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We perform a measurement of the tune-out wavelength, λ0, between the D1, 62S1/2 → 62P1/2,

and D2, 62S1/2 → 62P3/2, transitions for 133Cs in the ground hyperfine state (F = 3,mF =
+3). At λ0, the frequency-dependent scalar polarizability is zero leading to a zero scalar ac Stark
shift. We measure the polarizability as a function of wavelength using Kapitza-Dirac scattering
of a 133Cs Bose-Einstein condensate in a one-dimensional optical lattice, and determine the tune-
out wavelength to be λ0 = 880.21790(40)stat(8)sys nm. From this measurement we determine the
ratio of reduced matrix elements to be |〈6P3/2‖d‖6S1/2〉|2/|〈6P1/2‖d‖6S1/2〉|2 = 1.9808(2). This
represents an improvement of a factor of 10 over previous results derived from excited-state lifetime
measurements. We use the present measurement as a benchmark test of high-precision theory.

I. INTRODUCTION

Optical trapping is widely employed in experiments
involving ultracold neutral atoms and molecules [1]. Op-
tical fields can be engineered on the scale of the optical
wavelength to produce various trapping geometries, in-
cluding lattices [2], ring traps [3, 4], box potentials [5–7]
and arrays of individual micro-traps [8, 9]. This, com-
bined with the ability to confine any polarizable species,
has resulted in numerous advances in metrology [10], con-
trol of single atoms and molecules [8, 9, 11–15], and quan-
tum simulation of interacting many-body systems [16–
19]. Refined optical trapping techniques can also lead to
exciting developments that will underpin future quantum
technologies [20–22].

The dipole force experienced by atoms in an optical
trap is proportional to the dynamic polarizability. The
polarizability varies with wavelength exhibiting poles,
whenever the applied optical field matches a transition.
This wavelength dependence gives additional control over
the optical potential where, for ground state atoms, opti-
cal frequencies red detuned of a transition give rise to at-
tractive optical potentials and those frequencies that are
blue detuned give rise to repulsive optical potentials. The
poles in the polarizability lead to wavelengths between
transitions where the polarizability is zero, commonly re-
ferred to as tune-out wavelengths [23, 24] or magic-zero
wavelengths [25]. Precise knowledge of the polarizabil-
ity is important for a number of applications including
optical lattice clocks, quantifying lattice potentials, and
as benchmarks for testing theoretical methods of calcu-
lating polarizability for more complex atoms such as Er
and Dy [25]. Measurements of tune-out wavelengths are
important as they allow the determination of multiple
atomic properties including transition dipole matrix el-
ements, oscillator strengths, and state lifetimes [25, 26].
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Transition dipole matrix elements are fundamental prop-
erties of atoms as well as being crucial parameters for
determining, for example, the blackbody radiation shift
of atoms which is often a limiting systematic uncertainty
in atomic clocks [27]. A number of discrepancies between
experimental results and between theory and experiment
have been pointed out in the literature [28–31] recently,
giving particular importance to further benchmark tests.

Tune-out wavelengths can also be used to create
species-specific and state-specific optical trapping poten-
tials [23, 24]. Species-specific traps occur due to different
atomic species having different transition wavelengths.
For different atomic species, the poles in the polarizabil-
ity therefore occur at different wavelengths leading to
different trapping potentials. Species-specific trapping is
useful in multi-species experiments and has allowed for
studies of scattering in mixed dimensions [32] and the
transfer of entropy between different atomic species to
demonstrate novel cooling schemes [33]. Within the same
atomic species, atoms in different electronic states will
experience different trapping potentials due to the differ-
ent transition frequencies from the different states. Even
within the same electronic state it is possible to engineer
state-specific potentials as the polarizability also depends
on the polarization of the light interacting with the atom
and the orientation of the atomic spin. The light po-
larization and atomic spin will determine the transitions
that are allowed by selection rules and hence make po-
larizability depend on both the total electronic angular
momentum, F , and its projection, mF . In general, the
polarizability is therefore composed into scalar, vector,
and tensor polarizabilities where the scalar polarizability
is the polarizability when averaging over all mF levels.
State-specific potentials can be used to engineer multi-
particle entanglement [34], spatiotemporal control of in-
traspecies interactions [35], and state-selective manipu-
lation of quantum states [31, 36].

