semiclassical time of Büttiker
and Landauer [15] of τsc = L/

√

2Φ/m = 1.6860 fs for
L = 1 nm, but of a very different nature as demonstrated
by Winful [16, 17], who demonstrated that τg was the
sum of a dwell τd and self-interference τi time.

Our study of wave packet interactions with barriers
using a time dependent Wigner distribution function
(WDF) approach [18] indicate that rectangular barri-
ers (and others with similar abrupt transition behavior)
have properties that make their usage for wave pack-
ets problematic for simulations, even though plane wave
and exponentially growing/decaying solutions are highly
advantageous. Specifically, wave packets of finite mo-
mentum spread contain k > kv contributions, where
~
2k2v/2m = Vo = µ + Φ is the barrier height. In the

Lκ ≫ 1 limit where κ =
√

k2 − k2v, the sine functions
in the transmission probability Drec(k) becomes highly
oscillatory and possesses numerous peaks (D(kn) = 1)

where L
√

k2n − k2v = πn for n integer [19]. This is in
sharp contrast to the step barrier for which Dstep(k) =
4kκ/(k + κ)2 asymptotically approaches unity. A model
that smoothly and asymptotically approaches the step
limit is preferable for modeling field emission. The
present study provides it in the following steps. First,
as per Winful, attention is explicitly restricted to energy
eigenstates ψk(x) (not wave packets). Second, the anal-
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ysis of Winful is recast using the Gamow factor θ(k) to
allow generalization. Third, the Gamow analysis is re-
peated for a barrier characteristic of high field electron
emission. Several candidates are available: (i) the im-
age charge or Schottky-Nordheim (SN) barrier [20]: it
describes field emission from metals [21] and semicon-
ductors [22] and has a semi-analytic Gamow factor θ(k),
but the transmission t(k) and reflection r(k) coefficients
must be calculated numerically; (ii) the Eckart barrier
[23]: it is an asymmetric barrier for which t(k) and r(k)
are analytic, but the Gamow factor θ(k) must be cal-
culated numerically; and (iii) the triangular or Fowler-
Nordheim (FN) barrier [21] for field emission: it neglects
image charge effects but t(k), r(k), and θ(k) are all com-
pletely analytic. Therefore, only the triangular barrier
of choice (iii) is a simple and purely analytic represen-
tation of field emission under high field conditions (and
is the most iconic example of tunneling wave mechan-
ics [24, 25]). Thus, the FN formalism [26–28] is used
for development and analysis of the dwell τd and self-
interference τi times.

II. MCCOLL-HARTMAN EFFECT

The much discussed independence of τg on the width
L of the rectangular barrier as L increases is termed the
“Hartman effect”: the dependence had been anticipated
separately by McColl, so that the designation “McColl-
Hartman” is preferable [29] and used herein. In Hart-
mans description, the time taken to traverse a barrier
of width L is termed the “transmission time” τg. It be-
comes independent of L and small compared to the time
taken for a packet to traverse the same distance in free
space, known as the “equal time”, in the limit L → ∞.
Hartmans observation has been expressed by others simi-
larly: “(t)he Hartman effect is the saturation of the group
delay with barrier length” (Winful [16]); “Hartman ob-
served that the transmission time approaches a constant
for most energies less than the barrier height (except for
energies very close to the barrier height or very close to
zero)” (emphasis added, Smith and Blaylock [30]); “...a
simple phase time following the calculation of Hartman...
turns out to be independent of the thickness a of the
barriers...” (Petrillo and Olkhovsky [31]); and “the time
taken to traverse a barrier appears to be independent of
the length of the barrier when said barrier is sufficiently
broad.” (Rivlin, et al. [29]). The implication is that
if the time taken to traverse the barrier becomes con-
stant (independent of L) in the wide barrier limit, then
superluminal velocities are achieved, a conclusion that
violates causality. In the following, propagation through
some well-known barriers uses the Gamow factor, which
depends upon both incident energy and barrier thickness.
The resulting interpretation does not imply superluminal
transport.

