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Two-component coupled Bose gas in a 1D optical lattice is examined. In addition to the postulated Mott
insulator and superfluid phases, multiple bosonic components manifest spin degrees of freedom. Coupling of
the components in the Bose gas leads to substantial changes in the previously observed spin phases, giving
rise to new effective spin Hamiltonian and unraveling remarkable spin correlations. The system in the absence
of coupling, exhibits ferromagnetic and non-ferromagnetic spin phases for on-site intra-component interaction
stronger than inter-component interaction. Upon introduction of coupling, the phase transition switches from
first- to second-order. For comparable on-site inter- and intra- component interactions, with coupling, instead
of one, two spin phases emerge with a second-order phase transition. Exact diagonalization and Variational
Monte Carlo (VMC) with stochastic minimization (SM) on Entangled Plaquette State (EPS) bestow a unique
and enhanced perspective into the system beyond the scope of a mean-field treatment.
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I. INTRODUCTION

Ultracold gases provide an unparalleled platform to explore
physics found in atomic or molecular gases, offering a man-
ifold of prospects to simulate and examine canonical models
of strongly correlated electrons in condensed matter systems
[1, 2], owing to them being clean, versatile, and highly con-
trollable. Observation of superfluid to Mott insulator transi-
tion [3] and theoretical and experimental demonstration of ex-
otic quantum phase transitions [4] in cold atomic setups have
paved the way towards studying many-body physics [1, 2, 5–
7], in association with strong correlations [3, 8], and relat-
ing to the emergence of collective and thermodynamic behav-
ior [5, 9]. Experimental demonstrations—of cold atoms in
lattices via weak trapping potential superimposed onto op-
tical lattices [6], achievement of low temperature relevant
for spin orders [1, 10–12] necessary for superexchange cou-
plings resulting in effective nearest-neighbor spin–spin inter-
action demonstrated in an array of double wells [13] via a
combination of evaporative and adiabatic cooling [14–21],
and simulating magnetic fields via artificial gauge potential
[22, 23]—provide immense relevance to this field. Quan-
tum magnetism, a most fascinating area of research in con-
densed matter physics, can be reproduced using cold atoms
with tunable geometry and parameters; for instance, experi-
mental study of itinerant magnetism in ultracold Fermi sys-
tems with repulsive interactions [24], classical magnetism in
triangular lattices [25] with fast oscillations of optical lattice
enabling tuning the sign of nearest-neighbor tunneling [26],
bosons with strong interactions in a tilted lattice at commen-
surate fillings for study of Ising model and quantum phase
transition [27, 28] and possible realization of quantum dimer
models [27, 29].
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Bose–Hubbard Hamiltonian describing the dynamics of
bosonic atoms is a quintessential model to probe strongly
correlated many-body quantum systems [5, 30, 31] and sim-
ulate lattice spin models [1, 2, 31–39] such as quadratic-
biquadratic spin model [40], or antiferromagnetic spin chains
[27] and spin-1 model exhibiting Haldane (gapped) insula-
tor phase [41–45]. Interesting extensions of Bose–Hubbard
model, such as inclusion of next-to-nearest-neighbor tunnel-
ing or long range interactions [46–51], spinor bosons with
multiple internal degrees of freedom [52, 53] and addition
of nonlinear coupling between the components [54–59], dis-
play remarkably rich phase diagrams [47, 56–59]. A two-
component Bose–Hubbard in Mott phase reveals pseudospins
effectively coupled by Heisenberg exchange [38] imitating
spin-1/2 Hamiltonian ideal for study of quantum magnetism
[38, 60, 61], displays a spin-Mott phase in spin-1 Hamilto-
nian [11, 38, 39, 60, 62, 63], and in the presence of strong re-
pulsions presents finite-temperature phase structure with pos-
sibility of checkerboard long range order, supercounterflow,
superfluidity, and phase separation [64]. Realization of con-
trollable Bose–Bose mixtures [65] makes way for the experi-
mental reproduction of spin Hamiltonians, with detection and
study of magnetic phases such as antiferromagnetic Néel and
xy ferromagnetic phases.

The physics of coherent coupling in ultracold gases is
consequential for quantum information processing and sim-
ulation [31, 37]; supported by the demonstration of strong
coupling between bosonic Mott insulators and light [66, 67]
and the recent work in cold atoms proposing the realization
and manipulation of new quantum states [68–75] and high
precision quantum limited measurements [76]. In the two-
component Bose gas, introducing coupling reveals fascinating
physics; for instance, the phase separation in weak interac-
tion limit [77] changing dramatically [78–89], modifying the
Mott-insulator–superfluid transition [90], and altering entan-
glement properties [91]. With the introduction of nonlinear
coupling in many-body systems, stable collective modes ap-
pear, thus paving the way for robust control [92, 93], with
their localization properties and robustness against perturba-
tions demonstrated in a tilted Bose–Hubbard model [94].
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Here, we study Bose gas with two components trapped
in a one-dimensional (1D) optical lattice, realizing a two-
component Bose–Hubbard model. Presence of multiple
bosonic components manifests spin degrees of freedom in ad-
dition to Mott insulator and superfluid phases [38, 60]. The
coupling of the two components on the nearest-neighbor sites
with strong on-site interactions presents unconventional effec-
tive ordering generating unprecedented spin behavior. The
formation of a new site-dependent non-ferromagnetic spin
phase occurs owing to this coupling. The choice of spin align-
ment along z in this phase can be tuned using hopping param-
eters. The signature of this unique phase appears as an oscil-
lation in spatial z-x spin correlation between spins, whereas
remaining constant (≈ 0) in a conventional anti-ferromagnetic
spin phase. In addition to the creation of the unconven-
tional non-ferromagnetic spin phase, the coupling also sig-
nificantly alters the phase space. When the intra-component
interaction is stronger than the inter-component interaction,
the introduced coupling switches the phase transition between
ferromagnetic and non-ferromagnetic spin phases from first-
order to second-order, with the transition width dependent
on coupling. When these interactions are comparable, two
spin phases (ferromagnetic and non-ferromagnetic) are dis-
played instead of one (ferromagnetic) with a second-order
phase transition, when coupling is introduced. This study pro-
vides a spin-independent implementation of the optical lat-
tice for trapping the two-component Bose gas with no addi-
tional tuning of on-site interaction strengths and instead lever-
aging coupling as a parameter to switch between the differ-
ent spin phases. Multiple perspectives—obtained from meth-
ods based on mean-field approximation, exact diagonaliza-
tion, and entangled-plaquette states (EPS)—enhance the un-
derstanding of this system; capturing correlations beyond the
scope of a mean-field treatment. The physics of filling factor
greater than unity where the novel spin correlations persist,
and the consideration of complex intra-component tunneling
and inter-component coupling are discussed.

This paper is sectioned as follows: Sec. II describes the
coupled two-component Bose–Hubbard model and its real-
ization. Sec. III details the mapped spin-1/2 model. Sec. IV
presents the different numerical methods considered in the
study. Sec. V is the multi-perspective study of the spin phases.
Sec. VI extends to discuss complex intra-component tunnel-
ing and inter-component coupling as well as the physics of oc-
cupancy greater than unity. Finally, Sec. VII summarizes the
results and discusses their implications and future avenues.

