
This is the accepted manuscript made available via CHORUS. The article has been
published as:

math
xmlns="http://www.w3.org/1998/Math/MathML">mi>n/mi>

/math>-photon blockade with an math
xmlns="http://www.w3.org/1998/Math/MathML">mi>n/mi>

/math>-photon parametric drive
Yan Hui Zhou, Fabrizio Minganti, Wei Qin, Qi-Cheng Wu, Jun-Long Zhao, Yu-Liang Fang,

Franco Nori, and Chui-Ping Yang
Phys. Rev. A 104, 053718 — Published 22 November 2021

DOI: 10.1103/PhysRevA.104.053718

https://dx.doi.org/10.1103/PhysRevA.104.053718


n-photon blockade with a n-photon parametric drive

Yan-Hui Zhou,1 Fabrizio Minganti,2, 3 Wei Qin,2 Qi-Cheng Wu,1 Junlong
Zhao,1 Yu-Liang Fang,1 Franco Nori,2, 4, 5, ∗ and Chui-Ping Yang1, 6, †

1Quantum Information Research Center, Shangrao Normal University, Shangrao 334001, China
2Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan

3Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
4RIKEN Center for Quantum Computing, Wako-shi, Saitama 351-0198, Japan

5Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
6Department of Physics, Hangzhou Normal University, Hangzhou 311121, China

(Dated: September 27, 2021)

We propose a mechanism to engineer n-photon blockade in a nonlinear cavity with a n-photon
parametric drive λ(â†n + ân). When a n-photon-excitation resonance condition is satisfied, the
presence of n photons in the cavity suppresses the absorption of the subsequent photons. To
confirm the validity of this proposal, we study the n-photon blockade in an atom-cavity system,
a Kerr-nonlinear resonator, and two-coupled Kerr-nonlinear resonators. Our results demonstrate
that n-photon bunching and (n+ 1)-photon antibunching can be simultaneously obtained in these
systems. This effect is due both to the anharmonic energy ladder, and to the nature of the n-photon
drive. To show the importance of the drive, we compare the results of the n-photon drive with a
coherent (1-photon) drive, proving the enhancement of antibunching in the parametric-drive case.
This proposal is general and can be applied to realize n-photon blockade in other nonlinear systems.

I. INTRODUCTION

In a nonlinear photonic cavity, the energy ladder of
the harmonic oscillator is modified by the presence of
photon-photon interactions. Even if the driving field
can be tuned to be resonant with the cavity, a strong
nonlinerity can significantly change the photon-number
probability distribution, allowing sizable deviations from
the Poissonian statistics. In conventional photon
blockade, a large nonlinearity changes the energy-level
structure of the system, suppressing the simultaneous
presence of photons in the resonator [1]. In the
limit of large (infinite) interactions, the presence of a
single-photon in the cavity blocks the creation of a
second photon [2, 3]—an effect known as conventional
single-photon blockade (1P blockade).

Due to its potential applications in information
and communication technology, 1P blockade has
been extensively studied in the past years [4–16].
For example, 1P blockade has been predicted in
cavity quantum electrodynamics [17–19], quantum
optomechanical systems [20–23], and second order
nonlinear systems [24–26]. The conventional 1P blockade
effect was first observed in an optical cavity coupled to a
single trapped atom [27]. Since then, many experimental
groups have observed this strong antibunching behavior
in different systems, including a photonic crystal [28] and
a superconducting circuit [29].

Photon blockade can also be enabled by quantum
interference [30, 31], a phenomenon called unconventional

photon blockade [32–38]. Indeed, two optical paths
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in, e.g., a dimer, can create interference, preventing
the simultaneous excitation of two photons in a
cavity [39–42]. This effect has been recently
observed in quantum-dot cavities and superconducting
architectures [43, 44]. Although conceptually different,
conventional and unconventional photon blockade are
connected mechanisms [45, 46], and they can even arise
simultaneously [47, 48]. In this paper, we will consider
conventional photon blockade, and for the sake of brevity,
we will denote conventional photon blockade as photon
blockade.

In analogy to 1P blockade, the n-photon blockade (nP
blockade, n ≥ 2) occurs when n photons in a nonlinear
cavity suppress the creation of subsequent photons by
the drive. The 2P blockade (nP blockade with n = 2)
was studied in several platforms, including a Kerr-type
system driven by a laser [49], in a strong-coupling
qubit-cavity system [50, 51], and in a cascaded cavity
QED system [52]. The 2P blockade can also be generated
by squeezing [53].

