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We introduce a Bayesian method for the characterization of plasmonic nanoparticles, which is
applicable to both near- and far-field problems. Designed to combine data generated from any
photon-plasmon interaction experiment with physically motivated theoretical models, our approach
leverages state-of-the-art Markov chain Monte Carlo sampling techniques and returns parameter es-
timates on nanometric scales. Simulated spectral datasets, describing resonant scattering of photons
from ellipsoidal and toroidal nanoparticles, are explored as concrete examples of our approach, with
the resulting Bayesian estimates showing excellent agreement with the ground truth, even under
conditions of high statistical noise. By incorporating Bayes factors into the method as well, we reveal
how model selection can determine which one of competing geometric shapes better explains the
observed data. Our comprehensive nanometrology procedure can be tailored to a variety of light-
particle interaction models, and its reliance on Bayesian inference furnishes automatic uncertainty
quantification. In addition to applicability to a host of plasmonic configurations such as nanoparticle
dimers, trimers, and array studies, it is proposed that the presented analysis can be extended to the
quantum regime, where nonclassical photon statistics may provide additional insight for inference
of scatterer properties.

I. INTRODUCTION

In atomic, molecular, and optical physics, statistical
methods are ubiquitous for processing signals associated
with photon detection. Light generated via radiative de-
cay of excited states or via absorption and scattering of
photons can carry information about the light-emitting
or scattering system, which has motivated long-standing
studies of inverse problems. For example, in applica-
tions based on dynamic light scattering [1], interest rests
on inference of particle and aggregate size distributions,
leading to a parameter estimation problem. Since val-
idating estimates is difficult without invoking an inde-
pendent measurement of the parameters, a range of es-
timates is often desired that can be scrutinized via ac-
cepted statistical procedures. In previous studies to this
end, a monochromatic beam of light has been scattered
from an ensemble of particles in liquid or aerosol medium,
with scattered light measured at a given angle as a func-
tion of time. Due to stochastic processes (e.g., Brown-
ian motion) in such media, an inhomogeneous Fredholm
integral equation results from the time autocorrelation
analysis of the measured intensity signal, and through
equation inversion, one seeks the particle size distribu-
tion. It is generally recognized that such a procedure is
mathematically ill-posed, so that there can be many pa-
rameter combinations or candidate aggregate size distri-
butions that produce results consistent with the observed
data.

To tackle ill-posed problems, several approaches have
been proposed, including Bayesian inference as nicely de-
scribed by Huber et al. in the context of characterizing
aerosolized fractal aggregates of soot [2]. As a general
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procedure, Bayesian inference [3] provides a principled
and conceptually straightforward approach for estimat-
ing any parameters x of interest given experimental ob-
servations D. A probability distribution over unknowns
can be defined and updated with experimental observa-
tions via Bayes’ theorem, P (x|D) = P (D|x)P (x)/P (D),
where the distribution P (D|x) is based on a model of
the physical process and P (x) delineates any prior be-
liefs on the system. By furnishing a complete probabil-
ity distribution for x, Bayesian inference provides un-
certainties automatically, while also revealing any as-
sumptions explicitly via the prior P (x). Moreover, the
Bayesian mean estimator of any function f(x), defined as
fB =

∫
dxP (x|D)f(x) is optimal in terms of attaining

the minimum squared error on average [4].

Bayesian concepts are receiving increasing attention in
metrology in general. This is noted for example by Hejazi
et al. [5], who place their work on parameter estimation
for single-wavelength photodetectors within the broader
context of data analytics in condensed matter and ma-
terials sciences. Another example of how Bayesian infer-
ence may aid measurements on physical systems has been
contributed by Bera et al. [6], who describe estimation
of the parameters that control the dynamics of an opti-
cally trapped Brownian particle. In the work of Aihara et
al. [7], the physical system on which measurements were
carried out took the form of an evaporated bismuth thin
film, and Bayesian estimates were obtained for the pa-
rameters characterizing the transient profile of coherent
phonons. Similarly, a thin film superlattice was charac-
terized via Bayesian analysis of the measured photolumi-
nescence spectrum in the work of Iwamitsu et al. [8]. In a
different direction, Bayesian optimization techniques [9]
have also been applied in the design of subwavelength
structures with engineered scattering patterns [10, 11].
Here, Bayes’ theorem facilitates efficient search and op-
timization over a complicated design space, rather than
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FIG. 1. Simplified workflow for the Bayesian inference of
plasmonic nanoparticle properties.

being used for the inference of unknown parameters from
experimental data.

In this work, we are interested in Bayesian inference
associated with light scattering from plasmonic nanopar-
ticles, as broadly depicted in Fig. 1. When an electron
or photon interacts with a nanoparticle, under proper
conditions of field polarization, wavelength, and momen-
tum, as well as nanoparticle geometric shape, surface
morphology, and dielectric properties, resonant photonic
modes can be excited in the surface or bulk regions of
the particle. In the case of metallic nanoparticles, these
modes are associated with collective electronic oscilla-
tions, where the minimum involved energy is called a
plasmon. The decay of these modes can occur radiatively
or nonradiatively, with the former leading to emission of
a photon and the latter resulting in nanoparticle heat-
ing [12]. Thus, calculation of emission probabilities and
experimental measurement of photons are important in
the nanometrology of the emitting particles.

In this Article, we extend the applicability of Bayesian
inference to plasmonic systems in which field enhance-
ment, energy confinement, and strong coupling to emit-
ters are known to play important roles in the radiative
processes. Leveraging advanced Markov chain Monte
Carlo (MCMC) methods and able to incorporate any
first-principles, phenomenological, or empirical model of
interest, we test the method on simulated experimental
datasets from ellipsoidal and ring-toroidal gold nanopar-
ticles, demonstrating accurate estimation of specific geo-
metric parameters. As an important additional capabil-
ity, we also compute the ratio of posterior probabilities
from alternative geometrical models, finding convincing
evidence in favor of the ground truth in all datasets exam-
ined and thereby indicating our method’s utility for both
parameter estimation and model selection. While we con-
centrate explicitly on the estimation of geometric prop-
erties from nanoparticle scattering data, the presented
approach is applicable to many other situations of in-
terest in plasmonics, such as plasmonic tomography [13],
qubit-particle interactions [14], and surface plasmon reso-
nance sensors [15], thus providing a valuable complemen-
tary capability to standard near- or far-field techniques
in nanometrology.

