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We theoretically study the dynamics of an optomechanical system, consisting of a passive optical mode and

an active mechanical mode, in the PT - and broken-PT -symmetric regimes. By fully analytical treatments

for the dynamics of the average displacement and particle numbers, we reveal the phase diagram under

different conditions and the various regimes of both PT -symmetry and stability of the system. We find that

by appropriately tuning either mechanical gain or optomechanical coupling, both phase transitions of the PT -

symmetry and stability of the system can be flexibly controlled. As a result, the dynamical behaviors of the

average displacement, photons, and phonons are radically changed in different regimes. The presented physical

mechanism is general and this method can be extended to a general model of dissipative and amplified

coupled systems. Our study shows that PT -symmetric optomechanical devices can serve as a powerful tool

for the manipulation of mechanical motion, photons, and phonons.

I. INTRODUCTION

Cavity optomechanics, which explores the radiation-

pressure interaction between electromagnetic and mechanical

systems, has attracted considerable attention both theoreti-

cally and experimentally in the past decades [1–3]. Due

to optomechanical interaction, many interesting phenomena

have been shown, such as cooling of mechanical oscillators

to their quantum ground states [4–16], photon blockade [17–

25], generation and transfer of squeezed light [26–30],

measurements with a high precision within the standard

quantum limit [31–33], optomechanically induced effects

of: nonreciprocity [34–37], transparency (OMIT) [38–42],

absorption (OMIA) [43], and amplification [44, 45].

It is usually assumed in quantum mechanics that the

Hamiltonian must be Hermitian in order to ensure that their

eigenvalues are real and that the time evolution operator is

unitary. However, for parity-time (PT )-symmetry quantum

mechanics [46–48], the effective Hamiltonian of a quantum

system can be non-Hermitian, which is useful to describe

a quantum system interacting with its environment. Note

that this generalized approach to quantum mechanics does

not lead to any violations of no-go theorems in standard

quantum mechanics, including quantum information [49].

A phase transition from the PT -symmetric regime to

the broken-PT -symmetric regime can occur, when the

PT -symmetric condition is broken, and some eigenvalues

become complex [50, 51]. The phase transition between

the two regimes has been observed experimentally using

various gain-loss-balanced systems, such as PT -symmetric

waveguides [52, 53], active LRC circuits [54], and PT -

symmetric whispering-gallery microcavities [55].

As an emerging frontier, optical-PT -symmetric optome-

chanical systems [56–64], which are realized by coupling
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an active (gain) cavity to a passive (lossy) optomechanical

cavity, have led to various unconventional phenomena, such

as phonon lasers [56, 65, 66], PT -enhanced OMIT [67–

69], PT -induced amplification [70], and coherent perfect

absorption [71–73]. Compared to these steady-state behaviors

ofPT -symmetric systems, their dynamics can provide a more

versatile description of these systems.

So far, the dynamics of photons have been predicted

in optical-PT -symmetric systems consisting of two waveg-

uides [74] or two coupled cavities [75, 76]. Subsequently,

the dynamical behavior of the mechanical resonators has

been studied in mechanical-PT -symmetric four-mode hybrid

optomechanical systems [77]. Despite these advances, the

dynamics of a typical optomechanical system, consisting

of a passive optical mode coupled to an active mechanical

mode, in thePT - and broken-PT -symmetric regimes, and the

phase diagram under different conditions, have not yet been

revealed.

In this paper, we focus on a comparative study of the

dynamics of a typical optomechanical system, which consists

of a passive optical mode and an active mechanical mode

implemented by a mechanical gain, in the PT - and broken-

PT -symmetric regimes. Note that the mechanical gain can

be achieved by phonon lasing or by coupling the mechanical

mode to another cavity mode driven with a blue-detuned

driving field [51, 78]. In contrast to previous work [77]

investigating the dynamics of mechanical modes in four-mode

hybrid optomechanical systems, the aim here is not only to

study the dynamics of both optical and mechanical modes by

fully analytical treatments in typical optomechanical systems

which have more fundamental properties, but also to reveal in

detail the phase diagram under different conditions.

We find that by appropriately adjusting either the effective

optomechanical coupling or the mechanical gain, phase

transitions can be clearly observed. We obtain the phase

diagram under different conditions and the various regimes

of both PT -symmetry and stability of the system. Using

our exact analytical solutions of the average displacement
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and particle numbers, their dynamical behaviors in different

regimes can be understood adequately. We find that the energy

exchange between the cavity and the mechanical oscillator is

rapid (slow) for thePT (broken-PT )-symmetric regime. This

opens up the prospect to manipulate the exchange velocity of

the excitations usingPT -symmetric optomechanical systems.

Moreover, spontaneous generation of the number of

particles is discussed not only when gain compensates loss,

but also when gain is not equal to loss. Finally, we also

find that: (i) the average displacement and the average

particle numbers approach their steady-state values in the

asymptotically stable regime, (ii) they increase exponentially

in the unstable regime, and (iii) the average displacement

oscillates periodically in the finite-time stable regime, but not

asymptotically stable. Our study reveals that PT -symmetric

systems can be used for the control of mechanical motion,

photons, and phonons. Our method is universal and
can be generalized to study the related dynamics in a

general model of coupled systems (e.g., two oscillators or
waveguides) with loss and gain.