II. THE MODEL

We consider a 1D system comprising two kinds of bosons
trapped in a spin-independent optical lattice as shown in
Fig. 1. The two components termed as a and b, can be en-
visioned as two internal levels of an atom. We assume low
temperature and the optical lattice to be deep enough for the
atoms to be confined to the lowest Bloch band describing a
two-component Bose–Hubbard model [39, 95]. The optical
lattice is tilted, creating an energy offset between the nearest-
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FIG. 1. (color online) Two-component Bose–Hubbard model with
on-site inter-(Uab) and intra-(U) component interaction (U � Uab

and U ∼ Uab) with nearest-neighbor tunneling coefficients ta and tb.
The optical lattice is tilted via external inhomogeneous static electric
or magnetic field. Inset: To the system is introduced laser-assisted
inter-component coupling: J1 (same-site) and J2 (nearest-neighbor).
The two components are visualized as two levels of an atom.

neighbor sites as shown in Fig. 1, with the assumption that
the potential applied to create this tilt is a perturbation. This
tilt can be introduced using a magnetic field gradient [96, 97].
The tilting of the lattice prevents the natural hopping between
components a (or b) that is obtained via light assisted tunnel-
ing: resonant two-photon Raman transition [96]. We intro-
duce to this system inter-component coupling; also obtained
by a resonant two-photon Raman transition between two in-
ternal states as shown in Fig. 1 (inset). The resulting system
is governed by the following Hamiltonian:

H =
∑

i

(−taa+
i ai+1−tbb+

i bi+1+H.c.)

+
∑

k=a,b;i

U
2

nki(nki−1)+
∑

i

Uabnainbi

−
∑

i

J1(a+
i bi+b+

i ai)−
∑

i

J2(b+
i ai+1+a+

i+1bi),

(1)

where ai and bi are the bosonic annihilation operators for com-
ponents a and b at site i, respectively. tk is the component-
dependent tunneling parameter. U is the intra- and Uab the
inter-component on-site interaction strength. Two kinds of
inter-component couplings are present: J1 and J2 represent-
ing the same-site and nearest-neighbor coupling, respectively.
The energy offset between nearest-neighbor sites of the opti-
cal lattice (Fig. 1) differentiates the couplings, where J2 de-
fines the inter-component coupling between b at site i and a at
site i+1. The presence of this offset also allows for tuning of
J1 and J2 independently (Fig. 1 inset). In the deep Mott limit
(U,Uab � tk,J1,J2), with the average number of particles per
site being fixed due to the high energy cost of bosons hopping
between sites, this model can be mapped to an effective spin
system. In the following sections, we study the system in the
deep Mott limit, specifically for the case of one particle per
site that is mapped to spin-1/2, where a: ↑ and b: ↓.
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FIG. 2. (color online) Schematic of the effective spin Hamilto-
nian. (a) The low- and high-energy subspaces for a two-site system,
roughly separated by the on-site interaction strength and coupled by
the inter-component coupling and intra-component tunneling coef-
ficients. (b) The Hamiltonian with low and high-energy subspaces
forming the diagonal with the off-diagonal coupling and tunneling
coefficients coupling the two subspaces and the effective decoupling
of the two subspaces to obtain the effective low-energy spin Hamil-
tonian.

III. EFFECTIVE SPIN HAMILTONIAN

Strong on-site interactions divide the Hilbert space into
low- and high-energy subspaces, which are coupled by the
coupling and tunneling terms as shown in Fig. 2. A particle
hopping from one site to another increases the occupancy, thus
going from a low- to high-energy subspace, and thus incurring
high energy cost in the process. Whereas, two particles ex-
changing positions preserve the occupancy and hence do not
require a high energy cost. To study the relevant physics, the
effective low-energy subspace is obtained by decoupling the
existing subspaces; removing any first-order hopping that in-
creases the occupancy and retaining the second-order virtual
hopping terms that preserve the occupancy.

The two-component Bose–Hubbard model mapped to the
following effective spin (low-energy) Hamiltonian via canon-
ical transformation and followed by a perturbative expansion
up to second-order (for details, see Appendix A):

Heff =
∑

i

[
−J⊥(σx

i σ
x
i+1+σ

y
iσ

y
i+1)−Jzσ

z
iσ

z
i+1−hz(σz

i )

−(hx+J1)σx
i +Jzxσ

z
iσ

x
i+1−Jxzσ

x
i σ

z
i+1

]
,

(2)

where J⊥ =
tatb
Uab

,

Jz = (t2
a +t2

b−J2
2)

( 1
U
−

1
2Uab

)
,

hz =
2(t2

a−t2
b)

U
,

hx = J2(ta+tb)(
1

Uab
+

1
U

),

Jzx =
J2tb
U

, and

Jxz =
J2ta
U

J⊥ and Jz provide the xy and z ordering respectively. The
xy ordering is always ferromagnetic in nature, while the z or-
dering can be tuned from ferromagnetic to anti-ferromagnetic
by varying the parameters ta, tb, and J2. The terms hz and
hx,J1 act as fictitious magnetic fields along z and x, respec-
tively, transforming the system to a spin-polarized state. Un-
conventional ordering terms, Jzx and Jxz arise due to the di-
rectional nearest-neighbor inter-component coupling. They
tend to align the spins along x on one site and along z on
the nearest-neighbor sites, providing a straightforward imple-
mentation for site-dependent spin alignment. That the tunnel-
ings and coupling are light-assisted and the on-site interac-
tions controllable via external magnetic field (Feshbach res-
onance) allows for the effective parameters to be tuned over
a rather large range. Presently only J2 is considered as J1,
with no energy cost in same-site coupling, trivially leads the
system to an x ferromagnetic phase. With the introduction of
nearest-neighbor inter-component coupling, we see new or-
dering terms hx, Jxz, and Jzx; their significance is understood
by studying the system behavior dictated by parameters ta, tb,
and J2.
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IV. NUMERICAL METHODS

Three different methods are utilized in our study: (a) mean-
field approximation, (b) exact diagonalization for small sys-
tem size (N < 14), and (c) Variational Monte Carlo with
stochastic minimization (VMC-SM) on Entangled-Plaquette
States (EPS) for large system size (N ≥ 14).

Mean-field approximation is the simplest approach pur-
sued. Here, each site is treated independent of the others,
making it computationally efficient. Additionally, it is unaf-
fected by the system size. To illustrate the spin phases within
mean-field, we designate each alternating site to subspace A
and its nearest-neighbor sites to subspace B. The following
variational ansatz is considered:

|Ψ〉 =
∏
i∈A

(cos(θA)|a〉i+sin(θA)|b〉i)∏
i+1∈B

(cos(θB)|a〉i+1+sin(θB)|b〉i+1)
(3)

Within mean-field approximation, the spin order along x and
z computed using Pauli matrices:〈

σx
i∨i+1

〉
= sin2θA∨B,

〈
σz

i∨i+1

〉
= cos2θA∨B (4)

The simplicity of mean-field approximation, in treating each
site independent of others, may not accurately reflect the sys-
tem behavior due to the presence of spin exchanges in the
effective spin Hamiltonian correlating nearest-neighbor sites.
This could dilute the effect of the unconventional correlations
by their being beyond the scope of the mean-field treatment.

Exact diagonalization (ED) provides the most accurate de-
scription of the system. Devoid of any approximations, it
is the most successful in capturing the effect of the uncon-
ventional correlations. Additionally it provides direct com-
parisons to N = 2 (see Appendix B), where the effective
spin Hamiltonian (Eqn. 2) is benchmarked against the orig-
inal Hamiltonian (Eqn. 1) and validated. Although the exact
diagonalization does provide a better insight into the system,
owing to its large computational expense, this is limited to
smaller system sizes N < 14, where the effect of small system
size can be observed. For the thermodynamic limit, arises a
need for a numerical method that captures correlations better
than the mean-field treatment but with lesser computational
expense than exact diagonalization.