Experimentally, 2P blockade was realized in an optical
cavity strongly coupled to a single atom [54], where
driving the atom provides a larger optical nonlinearity
than driving the cavity. nP blockade with n > 2 has been
studied in a cavity strongly coupled to two atoms [55], in
a cavity with two cascade three-level atoms [56], and in a
Kerr-type system driven by a laser [57, 58]. Meanwhile,
in analogy to photon blockade, the phonon blockade have
also been studied [59, 60].

In this paper, we theoretically propose that nP
blockade can be triggered in a nonlinear cavity with

a n-photon parametric drive (denoted for the sake
of brevity as nP drive). While 2P drive is the
parametric down-conversion (PDC) which characterizes
χ(2)-type nonlinearities, the higher nP drive imply the
simultaneous creation of n excitations in the system.
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Similarly to PDC, the nP drive has been realized
experimentally for n = 3 by using a superconducting
parametric cavity [61]. Such a procedure relies on the
fourth-order expansion of the nonlinearity of Josephson
junctions, meaning that a high-frequency photon
produced by a strong resonant field is transformed into
three lower-frequency ones. In the same way in which
PDC relies on χ(2) nonlinearities, this effect relies on
χ(3). Thus, n > 3 parametric drives can be, in
principle, realized exploiting higher-order nonlinearities.
Other possible implementations of nP drive rely on
the multiphoton Jaynes-Cummings model [62] and the
quantum Rabi model [63] by driving the atom with the
method in Ref. [64]; or on the use of generalized Rabi
models in the ultrastrong coupling regime, where a cavity
photon can simultaneously excite n atoms, inducing an
effective n-boson drive in the collective atomic degree of
freedom [65–69].

In this manuscript, we first give a brief introduction
of this proposal and then confirm its validity by
considering three examples, i.e., an atom-cavity
system, a Kerr-nonlinear resonator, and two-coupled
Kerr-nonlinear resonators. This proposal is quite general
and can be extended to other nonlinear systems that can
display nP blockade.

The study of nP blockade in recent decades has
mainly focused on a coherent (i.e., single-photon) drive.
Compared with a proposal using a coherent driving, the
use of an nP drive has the following advantages:

(i) There are systems where nP blockade exists with
an nP drive, while a coherent driving to the cavity will
not induce nP blockade in these systems (e.g., in an
atom-cavity system as discussed in Sec. III and Ref. [54]).
In this regard, the nP drive is a “more general” approach
for the realization of nP blockade.

(ii) For the same set of parameters characterizing a
nonlinear system, we find that the nP drive approach
exhibits a larger (n+1)-photon antibunching with respect
to the coherent driving approach. Moreover, the nP drive
mechanism leads to a larger photon number in the cavity.

The remainder of this paper is organized as follows.
In Sec. II, we give a brief introduction of this proposal.
In Sec. III, we analytically illustrate nP blockade in
an atom-cavity system, showing the differences between
the nP drive, leading to nP blockade, and the coherent
drive which does not show any nP blockade. Similarly,
in Sec. IV we show nP blockade in a Kerr-nonlinear
resonator, and we discuss the different features which
occur with the nP drive and the coherent drive,
respectively. In Sec. V, we focus on 2P blockade
in two-coupled Kerr-nonlinear resonators, showing that
our analysis remain valid also for extended systems.
Conclusions are drawn in Sec. VI.

II. PROPOSAL FOR n-PHOTON BLOCKADE

WITH A n-PHOTON PARAMETRIC DRIVE

The 2P drive has many applications [70–74], such
as quantum computing [70], quantum metrology [71],
cooling of micromechanical mirrors [72], and generation
of long-lived cat states [73]. While the 2P drive is
described by a Hamiltonian

Ĥd = λ(â†2e−iωpt + â2eiωpt), (1)

the nP drive involved in our proposal is described by

Ĥd = λ(â†ne−iωpt + âneiωpt), (2)

where â is the cavity annihilation operator, λ is the
parametric driving amplitude, and ωp is the driving
frequency.

Our idea is to use nP drive to induce nP blockade

in a nonlinear cavity. Apart from the bosonic field of
the cavity which is subject to an nP drive, an auxiliary
nonlinear element (e.g., an atom, a Kerr-nonlinearity
medium, or an auxiliary cavity) is required to realize nP
blockade.