We have organized our presentation as follows. Sec-
tion II briefly introduces how plasmon modes may be
computed in a broad spectral band for an arbitrarily
shaped nanoparticle of a given material. This section
provides the needed background for the models to be
used later in inference. In Sec. III, we overview the ap-
plied Bayesian method, including details of the MCMC
sampling procedure that enables efficient numerical eval-
uation. Section IV describes the nanoparticle geometries
considered for simulated datasets, with Sec. V summa-
rizing the results obtained from these with Bayesian in-
ference. Section VI considers the question of model se-
lection, showing how Bayes factors can identify the more
probable of competing models given observations. Con-
cluding remarks are provided in Secs. VII and VIII.

II. NANOPARTICLE PLASMONICS

Light-matter interaction [16] in the form of photon
scattering from nanoparticles [17] plays a central role in
important applications ranging from chemical and bio-
logical sensing [18] to emerging experiments in quantum
sensing [19]. With the development of new light sources
(e.g., single photons [20]), as well as with the discovery of
increasingly sensitive nanometrological techniques (e.g.,
scattering near-field scanning optical microscopy [21])
that can probe the electromagnetic environment of the
nanoparticles, studies of coupled photon-particle systems
are gaining further momentum. These include ion trap-
ping [22], quantum plasmonics [23], and qubit entangle-
ment control [24], to mention a few.

For nanoparticles that support resonant surface modes,
significant absorption and inelastic scattering occurs,
which may be revealed from a broadband excitation of
the modes with specific polarization states. Under op-
timum resonance conditions, high degrees of field con-
finement may occur in the vicinity of the nanoparticles
and their sub- and super-strates. Such electromagnetic
environments can be probed via nearfield scattering to
provide information that may not be recoverable in the
farfield. Farfield detection of the scattered photons, how-
ever, offers the advantage of noninvasiveness, simplifying
the light-particle interaction model. For example, in tip-
enhanced or scattering-type nearfield measurements, any
model must account for the convolution of the particle
nearfield with the scattering tip. Statistical methods that
can help deconvolute the data and infer information re-
garding the scatterer are therefore important.

Consider a typical measurement scenario for character-
izing both radiative decay and nanoparticle attributes, as
depicted in Fig. 2. The polarization state of an incom-
ing beam of photons of flux Φ is controlled with a linear
polarizer and a polarization rotator, and the beam is di-
rected toward a single or a many-nanoparticle system.
Although the probability of a photon-particle plasmon
interaction does change with the particle’s geometric
cross-section, the differential scattering cross-section dσ,
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FIG. 2. Overview of plasmonic inference problem. Light emitted from a plasmonic system is detected in the near- or far-field
regime, giving a dataset D of counts. Bayes’ theorem combines this data with a model and prior information to define a
probability distribution on the unknown parameters. Through Monte Carlo techniques, samples are obtained to estimate any
function of interest. As visual examples, we show the norm of the near-field electric field distribution and the far-field (radiation
pattern) computed at λ = 400 nm for a circular ellipsoid with major (minor) radius of 45 nm (10 nm). Example cross-sections
for five nanoparticle shapes highlight the types of data expected. Other dimensions assumed were: 50 nm radius for the sphere;
25 nm radius and 100 nm height for the rod; 100 nm × 100 nm base and 100 nm height for the pyramid; and 40 nm (21 nm)
major (minor) radius for the ring.

that is, the ratio of the scattered power at dΩ to Φ, is
the quantity of interest since it properly accounts for the
resonance properties of the excited surface modes, which
are known to lead to significantly higher scattering than
could be accounted for from geometric effects alone. Fol-
lowing this interaction with the system under test, sub-
sequent plasmon excitation, and radiative decay, the em-
anating photons may be detected with a properly posi-
tioned photodetector at the apex of the solid angle dΩ. In
the left panel of Fig. 2, the plasmon excitation is exempli-
fied for a single ellipsoidal nanoparticle, where the norm
of the induced surface field is visualized. The displayed
radiation pattern of the excited mode is obtained from
near- to far-field transformation. The excited plasmon
mode and its radiation pattern were obtained computa-
tionally in the frequency domain using the finite element
method (FEM) [25]. To generate the datasets D, shown
in the right panel of Fig. 2, we employ the finite differ-
ence time domain (FDTD) method, as will be discussed
in Sec. IV. Datasets D describe the photon scattering
cross-sections for various nanoparticles, as annotated in
Fig. 2.

Following a single dΩ measurement, the detector po-
sition may be changed incrementally in Ω to cover the
upper half-space above the substrate. Accordingly, for
each wavelength, the end result is a map of the angular

distribution of the emitted photons, which can be kept
as a function of Ω or integrated over all angles of in-
terest (as in the examples in Figs. 2 and 4). We note
that, instead of wavelength scanning, one may choose
to probe with a broadband pulse and measure the tran-
sient response of the nanoparticles, performing an inverse
Fourier transform to acquire the emission spectrum for a
single angular position of the detector.

III. OVERVIEW OF BAYESIAN PLASMONIC
CHARACTERIZATION METHOD

A. Preliminaries

As our prototypical physical system, we consider
nanoparticles of various materials and morphologies, such
as the well-studied systems of gold and silver spheroids.
When performing measurements on the proposed phys-
ical system, a single event is defined as the detection
of a photon of a particular wavelength and polariza-
tion state at a given point in the near- or far-field.
The collection of all such events can be summarized
as a dataset D. In order to relate this dataset to the
unknown parameters of interest—which can be defined
generically as a vector x—one must invoke a physical
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model that specifies P (D|x), i.e., the probability of ob-
serving the data D given the parameters x. Lastly, we
define some prior distribution P (x) that encompasses all
beliefs about the system’s parameters before perform-
ing experiments. P (x) can be chosen as informative
or as uninformative as desired to reflect the knowledge
and objectives of the inference procedure. These three
elements—data, model, and prior—then are united into
a single probability distribution according to Bayes’ the-
orem [P (x|D) = P (D|x)P (x)/P (D)]. This conditional
probability of parameters x, given observations D, for-
mally solves the problem.