Tune-out wavelengths have been experimentally mea-
sured both directly and indirectly. Direct measure-
ments are made by performing polarizability measure-
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ments around the tune-out wavelength, with experimen-
tal techniques including atom diffraction [25], parame-
teric heating [31], and atom interferometry [37]. Indirect
measurements can be made by inferring tune-out wave-
lengths from measurements of state lifetimes, but can
be limited by knowledge of branching ratios [25]. Previ-
ous experiments have directly measured tune-out wave-
lengths, using linearly polarized light, for different alkali-
metal atoms including Li [38, 39], K [26, 40], and Rb
[25, 33, 37, 41], as well as for other atomic species in-
cluding He [42], Sr [31], and Dy [43] and also for ground
state NaK molecules [44]. However, despite many the-
oretical studies of 133Cs polarizability [45–48], so far no
measurements of 133Cs scalar tune-out wavelength have
been performed. And yet 133Cs atoms are used in a wide
range of applications including the definition of the sec-
ond [49], the search for variations in fundamental con-
stants, and tests of the standard model.

In this paper, we report the experimental measure-
ment of the scalar tune-out wavelength λ0 of 133Cs atoms,
hereafter just denoted Cs, in the ground hyperfine state
at λ0 ≈ 880 nm, between the D1, 62S1/2 → 62P1/2,

and D2, 62S1/2 → 62P3/2, transitions. From this mea-
surement we determine the ratio of reduced dipole ma-
trix elements |〈6P3/2‖d‖6S1/2〉|2/|〈6P1/2‖d‖6S1/2〉|2 =
1.9808(2). This ratio is in agreement with previous re-
sults from lifetime measurements [50], but with an error
bar reduced by more than a factor of 10. Experimental
determination of this ratio is also of particular interest
due to discrepancy between theoretical and experimen-
tal values in Ba+ discussed in [29, 30]. We carry out
a benchmark comparison with theoretical calculations of
the Cs ratio, testing the methodology for determining
theory uncertainties.

This paper is structured as follows. In Sec. II we
discuss the theoretical calculations of polarizability in-
cluding its decomposition into scalar, vector, and tensor
components. We also explain how measurements of po-
larizability can be made using Kapitza-Dirac scattering
that results from applying a pulsed optical lattice poten-
tial to the atoms. In Sec. III we give a brief overview
of the experimental apparatus and the production of Cs
Bose-Einstein condensates (BECs). In Sec. IV we dis-
cuss the lattice setup used to measure λ0 and present the
results. In Sec. V we discuss how we extract the scalar
tune-out wavelength from our measurements. We also
discuss how the ratio of reduced matrix elements is ex-
tracted, and present theoretical calculations. In Sec. VI
we summarize the results and give an outlook to future
work.

II. THEORY

A. Polarizability

Our experiments are performed using Cs atoms pre-
pared in |F = 3,mF = +3〉 in a magnetic field of

23.4(1) G. We calculate the polarizability including hy-
perfine structure following the methods described in de-
tail elsewhere [45, 48, 51]. Below we summarize the main
results.

The quantum state, |i〉, of an alkali-metal atom can
be defined in terms of the quantum numbers |i〉 =
|γ, F,mF 〉 ≡ |F,mF 〉. F = I + J, with I the nuclear
spin, and J the electronic angular momentum. For Cs,
the nuclear spin I = 7/2. γ represents the other quan-
tum numbers used to define the state but we will drop γ
from the notation for simplicity.

For an alkali-metal atom in |i〉 interacting with light of
wavelength λ, with associated angular frequency, ω, the
general form of the frequency dependent polarizability
can be decomposed as [37]

αi(ω) = α
(0)
i (ω)− ξk̂ · B̂mF

2F
α

(1)
i (ω)

+

[
3(ε̂ · B̂)2 − 1

2

]
3m2

F − F (F + 1)

F (2F − 1)
α

(2)
i (ω).

(1)

Here αK
i are the scalar (K = 0), vector (K = 1),

and tensor (K = 2) components of the polarizability,
ξ = (I+ + I−)/I0 is the fourth Stokes parameter [52]
and quantifies the degree of circularity of the polariza-
tion with I± being the intensities of the different circular

components and I0 is the total intensity, B̂ is a unit vec-

tor in the direction of the magnetic field, and ε̂ and k̂
are unit vectors in the direction of the polarization vec-
tor and wavevector, respectively, of the light interacting
with the atoms.

