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Several emerging quantum technologies, including quantum networks, modular and fusion-based
quantum computing, rely crucially on the ability to perform photonic Bell state measurements.
Therefore, photon losses and the 50% success probablity upper bound of Bell state measurements
pose a critical limitation to photonic quantum technologies. Here, we develop protocols that over-
come these two key challenges through logical encoding of photonic qubits. Our approach uses a tree
graph state logical encoding, which can be produced deterministically with a few quantum emit-
ters, and achieves near-deterministic logical photonic Bell state measurements while also protecting
against errors including photon losses, with a record loss-tolerance threshold.

I. INTRODUCTION

Photons play a unique role in quantum information
technologies. They are the only qubits that can travel
over long distances, making them central to applications
such as quantum networks and the envisioned quantum
internet [1]. The basic building blocks of quantum net-
works are quantum repeaters [2–5], nodes designed to
overcome the challenge of photon loss. Repeaters rely
on Bell state measurements (BSM) between photons to
extend entanglement through the network in a process
known as entanglement swapping [4, 5]. This in turn
enables quantum cryptographic [6], computing [7], and
sensing [8] protocols.

For distributed quantum computing [9, 10], photonic
BSMs are also critical to compose a large-scale quan-
tum computer [11, 12] from small modules of net-
worked matter-based quantum processor, by enabling
inter-module entangling gates, through gate teleporta-
tion [13].

Finally, BSMs are the key primitive of a newly intro-
duced model for silicon-photonic quantum information
processing, fusion-based quantum computing [14]. This
can be thought of as a temporal analog of cluster-state
quantum computing, with the advantage that the re-
quired resource states are much more modest (constant
in the size of the computation). During the computation,
pairs of photons coming from different resource states are
Bell measured.

While photonic BSM plays an essential role in all these
technologies, unfortunately, there is a fundamental limi-
tation in its success probability: it succeeds 50% of the
time [15–20]. This is a major obstacle in realizing quan-
tum networks, distributed quantum computing, and pho-
tonic quantum computing. An additional challenge with
photonic quantum technologies is photon loss. Photons
can be absorbed, leading to an irreversible loss of the in-
formation they encode. This is particularly problematic
for long-distance quantum networks. These two short-
comings, together severely impede photonic quantum in-
formation processing, and often lead to proposals with
daunting resource overheads.

Prior work has proposed ways to boost the BSM prob-

ability through the use of ancillary photons [21–24], non-
linear interaction with an atom [25–27], or hyperentan-
glement [28–31] to achieve (near) deterministic photonic
BSMs. Nonetheless, these solutions are not tolerant to
photon losses and errors. Error reduction requires either
photon purification [3, 32] or the logical encoding of a
qubit on many photons [33].

In the context of quantum repeater (QR) protocols,
error correction is used by third-generation repeaters for
loss and error tolerance [5]. Any quantum error correct-
ing code could in principle be used [34] but they usually
require hundreds of matter qubits at each node and effi-
cient light-matter interactions to transfer quantum states
between photonic qubits and matter qubits in an efficient
way, and these resources have not yet been experimen-
tally demonstrated [35]. All-photonic QRs [36–39] either
remove these requirements entirely in the case where they
are generated using linear optics, or significantly reduce
them when they are produced using a deterministic ap-
proach based on a few matter qubits [40, 41]. A logical
photonic BSM has been proposed in Refs. [38, 39, 42],
initially using a quantum parity code [43] and subse-
quently extended to arbitrary Calderbank-Shor-Steane
codes [44]. However, large highly entangled states of
photons that serve as error-correcting codes are gener-
ally difficult to produce [45], largely for the same reason
that makes photonic BSMs probabilistic.

In this paper, we simultaneously address both chal-
lenges, the probabilistic nature of BSMs and photon loss,
through two protocols, which we call “static” and “dy-
namic”, that allow error-corrected photonic BSMs on log-
ical qubits, with a record loss-tolerance threshold for the
dynamic protocol. We use a tree graph state logical en-
coding [46, 47], which can be generated deterministically
with a few matter qubits [41, 48]. These generation pro-
cedures build on an experimentally-demonstrated proto-
col [40, 49] to produce linear cluster states.