Entangled-Plaquette States (EPS) form a class of tensor net-
work states, where the lattice is divided into plaquettes, and
the wave function of the system is given by the product of
the plaquette wave functions, which are scalar in nature [98].
This goes beyond the mean-field, by considering overlapping
or entangled-plaquettes, and is more computationally efficient
than exact diagonalization as the number of steps to obtain the
system ground state undergo a low-order polynomial increase
with system size. It allows for large system sizes while retain-
ing most of the effects of the correlations. In our ansatz with
overlapping plaquettes (P), each consisting of four sites, coef-
ficients (CnP

P ; correlator elements) are assigned for all 24 pos-
sible configurations in each plaquette. The amplitude for each
spin configuration in the state is given as a product of these

Non-FM Non-FM

FM FM

(a) U≫ Uab (b) U ~ Uab

tb / ta tb / ta

J2 / ta J2 / ta

FIG. 3. Schematic of spin phases hypothesized to emerge in the
presence of inter-component coupling (J2). The phases are shown
in the deep Mott regime, (a) U � Uab and (b) U ∼ Uab, and pre-
sented as a function of scaled intra-component tunneling tb/ta and
inter-component coupling J2/ta. The FM phase demonstrates typical
behavior, with spin along x or z. The non-FM phase demonstrates a
typical zAFM, and an unconventional non-FM phase. A key feature
of the unconventional phase: a spin along z on one site correlated
with a spin along x on another site.

correlator elements [99]. Variational Monte Carlo (VMC)
with stochastic minimization (SM) [98] is used to obtain the
optimized plaquette wave functions that minimize the energy
and best describe the ground state.

Concurrent employment of all three methods in our analysis
helps in validating each method and identifying areas where
they fail. It also facilitates an accurate interpretation of the
results that best reflect the system behavior, with minimal ef-
fect of the system size and the approximations made in the
mean-field treatment.

V. SPIN PHASES

Previous work studying the two-component Bose–Hubbard
model in the absence of inter-component coupling, shows
two spin phases: xy ferromagnetic (FM; ta ∼ tb) and z anti-
ferromagnetic (AFM; ta∨b � tb∨a) with a first-order phase
transition [39]. This is only seen in the on-site interaction
limit U � Uab. In the other limit U ∼ Uab, only one spin
phase—zFM—exists. Motivated by these, we explore the spin
phase space in the presence of coupling for strong on-site
intra- and inter-component interaction in the limits U � Uab
and U ∼ Uab. A schematic of the spin phases in the presence
of coupling is shown in Fig. 3, surmised from the effective
Hamiltonian. For U � Uab: When ta∨b � tb∨a, introducing
coupling (J2) evolves the zAFM in the non-FM phase to an un-
conventional non-FM phase arising due to Jxz and Jzx. Further
increase in J2 transitions this to xFM in the FM phase due to
hx, eventually evolving to a zFM phase due to Jz. When ta ∼ tb
and J2 = 0, an xyFM phase is displayed. With coupling, this
becomes an xFM due to hx. For U ∼ Uab: with increasing J2,
the system evolves from biased zFM to xFM in the FM phase,
transitioning to the unconventional non-FM and evolving to a
zAFM in the non-FM phase.
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FIG. 4. (color online) Spin order parameters, describing the spin behavior along (i&ii) z and (iii&iv) x at site i in subspace A and i+1 in
B. The orders evaluated via (a) mean-field approximation, (b) exact diagonalization for N = 8 and (c) ED with the symmetry breaking term
(δhz = 4×10−4ta) for N = 8 are shown as a function of scaled tunneling (tb/ta) and coupling (J2/ta), in the deep Mott regime (U/Uab = 10,Uab/ta = 20).

We now introduce coupling to the system and study the spin
phases that arise by evaluating the spin order parameters. The
site-dependent nature of the unconventional phase emerging
due to the unique correlations are confirmed with the exami-
nation of the correlation between spins at two different sites.
The spin orders along z and x on the nearest-neighbor sites
depict the existence of two phases in our system: (1) spins
aligning along the same direction (FM) at large tunneling (tb/ta)
or coupling (J2/ta) for U � Uab (or at tunneling ≥ coupling
for U ∼ Uab) and (2) spins aligning along different direc-
tions (non-FM) otherwise, as seen in Fig. 4. Fig. 4 (a i &
a ii) representing the spin behavior along z in the mean-field
limit, displays a superposition of the quasi-degenerate states
(reflecting either of the two degenerate spin configurations—
↑ j↓ j+1 or ↓ j↑ j+1—on the nearest-neighbor sites) in the non-
FM phase. Whereas, Fig. 4 (b i & b ii) obtained via exact

diagonalization with periodic boundary conditions shows the
true ground state (reflecting a superposition of the two spin
configurations). The ground state obtained via exact diagonal-
ization is symmetric, whereas the state obtained in mean-field
treatment has a broken symmetry.

To demonstrate correspondence of the mean-field treatment
with exact diagonalization, a weak symmetry breaking term
(−δhz

∑
i∈(2N+1)σ

z
i ) is introduced to the effective Hamiltonian

and studied via exact diagonalization (ED-SB). The symmetry
seen in ED (Fig. 4 b) is then explicitly broken (Fig. 4 c). This
enforces the selection of one of the two degenerate spin con-
figurations. Spin orders—

〈
σz∨x

i

〉
ED-SB—for this symmetry-

broken system (Fig. 4 c i & c ii) present similar behavior as
in the mean-field treatment (Fig. 4 a i & a ii). This concor-
dance between ED-SB and the mean-field treatment confirms
the latter results in spontaneous symmetry breaking forming a
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symmetry-broken ground state.
In the limit U � Uab (as well as U ∼ Uab; see Fig. 5),

the system in the presence of coupling shows a second-order
phase transition that appears as a discontinuity in the spin or-
ders. The critical expression for tunneling tb/ta as a function
of coupling J2/ta, and interactions U,Uab describing the phase
boundary can be obtained analytically within the mean-field
treatment (see Appendix C):

(tb/ta)C
U�Uab

= −A−B and (tb/ta)C
U∼Uab

= −A+B (5)

where A =

(
J2/ta(U+Uab)+2U

2(2Uab−U)

)
and

B =

√(
J2/ta(U+Uab)+2U

2(2Uab−U)

)2

−

(
1− J2

2/t2
a +

J2/ta(U+Uab)
2Uab−U

)
.

The spin correlation (〈σi ·σi+1〉) between the nearest-
neighbor sites is presented in Fig. 5, which demonstrates the
non-FM(< 1) phase and the FM(= 1) phase, with the approx-
imate critical tunneling coefficient tb/ta describing the phase
boundary. For U � Uab, a first-order transition occurs along
the vertical axis (i.e., J2 = 0). This transitions shifts to
second-order as the coupling is introduced, with the transition
width increasing with coupling. The spin correlation obtained
via exact diagonalization confirms the existence of the two
spin phases. The difference between the mean-field approxi-
mation and exact diagonalization is expected due to the treat-
ment of all sites independent of each other in the mean-field
treatment. Additionally, the exact diagonalization is restricted
to smaller system sizes.

U � Uab : In the absence of coupling, dependent on the
competing energy parameters Jz and J⊥, the system displays
zAFM for Jz ≥ J⊥ and xyFM for Jz < J⊥ [39]. These phases
appear due to the high energy cost of the intermediate state
|aa〉 j or |bb〉 j when compared to |ab〉 j. This results in a high
tunneling probability for states |a〉 j|b〉 j+1 or |b〉 j|a〉 j+1.