The scalar polarizability can be further decomposed
into [53]

α
(0)
i (ω) = αcore + αvc + α

(0)
v,i (ω), (2)

where there is a contribution to the polarizability from
the core electrons, αcore, a core modification due to the
valence electron, αvc, and a contribution from the valence

electron α
(0)
v,i (ω). The excitation frequencies of the core

electrons are far detuned from the laser frequencies con-
sidered here and so αcore and αvc are treated as frequency
independent. Calculations in the random-phase approx-
imation (RPA) yield for Cs, αcore = 15.84(16) × 4πε0a

3
0

and αvc = −0.67(20)× 4πε0a
3
0 [47]. It is important that

these two values are computed by the same method for
consistency. The uncertainty in the core contribution
is taken to be 1% based on the comparison with the
coupled-cluster calculations [54]. The uncertainty in the
αvc term is taken to be the difference of the RPA and
Dirac-Hartree-Fock values.

The scalar polarizability contribution from the valence
electron is calculated by summing over contributions
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FIG. 1. Calculated scalar polarizability (blue solid line) of
ground state Cs in the vicinity of the D1, 6S1/2 → 6P1/2,
transition at 894.6 nm, and the D2, 6S1/2 → 6P3/2, transi-
tion at 852.3 nm. Between these two transitions the polariz-
ability changes signs and passes through zero at the tune-out
wavelength λ0 ≈ 880 nm as indicated by the dashed orange
line.

from all other states |k〉 = |F ′,m′F 〉 [45]

α
(0)
v,i (ω) =

2

~
(2F + 1)√
3(2F + 1)

∑
k 6=i

ωk,i|dk|2

ω2
k,i − ω2

(−1)F
′+F+1

× (2F ′ + 1)

{
F 1 F ′

1 F 0

}{
F ′ I J ′

J 1 F

}2

,

(3)

where ωk,i = ωk − ωi is the transition frequency be-
tween |k〉 and |i〉, ~ is the reduced Planck constant,
dk = 〈J ||d||J ′〉 is the reduced dipole matrix element be-
tween |i〉 and |k〉, and the terms in curly brackets are
Wigner-6j symbols.

It can be observed from Eq. 3, that the scalar polariz-
ability depends on the wavelengths of transitions from
|i〉 that are allowed by electric dipole selection rules,
and that the polarizability exhibits poles at these tran-
sition frequencies. For ground state atoms, red (blue)
detuned frequencies lead to positive (negative) polariz-
ability and hence attractive (repulsive) trapping poten-
tials. For atoms in the ground state, there are scalar
tune-out wavelengths between all pairs of transitions at
a wavelength where the red-detuned contribution to the
polarizability from one transition is cancelled by the blue
detuned contribution from the other transition. Figure 1
shows the calculated scalar polarizability of ground state
Cs around the D1 and D2 transitions at 894.6 nm and
852.3 nm, respectively. Between these two transitions,
the polarizability goes to zero at λ0 ≈ 880 nm. This is
the tune-out wavelength that we measure in Sec. V.

We now consider the impact of the vector and tensor
polarizability terms in Eq. 1 on the value of the tune-out
wavelength. The vector polarizability can cause substan-
tial shifts to the tune-out wavelengths as a result of the

selection rules for electric-dipole transitions. To illustrate
the importance of these selection rules, we consider Cs
atoms in the |4,+4〉 ground state. If the atoms interact
with light polarized to drive σ+ transitions (|ξ| = 1), then
transitions to the 6P1/2 state are not allowed by selection
rules. This lack of coupling to the 6P1/2 state means that
no tune-out wavelength will be present between the D1

and D2 lines for this specific light polarization. For the
case studied here of atoms in |3,+3〉, all polarizations
can couple to both the 6P3/2 and 6P1/2 states, but the
position of the tune-out wavelength is still strongly influ-
enced by the vector polarizability and can move on the
order of ∼ 10 nm for different polarizations. We observe
from Eq. 1 that the vector polarizability contribution is
proportional to the ellipticity of the light through the

fourth Stokes parameter (ξ), as well as the term k̂ · B̂.
We can therefore suppress the vector polarizability by
ensuring the light polarization is highly linear and align-
ing the laser beam orthogonal to the magnetic field, so
that k̂ · B̂ → 0. Details of how this is achieved in our
experiment are presented in Sec. IV.

The tensor polarizability term is relevant to the mea-
surements performed here. There is no contribution from

the core electrons since the core is isotropic (α
(2)
i = α

(2)
v,i )

[47]. In the absence of hyperfine structure, the tensor
polarizability is zero for the ground state. However, in-
cluding the hyperfine structure the tensor polarizability
of |i〉 is non-zero, and can also be written as a sum over
states as [45]

α
(2)
v,i (ω) =

2

~

√
10F (2F − 1)(2F + 1)

3(F + 1)(2F + 3))

∑
k 6=i

ωk,i |dk|2

ω2
k,i − ω2

× (−1)F+F ′
(2F ′ + 1)

{
F 1 F ′

1 F 2

}{
F ′ I J ′

J 1 F

}2

.