Our results directly apply to two-way and one-way all-
photonic QRs [5], making the original proposal [36] both
resource-efficient and fully error-correctable. In the two-
way QR scheme displayed in Fig. 1, a logical Bell pair is
produced with a few matter qubits at each source node
using the generation sequence detailed in Appendix A,
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Figure 1. Two-way (top) and one-way (bottom) QR protocol
using deterministic tree graph state generation [41, 48? ] with
a few matter qubits and the logical BSM protocols studied in
this paper (see Appendix A for the deterministic generation
procedure).

and each logical qubit is sent to an adjacent measurement
node where a logical BSM is performed. In the one-way
QR scheme, the source nodes and measurement nodes
are the same, and one logical qubit is Bell measured at
this node while the other one is sent to the next node.

In the remainder of this paper, we describe how to per-
form a logical BSM, which is the cornerstone, not only
of these QR schemes, but also of fusion-based quantum
computing. The paper is organized as follows. In Sec II,
we introduce the stabilizer formalism to describe two-
photon BSMs using linear optics. In Sec. III, we intro-
duce the logical encoding that we are using. In Sec. IV,
we show how to use this encoding to produce logical BSM
protocols in a measurement-based setting. Finally, in
Sec. V, we evaluate the performances of the two proto-
cols introduced in this paper.

II. TWO-PHOTON BELL STATE
MEASUREMENT

A BSM is a joint measurement of two qubits, a and b,
in one of the four Bell states:∣∣Φ±ab〉 =

1√
2

(|0a0b〉 ± |1a1b〉)⇔
{
〈ZaZb〉=+1
〈XaXb〉=±1 ,∣∣Ψ±ab〉 =

1√
2

(|0a1b〉 ± |1a0b〉)⇔
{
〈ZaZb〉=−1
〈XaXb〉=±1 .

(1)

As shown on the right-hand side of Eq. (1), using the sta-
bilizer formalism [51], a BSM can also be interpreted as
the measurement of the two operators XaXb and ZaZb,
where X, Y , and Z are the usual Pauli matrices, and
the subscript indicates on which qubit the operator is
applied. Experimentally, a linear optical BSM [15–17]
measures one of these operators, and, depending on the
outcome of this measurement, +1 or −1, the second op-
erator is measured or not. In the following, we consider

Figure 2. (a) Tree graph state and notations. Nv and Cv

denote the set of neighbor qubits and child qubits of vertex v.
Indirect Z measurements are also illustrated. (b, c) Logical
BSM at the logical level (left panel) and at the physical level
(right panel) for the static (b) and the dynamic (c) protocols.
(SPM: single-photon measurements.)

a setup where we can discriminate ZaZb unambiguously
andXaXb half of the time (when ZaZb has parity 1), even
though all configurations of operators and measurement
outcomes are experimentally feasible.

Hence, denoting by η the detection probability of each
photon, a two-photon linear optical BSM can yield three
different results: a complete measurement (with proba-
bility η2/2), i.e. XaXb and ZaZb are measured; a par-
tial measurement (with probability η2/2), i.e. only ZaZb

is measured; or a failed measurement (with probability
1−η2), i.e. no outcome is measured, if at least one photon
is lost.

III. LOGICAL BELL STATE MEASUREMENTS

To avoid this limitation and to enable loss-tolerance
and error reduction, we are using a tree graph state
encoding which is a stabilizer error-correcting code. A
graph state |G〉 is the unique quantum state described
by a graph G = (V,E), with a set of vertices V corre-
sponding to qubits, and edges E, which is stabilized by
the |V | stabilizers Kv for v ∈ V [52] :

Kv |G〉 =

(
Xv

∏
w∈Nv

Zw

)
|G〉 = |G〉 , (2)

where Nv = {w|(v, w) ∈ E} is the set of qubits neighbor-
ing qubit v (see Fig 2(a)).

More specifically, we are interested in tree graph states
of depth d that are defined by a branching vector ~b =
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(b0, b1, ..., bd−1), which can encode a logical qubit [46] (see
Appendix B for more details). In this encoding, the phys-
ical X and Z operators are replaced by logical operators
XL and ZL:

XL = Xv

∏
w∈Cv

Zw,

ZL =
∏
u∈C0

Zu,
(3)

where v is any qubit from level 1 of the tree (v ∈ C0), and
Cv denotes the set of child qubits of v (i.e. the qubits
from level 2 that are neighbors of v).