The remainder of the paper is organized as follows: In

Sec. II we obtain the master equation of the PT -symmetric-

like optomechanical system by using a linearization pro-

cedure, when the dissipation and gain rates of the system

are phenomenologically considered, and the differential

equations for the average values are obtained from the master

equation. In Sec. III, the PT -symmetry and stability of the

PT -symmetric-like optomechanical system are investigated

through a phase diagram. In Sec. IV, the dynamics of

the average displacement of the mechanical oscillator are

investigated in different regimes for the PT -symmetric-like

optomechanical system. And the dynamics of the average

particle numbers in different stability regimes for the system

are considered in Sec. V. The effect of spontaneous generation

of particles is also studied in this section. In Sec. VI,

we discuss an extension of the present method to a
general gain-loss model, and an experimental realization

of our system. Conclusions are presented in Sec. VII. Two

Appendixes include the detailed calculations.

II. MODEL AND EQUATIONS OF MOTION OF AVERAGE

VALUES

As schematically shown in Fig. 1, the considered

optomechanical system consists of a passive cavity (with

a loss rate κ) and an active mechanical oscillator (with a

mechanical gain rate γ), which is called the PT -symmetric-

like optomechanical system [51]. The cavity is driven by a

control field with amplitude ΩL =
√

PLκ/~ωL, in which the

input power and the frequency of the control field are given

by PL and ωL, respectively.

The Hamiltonian of the system in the rotating reference

frame at the frequency ωL of the control field reads

Ĥ = ~∆câ†â + ~ωmb̂†b̂ − ~gâ†â(b̂ + b̂†) + i~ΩL(â† − â), (1)

where â (â†) and b̂ (b̂†) are the annihilation (creation)

operators of the cavity field and the mechanical oscillator,
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FIG. 1. Schematic of the PT -symmetric-like optomechanical

system, which consists of a passive cavity (with photon operator a,

loss rate κ, and resonant frequency ωc), and an active mechanical

oscillator (with phonon operator b, mechanical gain strength γ, and

resonant frequency ωm). The cavity is driven by a control field with

frequency ωL and amplitude ΩL.

respectively;ωm is the resonance frequency of the mechanical

oscillator, and g is the single-photon optomechanical coupling

strength. Moreover, ∆c = ωc −ωL is the detuning between the

cavity field of frequency ωc and the control field of frequency

ωL.

Due to the fact that the control field driving the cavity

is strong, the Hamiltonian can be linearized by neglecting

higher-order terms. Under the rotating-wave approximation

(RWA), the linearized Hamiltonian is given by

Ĥlin = ~∆â†â + ~ωmb̂†b̂ − ~G(â†b̂ + âb̂†), (2)

where ∆ = ∆c−g(βs+β
∗
s) is the effective detuning between the

cavity field and the control field, and G = gαs is the effective

optomechanical strength, and αs and βs are the steady-state

solutions of the system given by

αs =
ΩL

i∆ + κ
and βs =

igα∗sαs

iωm − γ
. (3)

The dynamics of the system, including the loss of cavity

field and the gain of the mechanical resonator, can be
described by the master equation in the Lindblad form,

which is given by

d

dt
ρ =

1

i~
[Hlin, ρ] + κ(2aρa† − a†aρ − ρa†a)

+ γ(2b†ρb − bb†ρ − ρbb†). (4)

The equations of motion of the mean values of an operator

ô can be calculated from the master equation in Eq. (4) via
d
dt
〈ô〉 = tr(ô ˙̂ρ). Combining the commutation relations of

operators [î, ĵ†] = δi, j, [î, ĵ] = 0, and [î†, ĵ†] = 0 (î, ĵ = â, b̂),

the equations of motion of 〈â〉 and 〈b̂〉 can be obtained as

d

dt
〈â〉 = −i∆〈â〉 + iG〈b̂〉 − κ〈â〉, (5a)

d

dt
〈b̂〉 = −iωm〈b̂〉 + iG〈â〉 + γ〈b̂〉. (5b)
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Correspondingly, the equations of motion of forms 〈î† ĵ〉 are

given by

d

dt
〈â†b̂〉 = (i∆ − iωm − κ + γ)〈â†b̂〉 + iG(〈â†â〉 − 〈b̂†b̂〉),

(6a)

d

dt
〈â†â〉 = −2κ〈â†â〉 + iG〈â†b̂〉 − iG〈âb̂†〉, (6b)

d

dt
〈b̂†b̂〉 = 2γ〈b̂†b̂〉 − iG〈â†b̂〉 + iG〈âb̂†〉 + 2γ. (6c)

III. PT -SYMMETRY AND STABILITY

A. PT -symmetry

Taking the cavity loss rate κ and the mechanical gain

strength γ into consideration, the effective Hamiltonian is

obtained as

Ĥeff = ~(∆ − iκ)â†â + ~(ωm + iγ)b̂†b̂ − ~G(â†b̂ + âb̂†). (7)

The properties of the space reflection (parity) operator P and

the time reversal operatorT are demonstrated as follows [46–

48]. The action of the parity operatorP on Ĥeff is given by[55,

58]

P : â↔ −b̂, â† ↔ −b̂†, (8)

and the action of the time-reversal operator T on Ĥeff is

T : â↔ â, â† ↔ â†, b̂↔ b̂, b̂† ↔ b̂†, i↔ −i. (9)

After the combined actions of the parity and time-reversal

operations, i.e., the PT operations, the effective Hamiltonian

in Eq. (7) becomes

ĤPTeff = PT Ĥeff(PT )−1

= ~(∆ + iκ)b̂†b̂ + ~(ωm − iγ)â†â − ~G(â†b̂ + âb̂†).
(10)