(4)

For alkali-metal atoms in the ground state, the tensor
term typically leads to corrections of less than a part-per-
million. Therefore, the polarizability for linearly polar-
ized light is dominated by contributions from the scalar
polarizability but small corrections due to the tensor po-
larizability need to also be taken into account.

B. Kapitza-Dirac Scattering

Kapitza-Dirac scattering [55] is routinely used in
atomic physics experiments to measure optical lattice
trap depths [56–58] and has previously been shown to be
a useful tool for measuring tune-out wavelengths [41, 43].
The technique has been extended to measure low lattice
depths by applying multiple pulses of the lattice poten-
tial to the atoms [25, 43]. Here, we use Kapitza-Dirac
scattering to measure the wavelength dependence of the
atomic polarizability of Cs.

Kapitza-Dirac scattering occurs when the lattice is
pulsed onto a Bose-Einstein condensate (BEC) and
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atoms in the condensate undergo stimulated two-photon
scattering events. Photons are scattered from one lat-
tice beam to the other and therefore momentum transfer
occurs in units of 2~klat, where klat is the lattice wavevec-
tor. The momentum transfer can occur in either direc-
tion along the beam to give both positive and negative
momentum states. As the lattice pulse time is varied the
population will oscillate between the different 2l~klat mo-
mentum states (l is an integer). The momentum states
separate in a time-of-flight expansion allowing the popu-
lations to be measured. In the Raman-Nath regime, the
atomic motion during the lattice pulses can be neglected
and analytic relations for the population dynamics can
be used [58].

In the work presented here, we consider Kapitza-Dirac
scattering beyond the Raman-Nath regime [58]. In this
regime the pulses are no longer short compared to the
oscillation period of atoms in the lattice. We therefore
cannot use analytic relations for the different momentum-
state populations and a numerical model is required. The
Hamiltonian for atoms of mass m in a periodic potential
of depth V0 and wavevector klat applied in the x direction
is given by

H = − ~2

2m

d2

dx2
+ V0 sin2(klatx). (5)

To calculate the populations in each momentum state, we
diagonalize the Hamiltonian using a plane wave basis in-
cluding both positive and negative orders up to |l| = 20.
Convergence of solutions is found for |l| > |lmax|, where
|lmax| is the maximum populated momentum state. In
the measurements performed here, we observe popula-
tions in momentum states up to |lmax| = 5. The atom
numbers in each state are normalized by the total number
of atoms in the image to avoid issues from shot-to-shot
variations in the atom number. The evolution of all mo-
mentum states are fit simultaneously, with the ±|l|2~klat

populations averaged during fitting to reflect symmetry
of the scattering process. The only free parameters in
the fit are the lattice depth and an amplitude factor to
account for imperfect atom-number normalization.

III. OVERVIEW OF THE APPARATUS AND
BEC PRODUCTION

A schematic overview of our apparatus is shown in
Fig. 2. Below we give brief details of the stages used
to produce Cs BECs.

Our experiment begins with a high-flux source of laser-
cooled atoms from a 2D+ magneto-optical trap (MOT)
[59]. Atoms from this source are collected in a 3D MOT
in the center of a 12-port stainless steel chamber. After
sub-Doppler molasses cooling, degenerate Raman side-
band cooling [60] is performed which cools the atoms to
∼ 1 µK and polarizes them into the |F = 3,mF = +3〉
ground state. To cool the atoms further we follow the
method used to create the first BECs of Cs [61]. In this

Imaging
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Dimple Reservoir

DRSC

1D-lattice
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λ/4

λ/4

FIG. 2. Schematic of the apparatus highlighting the optical
beam layout in the x-y plane. All beams used for cooling,
trapping, and imaging of atoms are shown. The 1D optical
lattice used for measuring the polarizability is aligned along
the x-direction (left-right in the diagram). Absorption imag-
ing is performed at an angle of 33◦ with respect to the lattice
direction. Electromagnetic coils (not shown) above and be-
low the chamber provide a magnetic bias field in the vertical
direction. The MOT and degenerate Raman sideband cooling
beams in the z direction are not shown for clarity.

approach, we implement a large volume reservoir trap
consisting of two beams with waists of ∼ 500 µm at the
atoms and crossing at an angle of 90 degrees. The light
for the reservoir trap is derived from a broadband Yt-
terbium fiber laser (IPG Photonics) with a wavelength
around 1070 nm. The trap is setup in a bowtie config-
uration where the power is recycled and used in both of
the trapping beams, as shown in Fig. 2. The reservoir
trap requires a magnetic levitation gradient to support
the atoms against gravity.