A. Rectangular Barrier

The rectangular barrier is commonly used to simulate
tunneling through a metal-insulator-metal (MIM) bar-
rier. The rectangular barrier is given by

Vrec(x) = VoΘ(x)Θ(L− x) ≡ ~
2k2v
2m

Θ(x)Θ(L− x) (1)

where Θ(x) is the Heaviside step function, Vo = µ+Φ ≡
~
2k2v/2m is the barrier height, and L is the barrier width.

Winful [16, 17] demonstrates that τg is the sum of a dwell
time τd and a self-interference time τi, respectively, given
as (compare τd to Eq. (2) of Ref. 15)

τd(k) ≡
(m

~k

)

∫ L(k)

0

|ψk(x)|2 dx (2)

τi(k) ≡ −~

k
ℑ[r(k)]

(

dk

dE

)

(3)

τg(k) ≡ τd(k) + τi(k) (4)

where ψk(x < 0) = eikx + r(k)e−ikx and ψk(x > L) =
t(k)eikx, ℑ[r(k)] is the imaginary part of r(k), L(k) is the
separation between where the wave function enters and
emerges from a general barrier, dk/dE = m/~2k, and
~k is the momentum of the eigenstate. The transmission
and reflection coefficients, t(k) and r(k), respectively, for
Vrec(x) for k > kv are [28, 32]

trec(k) =
2kκe−ikL

2kκ cos(Lκ)− i(k2 + κ2) sin(Lκ)

rrec(k) =
−i(k2 − κ2) sin(Lκ)

2kκ cos(Lκ)− i(k2 + κ2) sin(Lκ)

(5)

where κ(k) ≡ |k2v−k2|1/2 so that κ is chosen to always be
real and positive. The transmission probability is then
Drec(k) = |trec(k)|2; for over the barrier,

Drec(k > kv) =

{

1 +

[

1

2

(

k

κ
− κ

k

)

sin(Lκ)

]2
}−1

(6)

For k < kv then κ→ iκ, causing the trigonometric terms
to become their hyperbolic counterparts. The Gamow
factor for Vrec(x) is given by θ(k) ≡ 2σκ(k)L, where
the tunneling width L is constant and the shape factor
σ = 1 [33, 34]. Invoking half-angle formulae to convert
cosh(θ/2) and sinh(θ/2) to easier forms, then for k < kv

ℑ[r(k)] = − 2kκk2v sinh θ

k4v[cosh θ − 1] + 2(2kκ)2
(7)

and therefore

τi(k)

τo
=

(

κk4v
k

)

sinh θ

k4v(cosh θ − 1) + 2(2kκ)2
(8)

where τo = ~/Vo. τd(k) requires the coefficients of
the wave function inside the barrier, where ψk(x) =
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a(k)e−κx+ b(k)eκx. They are solutions to [28, 32, 35, 36]

(

a(k)
b(k)

)

=
1

2κ

[

κ− ik κ+ ik
κ+ ik κ− ik

](

1
r(k)

)

(9)

Insertion of ψk(0 < x < L) into Eq. (2) and using
∫ L

0
e±2κxdx = ±(L/2)(e±θ − 1)/θ results in

τd(k)

τo
=

(

kk2v
κ

)

k2v sinh θ − (k2 − κ2)θ

k4v(cosh θ − 1) + 2(2kκ)2
(10)

Although the McColl-Hartman effect is conventionally
taken as a wide barrier (L → ∞) limit, here, it is the
θ → ∞ limit because θ can be large even when κ is small.
Therefore, for large θ, τd and τi are (compare Appendix
D, Ref. [18])

τd(k) = τo
k

κ
tanh θ; τi(k) = τo

κ

k
tanh θ (11)

so that τg = τo
(

k2v/kκ
)

tanh θ is the sum, as per Eq. (4).

Hartman’s (and Winful’s) finding that τg → τok
2
v/kκ is

then recovered when θ > 4 for which tanh θ differs from
unity by < 0.07%. It should be noted that the trans-
mission time in the limit of large barrier width and low
energy is no longer a useful metric for measuring propa-
gation time through the barrier because the transmission
probability in that limit approaches zero as per Eq. (6).
The reflection delay is a better metric, and does approach
a constant value in the wide barrier limit.