From Eq. (10), we can obtain Heff = HPT
eff

if and only if the

relations ∆ = ωm = ω1 and κ = γ are satisfied. In fact,

the PT -symmetry can be generalized to the case where the

cavity decay rate κ is not exactly equal to the mechanical gain

strength γ. Therefore, in the latter case, only the relation

∆ = ωm = ω1 is always satisfied. The Hamiltonian of Eq. (7)

is rewritten as

Ĥ = ~
(

â† b̂†
)

(

ω1 − iκ −G

−G ω1 + iγ

) (

â

b̂

)

. (11)

By diagonalizing the matrix in Eq. (11), the eigenfrequencies

of the supermodes Â± =
(

â ± b̂
)

can be obtained as

ω± = ω1 −
i

2
(κ − γ) ±

√

G2 − 1

4
(κ + γ)2. (12)

When G > (κ + γ)/2, the eigenfrequencies have two

different real parts and an identical imaginary part, the system

possesses the PT -symmetry with two different frequencies

and an identical linewidth, which is described by the regimes

(2) and (4) in the phase diagram shown in Fig. 2(a).

If the parameters satisfy the relation G < (κ + γ)/2, the

eigenfrequencies have two different imaginary parts and an

identical real part. The frequencies of the supermodes are

the same, while their linewidths are different. Then the PT -

symmetry of the system is broken. The broken-PT -symmetry

corresponds to the regimes (1) and (3) in the phase diagram

shown in Fig. 2(a).

The phase transition of the PT -symmetry takes place

around the border point G = (κ + γ)/2, which is termed

as an exceptional point (EP) [79–84] as shown by the red

line and blue point in the phase diagram. Note that this is a

semiclassical EP, which corresponds to a spectral degeneracy

of a non-Hermitian Hamiltonian. The prediction of a quantum

EP would require the inclusion of quantum noise by finding

degeneracies of, e.g., a Liouvillian, as proposed in Refs. [79,

82, 85].

B. Stability

The linearized equations of motion can be compactly

written in a matrix form as

˙̂u = Aû, (13)

where û is the column vector of ûT = (â, â†, b̂, b̂†), and the

square matrix A is

A =





























−iω1 − κ 0 iG 0

0 iω1 − κ 0 −iG

iG 0 −iω1 + γ 0

0 −iG 0 iω1 + γ





























. (14)

The eigenvalues λ of the matrix A are

λτ,s =
1

2

[

γ − κ + τ
√

(γ + κ)2 − 4G2 + is2ω1

]

, (15)

where τ = ±1 and s = ±1.

The stability of the system can be discussed in the following

cases [86, 87]:

(i) If the parameters satisfy the relations f < 0 ( f = G2 − γκ)
or γ > κ, some eigenvalues of A have a positive real part, so

the system is unstable. This corresponds to the regimes (1)

and (2) in the phase diagram in Fig. 2(a).

(ii) When f > 0 and γ < κ, all of the eigenvalues of A have

a negative real part, so the system lies in the asymptotically

stable regime. This situation is described by the regimes (3)

and (4) in Fig. 2(a).

(iii) When f = 0 and γ < κ, the real parts of the two

eigenvalues of A are zero and those of the other two are

negative; so the system is stable, and is described by the black

dashed curve (5) in Fig. 2(a).

(iv) When f > 0 and γ = κ, we find λτ,s = τ
√
κ2 −G2 + isω1.

In this case, all the eigenvalues of A have a vanishing real

part and the corresponding four eigenvectors are linearly



4

0
G/

21
0

1

2

(1) US-B (2) US- !

(3) AS-B ! (4) AS- !

κ

Broken !  (B !)
symmetry

[G <(γ+κ )/2]

 !-symmetry

[G>(γ+κ)/2]

Unstable

(γ>κ or f < 0)

Asymptotically 

stable
(γ< κ and )

(1) US-B !

(3)

 

AS-B !

(2) US- !

(4) AS- !

Stable
(γ=κ or )

 Exceptional

[G=(γ+κ)/2]

Black dashed Black solid
Blue point

 curve line

f >0

f =0

Red dashed
line

Red solid
line

(a)

(b)

Phase diagram

 !

 -point

(5)  S-B ! (6)  S- !

Coupling strength 

G
ai

n
 s

tr
en

g
th

 γ
/κ

FIG. 2. (a) Phase diagram under different conditions of the

mechanical gain rate γ and the effective optomechanical strength

G = gαs , in units of the cavity decay rate κ. There are two borders.

The red line shows the border between the PT -symmetric phase

(PT , on the right hand) and the broken-PT -symmetric phase (BPT ,

on the left hand). The black dashed curve and black solid line are

the border between the asymptotically stable (AS, below the border)

phase and the unstable (US, above the border) phase. (b) Various

regimes of the PT -symmetry and stability of the system. The new

parameter f in the table is defined as f ≡ G2 − γκ.

independent; thus, the system is in the finite-time stable

regime, but not asymptotically stable, and shown by the black

solid curve (6) in Fig. 2(a).

(v) When f = 0 and γ = κ, the real parts of the eigenvalues

of A are zero and A has only two linearly independent

eigenvectors. In this case the system is unstable. This

corresponds to the blue point in Fig. 2(a).