Approximately 10% of the atoms are then transferred
from the reservoir trap into a tighter crossed optical
dipole trap (xODT) at 1064 nm derived from a Nd:YAG
laser (Coherent, Mephisto). The two beams forming
the trap have waists of 51(1) µm and 103(2) µm at the
atoms. Forced evaporation is then performed by reduc-
ing the powers of these xODT beams whilst applying a
bias field of 23.4(1) G to minimise the 3-body inelastic
loss rate [61]. Typically, pure BECs containing 2 × 104

atoms in the |3,+3〉 ground hyperfine state are created.

IV. POLARIZABILITY MEASUREMENTS

The lattice light used for the Kapitza-Dirac measure-
ments is generated from a tuneable Ti:sapphire laser (M-
Squared, SolsTiS) pumped by a 18 W pump laser at
532 nm (Lighthouse Photonics, Sprout). The light inten-
sity sent to the experiment is controlled by an acousto-
optical modulator (AOM) that uses a fast switch (Mini-
Circuits, ZASWA2-50DR-FA+) to generate the short
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pulses required for the measurements. The light from the
AOM is coupled into an optical fiber to avoid changes in
the lattice alignment as the wavelength of the laser is
adjusted. The power output of the fiber is monitored
using a photodiode as shown in Fig. 2. This photodi-
ode is used to correct for small power changes between
polarizability measurements. Before passing through the
vacuum chamber, the lattice light passes through a Glan-
Laser polarizer (Thorlabs, GL10-B). This polarizer min-
imizes ξ and achieves a highly polarized lattice beam
which is linearly polarized with an extinction ratio of
better than 10−5. The waist of the ingoing lattice beam
is measured to be 99(5) µm at the position of the atoms.
After the light has passed through the chamber, it is
collimated and retro-reflected onto the atoms to create
the lattice potential. The lattice laser frequency is mea-
sured and stabilised using a HighFinesse WS-U waveme-
ter with an absolute accuracy of 30 MHz. We refer-
ence the wavemeter to a laser frequency stabilised to the
52S1/2(F = 2)→ 52P3/2(F ′ = 3) transition in 87Rb.

To perform the measurements of the polarizability, the
BEC is released from the dipole trap and, after a 100 µs
delay, the lattice is pulsed on for a variable time. The
atoms are then levitated for 40 ms using a magnetic field
gradient of ≈ 30 G/cm, allowing the different momentum
peaks to separate spatially before being imaged. Exam-
ple images from such diffraction measurements are shown
in Fig. 3(a) for a lattice created using ∼ 300 mW of
881 nm light and applied for varying pulse duration. Fig-
ure 3(b) shows the extracted populations of each of the
momentum states for each of these images.

Birefringence in the viewports of the vacuum chamber
can cause the highly linearly polarized light to acquire a
circularly polarized component. In order to suppress any
vector polarizability contribution caused by the vacuum
viewports, we therefore perform separate measurements
using two orthogonal linear polarizations and then av-
erage the two measured tune-out wavelengths [25]. We
choose the two lattice polarization alignments to be par-
allel and orthogonal to the applied magnetic field. This
choice of orthogonal polarizations has the advantage that
the changes in tune-out wavelength due to the tensor po-
larizability are less sensitive to alignment of the polariza-
tion in these orientations.

We initially measure the trap depth of the lattice us-
ing a power of ∼ 300 mW. We measure trap depths for
different lattice wavelengths and different orientations of
the lattice polarization with respect to the magnetic field.
Figure 4(a) shows the results of these measurements to-
gether with a fit using Eq. 2. In the fit, the weight-
ing of the polarizability contributions from the D1 and
D2 transitions is a free parameter and the polarizability
contributions from the other transitions is assumed to be
wavelength independent over this range. The overall am-
plitude of the fit is also a fit parameter to convert from
polarizability to trap depth.