The Hamiltonian of the auxiliary nonlinear system and
of the undriven cavity is denoted by Ĥ0. The form of Ĥ0

is not unique, and it depends on the type of the nonlinear
system. Generally speaking for U(1) symmetric (i.e.,
for particle-number conserving) Hamiltonians, Ĥ0 can be
diagonalized and expressed as

Ĥ0 =

k1
∑

j=1

ωj
1|ψj

1〉〈ψj
1|+

k2
∑

j=1

ωj
2|ψj

2〉〈ψj
2|+

· · ·+
kn
∑

j=1

ωj
n|ψj

n〉〈ψj
n|+ · · · , (3)

where ωj
n is the jth eigenfrequency of Ĥ0 for the

photon excitation number n, and we have assumed that
the ground state energy is zero. The corresponding
eigenstate |ψj

n〉 is constructed by the kn basis vectors
for n-photon excitation manifold. This basis forms
a closed space under the action of Ĥ0 due to the
U(1) model symmetry. The set of eigenfrequencies
{ωj

1}, {ωj
2} · · · , {ωj

n}, · · · are anharmonic due to the
nonlinear interaction. Among these eigenfrequencies,
{ωj

n} (where j is from 1 to kn) is crucial to nP blockade
because the corresponding eigenstate {|ψ〉jn} includes a
n-photon state. When the parametric drive frequency
ωp is tuned to the {ωj

n}, the parametric drive resonantly
excites n photons in the cavity. As a result, the system
occupies the state {|ψ〉jn}. This gives rise to a sizeable
nP blockade. We deduce the following conditions for nP
blockade

ωp = ωj
n, (4)

where j ranges from 1 to kn. The n-photon resonance
excitation by the nP drive ensures that the nP blockade
is triggered in the nonlinear cavity due to the system
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nonlinearity, strongly suppressing higher order processes
which excite more photons.

So far, we have considered the eigenvalues of the
Hamiltonian Ĥ0 to provide the conditions for the
blockade. Obviously, to excite a n-photon state, the
drive and the dissipation should be correctly taken into
account, and in the following numerical simulations, we
will explicitly compute their effects. To do that, we
assume that the systems we consider are described by
the Lindblad master equation with the form [75–77]

∂ρ̂

∂t
= −i[Ĥ, ρ̂] +

∑

j

κjℓ(ôj)ρ̂, (5)

where κj denote the decay rates and the Lindblad
superoperators ℓ(ôj) act as

ℓ(ôj)ρ̂ = ôj ρ̂ô
†
j −

1

2
ô†j ôj ρ̂−

1

2
ρ̂ô†j ôj . (6)

We are interested in characterizing the steady state ρ̂ss
under the Lindblad master equation, which is reached by
the system once it evolved for sufficiently long time. ρ̂ss
can be obtained by

∂ρ̂ss
∂t

= 0. (7)

In the examples below, if not specified otherwise, any
plot in the following refers to quantities computed for
the steady state.

The simple Hamiltonian picture in Eq. (4) allows
us to capture the main idea behind the mechanism in
the regime of weak drive. Even if the drive and the
dissipation modify the system properties, in the limit
which we consider the drive can be seen as a perturbation
of Ĥ0, and therefore the resonance condition is well
captured by Ĥ0. In this regard, increasing the drive
strength can reduce the accuracy of our prediction.
Furthermore, the blockade effect can become weaker by
increasing n. For example, we verify that, to have
a non-negligible photon number, 4P blockade needs a
stronger drive than 3P blockade.

To demonstrate the validity of the above proposal,
we study three examples of nP blockade arising in
three different systems: an atom-cavity system, a Kerr
resonator, and two coupled Kerr cavities. Deriving an
analytical condition for nP blockade via Eq. (4), we
refine our analysis including the drive and the dissipation,
confirming that nP blockade can be triggered in a
nonlinear cavity with the nP drive.