Yet, the theoretical simplicity of Bayes’ rule belies the
computational challenges associated with utilizing it in
practice. For all but the simplest models, integrals of the
form fB =

∫
dxP (x|D)f(x) cannot be performed ana-

lytically, and numerical approaches are hindered by the
often high-dimensional nature of x. However, if samples
of P (x|D) can be obtained reasonably efficiently, then
the Bayesian mean estimator fB can be computed di-
rectly. Monte Carlo techniques offer the possibility to
obtain such samples, and the efficiency of these meth-
ods has improved significantly in recent years, opening
a valuable opportunity for the application of Bayesian
estimation in plasmonic characterization.

B. Formal problem formulation

Returning to the scenario of Fig. 2, we can represent
the unknown geometric properties of the system under
test by a vector of parameters y. Then, for a particu-
lar measurement m ∈ {1, 2, ...,M}, this system is illumi-
nated by a flux Φm(λ, q): the number of incident photons
per unit time, area, and wavelength, with q ∈ {1, 2} de-
noting possible projections onto two orthogonal polariza-
tion states. The scattered photons are detected according
to an efficiency function gm(λ, q,Ω) ∈ [0, 1], which spec-
ifies the probability of successfully detecting a scattered
photon at wavelength λ, polarization q, and solid angle
Ω. Both Φm and gm are free to vary with m, reflect-
ing a tunable excitation source or tunable measurement
device, respectively.

The core of the theoretical model centers on the
scattering cross-section (though it may be formu-
lated for absorption cross-section as well) of the plas-
monic nanostructure, expressed in differential form as
∂σ(y, λ, q,Ω)/∂Ω. We will assume a spectral region
λ ∈ Λ, with Λ sufficiently broad to recover the resonance
features of the nanoparticle excitation. Furthermore, as
depicted in Fig. 2, we assume that the emitted photons
can be probed only from the upper (z > 0) half-space en-
compassing angles Ω+, which is reasonable for substrate-
bound nanoparticles or nanostructures, although radia-
tive plasmon decay can also be observed from the sub-
strate domain, for example when used in prism-based ex-
periments. The rate of detections for measurement set-

ting m can then be written as:

µ̃m(y) =∑
q

∫
Λ

dλ

∫
Ω+

dΩ Φm(λ, q)
∂σ(y, λ, q,Ω)

∂Ω
gm(λ, q,Ω).

(1)

This expression utilizes detailed information from all
aspects of the experiment—source, nanoparticles, and
detection—so that the absolute cross-section of the struc-
ture under test can in principle be harnessed to aid in in-
ference. Experimentally, however, the level of calibration
required for absolute cross-section determination can be
quite difficult to attain. Uncertainties in the spot size
of the probe beam, collection efficiency, and detector re-
sponsivity must all be minimized. While techniques such
as spatial modulation spectroscopy [26–28] or calibration
with a known reference nanostructure [29, 30] can be used
to determine absolute efficiencies in practice, the major-
ity of plasmonic scattering experiments provide results
on a relative scale.

Accordingly, we remove the need to independently es-
tablish the absolute efficiencies in µ̃m(y) by introducing
a constant scale factor K(z) that is a function of an ad-
ditional to-be-inferred parameter z. Then, by defining
µ̃m(y) = K(z)µm(y), where µm(y) is normalized to sum
to unity via

µm(y) =
µ̃m(y)∑M

m′=1 µ̃m′(y)
, (2)

any reference to absolute efficiencies is avoided. Impor-
tantly, sinceK(z) is of the same order as the total number
of detection events, an initial estimate can be found eas-
ily from the data, making it a relatively straightforward
addition to the Bayesian procedure. Thus, the experi-
mental challenge of system efficiency calibration can be
eliminated by incurring one extra parameter, extending
the full parameter vector to

x = (y, z). (3)

Of course, with this simplification, inference based on
overall scatterer efficiency is no longer possible; two sys-
tems having cross-sections that differ by a constant scale
factor (σA ∝ σB), cannot be distinguished. Yet, this am-
biguity reflects the experimental conditions we consider,
and not the inference procedure, which could be adapted
to the case of absolute rates by working with µ̃m(y) di-
rectly.

We consider M experimentally obtained photon counts
Nm, making up the dataset:

D = {N1, N2, ..., NM}. (4)

For each measurement m, the mean photon count accord-
ing to the model is K(z)µm(y), making up the set:

M = {K(z)µ1(y),K(z)µ2(y), ...,K(z)µM (y)}. (5)
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We utilize a Poissonian model with means Mm =
K(z)µm(y), where each measurement is assumed in-
dependent of the others. In this way, the likelihood
LD(x) ∝ P (D|x) can be written as:

LD(x) = e−K(z)
M∏
m=1

MNm
m . (6)

Bayes’ theorem for the posterior π(x) ≡ P (x|D) can then
be expressed in the convenient form

π(x) =
1

Z
LD(x)π0(x), (7)

where Z is a normalizing constant and π0(x) the prior
distribution on x. Equation (7) is equivalent to the stan-
dard formula P (x|D) = P (D|x)P (x)/P (D), yet we have
chosen the π(x) notation to emphasize that only the
functional dependencies on x need be considered in the
MCMC approach below, and the likelihood LD(x) has
no requirement for normalization like a true probability
distribution P (D|x).

In lieu of direct integration, the inference procedure
obtains R samples {x(1),x(2), ...,x(R)} from the distribu-
tion π(x) such that the Bayesian mean estimator of any
function f(x) can be computed as:

fB =

∫
dxπ(x)f(x) ≈ 1

R

R∑
r=1

f(x(r)). (8)

To proceed, we must therefore consider a strategy for
Monte Carlo sampling of π(x) (next step in Fig. 2).