To measure the tune-out wavelength, we increase the
power to ∼ 1 W, increasing our sensitivity to small polar-
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FIG. 3. An example of a Kapitza-Dirac measurement for
a lattice of power P ∼ 300 mW at a wavelength of 881 nm.
(a) Absorption images of the different BEC momentum states
for varying lattice pulse duration, measured after a 40 ms lev-
itated time-of-flight. (b) The relative atom number of the
different diffracted momentum states are extracted from the
images and fit using the method described in the text to give
a trap depth of 4.96(2) µK.

izabilities and allowing measurements to be made closer
to λ0. We then performed measurements of the trap
depth over a ∼ 0.5 nm wavelength range centred on the
tune-out wavelength, as shown in Fig. 4(b). The po-
larizability can be extracted from the trap depth if the
powers, beam waists and beam overlap are all known.
However, to determine the tune-out wavelength only rel-
ative changes in polarizability are required if the lattice
beam parameters remain constant. We therefore use the
extracted trap depth to determine the tune-out wave-
length.

V. ANALYSIS OF RESULTS

In order to extract the tune-out wavelength, from
the measurements shown in Fig. 4(b), we first fit the
data using a linear function which is a good approxi-
mation to the polarizability over this wavelength range.
We separately fit the data for the orthogonal linear po-
larizations. The fits yield the tune-out wavelengths of
λ⊥0 = 880.2164(6) nm and λ‖

0 = 880.2195(6) nm, where
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FIG. 4. Trap depth measurements using Kapitza-Dirac scattering for polarization vector, ε̂, parallel (‖, orange, dashed, circles)

and perpendicular (⊥, blue, solid, squares) to the magnetic field B̂. (a) A broad wavelength scan of trap depth using P ∼ 300
mW. Dashed lines are fitted trap depths (see text for details). (b) Narrow wavelength scan across the range of wavelengths
shown by the grey box in (a). Trap depths are measured using a lattice power of P ∼ 1 W, and are fitted with straight line
functions to extract tune-out wavelengths λ0 for each polarization. The residuals are plotted in the lower panel. The fitted
tune-out wavelengths are λ⊥0 = 880.2164(6) nm and λ‖

0 = 880.2195(6) nm for lattice polarizations perpendicular and parallel

to B̂, respectively. The difference in these values is highlighted in the inset of (b).

⊥ (‖) indicates that the linear polarization of the lattice
is orthogonal (parallel) to the magnetic field. To extract
the scalar tune-out wavelength from these measurements
we rely on some theoretical corrections detailed below.

A. Corrections to Measurements

The first correction that is taken into account is to
remove the shifts from the tensor polarizability. From
Eq. 1 we see that the shift depends on the relative ori-
entation of the magnetic field and the polarization of the
lattice. Using Eq. 4, we determine the tensor shifts to be
473 fm when ε̂ · B̂ = 1 and −237 fm when ε̂ · B̂ = 0. We
note that the uncertainties in these calculated values are
irrelevant compared to our statistical uncertainty in the
measurement of λ0.

After applying this correction the tune-out wave-
lengths become λ⊥0 = 880.2166(6) nm and λ‖

0 =
880.2190(6) nm. Although the two values agree at the 2σ
level, the small difference between them may also indicate
the presence of a residual vector polarizability shift due
to the birefringence in the vacuum viewports. We cancel
this effect by averaging the tune-out wavelength measure-
ments from the two orthogonal polarizations, giving the
result λ0 = 880.2178(4) nm.

The next correction we make is due to the Zeeman
effect from the applied magnetic bias field. We calibrate
the magnetic field in our experiment using the known
Cs Feshbach resonances up to 50 G [62]. We wish to
extrapolate our measurements to the case of zero applied
magnetic field. To calculate the shift in the tune-out
wavelength due to the Zeeman effect, we cannot use Eq.
3 and must use an equation that takes into account the

Zeeman shifts of the individual Zeeman sublevels [37, 45]

α
(0)
v,i (ω) =

1

3~
(2F + 1)

∑
k 6=i

ωB |dk|2

ω2
B − ω2

(2F ′ + 1)

×
(
F ′ 1 F
m′F mF −m′F −mF

)2{
F ′ I J ′

J 1 F

}2

.

(6)

This equation is identical to Eq. 3 for the case of B = 0
but now with an explicit summation over Zeeman sub-
levels, m′F . The transition frequencies now depend on
the magnetic field by

ωB = ωk,i + (g′m′F − gmF )µBB (7)

where g (g′) is the Landé g-factor for the ground (ex-
cited) state. We consider only the transitions to the 6PJ

states and by comparing the calculated tune-out wave-
lengths for the case B = 0 G and B = 23.4(1) G we
calculate the shift to be 68(3) fm. Including transitions
to the 7PJ states results in shifts of ∼ 0.002 fm. Apply-
ing this correction gives the scalar tune-out wavelength
to be λ0 = 880.2179(4) nm, where the error bar is purely
statistical.