By solving the master equation and obtaining the
steady state, we numerically compute the n-order
equal-time correlation function and demonstrate
the presence of nP blockade. Here the n-order
equal-time correlation function is defined as
g(n)(0) = 〈â†nân〉/〈â†â〉n, and â is a bosonic annihilation
operator. The n-order correlation function g(n)(0) can
be re-expressed as

g(n)(0) ≃ n!Pn

(
∑

n nPn)n
, (8)

where Pn is the n-photon occupation probability of
a bosonic mode [78]. Thus, g(n)(0) ≥ 1 implies a
large n-photon occupation probability, which indicates
n-photon bunching. On the contrary, g(n+1)(0) < 1
implies a small (n + 1)-photon occupation probability,
which indicates (n+1)-photon antibunching. That is, the
conditions g(n)(0) ≥ 1 and g(n+1)(0) < 1 simultaneously
prove the presence of nP blockade [54]. The nP blockade
can be interpreted as the fact that n photons in a
nonlinear cavity suppress the presence of the (n + 1)th
photon, and thus a large (n+ 1)-photon antibunching is
a requirement for a good n-photon blockade.

Before proceeding further, let us also remark that a
strong n-photon drive can trigger instabilities and leads
to nonphysical results if the appropriate renormalization
terms are not taken into account. Therefore, one has to
verify that the occupation of the system is not divergent,
which ultimately leads to a boundary on the intensity of
the driving. In our case, we are interested in the weak
drive and the few-photon regime, where these parametric
instabilities never take place.

III. ATOM-CAVITY SYSTEM

We begin our investigation by considering an
atom-cavity system described by the Jaynes-Cummings
Hamiltonian, where the cavity is driven by an nP drive.
In a frame rotating at the parametric drive frequency
ωp/n, the Hamiltonian is (assuming ~ = 1 hereafter)

Ĥ = Ĥ0 + Ĥd = Ĥ0 + λ(â†n + ân),

Ĥ0 = ∆aâ
†â+∆eσ̂+σ̂− + g(â†σ̂− + σ̂+â)

(9)

where â is the cavity annihilation operator, σ̂± are the
atom raising and lowering operators, g is the coupling
strength of the atom and the cavity mode, λ is the
amplitude of the nP drive, and ∆a (∆e) is the detuning
between the cavity frequency ωa (the atom frequency ωe)
and the rescaled driving frequency ωp/n, such that

∆a = ωa − ωp/n,

∆e = ωe − ωp/n.
(10)

If ωa ≫ ωe or ωa ≪ ωe, and g is sufficiently small,
the qubit degree of freedom can be traced out, inducing
some (possibly nonlinear) energy shifts. Thus, we focus
on the resonant case ωa = ωe, resulting in ∆a = ∆e. The
Hamiltonian (9) with n = 2 can be used to exponentially
enhance the light-matter coupling in a generic cavity
QED [79–81].

In the absence of the nP drive, the atom-cavity
Hamiltonian Ĥ0 in Eq. (9) can be analytically
diagonalized and brought in the form of Eq. (3) with
kn = 2 for all n. The eigenstates of Ĥ0 are

|ψ1,2
n 〉 = 1√

2
(|n− 1, e〉 ∓ |n, g〉) (11)
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Figure 1. (Color online) (a) Schematic energy-level diagram
explaining the occurrence of 3-photon blockade. (b)
Logarithmic plot of the third-order correlation function
g(3)(0) and the fourth-order correlation function g(4)(0) as
a function of the detuning ∆/κ, for g/κ = 10

√

3, γ/κ = 0.1,

and λ/κ = 0.3. (c) g(4)(0) and g(5)(0) as a function of ∆/κ,
for g/κ = 10, γ/κ = 0.1, and λ/κ = 1.5.

and the corresponding energies are

ω1,2
n = nωa ∓

√
ng, (12)

where |g〉 (|e〉) is the ground (excited) state of the atom,
and n denotes the photon excitation number. The
energy-level diagram of the system is shown in Fig. 1(a).

Using Eq. (4), the optimal conditions for nP blockade

are

g = ±
√
n∆, (13)

where ∆ = ∆a = ∆e. When one of the above conditions
is met, the atom-cavity system will occupy the state
|ψ1

n〉 or |ψ2
n〉 due to resonance excitation. There is

one path for the system to reach the state |ψ1,2
n 〉: the

system first arrives at a n-photon state by the nP drive,
then goes to the state |ψ1,2

n 〉 via the coupling g, i.e.,

|0g〉 λ−→ |ng〉 g−→ |ψ1,2
n 〉. The system is difficult to reach

the other manifolds due to the large energy level splitting
once it occupy the states |ψ1,2

n 〉, and the blockade occurs.
Next, we numerically study the nP blockade effect

in the presence of the drive and the dissipation. We
obtain the steady state of the Linblad master equation
in Eq. (5), which for our system reads

∂ρ̂

∂t
= −i[Ĥ, ρ̂] + κℓ(â)ρ+ γℓ(σ̂−)ρ, (14)

where κ denotes the decay rate of the cavity and γ is the
atomic spontaneous emission rate.