However, when k = kv (or E = Vo), the Gamow factor
vanishes even though L is finite and large. This entails
that as k → kv, then the small θ limit is required. Ex-
panding sinh θ and cosh θ for small θ, replacing θ = 2κL,
and then taking the limit k → kv gives

lim
k→kv

τd(k)

τo
=

2Lkv
3

[

(Lkv)
2 + 3

(Lkv)2 + 4

]

(12)

lim
k→kv

τi(k)

τo
=

Lkv
(Lkv)2 + 4

(13)

In the large L limit when k = kv, then Hartman’s re-
sult for τg, which would otherwise seemingly diverge as
1/κ(k), is instead

lim
L→∞

τg(kv)

τo
=

(

Lkv
3

)

2(Lkv)
2 + 9

(Lkv)2 + 4
→ 2

3
Lkv (14)

as per Eq. (4) and therefore is not independent of the
barrier width L when k = kv. Thus, the independence of
barrier width is a large θ limit rather than a large L limit,
an important distinction because θ vanishes for k = kv,
where τg(kv) = τd(kv) are finite. The behavior of τd, τi,
and τg are shown in Figures 1 and 2 for increasing L.
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FIG. 1. Comparisons of rectangular barrier dwell time τd (Eq.
(8), red •), self-interference delay τi (Eq. (10), blue �), and
group delay τg (Eq. (4), green �)) to the asymptotic large-θ
form (Eq. (11), thin light lines and ◦,�,♦, respectively) for
increasing L (top to bottom).

B. Triangular Barrier

Field emission from a fiber [37] or metal [20] requires
a large electric field to initiate tunneling. This process
can be elegantly and analytically represented using a tri-
angular barrier model. First, the transmission proba-
bility for a triangular barrier does not oscillate as does
Eq. (6), which becomes increasingly oscillatory as L
increases. Furthermore, when k > kv, the Airy func-
tion solutions to Schrödinger’s equation behave such that
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FIG. 2. The rectangular barrier dwell times τd(k) (Eq. (10))
for various barrier widths L and heights Vo: larger values are
associated with larger θ; smallest two values are dashed lines.

Dfn(k > kv) → 4kκ/(κ + k)2 when the applied field
E → 0, which smoothly recovers the step function bar-
rier. The triangular barrier is given by

V (x > 0) = Vo − Fx ≡ ~
2

2m

[

k2v − fx
]

(15)

and zero for x < 0, where F = q|E| contains the electric
field E , and q is the (positive) elementary charge unit,
so that the charge of an electron is −q. The tunneling
length factor L is now dependent upon F in Eq. (15)
[38], and therefore

L(k) =
Vo − E

F
=
k2v − k2

f
=
κ(k)2

f
(16)

for field emission conditions. For x > 0, ψk(x) =
t(k) [Ai(w)− iBi(w)], where

w(x) =
k2v − k2 − fx

f2/3
(17)

Using the asymptotic forms of the Airy functions, the
transmission and reflection factors associated with the
barrier of Eq. (15) lead to the self-interference time

τi(k)

τo
=

πf1/3k2v χ(θ)

k
[

πk2Σ(θ) + πf2/3Σ′(θ) + 2f1/3k
] (18)

where for k < kv, θ(k) = 4κ3/3f = 2σκL for σ = 2/3
and L(k) = κ2/f [34], and

Σ(θ) = Ai[w(0)]2 + Bi[w(0)]2

Σ′(θ) = Ai′[w(0)]2 + Bi′[w(0)]2

χ(θ) = Ai[w(0)] Ai′[w(0)] + Bi[w(0)] Bi′[w(0)]

(19)

The large and small θ-limits have separate behavior.
In the large θ limit, τi(k) becomes

τi(k)

τo
≈ κk2v
k (k2v + 2kκe−θ)

(20)

and therefore approaches τi(k)/τo → κ/k as θ → ∞. In
the (k → kv) limit where θ → 0, τi(k) becomes

τi(kv)

τo
=

πf1/3kv χ(0)

πk2vΣ(0) + πf2/3Σ′(0) + 2f1/3kv

=

√
3ǫ

4ǫ2 + 6ǫ+ 3

(21)

where ǫ = f1/3/ηkv where η ≡ (4π/3)Bi(0)2 = 1.5839.
For finite F , τi(kv) does not vanish. The behavior of τi(k)
therefore mimics its analog for the rectangular barrier,
where f1/3/η

√
3 takes over the role of 1/L.