We must also include the systematic errors in our final
result. The first systematic error comes from our wave-
length measurement. The wavemeter has an uncertainty
of 30 MHz corresponding to 78 fm at this wavelength.
The other major error comes from the vector polariz-
ability due to an impure lattice polarization which we
calculate to have a conservative upper bound of 7 fm as-
suming we have aligned the lattice within 3 degrees of
being orthogonal to the magnetic field quantization axis.
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TABLE I. The error budget for the measurement of the
880 nm tune-out wavelength. Each error contribution is given
to one significant figure, and are split into statistical and non-
statistical errors. The individual contributions of the non-
statistical errors are shown explicitly.

Source Error (pm)
Statistical 0.4
Non-Statistical 0.08

Zeeman effect 0.003
Vector shift 0.007
Wavemeter calibration 0.08

TABLE II. The theoretical calculations of the 6s− 6p1/2 and
6s− 6p3/2 matrix elements and their ratio using four variants
of the all-order method; ab initio linearized coupled-cluster re-
sults with single-double (SD) and perturbative valence triple
(SDpT) excitations are given in the SD and SDpT columns,
and scaled values are listed in the SDsc and SDpTsc columns.

SD SDsc SDpT SDpTsc
6S − 6P1/2 4.4807 4.5350 4.5576 4.5302
6S − 6P3/2 6.3030 6.3818 6.4136 6.3734
Ratio 1.9788 1.9803 1.9803 1.9793

This gives us the final result for the tune-out wavelength
λ0 = 880.21790(40)stat(8)sys nm where we separate the
statistical and systematic uncertainties. Table I shows a
summary of error contributions. The overall error in the
measurement is dominated by the statistical uncertainty.
The non-statistical error contributions are dominated by
the wavemeter calibration.

There are a number of theoretical predictions for λ0

[24, 46, 48]. However, only one of these theoretical val-
ues takes into account the hyperfine structure of the
atoms [48] and gives a predicted tune-out wavelength of
880.20(5) nm. Our measured tune-out wavelength agrees
well with this result.

B. Ratio of Matrix Elements

The error in the theoretical value of the tune-out wave-
length is dominated by the ratio of the 6P matrix el-
ements. It is therefore interesting to use our measure-
ments to extract a value for this ratio, which is defined
as

R =

∣∣〈6P3/2||d||6S1/2

〉∣∣2∣∣〈6P1/2||d||6S1/2

〉∣∣2 =
|d6P3/2

|2

|d6P1/2
|2

. (8)

When considering degeneracies of states only, this ratio
is expected to be R = 2. However, including relativistic
corrections, which are large for Cs compared to other
alkali-metal atoms due to the large atomic mass, this
ratio is reduced, with a theoretical value of R = 1.984(10)
[48].

We calculate the ratio R using the relativistic lin-
earized coupled-cluster method [47]. The results of four
computations are listed in Table II. Ab initio linearized
coupled-cluster results with single-double (SD) and per-
turbative valence triple (SDpT) excitations are given in
the SD and SDpT columns, and the scaled values are
listed in SDsc and SDpTsc columns. These approaches
are described in [63]. A large fraction of the correlation
correction cancels for the ratio, and its accuracy is sub-
stantially higher than that of the matrix elements. The fi-
nal value is taken to be 1.9788(21), in excellent agreement
with the experiment. All three approximations beyond
SD are aimed at evaluating one type of the correlation
corrections (the so called “Brueckner-orbital (BO) cor-
rection”), and its uncertainty is evaluated as the spread
of the four results. The total of all other corrections is of
the same order as the BO correction and we assume their
total uncertainty to be similar to the uncertainty of BO
correction, based on comparison with lifetime measure-
ments. The present work validates this procedure for the
ratio as well.

Table III shows the contributions to the frequency de-
pendent scalar polarizability at the theoretical tune-out
wavelength, between the D line transitions, of λth

0 =
880.2463 nm. To determine λth

0 , we use the matrix el-
ements given in Table III which come from a mixture of
both experimentally measured and theoretically calcu-
lated values. From the table it can be seen that the main
contributions to the polarizability at this tune-out wave-
length are from the transitions to the 6P1/2 and 6P3/2

states, with the other values constant around this value.
Therefore by adjusting the ratio R the theoretical value
of the tune-out wavelength can be adjusted to agree with
the measured value.