In Fig. 1(b), we show the emergence of 3P blockade
by plotting g(3)(0) and g(4)(0) versus ∆/κ with g/κ =

10
√
3. Clearly, 3P blockade appears for ∆/κ = ±10,

which agrees well with the conditions in Eq. (13). The
case of 4P blockade is studied in Fig. 1(c). We set g/κ =
10, and 4P blockade appears when ∆/κ = ±5, which also
agrees with the prediction of Eq. (13) with n = 4. The
numerical results confirm the analytic conditions and the
corresponding analysis.

We here remark that for the Jaynes-Cummings
Hamiltonian in Eq. (9), it has been proved that nP
blockade cannot emerge with a coherent drive (i.e., a
drive with n = 1 in Ĥd) [54], but nP blockade can
exist for this system with an nP drive. This is a
first remarkable prediction of our article, showing the
non-trivial effect of the nP drive.

IV. KERR-NONLINEAR RESONATOR

Kerr-nonlinear resonators with a 2P drive has been
extensively studied due to its rich physics [82–87]. Here,
we investigate nP blockade with the nP drive. In the
frame rotating at the pump frequency, the Hamiltonian
of this model reads [84]

Ĥ = Ĥ0 + Ĥd = Ĥ0 + λ(â†n + ân),

Ĥ0 = ∆â†â+ Uâ†â†ââ,
(15)

where

∆ = ωa − ωp/n (16)

is the pump-to-cavity detuning, U is the Kerr nonlinear
strength, and λ is the amplitude of the nP drive.

The Hamiltonian Ĥ0 in Eq. (15) is diagonal in the Fock
basis, and the eigenstates and eigenfrequencies are |ψ1

n〉 =
|n〉 and

ω1
n = ωan+ U(n2 − n), (17)

respectively. Hence, Eq. (3) has kn = 1, for all n. The
nP blockade can be triggered by the n-photon-excitation
resonance, where the |0〉 → |n〉 transition is enhanced.
According to Eq. (4), the condition for nP blockade is

U = − ∆

n− 1
. (18)

To demonstrate the presence of an nP blockade,
we consider the Lindblad master equation (5) with
dissipation κℓ(â)ρ. The energy-level diagram for 3P
blockade is shown in Fig. 2(a), and the corresponding
numerical simulation is shown in Fig. 2(b), where we plot
g(3)(0) and g(4)(0) as a function of ∆/κ with U/κ = 10.
These results show that 3P blockade can be obtained at
∆/κ = −20, as predicted in Eq. (18) for n = 3. Similarly,
4P blockade depicted in Fig. 2(c) appears on ∆/κ = −30,
which also agrees with Eq. (18) with n = 4.
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Figure 2. (Color online) (a) Energy spectrum of the single
mode Kerr-nonlinearity system leading to 3-photon blockade
via 3-photon parametric drive. (b) Logarithmic plot of g(3)(0)

and g(4)(0) as a function of ∆/κ. (c) Logarithmic plot of

g(4)(0) and g(5)(0) as a function of ∆/κ. In (b, c), the
parameters are U/κ = 10 and λ/κ = 0.1.

To prove the efficiency of the nP drive mechanism for
the realization of nP blockade, we compare it with the
case of a coherent drive (one-photon drive) F (â† + â),
where F is the coherent driving strength. As an example,
we compare 3P blockade based on the 3P drive with that
based on the coherent drive in Fig. 3. To this end, we
plot g(3)(0) and g(4)(0) versus the 3P drive strength λ and
coherent drive strength F under the blockade condition
of Eq. (18) (U/κ = 10, ∆/κ = −20). Notice that the
blockade condition obtained in Eq. (18) is independent
of the form of the drive, and therefore we expect that
this set of parameters allows to observe the maximal 3P
blockade possibility.

The 3P blockade due to the 3P drive is obtained in
a region of small λ (the region between the vertical
dash-dotted lines in Fig. 3(a)), while the implementation
of 3P blockade with the coherent driving needs a larger
F (the region between the vertical dash-dotted lines
in Fig. 3(b)). Comparing with the coherent driving
approach, we see that the nP drive approach leads to
a larger suppression of g(n+1)(0), which corresponds to a
stronger (n+ 1)-photon antibunching.