C. Preconditioned CrankNicolson algorithm and
numerical procedure

Efficient methods to generate the samples x(r) com-
prise a longstanding research program in Bayesian statis-
tics [3, 4] and historically have posed a significant entry
barrier to the adoption of Bayesian methods in a variety
of fields. Markov chain Monte Carlo (MCMC) techniques
attack this problem by implementing a stochastic process
such that samples therefrom converge to the target dis-
tribution π(x) for sufficiently long chains. Some common
MCMC algorithms include Metropolis–Hastings [31, 32],
Gibbs [33], slice sampling [34], hybrid Monte Carlo [35],
and sequential Monte Carlo [36], each facing unique
tradeoffs in its implementation. For our inference pro-
cedure, we adopt the relatively recent MCMC algorithm
known as preconditioned Crank–Nicolson (pCN) [37], a
modification to Metropolis–Hastings designed specifically
for dimension-independent performance.

Consider a Markov chain in state x; a possible next
state x′ is generated according to the proposal distri-
bution q(x′|x). Metropolis–Hastings will accept x′ with
probability

A(x′,x) =
π(x′)

π(x)

q(x|x′)
q(x′|x)

. (9)

Define vector of 
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Draw 𝐱(0) from 𝜋0(𝐱)
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FIG. 3. Outline of steps required to generate samples x(j)

from the posterior π(x) ∝ LD(x)π0(x). The unspecified dis-
tribution Fπ0 and function Gπ0 are assumed to be chosen
such that the acceptance probability reduces to a ratio of
likelihoods only (pCN condition).

In the case of pCN, the proposal distribution is cho-
sen such that it is reversible with respect to the prior,
i.e., it satisfies q(x|x′)π0(x′) = q(x′|x)π0(x); thus,
from Eq. (7) the acceptance probability reduces to

A(x′,x) = LD(x′)
LD(x) . This simplification can faciliate mas-

sive speed-ups in MCMC convergence, eliminating the
step-size/acceptance rate tradeoff intrinsic to standard
random-walk proposals [37, 38]. We recently applied
pCN methods to develop a highly efficient Bayesian pro-
cedure for quantum state tomography [39], and here we
expand these concepts to the types of likelihoods and
priors encountered in plasmonic nanometrology.

The basic numerical procedure is outlined in the
flowchart in Fig. 3. The vector β scales the step sizes
for all parameters, while the randomly drawn η de-
fines the individual jumps. The acceptance decision is
made probabilistically by drawing a ∈ [0, 1] from a uni-
form distribution and comparing to the likelihood ra-
tio. In this flowchart, we have expressed the proce-
dure as generically as possible, leaving distribution Fπ0

and function Gπ0
unspecified. Algorithmically speaking,

one must determine the combination (Fπ0
, Gπ0

) carefully
such that reversibility with respect to the prior is main-
tained [q(x|x′)π0(x′) = q(x′|x)π0(x)]. For reference,
we list known pCN proposals for three common prior
distributions—normal, gamma, and uniform—in the Ap-
pendix, which can be applied to many situations encoun-
tered in practice, including the examples in the following
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sections.
Computationally speaking, each step in the chain re-

quires evaluation of LD(x′) for a new point x′, so it is
critical to be able to compute this efficiently with mini-
mal cost. Therefore, rather than performing the integral
expressed in Eq. (1) in real-time for each proposed point,
an analytical or approximate expression would be pre-
ferred. If not available, we suggest precomputing µm(yn)
for a sufficiently dense set of points yn, leaving the re-
sults in the form of a look-up table which can then be
used to interpolate the value µm(y) at any given y. This
approach is particularly well suited to the use of compu-
tational electrodynamic methods, which can be executed
to model the variety of configurations expected in the
prior before Bayesian inference.

Together, Eqs. (1-8) and Fig. 3 complete the Bayesian
plasmonic inference method we introduce here. In what
follows, we apply this approach to several test cases, spe-
cializing the general framework to realistic experimental
scenarios.

IV. EXAMPLE DATASETS

Except for nanoparticles with simple geometries, an-
alytical calculation of elecrodynamic quantities is ei-
ther not feasible or requires high degrees of approxima-
tions. Thus, numerical approaches are indispensable. To
compute the scattering cross-sections we use the FDTD
method [40], a versatile platform for solving partial dif-
ferential equations [41]. Within the framework of FDTD,
one defines a computational domain with sufficient spa-
tial and temporal resolution, the proper and proportional
choices of which assure numerical stability and minimal
numerical dispersion. In the standard implementation
of FDTD, one considers a rectilinear 3D mesh, where
Maxwell’s equations are discretized via approximation of
the involved differential operators by finite differences,
which can be developed to various orders of accuracy.
Though FDTD is typically formulated in rectilinear coor-
dinates, general coordinate systems also can be explored,
albeit at the cost of additional complexity pertaining to
discretization of the differential operators in curvilinear
coordinates. For example, a spherical FDTD domain al-
lows for natural modeling of particles with spherical sym-
metry, but particles without spherical symmetry will lack
smooth boundaries. So rather than tailoring coordinate
systems for each simulation to match the geometry under
test, we consider the standard Cartesian 3D mesh in all
cases.

The computational domain can be formulated to gen-
erate either the total field or the scattered field. Such
total-field scattered-field formulation offers a number of
advantages for plane-wave nanoparticle excitation. Vari-
ous nanoparticles may then be modeled by occupying the
computational domain such that each object will have
(staircase) boundaries resulting from a voxelization (vol-
ume pixeling) process, which can be improved, especially

for high curvature surfaces, using the technique of con-
formal meshing. The field components are then properly
staggered across the unit cell (Yee cell) so as to satisfy
Maxwell’s equations. Each mesh point is ascribed a di-
electric function which in our case is imported from John-
son and Christy’s compilation for gold [42]. Unlike FEM-
based methods, in FDTD the time domain representation
of the dispersion, as opposed to the Fourier domain rep-
resentation D(ω) = ε(ω)E(ω), is implemented (typically,
assuming a local dielectric function). An ultrashort exci-
tation pulse covering the spectral range of 300–1000 nm,
and a sufficiently dense sampling of frequencies, generates
the scattered nearfields, which can then be transformed
to the farfield via proper integration. Here, we compute
the nearfields and generate the needed scattering cross-
sections for a given excitation field polarization state.