Introducing coupling to this system, evolves the conven-
tional zAFM spin phase to the unconventional non-FM phase
as depicted in Fig. 4. The unconventional phase demonstrates
a spin along z on one site correlated to a spin along x on an-
other site. This results in a stronger z order at one site and
x order at the nearest-neighbor sites in the mean-field limit
forming a site-dependent spin phase. Spin orientation along z
in this phase depends on the intra-component tunneling, with
up spin at tb/ta < 1 and down spin at tb/ta > 1, and thus is
intra-component tunneling dependent spin phase. The cou-
pling in the system allows component b on some site j to tun-
nel to a on site j+1 or vice versa. This and the system pref-
erence for the high energy intermediate state |ab〉 allows the
nearest-neighbor sites to have the same component (|a〉 j|a〉 j+1
or |b〉 j|b〉 j+1) and delocalize. These allowed states along with
the preferred configuration in the absence of coupling forms
the unconventional phase; in the Hamiltonian: emergent due
to correlations induced by the Jxz and Jzx terms and preferen-
tially chosen by the effective ordering hx and hz.

The system transitions to the FM phase forming an xFM
phase upon further increase of the coupling or tunneling. At
large tunneling and in the absence of coupling, an xyFM phase
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J2 /ta 
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0.2

FIG. 5. (color online) Spin correlation describing the spin relation-
ship between the nearest-neighbor sites at: (a) U/Uab = 10 and (b)
U/Uab = 1.2 evaluated via (i) mean-field approximation and (ii) exact
diagonalization for N = 8. The correlation is shown as a function
of scaled tunneling (tb/ta) and coupling (J2/ta), in the deep Mott regime
(Uab/ta = 20). The dashed curve denotes the mean-field critical values
(tb/ta)C from Eqn. (5).

forms as shown in the previous work [39]. However, this pref-
erence changes with the introduction of coupling as seen in
Fig. 4, forming an xFM phase, due to the strong hx ordering.

U ∼ Uab: Similar spin phases as in U � Uab are observed
but at different regions of the phase space. In this limit, all the
high-energy intermediate states have equivalent energy cost
associated with them unlike the previous interaction limit. In
a strong coupling limit (J2/ta � ta/tb,1), the conventional zAFM
spin phase emerges due to the strong effective ordering along
z: Jz as seen in Fig. 5 (b i & b ii). With no significant intra-
particle tunneling, only the component b at some site j is al-
lowed to tunnel to a at site j+1 (or vice versa). The coupling
allows for the highest tunneling probability of the configu-
ration |a〉 j|b〉 j+1 or |b〉 j|a〉 j+1. This results in the formation
of the observed zAFM phase. Allowing one component to
tunnel by a small increase in intra-component tunneling ta∨b
(J2 > ta∨b > tb∨a), forms the unconventional non-FM phase.

When one component’s intra-component tunneling is as
strong as the coupling (J2 ∼ ta∨b � tb∨a), the FM phase ex-
ists as seen in Fig. 5 (b i & b ii). It is expected that when
a component is allowed to tunnel, it would be preferred on
all sites. This leads to the spin up zFM for ta � tb and spin
down zFM for tb � ta. However, this preference changes
with strong coupling, forming an xFM phase due to hx order-
ing. With both components being allowed to hop, the system
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(a i) ED⟨σ1
zσj

x⟩

(a ii) ED⟨σ1
zσj

z⟩

⟨ (b i) VMC-SM on EPSσ1
zσj

x⟩

(b ii) VMC-SM on EPS⟨σ1
zσj

z⟩
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0.5
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J : 0 0.342/ta

FIG. 6. (color online) Spin correlations describing the spin relation-
ship between site 1 and some site j along: (i) z-x and (ii) z, for
(a) N = 12 via exact diagonalization and (b) N = 20 via VMC-
SM on EPS. The correlations are shown as a function of site j at
J2/ta = 0.34,tb/ta = 0.0 and J2/ta ≈ 0.0, tb/ta = 0.0 in the deep Mott
regime (Uab/ta = 20, U/Uab = 10).

exists in an equal superposition of components. The spin cor-
relations obtained via exact diagonalization are comparable to
the mean-field treatment for correlations along z and x.

Unconventional non-FM: The spin orders in exact diag-
onalization do not display (Fig. 4) the conventional zAFM
and the unconventional non-FM phase as seen in the mean-
field treatment. Exact diagonalization shows a superposition
of all possible degenerate configurations, hence the spin or-
ders along z show no order in the non-FM region, and the
phase can only be identified by the strength of the x order.
Whereas, the mean-field treatment shows one of the degener-
ate configurations as a result of spontaneous symmetry break-
ing. To demonstrate the existence of the unconventional non-
FM phase, the spatial spin correlations are studied along z-x
and z via exact diagonalization (N = 12) and VMC-SM on
EPS (N = 20). Fig. 6 (a) presents the evidence of the un-
conventional site-dependent non-FM phase distinct from the
conventional (zAFM) spin phase. Illustrated here is the spin
correlations between site 1 and some site j along z-x and z
obtained via exact diagonalization for system size N = 12 at
U � Uab. The unique correlations (Jxz and Jzx terms in the
Hamiltonian) manifests as the observed site-dependent oscil-
lations in the spin correlation along z-x. In the conventional
regime, however, the z-x spin correlation remains constant as
a function of site j(≈ 0). The oscillation in the spatial correla-
tion acts as a signature of this unconventional non-FM phase,
and an evidence of its existence in exact diagonalization. Sim-
ilar oscillations appear for U ∼ Uab albeit in a large coupling
regime (J2/ta ≈ 5). Fig. 6 (b) shows the spin correlations ex-
tended to a larger system size of N = 20 to observe the decay
in oscillation of the correlation, expected in 1D owing to the
lack of true long-range order.

VI. EXTENSION

In this section we discuss the effect of complex tunneling
and coupling coefficients on the spin phases, and extend our
study to comment on the effective spin system at occupancy
greater than unity.

Complex coefficients: Complex phases are associated with
the nearest-neighbor intra-component tunnelings ta and tb and
the inter-component coupling J2 resulting in new hopping pa-
rameters: ta = |ta|eiθa , tb = |tb|eiθb , and J2 = |J2|eiθJ . The
Hamiltonian for the resulting system:

H = −
∑

i

(|ta|eiθa a+
i ai+1+|tb|eiθb b+

i bi+1+|J2|eiθJ +H.c.)

+
∑

k=a,b;i

Uk

2
nki(nki−1)+

∑
i

Uabnainbi

(6)

The mapped effective spin Hamiltonian in the presence of
complex coefficients:

Heff = −Jz

∑
i

σz
iσ

z
i+1−hz

∑
i

σz
i

−Jp

∑
i

[
cos(θa−θb)(σx

i σ
x
i+1+σ

y
iσ

y
i+1)+

sin(θa−θb)(σx
i σ

y
i+1−σ

y
iσ

x
i+1)

]
−hx

∑
i

[
(tacos(θa−θJ)+tbcos(θb−θJ))σx

i −

(tasin(θa−θJ)+tbsin(θb−θJ))σy
i

]
−Jxz

∑
i

cos(θa−θJ)σx
i σ

z
i+1−sin(θa−θJ)σy

iσ
z
i+1

+Jzx

∑
i

cos(θb−θJ)σz
iσ

x
i+1−sin(θb−θJ)σz

iσ
y
i+1

(7)