It directly follows from Eqs. (1) and (3) that a complete
BSM on two logical qubits encoded with trees requires
the measurement of both XLX

′
L and ZLZ

′
L (we use a

prime to denote the second tree):

XLX
′
L = (XvXv′)

∏
(w,w′)∈(Cv,Cv′ )

(ZwZw′),

ZLZ
′
L =

∏
(v,v′)∈(C0,C0′ )

(ZvZv′),
(4)

where v ∈ C0 is any qubit from the first level of one
tree, and v′ ∈ C0′ is its counterpart from the other tree.
In this expression, we have paired the operators XvXv′

and ZvZv′ to highlight that these logical measurements
can be implemented by physical two-photon BSMs that
combine each photon from one tree with its counterpart
from the second tree.

In Fig. 2(b), we illustrate this strategy, which we call
the “static” protocol, with two trees with branching vec-
tors ~b = (3, 2). If a physical BSM on level 1 qubits, say
a and a′, is complete (thus yielding a measurement of
XaXa′), and if the BSMs on all the child qubits of a
and a′ are at least partial (thus yielding a measurement
for Za1

Za′1
and Za2

Za′2
), we have performed a successful

logical XLX
′
L measurement on the two logical qubits. A

successful logical ZLZ
′
L measurement would also require

all the remaining physical BSMs on the first-level qubits,
b, b′ and c, c′, to be at least partial to yield ZbZb′ and
ZcZc′ . In the absence of photon losses (η = 1) and er-
rors, all physical BSMs are at least partial, and only one
BSM on the level 1 qubits should be complete. This al-
ready boosts the overall success probability to 1 − 2−b0 ,
which can be made arbitrarily close to 1 by increasing
the number b0 of first-level qubits in the tree encoding.

At this point, it is worth clarifying some subtleties re-
lated to replacing logical two-qubit measurements with a
series of physical BSMs. If the goal is to project the logi-
cal qubits onto one of the four logical Bell states, then the
static protocol will not work, because the physical mea-
surements provide too much information about the state,
collapsing the logical qubits to a separable state. How-
ever, for applications such as qubit or gate teleportation
and entanglement swapping, which are the main applica-
tions of photonic BSMs, this is not an issue. In such ap-
plications, one or both logical qubits are initially entan-

gled with additional qubits. Upon success, the static pro-
tocol will still generate all the same entanglement links
or teleported states on the unmeasured qubits that one
would expect from a BSM. This is explained in detail in
Appendix C.

IV. CORRECTING LOSSES AND ERRORS IN
LOGICAL BELL STATE MEASUREMENTS

The loss-tolerance and error-correcting properties of
this logical BSM naturally arise from the counterfactual
error correction properties of the tree graph states that
were already demonstrated in Refs. [36, 46] for single
logical qubit measurements. Below, we show that these
properties can be extended to logical BSMs. Before we
explain this, we first recall that single-qubit counterfac-
tual error correction is based on indirect measurements of
a single qubit v in a tree, performed by measuring other
qubits using the stabilizing properties of the graph. The
loss-tolerance builds on the fact that a measurement can
be realized even if the qubit is lost, while error correction
is based on multiple indirect measurements of the same
single qubit and the use of a majority vote to reduce
errors.

From Eq. (2), it indeed follows that a qubit r ∈ Nw

can be indirectly measured in the Z basis by measuring
ZrKw = Xw

∏s6=r
s∈Nw

Zs, i.e., an X measurement on w
and Z measurements on all its neighbors except r. It is
therefore possible to indirectly Z-measure a qubit r of a
tree graph state by measuring one of its child qubits w
and the qubit set Cw (see Fig. 2(a)).

Regarding two-qubit measurements and following the
notations in Fig. 2(b), if the BSM on qubits c and c′

fail, we can still recover ZcZc′ indirectly using the deeper
level qubits, by measuring either ZcKc1Zc′Kc′1

= Xc1Xc′1
or ZcKc2Zc′Kc′2

= Xc2Xc′2
. In addition, by performing

the same measurement indirectly multiple times, we can
use a majority vote to allow for error correction. We in-
troduce here the static protocol, where the logical BSM
is recovered by performing two-photon BSMs jointly on
each qubit from a tree and its counterpart from the sec-
ond tree. In the following, we calculate the success prob-
ability of such a logical BSM and demonstrate its loss
tolerance. The error analysis is included in Appendix D.