The spatial resolution or mesh cell size δi (i = 1, 2, 3)
can be quantified with respect to the free-space wave-
length λ. The time increments for evolving the fields will
then be set, obeying the (Courant) stability criterion [40]

∆t ≤
(
µε/

∑
i δ
−2
i

)1/2
, where µ = 1 for nonmagnetic ma-

terials and ε is the permittivity. In our Λ broad simu-
lation, the smallest wavelength is λ = 300 nm. To ade-
quately resolve the fields, the (largest) mesh cell δi . aλ,
where a is a suitably small number, typically in the range
a ∈ [0.05, 0.1]. For a more precise estimate, the dielectric
properties of the materials involved can be taken into ac-
count. In such cases, a ∈ [0.05, 0.1]/nmax, where nmax is
the largest refractive index in the computational domain.
Therefore, a sufficient number of mesh points both per λ
and per plasmon decay length can be obtained. Since the
skin depth for gold over Λ can be as small as ∼2 nm, cell
sizes of δi . 2 nm were employed to compute the fields
inside the nanoparticles.

As specific examples, we consider an ellipsoid with mi-
nor radius of 10 nm and a ring with major radius 40 nm.
These nanostructures can be conveniently modeled in
three dimensions using available software packages [43].
By performing parametric studies involving the radius of
each structure made of a given material, the wavelength,
polarization, and incidence angle of the exciting field, the
scattering cross-sections can be readily calculated from
the computed nearfields, as shown in Fig. 4. Each is
integrated over all angles in the upper hemisphere and
normalized by the corresponding geometric cross-section
to obtain the dimensionless “effective” cross-section σe.
Since no resonances appear in the wavelength range 300–
500 nm for the considered parameter ranges, we plot the
cross-section over the domain Λ = [500, 1000] nm. The
parameters scanned in these studies—major radius of el-
lipsoid, denoted by Y, and minor radius of ring, denoted
by Y ′—represent the geometric features to be estimated
from Bayesian inference; the other characteristic dimen-
sions in each system are assumed fixed and known. Fig-
ure 4 presents, within the considered spectral and shape
parameter windows, the complete plasmon dispersion for
the nanoparticles without resorting to dipole or quasi-
static approximation, for 50 evenly spaced values of Y
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FIG. 4. Models to be employed in Bayesian inference. The ef-
fective scattering cross-sections σe for (a) gold ellipsoidal and
(b) gold toroidal nanoparticles are obtained from registering
the fields in the nearfield zone of the nanoparticles. The po-
larization states E⊥z and E‖z of the interacting photons are
shown in the insets along with the characteristic nanoparticle
dimensions Y and Y ′.

and Y ′. The island-like appearance in Fig. 4(a) reflects
the fact that the computed solution contains contribu-
tions from all plasmonic modes. As the shape parame-
ters change, the resonances of each mode vary at different
rates, creating the observed alternating pattern.

Using the cross-section calculations in Fig. 4, we sim-
ulate scattering experiments for a variety of ground
truth geometric parameters: major radii of Yg ∈
{10, 15, ..., 55} nm for the ellipsoid, and minor (tube)
radii of Y ′g ∈ {6, 7, ..., 20} nm for the ring. In what fol-
lows, the subscript g always denotes a ground truth value,
to distinguish it from a result of Bayesian inference (sub-
script B). The computed cross-sections correspond to a
fixed linear excitation polarization q and integration over
a farfield hemisphere, so that the detection rate in Eq. (1)
reduces to an integral over λ only:

µ̃m(y) =

∫
Λ

dλΦm(λ)σ(y, λ)gm(λ). (10)

We assume each measurement setting m is centered at
wavelength λm such that Φm(λ)gm(λ) = h(λ − λm),
where h(λ) is a singly peaked positive function centered
at λ = 0. If σ(y, λ) is slowly varying with λ compared
to h(λ)—the natural condition for a high-resolution
measurement—we further obtain µ̃m(y) ∝ σ(y, λm), so

that the normalized theoretical rates are

µm(y) =
σ(y, λm)∑M

m′=1 σ(y, λm′)
, (11)

which can be computed for any (y, λm) via interpolation
of the results in Fig. 4. For simplicity in these examples,
the spectral shape and relative efficiency of the flux/-
collection combination are taken as uniform over m, but
experimental variations could be readily incorporated via
an m-dependent scale factor in Eq. (10).

We generate random data for M = 100 equispaced
wavelengths in 500–1000 nm from Poisson distributions
of mean Kgµm(y): the mean number of detected pho-
tons, chosen as Kg ∈ {102, 103, 104}, allows us to explore
the impact of statistical noise. Considering the 10 ground
truth values of Yg and 15 values of Y ′g noted above, this
produces 75 distinct datasets D, one for each (Yg,Kg)
or (Y ′g,Kg) pair; Fig. 5 plots six of these as examples,
three each for the ellipsoid and ring. Appreciable statis-
tical fluctuations appear in the Kg = 100 cases, which
reduce significantly as Kg increases. The two ring exam-
ples with Y ′g = 12 nm and Y ′g = 14 nm have nearly iden-
tical scattering spectra. This effect can be seen directly
in Fig. 4(a), which contains two intervals (roughly 12–
14 nm and 17–19 nm) over which the cross-section varies
minimally with Y ′g. This offers an important opportunity
for comparison, since inference of the tube radius would
be expected to prove more challenging in these regions
than others.

We have selected this case study in order to focus on
the basics of the method with minimal technical distrac-
tions that may arise when studying more complex cases.
For example, considering angle-resolved detection, as al-
lowed in the general expression of Eq. (1), would lead to
more complexities in the calculation of µm(y) but would
also provide additional information that should reduce
uncertainty in the inference process. As discussed in
Sec. VII, no fundamental limitations prevent our method
from handling significantly more complex systems and
measurement conditions such as these, but the feasibility
of any specific model will require its own investigation.