The dwell time τd(k) makes use of

|ψk(x)|2 = |t(k)|2Σ
(

4

3
w(x)3/2

)

|t(k)|2 =
4πk2

πk2Σ(θ) + πf2/3Σ′(θ) + 2kf1/3

(22)

where θ ≡ 4κ3/3f as before, from which

τd(k)

τo
= |t(k)|2 k2v

2kf1/3

∫ θ

0

Σ(u)

u1/3
du (23)

Again, the large and small θ-limits of τd(k) have separate
behavior. In the large θ limit

τd(k)

τo
≈ 5k2vκ

4πkf2/3
|t(k)|2 [1 + δ(θ)] (24)

δ(θ) ≡ 1

15θ1/3

∫ θ

0

e−z + 4ez − 5

z2/3
dz (25)

For large θ, δ ≈ 4eθ/15θ and |t|2 ≈ 4πk2κe−θ/f1/3k2v, so

τd(k)

τo
≈ k2vf

1/3

4πkκ2
|t(k)|2eθ =

k

κ
(26)

with the next order term going as e−θ, akin to Eq. (11).
The large θ limit of τg is then the sum of Eqs. (21) and
(24), as per Eq. (4). As with the large θ limit for the
rectangular barrier, the reflection delay is again a better
metric.
In the small θ limit, the integrand in Eq. (23) may use

a polynomial expansion for small argument of Σ(u) from
Eq. (19) and then integrated analytically term by term.
It is found

τd(kv)

τo
→ |t(kv)|2

(

η(kvκ)
2

2πf

)[

1 +
κ2√

3ηf2/3

]

(27)

which vanishes as κ2 as k → kv (compare Eq. (12)). The
behavior of τd(k) is therefore in contrast to the behav-
ior of its analog for the rectangular barrier, where τd(k)
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FIG. 3. Comparison of the exact (◦,�,♦) τi(k) (Eq. (18))
and (•,�,�) τd(k) (Eq. (23)) to the approximations for τi/τd
(thick blue line / thick red line = 1, loosely dotted cyan /
densely dotted purple = 3 and loosely dashed magenta /
densely dashed green = 9) of Eq. (20) and Eq. (24), re-
spectively. Legend is labeled by values of F [0.1 eV/nm].
Vo = 1.25 eV and τo = 0.52657 fs. The subscript “x” on the
τx axis label denotes either d or i. τg (not shown) would be
the sum as per Eq. (4). The curves for τi overlap so closely
as to not be easily distinguishable

remains finite as k → kv for finite L. An evaluation of
τi(k) and τd(k) is shown for several representative fields
and barrier heights in Figure 3 where, again, τg would be

found as per Eq. (4). The larger θ(E) ∝ (Vo−E)3/2/F is,
the better the approximations are. Notably, if applied to
a wave packet composed of many components, and when
either L or 1/f is large, then the more energetic com-
ponents will increasingly constitute the outgoing packet,
and they will therefore be associated with the smallest
θ(k) factors. Efforts to bypass such complications by
making very wide wave packets with a very narrow mo-
mentum spreads entail complications for the simulation
of tunneling that are difficult. The relation τd(k) and
τi(k) to the WDF analysis of wave packets of our prior
work shall be taken up separately.

III. OTHER BARRIERS

A visual comparison of Figures 1 and 3 demonstrates
similarities in the large θ-limit, even though the underly-
ing potential barriers represent extreme cases. Therefore,
as the final step of the analysis, consider two more repre-
sentative barriers. The Schottky Nordheim (SN) barrier
[27, 28, 39] describes field emission from metals and semi-
conductors by including image charge effects; it possesses
an analytic θ but requires numerical evaluation for t(k)
and r(k). The Eckart barrier is an asymmetric barrier

which enables analytic t(k) and r(k) [23] but requires a
numerical evaluation of θ. Both are treated in tandem
with regards to θ and suggested to be compatible with
Eq. (11) as was Eq. (26). A confirmation of this can
be had using an exact Airy Transfer Matrix Approach to
solve Schrödinger’s Equation [34] so as to obtain ψk(x)
exactly, and shall be undertaken separately. Therefore,
here, Gamow behavior with respect to the scale factor
σ ≡ θ/2κL is undertaken. In both cases, the expres-
sions for the location xo of the maximum of the barrier,
κ(E) ≡