The ferromagnetic ordering (Jp) of nearest-neighbor sites
along x splits to x-x and x-y ordering and that along y splits
to y-x and y-y ordering. This splitting depends on the phase
difference of coefficients ta and tb. However, the ordering Jz
remains unchanged. The fictitious magnetic field along x (hx)
splits to x and y; this splitting is dependent on the phase dif-
ference between tunneling (ta∨b) and coupling (J2). The ficti-
tious magnetic field along z (hz) remains unchanged. A simi-
lar effect is seen on the novel correlations with x-z ordering on
nearest-neighbor sites splitting to x-z and y-z and z-x splitting
to z-x and z-y. These splittings are dependent on the phase
difference between ta∨b and J2. The complex hopping param-
eters result in an accumulation of phase with each hop. In the
case when a component hops to the nearest-neighbor site and
back, no net phase is accumulated and consequently the z or-
dering terms remain unaffected. In any other hopping, a net
phase is obtained, which is proportional to the difference of
the complex phases associated with tunneling and coupling.
Since this is a one-dimensional system, there is only a trivial
effect of these complex coefficients; interesting outcomes are
expected at higher dimensions.
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Occupancy > 1: Considering two particles per site, the two-
component Bose–Hubbard system is mapped to a spin-1 sys-
tem with basis states |aa〉, |ab〉, and |bb〉 mapped to |1〉, |0〉,
and |−1〉, respectively. Considering the limit U ∼ Uab, since
only spin Mott phase (|0〉) persists for U � Uab, the effective
spin-1 Hamiltonian:

Heff = µ
∑

i

(S z
i )

2−h(1)
z

∑
i

S z
i −h(1)

x

∑
i

S x
i

−Jz

∑
i

S z
i S

z
i+1−Jp

∑
i

(S x
i S x

i+1+S y
i S y

i+1)

−Jxz

∑
i

S x
i S z

i+1+Jzx

∑
i

S z
i S

x
i+1,

(8)

where S α
i are the spin-1 matrices. µ = U−Uab orders the

sites along spin Mott (|0〉) phase for µ > 0 and along z (|1〉
or |−1〉) for µ < 0. h(1)

z = 6(t2
a−t2

b )/Uab and h(1)
x = 6J2(ta +tb)/Uab act

as fictitious magnetic fields polarizing the spins along z and x,
respectively. Similar to spin-1/2, we note Jp = 4ta tb/Uab provides
ferromagnetic ordering along x and y and Jz = 4(t2

a +t2
b−J2

2 )/Uab

provides anti-ferromagnetic or ferromagnetic ordering along
z (dependent on the tunneling and coupling parameters ta, tb,
and J2). Jxz = 4J2 ta/Uab and Jzx = 4J2 tb/Uab provide the novel order-
ing along x-z and z-x on nearest-neighbor sites. As expected,
despite increasing the occupancy, the novel ordering persists.
In the spin-1 system, an additional competing parameter µ ap-
pears with an additional spin Mott phase.

Generalizing to spin S = M/2 for occupancy M, the effective
spin-S Hamiltonian (S α

i are spin S matrices) (Appendix D):

Heff = µ
∑

i

(S z
i )

2−h(S )
z

∑
i

S z
i −h(S )

x

∑
i

S x
i

−Jz

∑
i

S z
i S

z
i+1−Jp

∑
i

(S x
i S x

i+1+S y
i S y

i+1)

−Jxz

∑
i

S x
i S z

i+1+Jzx

∑
i

S z
i S

x
i+1,

(9)

where h(S )
z = 2(2S +1)

(t2
a−t2

b)
Uab

and

h(S )
x = 2(2S +1)

J2(ta+tb)
Uab

.

VII. SUMMARY

In conclusion, coupling of the two components in the
nearest-neighbor sites via a resonant two-photon Raman tran-
sition gives rise to new effective spin Hamiltonian and a
unique site-dependent non-FM spin phase. The signature of
this unique phase appears as oscillation in spatial z-x corre-
lation between spins at site 1 and some site j, whereas it re-
mains constant (≈ 0) in a conventional zAFM spin phase. The
phase space notably changes with the introduction of cou-
pling, changing the previously seen first-order phase transi-
tion between the FM and non-FM (zAFM) spin phases to a
second-order phase transition for U � Uab. The correspond-
ing transition width increases with J2/ta. For U ∼ Uab, the
system goes from having only one (FM) spin phase to two

phases (FM and non-FM) with a second-order phase transition
between the two. Our analysis demonstrates that coupling of
the components in the nearest-neighbor sites provides an eas-
ily tunable parameter to switch between the previously seen
zAFM, zFM, and xFM spin phases allowing for the imple-
mentation of a spin independent optical lattice.

We employ exact diagonalization for small system size
(N < 14) and Variational Monte Carlo with stochastic min-
imization on Entangled-Plaquette State for large system size
(N ≥ 14). These confirm the presence of strong unconven-
tional correlations beyond the mean-field approximation. In-
troduction of complex intra-component tunneling and inter-
component coupling alters the ordering along x. The uncon-
ventional correlations split to have x and y spin orders on a site
and z on its nearest-neighbor sites. For filling factor greater
than unity, we present the effective spin Hamiltonian in the
presence of coupling and demonstrate that the novel correla-
tions persist, and also granting the possibility of transitioning
between the different spin phases via the coupling instead of
the on-site interactions.

Future Avenues: Our work provides new insights into the
Bose–Hubbard model and offers an easily tunable phase pa-
rameter. The system with coupling can be investigated for
symmetry protected topological (SPT) phases [100]. A possi-
ble extension to two tilted 1D optical lattices parallel to each
other can obtain the Su–Schrieffer–Heeger (SSH) model and
develop a SPT phase by tuning the coupling and tunneling
parameters. Going to higher dimensions, new rich physics
is expected [101]. Our assessment of the mapped system
with complex hopping coefficients leads to the system acquir-
ing a phase with second-order hopping. This is extensible to
higher dimensions, where the phase acquired over hopping
can have far more interesting consequences: development of
Harper’s Hamiltonian [97] and interesting spin correlations in
the mapped effective spin Hamiltonian. Additionally, the ef-
fect of the unconventional correlations for a generalized M
occupancy at even and odd fillings using the mapped spin-
M/2 Hamiltonian can be studied. In the absence of coupling,
a spin-1 system mapped from two-component Bose–Hubbard
model with occupancy two is used to lower entropy and obtain
ultra-cold temperature [95]; this motivates the consideration
of occupancy greater than one. The tunability of the system
via coupling can provide additional control over the system
at higher occupancy. Rydberg atoms have garnered immense
relevance for demonstrating interesting phases and system be-
havior with their long-range van der Waals interactions lead-
ing to blockade [102], and the resonant dipole–dipole inter-
action [100]. Finally, unexpected spin behaviors may emerge
when incorporating Rydberg atoms on account of their inter-
esting properties.
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Appendix A: Effective Hamiltonian: Canonical Transformation

Define two complementary subspaces: HP (low-energy)
with projector P and HQ (high-energy) with projector Q(=
1−P). The effective Hamiltonian (up to second-order) can
be expressed as [103]:

Heff = PHP−PHQ
1
QHQ

QHP (A1)

The zeroth-order has no contribution as the hopping terms
in the Hamiltonian lead to higher occupancy and are thus
projected out. The interaction terms yield 0 for unit occu-
pancy. In PHQ or QHP the only contribution is from hop-
ping terms (ta,tb,J2) in the Hamiltonian that can couple the
two subspaces. Whereas, in QHQ, only the interaction terms
(U,Uab) contribute as they do not change the subspace.
The second-order term PHQ 1

QHQQHP is:

= P

(∑
i

(−taa+
i ai+1−tbb+

i bi+1+h.c.)−J2(b+
i ai+1+a+

i+1bi)
)
Q1/(Q(

∑
k=a,b;i

Uk

2
nki(nki−1)+

∑
i

Uabnainbi)Q
)

Q

(∑
i

(−taa+
i ai+1−tbb+

i bi+1+h.c.)−J2(b+
i ai+1+a+

i+1bi)
)
P

(A2)