V. BAYESIAN INFERENCE

Armed with the datasets simulated above, we next ap-
ply the full method of Sec. III for Bayesian inference.
This entails setting up a prior π0(x) and then calculat-
ing posterior probabilities π(x) based on the prior and
likelihood LD(x), as indicated in Fig. 2. Through this
process, the prior probabilities are updated via data col-
lection D.

The plasmonic geometries considered contain a single
unknown, Y (Y ′), which we express in terms of the di-
mensionless parameter y ∈ [−1, 1] as:

Y(y) =
(y + 1)YH − (y − 1)YL

2
, (12)
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FIG. 5. Example datasets D from simulated experiments. (a) Scattering from ellipsoidal nanoparticle. (b) Scattering from
ring. Histograms show the raw count data; solid lines provide the ground truth cross-section for the given geometry and counts.

FIG. 6. Bayesian inference results for datasets from the (a) ellispoid and (b) ring. Points are the mean of the Bayesian posterior,
and error bars the standard deviation. Each column denotes a specific ground truth average photon number Kg.

and analogously for Y ′. Here, YH (YL) is the maximum
(minimum) value in the simulated domain of Fig. 4. The
scale factor K is parameterized as K(z) = K0(1 + kz),
with K0 and k constant. On this parameter set x =
(y, z), one must then specify a prior distribution π0(x).
In lieu of specific information which may heavily favor
some regions of the parameter space over others, it is gen-
erally good practice to define a prior that is as “uninfor-
mative” as possible, giving appreciable weight to all pos-
sible parameter values. This results in a relatively conser-
vative estimation procedure that returns low uncertain-
ties only when justified by the amount of data gathered.
In our specific case, we take y uniformly distributed in its
domain [y ∼ U(−1, 1)] and z following a standard nor-
mal distribution [z ∼ N (0, 1)] so that the hyperparame-

ters K0 and k specify the mean and standard deviation
of an arbitrary normal distribution on K. As an em-
pirically convenient choice, we select K0 =

∑
mNm (the

sum over all observed counts) and k = 0.1 [44], which
we have found gives a sufficiently uninformative prior for
the numbers of counts in these test datasets. Thus, the

total prior is π0(x) ∝ 1[−1,1](y)e−z
2/2, where 1[−1,1](·) is

the indicator function. Both y and z distributions have
pCN-compatible proposals (see Appendix) so that the
conditions presupposed in Fig. 3 are satisfied.

For efficient computation of the likelihood in the sam-
pling procedure, we precompute the cross-section at dis-
crete values yn and measured wavelengths λm; then
during the algorithm, we obtain σ(y, λm) for a specific
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y ∈ [yn, yn+1] via linear interpolation:

σ(y, λm) =
σ(yn+1, λm)− σ(yn, λm)

yn+1 − yn
(y−yn)+σ(yn, λm),

(13)
from which the normalized rates follow per Eq. (11). This
formulation is computationally efficient and reveals how
the results of complex cross-section modeling can be in-
corporated seamlessly into our inference method.

We then perform the pCN MCMC algorithm for all 75
datasets, employing the appropriate model (ellipsoid or
ring) in each case. As a slight enhancement over Fig. 3,
we also adaptively tune the step sizes β, which amounts
to increasing or decreasing β at selected iterations j to
maintain an acceptance rate in a desired range (0.1–0.3
in our case) [39, 45, 46]. The total MCMC chain length
is RT : R = 1024 is the number of samples x(r) kept for
estimation, and T is a thinning parameter, which is dou-
bled successively until the estimate of Yg (Y ′g) converges

in both mean and standard deviation. We found T = 215

sufficient for all cases except Kg = 10, 000 on the ring,
where we sampled up to T = 217. For reference, the
total wall clock time for running each T = 217 MCMC
chain was approximately 24 min. on a CPU with 2.5 GHz
clock. The final results appear in Fig. 6; points are the
Bayesian means YB (Y ′B) estimated from the R samples,
error bars are the posterior standard deviations, and the
solid lines trace the ground truth values for comparison.

Overall, the estimates are extremely close to the
ground truth, even in the Kg = 100 cases with high sta-
tistical noise. However, lower accuracies and higher un-
certainties were obtained in the two regions of the ring
radius identified in Sec. IV (12–14 nm and 17–19 nm)—
precisely where the cross-section varies slowly with Y ′.
These uncertainties reduce with increasing photon num-
ber and generally hone in on the ideal curve, apart from
Y ′g = 13 nm, for which Y ′B = 11.8 nm at Kg = 10, 000.
Close inspection of Fig. 4(b) at these two radii in partic-
ular show very similar shapes, indicating again that the
observed deviation from ground truth reflects inherent
ambiguities in the cross-section itself.

VI. MODEL SELECTION

In the above examples, the inference models employed
match the actual plasmonic structures under test; i.e.,
the ellipsoid model was applied to datasets generated
from a ground truth ellipsoid, and likewise for the ring.
The defining parameters were unknown, but the model
was assumed accurate. The specification of a single well-
posed model is certainly the desired case in practice,
but may not be feasible in all situations, in which case
Bayesian methods can again be invoked for model com-
parison and selection. In this section, we outline through
example how this can be implemented in our plasmonic
nanometrology workflow.

Taking the datasets corresponding to Kg = 1000,

FIG. 7. Bayesian inference using a mismatched model on
datasets corresponding to Kg = 1000. (a) Ellipsoid ground
truth, ring inference model. (b) Ring ground truth, ellipsoid
inference model.

we redo Bayesian inference utilizing mismatched cross-
section models in the likelihood: the ring model
[Fig. 4(b)] for the data actually generated by an ellip-
soid, and the ellipsoid model [Fig. 4(a)] for data pro-
duced by a ring. Figure 7 plots the results obtained in
these “cross-model” tests. The general negative slope of
the inferred parameters stems from the opposite spectral
trends for the two nanoparticles: the scattering peak of
the ellipsoid redshifts with increasing dimension, and vice
versa for the ring. The flat, almost clipped portions of
both curves correspond to regions where the peak of the
observed cross-section reaches the edge of the range sup-
ported by the model. Thus, these results can be viewed
as competitors to those found earlier: Fig. 7(a) provides
an alternative analysis of the same data that are utilized
in the center plot of Fig. 6(a), while Fig. 7(b) serves as an
alternative to the center plot of Fig. 6(b). Without know-
ing the ground truth already, how can one rank these
competing models?