Static protocol We use the notations for a measure-
ment event of the W observable at the tree level k:

• DW,k is a direct measurement.

• SW,k is a single indirect measurement event, using
only one stabilizer Kv, with v one of its child qubits
(at level k + 1), e.g. the indirect measurement of
ZcZ

′
c through the measurement of Xc1Xc′1

in the
previous example.

• IW,k is an indirect measurement event that can be
realized on a collection of SW,k, e.g. when we can
try either Xc1Xc′1

or Xc2Xc′2
to perform the ZcZc′

measurements.
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• MW,k is a measurement event (direct or indirect).

We denote by Pr[A] the probability of an event A. For
example, Pr[DX,k] = Pr[DZ,k] = η for single-qubit mea-
surements and Pr[DXX′,k] = Pr[DZZ′,k]/2 = η2/2 for a
two-photon BSM. Since these probabilities do not depend
on the level of the photons in the tree, we simplify the
notation by not specifying the level k of the photon for
a direct measurement event, DW,k = DW .

In the following, we consider measurements in the W
basis at level k for W = Z or ZZ ′. W = ZZ ′ is useful
for the static protocol, and W = Z is useful not only for
the logical single-qubit measurement [36, 46] but also in
the case of the dynamic protocol that will be introduced
next. The success probability of a direct or indirect mea-
surement event is therefore given by

Pr[MW,k] = Pr[DW,k] + (1− Pr[DW,k])Pr[IW,k], (5)

which states that a measurement is successful if its direct
measurement DW,k is successful or, if not, if its indirect
measurement IW,k is successful.

We should also note that the qubits at the last level of
the tree, i.e. k = d, can only be measured directly such
that Pr[IW,d] = 0.

An indirect measurement of a qubit at level k 6= d can
in principle be performed bk times, and only one needs

to succeed:

Pr[IW,k] = 1− (1− Pr[SW,k])bk . (6)

SW,k depends on the measurements that are realized. For
a W = Z measurement (or respectively for a W = ZZ ′

measurement), we should directly measure W̃ = X (W̃ =
XX ′) on one of its child qubits v at level k + 1 and
measure directly or indirectly Z (ZZ ′) all the child qubits
of v at level k + 2. Therefore,

Pr[SW,k] = Pr[D
W̃ ,k+1

]Pr[MW,k+2]bk+1 . (7)

As we can see, this set of equations, Eqs. (5) – (7), is
recursive since the measurement probability ofMW,k de-
pends on the probability ofMW,k+2. This explains why
the success probability can be increased, and as shown in
Appendix D, the error probability can be reduced.

With this set of equations we can compute success and
error probabilities for the static logical BSM protocol.
Indeed,

Pr[MXLX′L
] = Pr[IZZ′,0], (8)

Pr[MZLZ′L
] = Pr[MZZ′,1]b0 . (9)

However, the probability of realizing a complete log-
ical BSM, denoted M(c)

BSM,L, is not the product of
Pr[MXLX′L

] and Pr[MZLZ′L
] since there are correla-

tions between these events (Pr[M(c)
BSM,L] = Pr[MXLX′L

∩
MZLZ′L

] = Pr[MXLX′L
|MZLZ′L

]Pr[MZLZ′L
]):

Pr[M(c)
BSM,L] =

∑
m(c)+m(p)+m(f)=b0

m(c)≥1
m(p),m(f)≥0

PBSM(m(c),m(p),m(f))Pr[MZLZ′L
|m(f)]Pr[MXLX′L

|m(c)], (10)

where

PBSM(m(c),m(p),m(f)) =
(m(c) +m(p) +m(f))!

m(c)!m(p)!m(f)!

(
η2

2

)(m(c)+m(p)) (
1− η2

)m(f)

(11)

is the combinatorial probability of having m(c) complete,
m(p) partial and m(f) failed BSM outcomes at the first
level, with

Pr[MZLZ′L
|m(f)] = Pr[IZZ′,1]m

(f)

, (12)

the probability to completely measure ZLZ
′
L given that

m(f) BSMs failed at the first level, and with

Pr[MXLX′L
|m(c)] = 1−

(
1− Pr[MZZ′,2]b1

)m(c)

, (13)

the probability to completely measure XLX
′
L given that

m(c) BSMs at the first level were complete. With this set

of equations, it is possible to calculate the performance
of the static protocol.