There are nine second-order or virtual hopping processes that
contribute to and form the effective Hamiltonian. The first
and second describe two particles of the same component ex-
changing positions. The eighth and ninth are when component
b (or a) hops from (i+1)∨(i−1) to i and component a (or b)
hops from i to (i+1)∨(i−1). These four processes have been
studied previously [39] and result in xyFM and either zAFM
or FM phases. With the introduction of J2, five additional pro-
cesses arise. The third process describes component a at i+1
and b at i exchanging positions. The fourth and sixth together
represent (a∨b)i,ai+1 → bi,(a∨b)i+1. Similarly, the fifth and
seventh together describe bi,(a∨b)i+1 → (a∨b)i,ai+1. These
processes are derived and expressed as follows:

1O
1
QHQ

P
∑

i

−ta
(
a+

i+1+a+
i−1

)
aiQ

∑
i

−taa+
i (ai+1+ai−1)P

=
t2
a

Uab

∑
i

P
(
na,i+1+na,i−1

)(
ainb,ia+

i
)
P

+
t2
a

U

∑
i

P
(
na,i+1+na,i−1

)(
ai
(
1−nb,i

)
a+

i
)
P

=
t2
a

Uab

∑
i

(
I+σz

i+1

2
+

I+σz
i−1

2

)(
I−σz

i

2

)
+

t2
a

U

∑
i

(
I+σz

i+1

2
+

I+σz
i−1

2

)(
I+σz

i

)
=

t2
a

2Uab

∑
i

(
I−σz

iσ
z
i+1

)
+

t2
a

U

∑
i

(
I+2σz

i +σ
z
iσ

z
i+1

)

2O
1
QHQ

P
∑

i

−tb
(
b+

i+1+b+
i−1

)
biQ

∑
i

−tbb+
i (bi+1+bi−1)P

=
t2
b

2Uab

∑
i

(
I−σz

iσ
z
i+1

)
+

t2
b

U

∑
i

(
I−2σz

i +σ
z
iσ

z
i+1

)
3O

1
QHQ

P
∑

i

−J2

(
a+

i+1bi+b+
i−1ai

)
Q
∑

i

−J2
(
b+

i ai+1+a+
i bi−1

)
P

=
J2

2

QHQ

∑
i

P
(
na,i+1biQb+

i +nb,i−1aiQa+
i
)
P

=
∑

i

[ J2
2

U
Pna,i+1

(
1+nb,i

)(
1−na,i

)
+nb,i−1

(
1+na,i

)(
1−nb,i

)
P+

J2
2

Uab
Pna,i+1

(
1+nb,i

)
na,i+nb,i−1

(
1+na,i

)
nb,iP

]
=

J2
2

U

∑
i

(
I−σz

iσ
z
i+1

)
+

J2
2

2Uab

∑
i

(
I+σz

iσ
z
i+1

)
The fourth and fifth processes together contribute to the ficti-
tious magnetic field hx and novel correlation Jxz.

4O
1
QHQ

P
∑

i

−ta
(
a+

i+1+a+
i−1

)
aiQ

∑
i

−J2
(
b+

i ai+1+a+
i bi−1

)
P

=
J2ta
Uab

∑
i

P
(
na,i+1b+

i ai+a+
i−1bi−1ainb,ia+

i

)
P

+
J2ta
U

∑
i

Pa+
i−1bi−1ai

(
1−nb,i

)
a+

i P

=
J2ta

2Uab

∑
i

(
σx

i −iσy
iσ

z
i+1

)
+

J2ta
2U

∑
i

(
σx

i−1+iσy
i−1+σz

iσ
x
i−1+iσz

iσ
y
i−1

)
5O

1
QHQ

P
∑

i

−J2

(
a+

i+1bi+b+
i−1ai

)
Q
∑

i

−taa+
i (ai+1+ai−1)P

=
J2ta
QHQ

∑
i

P
(
na,i+1biQa+

i +b+
i−1ai−1aiQa+

i

)
P

=
J2ta

2Uab

∑
i

(
σx

i +iσy
iσ

z
i+1

)
+

J2ta
2U

∑
i

(
σx

i−1−iσy
i−1+σz

iσ
x
i−1−iσz

iσ
y
i−1

)
The sixth and seventh processes together contribute to the fic-
titious magnetic field hx and novel correlation Jzx.

6O
1
QHQ

P
∑

i

−tb
(
b+

i+1+b+
i−1

)
biQ

∑
i

−J2
(
b+

i ai+1+a+
i bi−1

)
P

=
J2tb
QHQ

∑
i

P
(
nb,i−1biQa+

i +b+
i+1ai+1biQb+

i

)
P

=
J2tb

2Uab

∑
i

(
σx

i −iσy
iσ

z
i−1

)
+

J2tb
2U

∑
i

σx
i+1−iσy

i+1−σ
z
iσ

x
i+1+iσz

iσ
y
i+1
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7O
1
QHQ

P
∑

i

−J2

(
a+

i+1bi+b+
i−1ai

)
Q
∑

i

−tbb+
i (bi+1+bi−1)P

=
J2tb
QHQ

∑
i

P
(
nb,i−1aiQb+

i +a+
i+1bi+1biQb+

i

)
P

=
J2tb

2Uab

∑
i

(
σx

i +iσy
iσ

z
i−1

)
+

J2tb
2U

∑
i

σx
i+1+iσy

i+1−σ
z
iσ

x
i+1−iσz

iσ
y
i+1

8O
1
QHQ

P
∑

i

−ta
(
a+

i+1+a+
i−1

)
aiQ

∑
i

−tbb+
i (bi+1+bi−1)P

=
tatb

4Uab

∑
i

[(
σx

i+1+iσy
i+1

)(
σx

i −iσy
i

)
+
(
σx

i−1+iσy
i−1

)(
σx

i −iσy
i

)]
=

tatb
2Uab

∑
i

(
σx

i σ
x
i+1+σ

y
iσ

y
i+1

)
9O

1
QHQ

P
∑

i

−tb
(
b+

i+1+b+
i−1

)
biQ

∑
i

−taa+
i (ai+1+ai−1)P

=
tatb

2Uab

∑
i

(
σx

i σ
x
i+1+σ

y
iσ

y
i+1

)
Then, the second term (PHQ 1

QHQQHP) in the expansion A1:

=
tatb
Uab

∑
i

(
σx

i σ
x
i+1+σ

y
iσ

y
i+1

)
+
(
t2
a +t2

b−J2
2

)(
1
U −

1
2Uab

)∑
i

σz
iσ

z
i+1

+2
t2
a−t2

b

U

∑
i

σz
i +J2(ta+tb)

(
1
U

+
1

Uab

)∑
i

σx
i

−
J2tb
U

∑
i

σz
iσ

x
i+1+

J2ta
U

∑
i

σx
i σ

z
i+1

(A3)

Finally, the effective spin Hamiltonian is:

Heff =
∑

i

[
−J⊥

(
σx

i σ
x
i+1+σ

y
iσ

y
i+1

)
−Jzσ

z
iσ

z
i+1−hz

(
σz

i

)
−hx

(
σx

i
)
+Jzxσ

z
iσ

x
i+1−Jxzσ

x
i σ

z
i+1

] (A4)

Appendix B: N = 2

The aim here is to investigate a simplified two-site sys-
tem as it provides a facile description allowing for the vali-
dation of the effective spin system, by comparing the ground
states of the original with the mapped two-component Bose–
Hubbard Hamiltonian. Consider two sites each hosting com-
ponent a∨b, forming the basis states |a〉1|a〉2,|a〉1|b〉2,|b〉1|a〉2
and |b〉1|b〉2 with the analysis restricted to the limit U � Uab.
The coupling and the tunneling couples these basis states in
the original system to high-energy states |aa〉1|0〉2, |0〉1|aa〉2,
|ab〉1|0〉2, |0〉1|ab〉2, |bb〉1|0〉2 and |0〉1|bb〉2. The effective spin
Hamiltonian and the original Hamiltonian are studied via ex-
act diagonalization with open boundary conditions. In Fig. 7