Furthermore, the occupation N = 〈â†â〉 is an
important indicator to evaluate the proposed protocol
for nP blockade, and a larger N indicates a brighter
emission. On a general ground, from the interpretation
of nP blockade that n photons in a nonlinear cavity
suppress the presence of the (n+1)th photon, one could

define an optimal blockade point as: (i) g(n)(0) ≥ 1, and
(ii) g(n+1)(0) is minimal. However, this criterion does
not take into account the occupation N . As such, a
“better” photon blockade point would require that (iii)
N is maximal. Thus the perfect blockade point needs
to satisfy (i), (ii), and (iii). Sometimes, however, these
three conditions cannot be met simultaneously. If such
a perfect blockade point cannot be found out, we can
relax the condition (iii) in order to look for an optimal
blockade point only satisfying the conditions (i) and (ii).
In Fig. 3(a), we show that g(4)(0) ≃ 0.044, g(3)(0) = 1
(ln[g(3)(0)] ≃ 0), and N ≃ 0.83 for λ/κ = 0.29 (the
right vertical line), which is a perfect 3P blockade point.
The perfect 3P blockade point for the coherent driving
appears on F/κ = 4.37, instead, g(4)(0) ≃ 0.197 and
N ≃ 0.766. The nP drive approach has a larger g(4)(0)
and also a larger N than the coherent driving approach
for the perfect blockade point.

We conclude that the nP drive triggers nP blockade
better than the coherent driving. The difference between
the two cases (nP drive versus coherent driving) lies
in the efficiency for exciting n photons, this can be
understood using a perturbation theory approach. The
nP drive resonantly drives the nth-excitation manifold:
it requires just one action of the drive to pass from
the vacuum to a state with n-photons. As such, even
a relatively weak drive can accomplish this task. On
the contrary, for the coherent driving, the drive has to
act n times to bring the photon from the vacuum to
the state with n photons. This is a process of order n
passing through many non-resonant Hamitlonian states.
As such, (i) it requires a much stronger drive to produce a
comparable number of excitations; (ii) it causes a higher
probability of exciting other undesired states other than
|n〉.

V. TWO-COUPLED KERR-NONLINEAR

RESONATORS

Two coupled cavities with Kerr nonlinearity have been
considered to study 1P blockade [31]. Here, we label the
two cavities as a and b. The Hamiltonian in the frame
rotating at the drive frequency is

Ĥ =Ĥ0 + Ĥd = Ĥ0 + λ(â†n + ân),

Ĥ0 =∆(â†â+ b̂†b̂) + J(â†b̂+ b̂†â)

+ U(â†â†ââ+ b̂†b̂†b̂b̂),

(19)

where â (b̂) is the photon annihilation operator for the
cavity a (b) with frequency ωa (ωb),

∆ = ωa − ωp/n = ωb − ωp/n, (20)

J is the coupling strength of the two cavities, U is the
Kerr nonlinear strength, and λ is the nP drive strength.

Since the total number of photons is conserved by Ĥ0

in Eq. (19), we can deduce that there are kn = n+1 states
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in Eq. (3). In this case, we cannot analytically determine
all the eigenfrequencies {ωj

n} for all n, but the case of
n = 2 can still be analytically solved. We now focus on
the n=2 subspace, and to diagonalize it, we project the
Hamiltonian onto the two-photon states |20〉, |11〉, and
|02〉, where |αβ〉 ≡ |α〉 ⊗ |β〉 is a Fock state with α (β)
photons in the cavity a (b). In the 2-photon subspace,
Ĥ0 is expressed as

Ĥ2 =





2ωa + 2U
√
2J 0√

2J 2ωa

√
2J

0
√
2J 2ωa + 2U



 . (21)

The three eigenfrequencies are

ω1,3
2 =2ωa + U ∓

√

4J2 + U2,

ω2
2 =2(U + ωa).