Dynamic protocol If we allow adaptive measure-
ments, i.e., the measurement basis now depends on the
outcomes of previous measurements, we can also build an
improved “dynamic” logical BSM protocol. We first note
that while we can use the child qubits to perform indirect
Zv or ZvZv′ measurements, it is impossible to use them
to perform indirect Xv or XvXv′ measurements, since
measurements on the parent qubits would also be needed.
Therefore, instead of using indirect BSMs to achieve com-
plete BSMs, the objective is to upgrade failed BSMs to
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Figure 3. (a) Success probability of a BSM as a function of the
single-photon detection efficiency η for the static and the dy-
namic protocols for a tree of branching vector ~b = (15, 15, 2).
Dashed curves correspond to PBSM = η2 (red), η = 1/2

(blue), and η =
√

2/3 (green). (b) Logical BSM error as
a function of the single-qubit depolarization error rate E for
the static and dynamic protocols. (c) Performance of the
static (top) and dynamic (bottom) protocols as a function
of the number of photons in the tree, for η = 95% and
E = 10−5. Red point: smallest tree which is both error-
correcting and loss-tolerant. Green point: smallest tree which
is loss-tolerant. Points circled in black (uncircled): depth-3
(depth-2) trees. In all these figures, pink regions: no advan-
tage over a two-photon BSM.

partial BSMs by indirectly measuring ZvZv′ via single-
qubit measurements on their child qubits as illustrated in
Fig. 2(c). Thus, in the dynamic protocol, BSMs (single-
qubit measurements) are performed on child qubits if the
BSM on the parents is complete (partial or failed). Tak-
ing the example of Fig. 2(c) where the BSM on qubits c
and c′ fails, we can replace the indirect measurement of
ZcZc′ by individual indirect measurements Zc and Zc′ .
These measurements would succeed with higher probabil-
ity because they can succeed for example even if qubits
c1 and c′2 are lost, thus resulting in a better loss-tolerance
of the dynamic protocol compared to the static protocol.
We can also show that it performs better in terms of error
correction. The mathematical framework of the dynamic
protocol is detailed in Appendix E.

V. PERFORMANCES

We now investigate the performance of these proto-
cols. In Fig. 3(a), we evaluate their loss-tolerance using
trees with branching vector ~b = (b0, b1, b2) = (15, 15, 2)
(below we show that this tree structure yields good per-
formances for both loss and error correction). For high
enough single-photon detection probabilities, both proto-
cols perform a near-deterministic logical BSM. Notably,
they overcome the η2 limit, which is the upper bound for
BSMs with physical qubits, evidencing that they are also
loss-tolerant. Further numerical calculations show that
there always exist tree structures that allow an arbitrar-
ily high success probability as long as η is above

√
2/3

for the static protocol, and 1/2 for the dynamic protocol.
The dynamic threshold 1/2 is significantly lower than the
generic loss-tolerance threshold η > 1/

√
2 established in

Ref. [42] (derived from the bound ηη′ > 1/2 for symmet-
ric loss η = η′). This is possible because Ref. [42] as-
sumes the logical BSM only uses linear optical BSM, an
assumption broken by our dynamic protocol which also
uses single qubit measurements. This dynamic thresh-
old is in fact the same as for single logical qubit mea-
surements [46] and corresponds to the actual maximum
amount of loss that can be corrected with a logical en-
coding according to the no-cloning theorem.

Considering the same tree and only single qubit depo-
larization errors, E > 0 but η = 1, we show in Fig. 3(b)
that these protocols are also error-correcting, with a log-
ical BSM error reduced below the rate expected for a
linear optical BSM. As expected, both for loss-tolerance
and error-correction, the dynamic protocol outperforms
the static protocol.