(a), the ground state of the mapped effective spin system is
presented as a function of coupling (J2/ta) and tunneling (tb/ta).
Upon comparison of the mapped spin system with the ground
state of the original system in Fig. 7 (b) (low-energy sub-
space), both systems show a similar ground state composition
as a function of tunneling and coupling. At large coupling
(J2/ta � tb/ta) the ground state compositions of the two systems
deviate, where the mapped system shows a lower probability
of the state |b〉1|a〉2 and thus higher probability of the other
three basis states. At higher values of coupling, the Mott con-
dition required for the mapping fails. This leads to a negli-
gible but non-zero probability of high energy states |aa〉1|0〉2,
|0〉1|aa〉2, |ab〉1|0〉2, |0〉1|ab〉2, |bb〉1|0〉2, and |0〉1|bb〉2. Addi-
tionally, the mapped effective Hamiltonian works best for a
large system size and in the derivation of the effective Hamil-
tonian the expansion is limited to second-order; inclusion of
higher order terms can reduce the deviation seen in the ground
state composition between the mapped and original system.
Studying the probability of basis states, we confirm that the
mapped system is an appropriate representation for the pa-
rameter strengths considered. We explain the ground state of
mapped system by studying the effective Hamiltonian. The
preference for |b〉1|a〉2 appears due to Jz ∝ J2, and for |a〉1|a〉2
or |b〉1|b〉2 due to the ordering Jz,hz ∝ ta∨b, whereas the pref-
erence for the superposition of states |a〉1|a〉2 and |b〉1|a〉2 or
|b〉1|b〉2 and |b〉1|a〉2 emerges due to Jzx or Jxz. For the interac-
tion limit U ∼ Uab, a similar conclusion can be made.

Appendix C: Analytical Phase Boundary

Within the mean-field approximation, with the variational
ansatz defined, the energy per site:

EMF =−Jzcos2θAcos2θB−Jpsin2θAsin2θB

−
hz

2
(cos2θA+cos2θB)−

hx

2
(sin2θA+sin2θB)

−
(Jxz−Jzx)

2
(cos2θAsin2θB+sin2θAcos2θB)

Minimizing energy with respect to θB (∂E/∂θB = 0):

sin2θB =
K1√

K2
1 +K2

2

, cos2θB =
K2√

K2
1 +K2

2

,

where K1 = Jpsin2θA+
(Jxz−Jzx)

2
cos2θA+

hx

2
and

K2 = Jzcos2θA+
(Jxz−Jzx)

2
sin2θA+

hz

2
.

Energy after eliminating θB:

EMF = −
1
2

(hzcos2θA+hxsin2θA)−
√

K2
1 +K2

2

The energy is too complicated to solve for θA, approximations
are made to obtain analytical expressions for θA.

U � Uab: We consider two approximations. In approxima-
tion (i), consider only Jp,Jz and hx. This is valid for small and
intermediate tb/ta and J2/ta. Under this assumption, the non-FM
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FIG. 7. (color online) Probability of the basis states of the (a) effective Hamiltonian and (b) low-energy basis states of the original Hamiltonian
(i) |a〉1|a〉2, (ii) |b〉1|b〉2, (iii) |a〉1|b〉2, and (iv) |b〉1|a〉2. The probabilities are determined in the deep Mott regime (Uab/ta = 20) U/Uab = 10 and
presented as a function of scaled tunneling (tb/ta) and coupling (J2/ta).

(NFM) phase is approximately derived from the mean-field
energy:

EMF = −
hxsin2θA

2
−

√
(J2

z −J2
p)cos22θA+Jphxsin2θA+J2

p+
h2

x

4

Minimizing energy with respect to θA and solving for θA:

sin2θNFM,1∨2
A =

Jphx±|Jz|hx

2(J2
z −J2

p)

sin2θNFM,3
A = 1

θNFM,1
A fits the numerically obtained θA best among the three

in the non-FM region.
In approximation (ii), consider each of the following cases:

1. Jz,hx (large J2/ta and small tb/ta) or

2. Jp,Jz (small J2/ta and large tb/ta) or

3. Jp,hx (large J2/ta and large tb/ta),

where the terms are significant. In all of the three cases:

cos2θFM
A = 0

The critical value of tb/ta, going from non-FM to FM, obtained
by finding the boundary between the two analytical θA is com-

puted:

(tb/ta)C
U�Uab

=−

(
J2/ta(U+Uab)+2U

2(2Uab−U)

)
−√(

J2/ta(U+Uab)+2U
2(2Uab−U)

)2

−

(
1− J2

2/t2
a +

J2/ta(U+Uab)
2Uab−U

)
U ∼ Uab: We consider two approximations. In approxima-
tion (i), set hz and Jxz−Jzx to 0. This is valid when the intra-
component tunnelings are small (tb,ta � J2), or comparable
to each other (ta ∼ tb). This limit is able to approximately
capture the non-FM phase from the mean-field energy:

EMF = −
hxsin2θA

2
−

√
(J2

z −J2
p)cos22θA+Jphxsin2θA+J2

p+
h2

x

4

Minimizing energy with respect to θA and solving for θA:

sin2θNFM,1∨2
A =

Jphx±|Jz|hx

2(J2
z −J2

p)

sin2θNFM,3
A = 1

θNFM,1
A fits the numerically obtained θA best among the three

in the non-FM region.
In approximation (ii), set Jz, Jp and Jxz−Jzx to 0. This solu-

tion set only considers the spin polarizing terms hz and hx, and
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is able to capture the FM phase. This approximation is valid
for small coupling J2/ta. It however fails to capture the region
around tb/ta ∼ 1 and J2/ta → 0, where both the ordering terms
considered would tend to 0.

EMF = −
hzcos2θA

2
−

hxsin2θA

2
−

√
h2

z +h2
x

4

Minimizing energy with respect to θA and solving for θA

cos2θFM
A =

hz√
h2

z +h2
x

The critical value of tb/ta, going from non-FM to FM, obtained
by finding the boundary between the two analytical θA is com-
puted (θNFM,1

A = limhz→0θ
FM
A = π/4):

(tb/ta)C
U∼Uab

=−

(
J2/ta(U+Uab)+2U

2(2Uab−U)

)
+√(

J2/ta(U+Uab)+2U
2(2Uab−U)

)2

−

(
1− J2

2/t2
a +

J2/ta(U+Uab)
2Uab−U

)

Appendix D: Mapping M particles per site

Generalizing the system to M particles per site, with the
analysis limited to U−Uab = µ � U,Uab, consider a site hav-
ing na particles of component a and nb of component b, such
that na+nb = M. To map the two-component Bose–Hubbard
model to an effective low-energy Hamiltonian, define the
subspaces P (occupancy = M) and Q (occupancy > M).