√

2m|V (xo)− E|/~, and the zeros x±(E) de-
fined such that V (x±)−E = 0 can be analytically found.
Lastly

σ(E) ≡
∫ x+

x
−

[

V (x) − E

V (xo)− E

]1/2
dx

x+ − x−
(28)

defines the shape factor and is evaluated here numeri-
cally. The terms are accordingly given by

• Schottky-Nordheim:

Vsn(x) = µ+Φ− Fx−Q/x

L(E) =
[

µ+Φ− E)2 − 4QF
]1/2

/F

x±(E) = [µ+Φ− E ± FL(E)]/2F

xo =
√

Q/F

(29)

• Eckart:

Ve(x)/Ve(xo) = g(−x)(ag(x)− 1)

g(x) = [exp(x/b) + 1]−1

x±(E) = b ln

[

(a− 1)(1± δ)

a+ 1∓ (a− 1)δ

]

xo = b ln [(a− 1)/(a+ 1)]

(30)

where the parameters are chosen such that the Fermi
level and work function are µ = Φ = 2 eV, the field is
F = 1 eV/nm, the image charge term is Q = 0.36 eV-nm,

b = 1 nm, a = 1 + 2(µ + Φ) + 2
√

(µ+Φ)(µ+Φ + 1) is
chosen so that the maximum of the barriers is the same,
and δ is such that E/V (xo) = 1 − δ2. The comparisons
are shown in Figure 4. Although the shape factors are
calculated here numerically for consistency and accuracy,
it is known that in the case of the Schottkty-Nordheim
(SN) barrier, the shape factor evaluated at the Fermi
level E = µ is related to the Schottky-Nordheim function
v(y) [40] by the relation (Eq. (B3) of Ref. [34])

v(y) =
3

2
(1− y)

√

1 + y σsn(µ) (31)

where y(µ) ≡
√
4QF/Φ and v(y) ≈ 1− y2[1− ln(y)/3] is

the approximation due to Forbes and Deane [27]. Note
that y(µ) is a special case of y(E) = [µ+Φ−V (xo)]/(µ+
Φ− E) for the Schottky-Nordheim barrier.
The numerical comparisons of σ(E) as E varies from

zero to the barrier maximum are shown in Figure 4, for
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FIG. 4. (top) V (x) for the SN and Eckart barriers for pa-
rameters in the text. (bottom) the resulting scale factor
σ(E) for each, where “Parabolic” and “Triangular” denote
σ(E) = (2/3, π/4) for the inverted parabolic and the triangu-
lar FN barriers, respectively, for which both are constant.

energy measured with respect to the conduction band
minimum of the left contact. It is seen that the SN barrier
stays closer to the triangular barrier (FN) case, but the
Eckart potential moves closer to the parabolic case as E
decreases. Interestingly, for energies closer to the barrier

maximum, both SN and Eckart result in σ values that are
reasonably close. The consequences on θ and therefore
τd are taken up separately.

IV. CONCLUSION

In summary, the behavior of the self-interference τi
and dwell τd times that make up the group delay as
per Winful [16, 17] have been reevaluated for the rect-
angular (or MIM) barrier and extended to the trian-

gular (or field emission) barrier. For the rectangular
barrier, the oft made claim that the delay time be-
comes sensibly independent of the width L of the bar-
rier (the McColl-Hartman effect) applies only to condi-
tions where the Gamow factor θ(k) is large (e.g., where

k <
√

k2v − (2/L)2): when θ is small, then the dwell and
self-interference times are in fact dependent on L and in
particular τd(kv) grows with L. For the triangular bar-
rier characterized by the field term F , it was shown that
τd vanishes as κ2, behavior in contrast to the rectangular
barrier results. Insofar as the behavior of τi(k) and τd(k)
mimic Eq. (11), as remains to be demonstrated, then the
shape factor method readily gives the behaviors of their
respective Gamow factors θ(E).

V. DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are
available within the article.
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