We now evaluate the performance of these protocols as
a function of the number of photons per tree, n. We con-
sider a single-photon detection probability of η = 95%
and an error probability of E = 10−5. Figure 3(c) rep-
resents the logical BSM success probability and error
rate for trees constituted of n photons for the static and
the dynamic protocols. Here, we only present results
for trees, found through a systematic numerical search,
which have improved performance for either loss or er-
ror correction compared to smaller trees. Fig. 3(c) shows
that the loss-tolerance is easily achieved even with a re-
duced number of photons; for example only 7 qubits per
tree are needed for a photon loss rate of 5%. However,
it takes a tree with n ≥ 1185 photons (branching vector
~b = (74, 15)) to achieve error correction in the static pro-
tocol. The dynamic protocol also significantly reduces
the amount of resources required since error correction
can be achieved with n ≥ 691 photons using a tree with
~b = (15, 15, 2) branching vector. Notably, a larger num-
ber of trees are of interest for the dynamic protocol com-
pared to the static protocol. Our calculations show that
encodings using trees of depth-3 are much more tolerant
to losses and errors when using the dynamic protocol.
Further calculations also show that the size of the tree
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that achieves error-correction strongly depends on the
single-photon detection probability η.

Regarding the implementation of these logical BSM
protocols, we should highlight that, in the static protocol,
the photons are always measured via two-photon BSMs.
It can therefore be implemented using a static standard
linear-optical setup. The dynamic protocol has better
performance, but it is also more challenging to imple-
ment since photons should be measured in a given order
(from the first levels to the deeper levels) and the mea-
surement setting depends on previous detections, thus re-
quiring active components in the optical detection setup
that can quickly switch between single-qubitX or Z mea-
surements and the two-photon BSM.

We have shown that it is possible to perform a loss-
tolerant and error-corrected logical BSM on photonic
qubits encoded with tree graph states, a logical encod-
ing that can be deterministically generated with a few
matter qubits. Our results should impact the wide range
of quantum technologies that involve photons, including
fusion-based quantum computing [14], distributed quan-
tum computing, and quantum networks. The latter ap-
plication includes a new all-photonic QR protocol that
builds on the original proposal of Ref. [36] and requires
significantly fewer resources while also enabling error-
correction, a feature that was lacking from the original
proposal. This QR protocol is based on Bell pairs of
logically encoded qubits as shown in Fig. 1. We leave
the performance analysis of such new all-photonic QRs
to future work. In addition, as the error correction is
limited by the single-photon losses, the performance of
such a protocol may drastically increase by using ancilla
qubits or non-linear interactions with atoms to further
improve the physical qubit BSM success rate. Besides,
the transversal nature of the static protocol should allow
its generalization to other stabilizer codes, hopefully re-
sulting to more efficient and more robust logical BSMs,
likely at the cost of a more demanding experimental state
generation.

ACKNOWLEDGMENTS

We thank Clément Meignant for stimulating discus-
sions, and Anthony Leverrier, Yuan Zhan, and Shuo Sun
for their comments on the manuscript. This research was
supported by the NSF (Grant No. 1741656) and in part
by the EU Horizon 2020 programme (GA 862035 QLUS-
TER). FG acknowledges support of the ANR through the
ANR-17-CE24-0035 VanQute project.

Appendix A: Efficient generation of the logical Bell
state

To operate as a QR, we not only need to be able to
perform logical Bell state measurements for the entan-
glement swapping but we also need to efficiently gen-

erate the logical Bell states encoded with tree graph
states. An arbitrary-sized logical Bell-pair can be gen-
erated deterministically using a few matter qubits, by
using a variant of the generation procedures introduced
in Refs. [41] or in [48]. We illustrate this by adapting
the generation procedure of Ref. [41] to produce a logi-
cal Bell pair encoded with tree graph states of depth d,
following a given sequence based on four operations on
matter qubits: the emission of a photon maximally en-
tangled with the matter qubit Eph, the Hadamard gate
H, measurements in the Pauli bases MX , MY , MZ and
the CZ gate. A logical Bell pair of depth d with branch-
ing vector ~b = (b0, b1, ..., bd−1) is produced using d + 1
matter qubits by the following sequence (the operations
are applied sequentially from right to left):

MX,Q0MX,Q1CZQ0,Q1F (Q0,~b)F (Q1,~b). (A1)

Here,MA,Qi corresponds to the measurement of qubit Qi

in basis A, CZQi,Qj corresponds to a CZ gate between
qubits Qi and Qj , and the sequence function F (Qi,~b) is
defined such that

F (Qi,~b) = (MZ,Q2
HQ2

Eph,Q2
CZQi,Q2

G2)
b0 ,

with Gi =
(
MZ,Qi+1HQi+1Eph,Qi+1CZQi,Qi+1Gi+1

)bi−1
,

and Gd =
(
Eph,Qd+1

)bd−1 ,
(A2)

where we have omitted the single photon rotation for
simplicity. An illustration of this generation sequence is
given for ~b = (3, 2, 2) in Fig. 4.