The effective Hamiltonian up to second-order:

Heff = PHP−PHQ
1

QHQ−PHP
QHP

Mapping the bosonic creation, annihilation, and number oper-
ators to Spin-M/2 matrices:

na,i =
M
2

+S z
i , nb,i =

M
2
−S z

i

a+
i bi = S x

i +iS y
i , b+

i ai = S x
i −iS y

i

The first term in the Hamiltonian:

PHP =
U
2

na,i(na,i−1)+
U
2

nb,i(nb,i−1)+Uabna,inb,i

=
U
2

M(M−1)−µ
M2

4
+µ(S z

i )
2

The second term in the Hamiltonian, −PHQ 1
QHQ−PHP QHP, is

split into 4 terms:

(a) −t2
aP

[
(na,i+1+na,i−1)ai

Q
QHQ−PHP a+

i

]
P

−t2
bP

[
(nb,i+1+nb,i−1)bi

Q
QHQ−PHP b+

i

]
P

−J2
2 P

[
na,i+1bi

Q
QHQ−PHP b+

i +nb,i−1ai
Q

QHQ−PHP a+
i

]
P

(b) −tatbP
[
(a+

i+1bi+1+a+
i−1bi−1)ai

Q
QHQ−PHP b+

i

+(b+
i+1ai+1+b+

i−1ai−1)bi
Q

QHQ−PHP a+
i

]
P

(c) −J2taP
[
na,i+1

(
ai

Q
QHQ−PHP b+

i +bi
Q

QHQ−PHP a+
i

)
+(a+

i−1bi−1+b+
i−1ai−1)ai

Q
QHQ−PHP a+

i

]
P

(d) −J2tbP
[
nb,i−1

(
ai

Q
QHQ−PHP b+

i +bi
Q

QHQ−PHP a+
i

)
+(a+

i+1bi+1+b+
i+1ai+1)bi

Q
QHQ−PHP b+

i

]
P

Focusing on (a), QHQ−PHP ≈ UabM; aiQa+
i

=

M∑
nb=0

ai

 N∏
k=0,k,nb

(k−nb,i)
(k−nb)

a+
i =

M∑
nb=0

(na+1)

 N∏
k=0,k,nb

(k−nb,i)
(k−nb)


=

M∑
nb=0

(M+1−nb)
[

1
nb!

1
(M−nb)!

][
(−1)nb

∏M
k=0,k,nb

(k−nb,i)
]

=
1

M!

M∑
nb=0

(−1)nb (M+1−nb)
(
M
nb

)[∏M
k=0,k,nb

(k−nb,i)
]

It follows that:

biQb+
i =

1
M!

M∑
na=0

(−1)na (M+1−na)
(
M
na

)[∏M
k=0,k,na

(k−na,i)
]

Simplification of the terms in the above expression:

M∏
k=0,k,nb

(k−nb,i) = C0+C1nb,i+C2n2
b,i+...+CMnM

b,i

CM = (−1)M

CM−1 = (−1)Mnb+(−1)M−1(
∑M

n1=0n1),

CM−2 = (−1)Mn2
b+(−1)M−1(

∑M
n1=0n1)nb

+(−1)M−2(
∑M

n1=0
n2>n1

n1n2)+...

C1 = (−1)MnM−1
b +...,

C0 = (−1)MnM
b +(−1)M−1(

∑M
n1=0n1)nM−1

b +...

CM−k = (−1)Mnk
b+(−1)M−1(

∑M
n1=0n1)nk−1

b +...∑
nb

(−1)nb nk
b

(
M
nb

)
=

{
(−1)M M!, if k = M
0, k < M

nM
b = nb(nb−1)(nb−2)...(nb−(M−1))+(

∑M−1
n1=0n1)nM−1

b
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Substituting these simplifications: aiQa+
i

=
1

M!

M∑
nb=0

(−1)nb (M+1−nb)
(
M
nb

) M∏
k=0,k,nb

(k−nb,i)


=

1
M!

M∑
nb=0

(M+1)
(
(−1)nb

(
M
nb

)
(−1)MnM

b

)

−
1

M!

M∑
nb=0

nb(−1)nb

(
M
nb

)(
(−1)MnM

b +(−1)M−1

 M∑
n=0

n

nM−1
b

+(−1)MnM−1
b nb,i

)

=(M+1)−nb,i−
1

M!

M∑
nb=0

(−1)nb

(
M
nb

)(
(−1)Mnbnb(nb−1)...

...(nb−(M−1))+(−1)M

M−1∑
n=0

n

nM
b +(−1)M−1

 M∑
n=0

n

nM
b

)
=(M+1)−nb,i−M

−
1

M!

M∑
nb=0

(−1)nb

(
M
nb

)
(−1)M

(
M(M−1)

2
−

M(M+1)
2

)
nM

b

=(M+1)−nb,i−M+M = (M+1)−nb,i

It follows that biQb+
i = (M+1)−na,i

Simplifying (a) in the expression:
(z: number of nearest neighbors)

(a) = −
t2
a

MUab
P
[
(na,i+1+na,i−1)(M+1−nb,i)

]
P

−
t2
b

MUab
P
[
(nb,i+1+nb,i−1)(M+1−na,i)

]
P

−
J2

2

MUab
P
[
nb,i+1(M+1−nb,i)+na,i−1(M+1−na,i)

]
P

= −
zt2

a

MUab

(
Const.+(M+1)S z

i +S z
i S

z
i+1

)
−

zt2
b

MUab

(
Const.−(M+1)S z

i +S z
i S

z
i+1

)
+

zJ2
2

MUab
S z

i S
z
i+1

Considering the other terms in the second expression of the
Effective Hamiltonian: (For (b), (c), and (d), QHQ−PHP =
U/2(M−1)+Uab/2(M+1) ≈ UabM):

(b) = −tatbP
[
(a+

i+1bi+1+a+
i−1bi−1)ai

Q
QHQ−PHP b+

i

+(b+
i+1ai+1+b+

i−1ai−1)bi
Q

QHQ−PHP a+
i

]
P

= −
tatb

MUab
P
[
(a+

i+1bi+1+a+
i−1bi−1)ai

∑
na

M∏
k=0,k,na

(k−na,i)
(k−na)

b+
i

+(b+
i+1ai+1+b+

i−1ai−1)bi

∑
nb

M∏
k=0,k,nb

(k−nb,i)
(k−nb)

a+
i

]
P

= −
tatb

MUab
P
[
(a+

i+1bi+1+a+
i−1bi−1)b+

i ai
M!
M!

+(b+
i+1ai+1+b+

i−1ai−1)a+
i bi

M!
M!

]
P

= −
ztatb

MUab

(
(S x

i+1+iS y
i+1)(S x

i −iS y
i )+(S x

i+1−iS y
i+1)(S x

i +iS y
i )
)

= −
z2tatb
MUab

(
S x

i S x
i+1+S y

i S y
i+1

)
(c) = −J2taP

[
na,i+1

(
ai

Q
QHQ−PHP b+

i +bi
Q

QHQ−PHP a+
i

)
+(a+

i−1bi−1+b+
i−1ai−1)ai

Q
QHQ−PHP a+

i

]
P

= −
J2ta

MUab
(2S x

i )
( M

2
+S z

i+1

)
−

J2ta
MUab

(2S x
i−1)

( M
2

+1+S z
i

)
= −

zJ2ta
MUab

((M+1)S x
i +2S x

i S z
i+1)

(d) = −J2tbP
[
nb,i−1

(
ai

Q
QHQ−PHP b+

i +bi
Q

QHQ−PHP a+
i

)
+(a+

i+1bi+1+b+
i+1ai+1)bi

Q
QHQ−PHP b+

i

]
P

= −
J2tb

MUab
(2S x

i )
( M

2
−S z

i−1

)
−

J2tb
MUab

(2S x
i+1)

( M
2

+1−S z
i

)
= −

zJ2tb
MUab

((M+1)S x
i −2S x

i S z
i+1)

The effective Hamiltonian, scaled by M(= 2S ):

Heff =µ
∑

i

(S z
i )

2−z(2S +1)
∑

i

(t2
a−t2

b)
Uab

S z
i −z(2S +1)

∑
i

J2(ta+tb)
Uab

S x
i −

2(t2
a +t2

b−J2
2)

Uab

∑
i

S z
i S

z
i+1

−
4tatb
Uab

∑
i

(S x
i S x

i+1+S y
i S y

i+1)−
4J2ta
Uab

∑
i

S x
i S z

i+1+
4J2tb
Uab

∑
i

S z
i S

x
i+1
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