In order to determine this ratio of matrix elements,
the scalar polarizability can be expressed in the following
form [37]

α
(0)
6S1/2

(ω) = αoffset +
∣∣d6P1/2

∣∣2 (K6P1/2
+K6P3/2

R
)
, (9)

where αoffset = 17.5(3)×4πε0a
3
0 includes all contributions

to the scalar polarizability that are not from the 6P1/2

and 6P3/2 states. K6PJ
= α

(0)
6PJ

/|d6PJ
|2 where α

(0)
6PJ

are
the polarizability contributions to the 6S state from the
6PJ states.

Setting α = 0 in Eq. 9 and using our experimentally
measured value for the tune-out wavelength we extract
the ratio R = 1.9808(2). The uncertainty in R contains
contributions from d6P1/2

, αoffset and the determination
of the tune-out wavelength. However, the dominant con-
tribution comes from the calculation of the αcore. Us-
ing the experimentally measured values of the 6PJ states
given in Table III, the value of the ratio is R = 1.984(4)
which agrees well with our value extracted from the mea-
sured tune-out wavelength.
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TABLE III. The theoretical contributions to the 6S scalar
polarizability of Cs at λth

0 = 880.2463 nm. Polarizability con-
tributions are given in units of (4πε0a

3
0). Uncertainties are

given in parentheses. Experimental energies ∆E are mea-
sured from the ground state and given in cm−1 [64]. The
reduced electric-dipole matrix elements d in atomic units are
from experimental and theoretical data.

State ∆E (cm−1) d (ea0) α(0) (at λth
0 ) Ref.

6P1/2 11178.26816 4.489(6) -4029(11) [65]
7P1/2 21765.348 0.2781(5) 0.3573(12) [66]
8P1/2 25708.8547 0.081(3) 0.030(7) [47]
9P1/2 27636.9966 0.043(7) 0.006(2) [47]
10P1/2 28726.8123 0.0248(5) 0.0019(8) [47]
11P1/2 29403.42310 0.0162(4) 0.0008(4) [47]
12P1/2 29852.43153 0.012(3) 0.0004(2) [47]
6P3/2 11732.3071 6.335(5) 4011(6) [50]
7P3/2 21946.397 0.5742(6) 1.501(3) [66]
8P3/2 25791.508 0.232(14) 0.19(2) [47]
9P3/2 27681.6782 0.130(10) 0.053(8) [47]
10P3/2 28753.6769 0.086(7) 0.022(4) [47]
11P3/2 29420.824 0.063(6) 0.011(2) [47]
12P3/2 29864.345 0.049(5) 0.0068(13) [47]
n > 12 0.16(16)
αcore 15.84(16) [47]
αvc -0.67(20) [47]
αoffset 17.5(3)
Total 0(13)

VI. SUMMARY AND OUTLOOK

We have used Kapitza-Dirac scattering of atoms from
a 1D optical lattice to measure the tune-out wavelength
of Cs in the ground hyperfine state, |F = 3,mF = 3〉,
around 880 nm between the D1 and D2 transitions. We
are able to eliminate the influence of the vector Stark shift
by using linearly polarized light and performing the mea-
surement for two orthogonal polarizations. By correcting
the measured wavelength to remove the influence of the
tensor polarizability and magnetic field, we find the scalar
tune-out wavelength to be 880.21790(40)stat(8)sys nm.

This is in good agreement with theoretical value of
880.20(5) nm from [48].

We have used this measurement to determine the ra-
tio of the reduced matrix elements for transitions from
the ground state to the 6PJ states. We have found this
ratio to be R = 1.9808(2) which is consistent with pre-
vious measurements, but with a reduction in the uncer-
tainty by a factor of more than 10. This ratio of reduced
matrix elements is also important for determining other
atomic properties, such as oscillator strengths and state
lifetimes. The present work provides a benchmark test of
the relativistic all-order method and the procedure used
to evaluate the uncertainty in the theory. This is par-
ticularly important, as this method is used to generate
data and the associated uncertainties for the online data
portal [67].

The measurement of this tune-out wavelength will be
useful in future studies of quantum degenerate mixtures
involving Cs [68–72]. For example, a stirring beam at
this wavelength could be used to create vortices in the
atomic species trapped with Cs, without affecting the
Cs condensate. In future work we plan to measure
the tune-out wavelengths for Cs in the vicinity of the
62S1/2 → 72P1/2, 7

2P3/2 transitions to put constraints on
additional dipole matrix elements. Such measurements
are also more sensitive to changes in αcore [40] and may
contribute to further constraints on this parameter.
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