Note that PT -symmetry and stability of the system

can be obtained by analyzing either the eigensystem
of the Hamiltonian [given by Eqs. (11) and (12)] or

the coefficient matrix A [given by Eq. (14)] of the
linearized Langevin equations. For a non-Hermitian

Hamiltonian, its eigenvalues are real or imaginary, which
can describe unbroken-PT symmetry or broken-PT
symmetry. The boundary between the unbroken and
broken-PT symmetries corresponds to the exceptional

point. On the other hand, based on the eigenvalues of
the Hamiltonian, the main stability properties can be

demonstrated. For example, when the eigenvalue of the
Hamiltonian is complex, the system will be exponentially

amplified. For the real eigenvalue, the system takes non-
decaying oscillations. However, the effects of the noise

source and the nonlinearity will be not demonstrated by
analyzing the eigenvalues of the Hamiltonian. Thus, we

here discuss in detail the stability conditions, based on the
coefficient matrix A of the linearized Langevin equations,

via the Routh-Hurwitz criterion [86, 87].

IV. DYNAMICS OF THE AVERAGE DISPLACEMENT OF

THE MECHANICAL OSCILLATOR

Now, we consider the dynamics of the average displace-

ment of the mechanical oscillator. Here, the initial state of

the system is assumed to be a coherent state |α〉|β〉, where

the amplitudes of the coherent state are given, respectively,

by α0 and β0 with θ1 and θ2 being the initial phases. The

average value of the mechanical displacement, x = 〈x̂〉 =√
~/2mω1

(

〈b̂〉 + 〈b̂〉∗
)

, can be calculated by solving Eq. (5b)

in the case of ∆ = ωm = ω1 as

x =
1

Ω

√

~

2mω1

exp

[

1

2
(γ − κ − 2iω1) t

]

[

βΩ cosh

(

Ω

2
t

)

+ (βγ + βκ + 2iGα) sinh

(

Ω

2
t

)

]

+ c.c., (16)

where Ω =
√

(γ + κ)2 − 4G2, which is an imaginary number

in the PT -symmetric regime [G > (κ + γ)/2], and the

terms cosh
(

Ω
2

t
)

and sinh
(

Ω
2

t
)

are transformed into the form

of a sinusoidal time function; while Ω is a real number in

the broken-PT -symmetric regime [G < (κ + γ)/2] and the

expression can remain the same.

Based on the expression shown in Eq. (16), we investigate

the dynamics of the mechanical displacement by plotting

the time evolution of the average value of the displacement

operator. First, we consider the dynamics of the average

displacement in the PT -symmetric regime. In Fig. 3(a),

we set the parameters γ = 0.6κ and G = 1.2κ which lead

the system to the asymptotically stable regime (4). We can

see here that the oscillations of the displacement collapses

and revivals with a decaying amplitude and asymptotically

approach zero (at the equilibrium position) for a certain time.

When the values of the parameters are set as γ = κ and G =

1.5κ, as shown in Fig. 3(b), the system lies in the finite-time

stable regime (6), but not asymptotically stable. It is shown

here that the oscillations of the average displacement exhibit

collapses and revivals periodically. The dynamical behavior

of the average displacement in the unstable regime (2) are

displayed in Fig. 3(c) with the parameters given by γ = 1.8κ

and G = 2.1κ. It is shown that the average displacement of the

mechanical oscillator oscillates with periodic collapses and

revivals with increasing amplitude.

Second, we consider the dynamical evolution of the

average displacement in the broken-PT -symmetric regime.

In Fig. 3(d), the parameters are set as γ = 0.6κ and G = 0.798κ

which enables the system to be in the asymptotically stable

regime (3). It is shown that the oscillations of the average

displacement increases with time and then decreases to the

equilibrium value 0. When the parameters are given by γ =

0.6κ and G =
√

0.6κ, as shown in Fig. 3(e), the system is in the
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FIG. 3. Dynamics of the average displacement in the PT -symmetric (first row) and broken-PT -symmetric (second row) regimes. Examples

for different stable regimes shown in Figs. 2(b) and 2(c): (a) and (d) correspond to the asymptotically stable regime, (b) and (e) correspond to

the finite-time stable regime, but not asymptotically stable, (c) and (f) correspond to the unstable regime. The gain rate γ of the mechanical

oscillator and the effective optomechanical coupling strength G are given by: (a) γ = 0.6κ and G = 1.2κ, (b) γ = κ and G = 1.5κ, (c) γ = 1.8κ

and G = 2.1κ, (d) γ = 0.6κ and G = 0.798κ, (e) γ = 0.6κ and G =
√

0.6κ, (f) γ = 1.8κ and G = 1.2κ. Other parameters are set as: κ = 6.45MHz,

m = 5 × 10−11kg, ω1 = 23.4 × 2πMHz [55, 58], α = 2 exp(iπ/6), and β = 2 exp(iπ/3).

finite-time stable regime (5), the oscillation amplitude of the

average displacement increases with time and then approaches

the constant value,

As =
2

κ − γ

√

~

2mω1

[

κ2|β|2 + κγ|α|2 − iκ
√
κγ(α∗β − β∗α)

]
1
2
.

(17)

In Fig. 3(f), we consider the dynamical evolution of

the average displacement in the unstable regime (1) with

parameter γ = 1.8κ and G = 1.2κ. In this regime (f), the

average displacement oscillates with an increasing amplitude

with time.