(22)

The corresponding unnormalized eigenstates are

|ψ1,3
2 〉 =|20〉 − [

√
2U ∓

√

2(4J2 + U2)]/(2J)|11〉+ |02〉,
|ψ2

2〉 =− |20〉+ |02〉.
(23)

The energy-level diagram is shown in Fig. 4(a).
The conditions for 2P blockade, obtained from Eq. (4),

(a)

00

1
1y

2
1y

1
2y

2
2y

3
2y

U

U2

224 UJ +

aw

aw

J2

pw

pw

Figure 4. (a) Energy spectrum for two coupled cavities
with Kerr nonlinearity. The blue arrows are half the distance
of ω1

2 and ω3
2 , which are calculated by ω1

2 and ω3
2 . (b, c)

Logarithmic plot of g(2)(0) and g(3)(0) as a function of ∆/κ
for (b) the cavity a and (c) the cavity b, respectively. In (b,
c), the parameters are U/κ = 10, J/κ = 5, and λ/κ = 0.5.

are satisfied if

∆ =− U,

∆ =
−U ±

√
4J2 + U2

2
.

(24)

Under these resonance conditions, 2P blockade can
be triggered via the resonant transitions |00〉 →
{|ψ2

2〉, |ψ1,3
2 〉}. The two cavities occupy the two-photon

states |20〉 and |02〉, which ensures that 2P blockade
is simultaneously realized in the two cavities when the
conditions in Eq. (24) are satisfied.

The numerical study of 2P blockade is the same as
before. In Fig. 4(b, c), we plot g(2)(0) and g(3)(0)
as a function of ∆/κ, for the cavity a and the cavity
b, respectively. The results indicate that 2P blockade
occurs for ∆/κ = −12.7, ∆/κ = −10, and ∆/κ = 2.07,
which are predicted by the three 2P blockade conditions
given in Eq. (24). Thus, it is seen that 2P blockade is
simultaneously realized in both cavities due to the feature
of the system and the nP drive.

In Fig. 5, we compare the 2P drive case with the
coherent drive case by showing g(2)(0) and g(3)(0) as
a function of λ/κ (F/κ) for the three blockade points
shown in Fig. 4(b, c). We focus on the undriven cavity
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Figure 5. Logarithmic plot of the correlation functions g(2)(0),

g(3)(0), and the occupation N of the cavity b as a function of
λ/κ (F/κ) for U/κ = 10 and J/κ = 5. The column on the
left corresponds to the 3P driving strength λ/κ, and that on
the right corresponds to the coherent driving strength F/κ.
(a, a’) ∆/κ = −12.1. (b, b’) ∆/κ = −10. (c, c’) ∆/κ = 2.07.

b, where g(3)(0) is smaller than that of the cavity a. The
blockade regions are shown between the green vertical
lines. Similarly to the single Kerr-nonlinear resonator
case, the effect of the drive leads to two different blockade
regions. Again, the 2P drive approach shows a better
3-photon antibunching property than the coherent drive
approach.

Finally, we also look for the perfect blockade point
defined in the previous section. As opposed to the
scheme of the single Kerr-nonlinear resonator in Sec. IV,
g3(0) is not a monotone function when ∆/κ = −12.7
and ∆/κ = −10 as shown in Fig. 5(a) and (b) for
the 2P drive case. And we can only find the optimal
blockade point, which corresponds to a minimal g3(0).
For ∆/κ = 2.07, instead, the correlation function g3(0)
monotone decreasing and the occupation N monotone
increasing shown in Fig. 5(c, c’). A perfect 2P blockade

point with 2P drive appears on λ/κ = 0.525, where
g(3)(0) ≃ 0.0045 and N = 0.0725. For the coherent
driving, we find g(3)(0) ≃ 0.0094 and N ≃ 0.0387 for
F/κ = 0.62. Thus, the 2P drive approach has a stronger
3-photon antibunching and a larger occupation on this
perfect blockade point.

VI. CONCLUSIONS

We have proposed that n-photon blockade can
be realized in a nonlinear cavity with a n-photon
parametric drive. The validity of this proposal has been
confirmed by three examples, i.e., n-photon blockade in
an atom-cavity system, in a single-mode Kerr nonlinear
device, and in a two-coupled Kerr-nonlinear resonators.
By solving the master equation in the steady-state
limit and computing the correlation functions g(n)(0)
and g(n+1)(0), we have shown that nP blockade can be
realized, and the optimal conditions for nP blockade
are in good agreement with the numerical simulations,
thus supporting the validity of our proposal. Although
we focused on cases where the Hamiltonian Ĥ0 can be
diagonalized analytically (and therefore the resonance
condition can be expressed as an algebraic equation
of the system parameters), the proposed procedure to
realize nP blockade with nP drive remains valid for more
complex Hamiltonian systems.
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