Bayes’ rule again offers a principled solution. Let E
(R) denote the hypothesis of ellipsoid (ring). Then the
posterior odds in favor of E over R can be written as:

P (E|D)

P (R|D)
=
P (D|E)

P (D|R)

P (E)

P (R)
= BER

P (E)

P (R)
, (14)

where BER is the Bayes factor [47], equal to the poste-
rior odds whenever the prior model weights are equal.
Across-model Bayesian strategies, such as reversible
jump MCMC [48], deal with multiple models directly by
sampling over a joint distribution of models and param-
eters. As computationally simpler alternatives, within-
model approaches estimate the marginals P (D|E) and
P (D|R) independently, through the integral

P (D|H) =

∫
dxH P (D|xH,H)P (xH|H), (15)

for each hypothesis H ∈ {E,R}, where the subscript H
has been added to explicitly note conditioning on a spe-
cific model. Computing Eq. (15) is equivalent to deter-
mining the normalization factor Z in Eq. (7)—a signifi-
cantly more challenging endeavor than sampling from the
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FIG. 8. Bayes factors for competing models. (a) Ellipsoid
ground truth. (b) Ring ground truth. The horizontal line
at 100 marks the threshold above (below) which the ellipsoid
(ring) model is more probable.

unnormalized posterior as in conventional MCMC. Ap-
proaches to compute these marginal probabilities have
been built on Gibbs sampling [49], simulated anneal-
ing [50], and power posteriors [51].

In our case, however, the small number of parameters
involved allows us to use direct Monte Carlo integration:

drawing samples x
(r)
H from the prior P (xH|H) for each

hypothesis gives the approximation [47]

P (D|H) ≈ 1

R

R∑
r=1

P (D|x(r)
H ,H), (16)

where P (D|xH,H) is equal to the likelihood LD(x)
defined in Eq. (6) multiplied by Poissonian factors∏M
m=1(Nm!)−1 for normalization. The final results for

R = 220 samples (no thinning) appear in Fig. 8. The hor-
izontal dotted line corresponds to BER = 1: all points
above (below) this line denote higher odds for the el-
lipsoid (ring) model. The Bayes factors for all datasets
convincingly favor the ground truth model over its com-
petitor; BER > 107 for all points in Fig. 8(a), while
BER < 10−6 for all points in Fig. 8(b). The Bayes fac-
tors for Yg ≤ 20 nm and Y ′g ≤ 8 nm are so extreme that
they do not even appear on this logarithmic scale.

As practical alternatives to the Bayes factor when es-
timating the marginal probabilities may be much more
difficult than in the present examples, the computation-
ally simpler Akaike [52] or Schwarz [53] information cri-
teria could be invoked instead. In cases such as Fig. 8
where one model is unambiguously superior, the differ-
ences between all methods are expected to be minimal.
However, the Bayes factor has the advantage as a di-
rectly interpretable metric of comparison for any amount
of data, even when the differences in models may be small
[BER ∼ O(1)].

VII. DISCUSSION

The excellent agreement obtained above suggests
that the presented approach for Bayesian plasmonic

nanometrology should apply to many systems for which
a model can be formulated in terms of the parameters in-
volved in the radiative processes. Ultimately though, the
success of the inference process will hinge on the details
of the model, here specifically the scattering model. For
example, strong variation in the spatio-spectral distribu-
tion of scattered light with the parameters of interest is
a prerequisite for low-uncertainty inference—the absence
of which was highlighted here by the reduced accuracy of
the ring model in spectral regions where the cross-section
varies little with tube radius.

With respect to computational cost, the specific func-
tional features of µ̃m(y) and the efficiency with which it
can be computed significantly impact MCMC speed, in
terms of both the time per step and the total number of
steps required to reach convergence. Unfortunately, the-
oretically predicting the operational cost (e.g., wall clock
time or chain length) for a given model is extremely diffi-
cult, and must be determined empirically by performing
MCMC. Indeed, we used a total chain length of RT = 225

for most cases here, a forebodingly large number given
the fact we examine only two parameters.

Nevertheless, more parameters do not necessarily lead
to longer chains; in a previous example, we applied a sim-
ilar inference algorithm for quantum state tomography
with 512 unknowns, and found RT = 222 sufficient for
convergence—10 min. total runtime on the same desk-
top computer [54]. The fact a system with a 256-fold in-
crease in parameters required shorter chains than those
here highlights the unpredictability of forecasting MCMC
performance in general. Importantly, the pCN sampling
procedure we include in Fig. 3 is designed specifically
to maintain high convergence rates as the number of
parameters increases [37] so that our method furnishes
comparative optimism to handle much more complicated
systems. In the end, of course, the speed of Bayesian
methods cannot compete with that of simpler inferential
approaches such as least-squares fitting. Yet the ulti-
mate motivation for adopting the Bayesian viewpoint is
not computational in nature, but rather based on its opti-
mality guarantees and uncertainty quantification, which
our initial tests here have shown can be brought to bear
on plasmonic scattering.

Finally, moving beyond the presented scattering use-
case, it would be interesting to extend the Bayesian infer-
ence method to other contexts in plasmonic nanometrol-
ogy, such as the emerging applications of quantum plas-
monics and quantum sensing in general [55]. Nearfield
scattering properties offer a window into the excited
nanoparticle surface modes, but experimental measure-
ments of these modes are notoriously difficult due to the
presence of the probing structure, substrate coupling,
and coupling to neighboring particles. Furthermore, en-
gineering of the electromagnetic environment to control
plasmon-plasmon/plasmon-emitter coupling and Purcell
enhancement involves sensitive parameter dependencies
with respect to particle dimensions, orientation, and den-
sity, as well as the decay characteristics of the excited
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emitter states, all of which can alter the radiative decay
channels behind the observation of emitted photons. In
each of these potential applications, the Bayesian formal-
ism’s ability to handle models with arbitrary functional
forms in a single consistent paradigm should make it a
useful tool for highly interacting plasmonic systems.