By comparing the dynamics in the PT -symmetric regime,

shown in Figs. 3(a), 3(b), and 3(c) with those in the broken-

PT -symmetric regime, shown in Figs. 3(d), 3(e), and 3(f), we

can see that the periodic collapses and revivals appear in the

former case, while does not exist in the latter case. In the three

stable regimes, the different types of the dynamical behavior

exhibit amplitude oscillations with time. Specifically, the

oscillation amplitude of the average displacement x decreases

to 0 as t → ∞ when the system is asymptotically stable

[regimes (3) and (4)]. However, the oscillation amplitude

exponentially grows in the unstable regimes (1) and (2).

While it periodically oscillates, with a constant amplitude,

when the system is finite-time stable, but not asymptotically

stable [regimes (5) and (6)]. These results open up an avenue

to the manipulation of the mechanical motion by utilizing

PT -symmetric optomechanical devices.

V. DYNAMICS OF THE AVERAGE PARTICLE NUMBERS

In the following, we discuss the dynamics of the average

particle numbers in terms of the photon number na = 〈â†â〉
and the phonon number nb = 〈b̂†b̂〉 by solving Eq. (6c)

evolving from a coherent state |α〉|β〉 under the condition

∆ = ωm = ω1. In order to understand the source of the

generated particles more clearly, we divide the total average

particle numbers ni (i = a, b) into two parts

ni = nst
i + n

sp

i
, (18)

where nst
i

is the number of particles generated by stimulated

emission, which depends on the initial values, and quantum

noises are not considered. This part can be obtained from
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FIG. 4. The dynamics of the photon numbers (solid red curves) and phonon numbers (dashed blue curves) for the PT -symmetric regime (first

row with G = 1.5κ) and the broken-PT -symmetric regime (second row with G = 0.8) in the case of γ = κ. The total average particle numbers

na and nb are given by (a) and (d); the numbers of particles generated by stimulated generation, nst
a and nst

b
, are given by (b) and (e); and those

generated by spontaneous emission, n
sp
a and n

sp

b
, are given by (c) and (f), respectively. Other parameters are same as Fig. 3.

a semiclassical theory. The other term n
sp

i
is the number

of particles generated by spontaneous emission, which is

induced by quantum noise [74, 77]. We shall investigate the

dynamics in the two cases γ = κ and γ , κ, in which the

expressions of the average numbers are different.

A. Dynamics of the average particle numbers for γ = κ

First, we consider the dynamics of the average numbers of

particles, na and nb, in the case of γ = κ. The expressions

of the photon numbers generated by stimulated emission, nst
i

,

and spontaneous emission, n
sp

i
, are given by

nst
a =

1

4Ω2
1

[

m1 + 2o1C1 + 2o2S 1)
]

,

nst
b =

1

4Ω2
1

[

m1 + 2o3C1 + 2o4S 1

]

,

n
sp
a =

1

4Ω2
1

[

− 4G2κt + 2
κG2

Ω1

S 1

]

,

n
sp

b
=

1

4Ω2
1

[

−4G2κt + 4κ2 (C1 − 1) + 2

(

κΩ1 +
κ3

Ω1

)

S 1

]

,(19)

where C1 = cosh (2Ω1t) and S 1 = sinh (2Ω1t), with Ω1 =√
κ2 −G2; Ω1 is imaginary in the PT -symmetric regime,

and the terms C1 and S 1 transform into the form of a

sinusoidal time function, while Ω1 is real in the broken-PT -

symmetric regime and the expression remains the same. Other

coefficients are as follows,
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FIG. 5. Dynamics of photons (solid red curves) and phonons (dashed blue curves); (a,d,g) shows the total average particle numbers na and nb;

(b,e,h) those generated by stimulated emission, nst
a and nst

b
; and (c,f,i) these photons and phonons generated by spontaneous emission, n

sp
a and

n
sp

b
, when γ < κ. Here we assumed different values of the gain rate γ and the effective optomechanical coupling strength G: (a,b,c) γ = 0.6κ

and G = 1.2κ, (d,e,f) γ = 0.6κ and G = 0.798κ, (g,h,i) γ = 0.6κ and G = 0.6κ. Other parameters are same as Fig. 3.

m1 = 2iκδ − 2G2(|α|2 + |β|2),

o1 = (κ2 + Ω2
1)|α|2 +G2|β|2 − iκδ,

o2 = iΩ1δ − 2κΩ1|α|2,
o3 = (κ2 + Ω2

1)|β|2 +G2|α|2 − iκδ,

o4 = −iΩ1δ + 2κΩ1|β|2, (20)

where δ = G (α∗β − β∗α).

In the case of γ = κ, the system remains in the two regimes:

(i) the finite-time stable regime, but not asymptotically stable

and the PT -symmetric regime, when the parameters satisfy

the relation of G > (κ + γ)/2 [the regime (6)]; and (ii) the

unstable and broken-PT -symmetric regimes for G < (κ+γ)/2

[the regime (5)].

In the regime (6), it is shown in Figs. 4(a), 4(b),

and 4(c) that the photon numbers (red solid curve) and

phonons (blue dashed curve) oscillate periodically with a

monotonously increasing equilibrium value. This is quite

different from the dynamics around the constant value in the

semiclassical theory (correspond to stimulated generation),

and the phenomenon of the monotonically increasing photon

and phonon numbers generated by spontaneous generation.

The average particle numbers from spontaneous generation

dominates the total generation of the average particle numbers

after a long-enough time.

From Figs. 4(d), 4(e), and 4(f), it is seen that the average
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FIG. 6. Dynamics of photons (red curves) and phonons (blue curves) for the PT -symmetric (solid curves) and broken-PT -symmetric (dashed

curves) regimes in the case of γ > κ. (a) The total average particle numbers na and nb, (b) the particle numbers generated by stimulated

emission, nst
a and nst

b
, and (c) those generated by spontaneous emission, n

sp
a and n

sp

b
. Here, the PT -symmetric case is shown for γ = 1.8κ and

G = 2.1κ, and the broken-PT -symmetric case is shown for γ = 1.8κ and G = 1.2κ. Other parameters are same as in Fig. 3.

particle numbers increase exponentially with time but without

oscillations in the regime (1). Although the average particle

numbers from spontaneous generation play an important role

in the total number of particles, it does not dominate the

total generation of the average particle numbers. We can see

from Eq. (19) that the contribution of spontaneous emission

decreases as the initial value increases in this case. Our

findings indicate that PT -symmetric optomechanical devices

can serve as a powerful tool for controlling photons and

phonons.

Compared with the previous work [74] focused on the

dynamics of photons in PT -symmetric optical systems,
our work does not only study the dynamics of both

photons and phonons, but also reveals in detail the
phase diagram shown in Fig. 2, which has nine different

regimes depending on the gamma-to-loss ratio and the
coupling strength. We show in detail (i) the dynamics of

particles (i.e., photons and phonons) generated by both
stimulated generation and spontaneous emission; and (ii)

the dynamics of the total average particle numbers. Note
that spontaneous generation of both photons and phonons
is discussed both in the gain-loss balanced (see Fig. 4) and

unbalanced (see Figs. 5 and 6) regimes.

B. Dynamics of the average particle numbers for γ , κ

Now, we investigate the dynamical behavior of the average

particle numbers, na and nb, when γ , κ. The expressions of

the average particle numbers are given by

nst
a =

Et

dΩ2
(m2 + 2l1C + 2l2S ) ,

nst
b =

Et

dΩ2
(m2 + 2l3C + 2l4S ) ,

n
sp
a =

4γG2

dΩ2
Et

[

(γ − κ)2C −Ω(γ − κ)S − 4 f
]

− 4γG2

d
,

n
sp

b
=

4γ(γ − κ)G2

dΩ2
Et

[ (

γ − κ − κΩ
2

G2

)

C − 4 f

(γ − κ)

−κ
2 − f

G2
ΩS

]

− 4

d
γ(κ2 + f ), (21)

where Et = exp[(γ − κ)t], C = cosh (Ωt), and S = sinh (Ωt).

Similarly to the former case, Ω is imaginary in the PT -

symmetric regime, and the terms C and S transform into the

form of sinusoidal time function; whileΩ is real in the broken-

PT -symmetric regime and the expression remains the same.

Other coefficients are:

d = 4(γ − κ) f ,

m2 = 4 f
[

i(γ2 − κ2)δ + 2G2(κ − γ)(|α|2 + |β|2)
]

,

l1 = 2(γ − κ) f
[

(Ω2 + 2G2)|α|2 + 2G2|β|2 − i(κ + γ)δ
]

,

l2 = 2Ω(γ − κ) f
[

iδ − (κ + γ)|α|2
]

,

l3 = 2(γ − κ) f
[

2G2|α|2 + (Ω2 + 2G2)|β|2 − i(κ + γ)δ
]

,

l4 = 2Ω(γ − κ) f [(κ + γ)|β|2 − iδ]. (22)

When γ < κ and f > 0, the system lies in the asymptotically

stable regime. Meantime, the parameters satisfy the relation

G > (γ + κ)/2, the system is PT -symmetric corresponding

to the regime (4), which is illustrated by Figs. 5(a), 5(b),

and 5(c). These figures shows that the total average

particle numbers oscillate in different phase regimes in a

certain interval after which it asymptotically approaches



9

an equilibrium value. The oscillation behavior is mainly

contributed by the average particle numbers of stimulated

generation, while the equilibrium values are only determined

by spontaneous generation.

On the other hand, if the parameters satisfy the relation G <

(γ + κ)/2, the system is in the broken-PT -symmetric regime

[the regime (3)], which is illustrated by Figs. 5(d), 5(e),

and 5(f). Here, the average particle numbers of stimulated

generation starts to increase with time, and then decreases to

zero; while the average particle numbers due to spontaneous

generation increase with time and reach an equilibrium value.

When f < 0 and G < (γ + κ)/2, the system is in the

unstable and broken-PT -symmetric regimes [the regime (1)],

which are shown in Figs. 5(g), 5(h), and 5(i). The average

particle numbers increase exponentially with time, and the

spontaneous generation plays an important role only in the

total average particle numbers. From Eq. (21) we find that

the contribution from spontaneous emission decreases with

the initial values.

When the parameters satisfy the relation γ > κ, the

system is always unstable, the average particle numbers na

and nb have periodic oscillation and their amplitudes increase

exponentially with time in the PT -symmetric regime (2),

while the oscillation disappears in the broken-PT -symmetric

regime (1), which are shown in Fig. 6, respectively. The effect

of spontaneous generation on the average particle numbers

also decreases with the initial values when γ > κ.