VIII. CONCLUSION

In conclusion, we have introduced a Bayesian proce-
dure for estimating plasmonic nanoparticle geometries
from scattering data. Our self-contained method ap-
plies highly efficient pCN sampling and readily incorpo-
rates custom cross-section models. Utilizing simulated
datasets from both ellipsoidal and toroidal geometries,
we demonstrated accurate inference of unknown param-
eters under multiple levels of statistical noise. Finally,
computation of Bayes factors was shown to reveal the
ground truth nanoparticle morphology (ellipsoid or ring)
in all cases examined, revealing how our method inte-
grates with model selection as well as parameter esti-
mation. Overall, the presented procedure establishes a
valuable framework that can be specialized to a variety
of problems in plasmonic nanometrology.
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Appendix: pCN Proposals for Selected Priors

For reference, here we list pCN proposals for three
selected prior distributions. When each parameter (as-
sumed independent of all others) is updated according
these steps, q(x|x′)π0(x′) = q(x′|x)π0(x) obtains, so that
the acceptance probability follows a simple likelihood ra-

tio. Any parameter distributed according to the following
can be added to the model seamlessly. Other distribu-
tions have pCN proposals as well, but we have found
these three to be particularly useful, since they cover do-
mains encountered widely in practice: (−∞,∞), [−1, 1]
(a finite interval), and [0,∞).

1. Normal Distribution

Consider parameter x ∼ N (0, 1), so that the prior is

π0(x) =
1√
2π
e−

1
2x

2

. (A.1)

Define step size β ∈ (0, 1) and draw η ∼ Fπ0 = N (0, 1).
Then the proposal x′ is [37]

x′ = Gπ0(x, β, η) =
√

1− β2x+ βη. (A.2)

2. Uniform Distribution

Consider parameter x ∼ U(−1, 1), so that the prior is

π0(x) =
1

2
1[−1,1](x). (A.3)

The step size is β ∈ (0, 1); draw η ∼ Fπ0
= U(−1, 1).

Then the proposal x′ is the reflected random walk [38]:

x′ = Gπ0
(x, β, η) =


−2− (x+ βη) x+ βη ≤ −1

x+ βη |x+ βη| < 1

2− (x+ βη) x+ βη ≥ 1.

(A.4)

3. Gamma Distribution

Consider parameter x ∼ Γ(α, 1), so that the prior is

π0(x) =
1

Γ(α)
xα−1e−x. (A.5)

Take step size β ∈ (0, 1). Draw η1 from the beta distri-
bution η1 ∼ B((1−β)α, βα), and η2 from the gamma dis-
tribution η2 ∼ Γ(βα, 1). Then take as the proposal [56]:

x′ = Gπ0
(x, β,η) = η1x+ η2. (A.6)
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tancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin,
M. Broyer, N. D. Fatti, F. Vallée, A. Sańchez-Iglesias,
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net, J. Lermé, J.-L. Vialle, M. Broyer, and M. Pellarin,
Rev. Sci. Instrum. 81, 043101 (2010).

[29] A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit,
Science 330, 353 (2010).

[30] J. R. G. Navarro and M. H. V. Werts, Analyst 138, 583
(2013).

[31] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087
(1953).

[32] W. K. Hastings, Biometrika 57, 97 (1970).
[33] S. Geman and D. Geman, IEEE Trans. Pattern Anal.

Mach. Intell. PAMI-6, 721 (1984).

[34] R. M. Neal, Ann. Stat. 31, 705 (2003).
[35] S. Duane, A. Kennedy, B. J. Pendleton, and D. Roweth,

Phys. Lett. B 195, 216 (1987).
[36] P. D. Moral, A. Doucet, and A. Jasra, J. R. Stat. Soc.

Ser. B 68, 411 (2006).
[37] S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White,

Stat. Sci. 28, 424 (2013).
[38] S. J. Vollmer, SIAM/ASA J. Uncertain. Quantif. 3, 535

(2015).
[39] J. M. Lukens, K. J. H. Law, A. Jasra, and P. Lougovski,

New J. Phys. 22, 063038 (2020).
[40] A. Taflove and S. C. Hagness, Computational Electro-

dynamics: The Finite-Difference Time-Domain Method,
3rd ed. (Artech House, 2005).

[41] P. Decleer, A. Van Londersele, H. Rogier, and
D. Vande Ginste, J. Comput. Appl. Math. 381, 113023
(2021).

[42] P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370
(1972).

[43] Ansys, Inc., “Ansys Lumerical FDTD,” https://www.

ansys.com/products/photonics/fdtd (2021).
[44] E. M. Simmerman, H.-H. Lu, A. M. Weiner, and J. M.

Lukens, Opt. Lett. 45, 2886 (2020).
[45] G. O. Roberts, A. Gelman, and W. R. Gilks, Ann. Appl.

Prob. 7, 110 (1997).
[46] G. O. Roberts and J. S. Rosenthal, J. Appl. Prob. 44,

458 (2007).
[47] R. E. Kass and A. E. Raftery, J. Am. Stat. Assoc. 90,

773 (1995).
[48] P. J. Green, Biometrika 82, 711 (1995).
[49] S. Chib, J. Am. Stat. Assoc. 90, 1313 (1995).
[50] R. M. Neal, Stat. Comput. 11, 125 (2001).
[51] N. Friel and A. N. Pettitt, J. R. Stat. Soc. Ser. B 70, 589

(2008).
[52] H. Akaike, IEEE Trans. Auto. Contr. 19, 716 (1974).
[53] G. Schwarz, Ann. Stat. 6, 461 (1978).
[54] J. M. Lukens, K. J. H. Law, and R. S. Bennink,

arXiv:2012.08997 (2020).
[55] A. S. Clark, M. Chekhova, J. C. F. Matthews, J. G. Rar-

ity, and R. F. Oulton, Appl. Phys. Lett. 118, 060401
(2021).

[56] P. A. Lewis, E. McKenzie, and D. K. Hugus, Gamma
processes, Tech. Rep. (Naval Postgraduate School, 1986).