We also consider the steady behavior of the average particle

numbers na and nb, which are given by

na,s =
G2γ

(κ − γ) f
, (23a)

nb,s = na,s +
κγ

f
. (23b)

From Eqs. (23a) and (23b), the equilibrium values na,s and

nb,s are independent of their initial values. We consider the

variations of the steady values with the normalized coupling

strength G/κ and normalized gain strength γ/κ, which are

shown in Figs. 7(a) and 7(b). It is seen that the steady-state

values na,s and nb,s decrease with G and approach γ/(κ − γ),
while the na,s and nb,s increase with γ/κ.

VI. DISCUSSIONS

Finally, we here discuss a generalization of the present
study to a general gain-loss model. Based on the fact that

the linearized Hamiltonian in this work is not unique to
cavity optomechanics, we can extend the present method

to a general model for gain-loss coupled systems, e.g., two
oscillators, waveguides, or cavities. This is because the

related dynamics of a general coupled two-mode system
has flexibility and scalability. Recently, the dynamics in

the PT -symmetric regime has been studied in coupled
cavities [55, 75, 76, 88], two coupled fibre loops [89], two

coupled waveguides [74, 90, 91], in which the discussed
mechanism can also be observed.
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FIG. 7. (a) Equilibrium average values na,s (solid red curves) and nb,s

(dashed blue curves) with respect to the dimensionless normalized

coupling strength G/κ when γ = 0.6κ, (b) Equilibrium values of

na,s (solid red curve) and nb,s (dashed blue curve) with respect to the

dimensionless normalized gain strength γ/κ when G = 0.798κ.

Moreover, we have added two tables to show several

means of realizing the mechanical gain with different value
scales. It shows that the PT -symmetry optomechanics has

a flexible gain, which can be generalized to an arbitrary
coupled two-oscillator/waveguide system.

Let us also briefly discuss an experimental realization
of our system. In the optical domain, a generic

optomechanical system consists of a laser-driven optical
cavity and a vibrating-end mirror [1–3]. In the microwave

domain, it consists of a vibrating capacitor, where a
microwave drive is applied along a transmission line

that is inductively coupled to the LC circuit representing
a microwave resonator [1–3]. At present, typical

cavity optomechanical systems have been experimentally
implemented by employing cantilevers, micromirrors,

microcavities, nanomembranes, and macroscopic mirror
modes [1, 2]. For example, in the membrane-in-the-

middle setup, a mechanical membrane is inserted between
two fixed cavity mirrors, and this mechanical membrane

can be coupled to the cavity mode via radiation-pressure
interaction [2]. In the Fabry-Pérot cavity optomechanical
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configurations, composed of a movable mirror and a fixed
mirror, the movable mirror is coupled to a single optical

mode through an optomechanical coupling [2]. Currently,
the active mechanical resonator can be implemented by a

mechanical gain, which can be realized by using phonon
lasing, a blue-detuned optical pump, or a direct driving of

the mechanical mode [51, 78]. In addition, two tables are
presented to show in detail various methods for realizing

the mechanical gain, as shown in the two tables.

Method Mechanical gain γeff Value

Coupled with

a blue-detuned

phonon cavity[92]

4|Gph |2
γm

∼ 10Hz

Phonon lasing

with NV-centers[93]

4λ2
⊥ΓΩ

2

(Γ2+4λ2
⊥r)

2 ∼ 103Hz

Adiabatically eliminating

a blue-detuned cavity[77]

4G2

κ

16ω2
m

κ2+16ω2
m
+ γm ∼ 105Hz

Photoelastic scatted

by two-optical

modes[51, 94]

G2

κa
∼ 106Hz

The symbols in the above table are defined in the following

table:

Symbol Parameter

κ Decay rate of the optical cavity

γm Mechanical damping rate

γeff Effective mechanical gain

κa Average decay rate of the optical modes

Gph Parametric intermodal coupling

G Effective optomechanical coupling

Γ Radiative decay of the NV defect

Ω Rabi frequency

λ⊥ Coupling between the vibrational modes

ωm Mechanical frequency

r Amplitude of the coherent state

VII. CONCLUSIONS

In summary, we have theoretically investigated the

dynamics of the average numbers of particles (i.e., photons

and phonons) and the average value of the displacement

of the mechanical resonator for a PT -symmetric-like

optomechanical system. The analytical expressions of these

quantities were obtained from the master equation in the full

quantum regime, including quantum noise. The dynamics of

the number of particles and displacement in different regimes

have shown the following characteristics of each regime:

(i) In the PT -symmetric regime, the energy is exchanged

rapidly between the cavity and the mechanical oscillator.

Moreover, the periodic collapse and revival of the average

displacement and the oscillations of the average particle

numbers were obtained. In contrast to this regime, all of

the studied averages disappear in the broken-PT -symmetric

regime.

(ii) In the asymptotically stable regime, the average

displacement and the average particle numbers reach their

equilibrium values after some evolution time. The average

displacement oscillates periodically around zero, and the

average particle numbers also oscillate with a monotonously

increasing equilibrium value in the finite-time stable regimes

(5) and (6), but not asymptotically stable. In the unstable

regime, both average particle numbers and displacement

increase exponentially.

(iii) Spontaneous emission does not only play an important

role for the case of γ = κ, but also for the case of γ , κ. And

this emission dominates the total generation of the average

particle numbers after a long enough time in the finite-time

stable regime regime even in the asymptotic limit, while

not in the unstable regime. Otherwise, the contribution of

spontaneous emission decreases with the initial values.

These results indicate that PT -assisted optomechanical

devices can provide a versatile platform to manipulate the

mechanical motion, photons, and phonons.

Appendix A: Derivation from Eq. (1) to Eq. (2)

In this Appendix, we show in detail how to obtain Eq. (2)
from Eq. (1). Based on Eq. (1), the equations of motion of

the system, which include the gain and loss terms, are

dâ

dt
= − i∆câ + igâ

(

b̂ + b̂†
)

+ ΩL − κâ, (A1)

db̂

dt
= − iωmb̂ + igâ†â + γb̂. (A2)

Here, we consider the strong-driving regime for the
cavity, so that our physical model can be simplified by

a linearization procedure. Then, we write the operators
in Eq. (A2) as the sums of the steady-state averages and

the quantum fluctuations: â = αs + δâ and b̂ = βs + δb̂.
By separating the quantum fluctuations and the classical

motion, we can obtain the classical equations of motion:

dαs

dt
= − i∆cαs + igαs

(

βs + β
∗
s

)

+ ΩL − καs, (A3)

dβs

dt
= − iωmβs + igα∗sαs + γβs. (A4)

By setting the left-hand sides of Eqs. (A3) and (A4) equal
to zero, the steady-state mean values of the dynamical

variables can be obtained as

αs =
ΩL

i∆ + κ
, βs =

igα∗sαs

iωm − γ
, (A5)

where ∆ = ∆c −g(βs+β
∗
s) is the normalized detuning of the

cavity field.

Then, the equations of motion for quantum fluctuations
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can be obtained as

d

dt
δâ = − i∆cδâ + igδâ

(

βs + β
∗
s

)

+ igas

(

δb̂ + δb̂†
)

− κδâ,
(A6)

d

dt
δb̂ = − iωmδb̂ + iga∗sδâ + igasδâ

† + γδb̂, (A7)

where the strong driving field has been considered. Thus,

the higher order terms of the fluctuation parts could have
been neglected safely. Then, using the Langevin equations:

d

dt
δâ =

1

i~

[

δâ, Ĥf

]

− κδâ, (A8)

d

dt
δb̂ =

1

i~

[

δb̂, Ĥf

]

+ γδb̂, (A9)

and applying the rotating wave approximation (RWA), we
can obtain the Hamitonian of the quantum fluctuation

parts as

Ĥf = ~∆δâ
†δâ + ~ωmδb̂

†δb̂ − ~G(δâ†δb̂ + δâδb̂†), (A10)

where G = gαs is the effective optomechanical coupling
strength. The symbol “δ” is always dropped, because we

are concerned about the fluctuation parts of system. Then,
the so-called “linearized” optomechanical Hamiltonian is

obtained from Eq. (A10) as

Ĥlin = ~∆â†â + ~ωmb̂†b̂ − ~G(â†b̂ + âb̂†). (A11)

Appendix B: More details of Eq. (7)

Here, we present more details on the derivation of

Eq. (7). When the system includes the loss of cavity field

and the mechanical gain, the Langevin equations of the
quantum fluctuation parts of the total system are:

d

dt
δâ =

1

i~

[

δâ, δĤeff

]

, (B1)

d

dt
δb̂ =

1

i~

[

δb̂, δĤeff

]

. (B2)

By combining Eqs. (A6) and (A7), and Eqs. (B1)

and Eqs. (B2), and applying the RWA, the effective
Hamitonian of the total system is obtained as

Ĥeff = ~(∆ − iκ)â†â + ~(ωm + iγ)b̂†b̂ − ~G(â†b̂ + âb̂†). (B3)

where we have dropped the symbol “δ”.
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and F. Nori, Exponentially enhanced light-matter interaction,

cooperativities, and steady-state entanglement using parametric

amplification, Phys. Rev. Lett. 120, 093601 (2018).

[31] M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab,

Approaching the quantum limit of a nanomechanical resonator,

Science 304, 74 (2004).

[32] A. A. Geraci, S. B. Papp, and J. Kitching, Short-range force

detection using optically cooled levitated microspheres, Phys.

Rev. Lett. 105, 101101 (2010).

[33] A. K. Tagantsev and S. A. Fedorov, Quantum-limited

measurements using an optical cavity with modulated intrinsic

loss, Phys. Rev. Lett. 123, 043602 (2019).

[34] W. Fu, F. J. Shu, Y. L. Zhang, C. H . Dong, C. L. Zou, and

G. C. Guo, Integrated optical circulator by stimulated Brillouin

scattering induced non-reciprocal phase shift, Opt. Express 23,

25118 (2015).

[35] S. Manipatruni, J. T. Robinson, and M. Lipson, Optical

nonreciprocity in optomechanical structures, Phys. Rev. Lett.

102, 213903 (2009).

[36] H. Mohammad and R. Peter, Optomechanically induced non-

reciprocity in microring resonators, Opt. Express 20, 7672

(2012).

[37] X. W. Xu and Y. Li, Optical nonreciprocity and optomechanical

circulator in three-mode optomechanical systems, Phys. Rev. A

91, 053854 (2015).

[38] G. S. Agarwal and S. Huang, Electromagnetically induced

transparency in mechanical effects of light, Phys. Rev. A 81,

041803(R) (2010).

[39] S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A.
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PT -symmetric circuit QED, Phys. Rev. A 97, 053846 (2018).

[62] I. I. Arkhipov, A. Miranowicz, O. Di Stefano, R. Stassi, S.
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[67] H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng,
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