Appendix B: Logical encoding with trees

Here, we explicit what are the logical states |0L〉
and |1L〉, using a tree logical encoding, introduced by
Ref. [46].

A tree graph state
∣∣T~b〉 is defined by a tree with

branching vector ~b. By using the notations ~bi =

(bi, bi+1, ..., bd−1), with ~b0 = ~b and ~bd = ~0, we can con-
struct

∣∣T~b〉 recursively:∣∣T~b〉 =
∣∣∣T~b0〉 ,∣∣∣T~bi〉 = |0〉i ⊗

∣∣∣T~bi+1

〉⊗bi
+ |1〉i ⊗

∣∣∣T̄~bi+1

〉⊗bi
,∣∣∣T̄~bi〉 = Zi

∣∣∣T~bi〉 ,∣∣∣T~bd〉 = |0〉d + |1〉d ,

(B1)

where here and in the following, we omit the normaliza-
tion factors.

The second line of Eq. B1 explicits that a tree of depth
i with branching vector ~b = (b0, ...bi−1) is composed of a
root qubit in state |+〉 attached to b0 trees of depth i− 1

with branching vector ~b′ = (b1, ...bi−1), with CZ gates.
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Figure 4. Protocol for the deterministic generation of a logical Bell pair using matter qubits.

∣∣∣T̄~bi〉 is the same state as
∣∣∣T~bi〉 except that a Z operator

has been applied on its root qubit i. The fourth line ends
the recursion to generate a tree of depth d.

We use the first recursion to explicit that the tree graph
state described by ~b, is a root qubit 0 attached to b0 tree
graph states of branching vector ~b1 by CZ gate:

∣∣T~b〉 = |0〉0 ⊗
∣∣∣T~b1〉⊗b0 + |1〉0 ⊗

∣∣∣T̄~b1〉⊗b0 ,
= |0〉0 ⊗ |T 〉+ |1〉0 ⊗

∣∣T̄〉 , (B2)

where we have used the simplifying notation |T 〉 =∣∣∣T~b1〉⊗b0 . Using the construction method presented in
Fig. 5, we logically encode a physical qubit state |φ〉p =

α |0〉p +β |1〉p = (α+β) |+〉p + (α−β) |−〉p onto a graph
state

∣∣T~b〉 by performing a CZ gate onto the physical
qubit and the root qubit of the tree and by measuring
these two qubits in the X basis. After the CZ gate op-
eration, we obtain the state

CZ
∣∣T~b〉⊗ |φ〉p = |0〉0 ⊗ |T 〉

(
(α+ β) |+〉p + (α− β) |−〉p

)
+ |1〉0 ⊗

∣∣T̄〉 ((α+ β) |−〉p + (α− β) |+〉p
)
.

(B3)
After the measurement of the root "0" and physiscal

"p" qubits in the |±〉 basis, we obtain the logical qubit
|φ〉L:

|+〉p , |+〉0 → |φ〉L = (α+ β) |T 〉+ (α− β)
∣∣T̄〉 , (B4)

For different outcomes, we can recover the same state by
applying first XL if the root qubit measurement outcome
is |−〉0 and then ZL if |−〉p; with ZL, XL the logical
operations as described in the main text.

The logical state, encoded onto the tree graph state is

Figure 5. (a) Tree encoding of a qubit: (Left panel) The target
qubit is attached to a tree via a CZ gate and then X measure-
ments are performed on the target qubit and the root qubit.
(Middle panel) The resulting graph and (right panel) graph-
ical notation used for a tree-encoded logical qubit. (b) Opti-
cal setup that actively switches between a two-photon BSM,
which measures ZZ′ unambiguously and XX ′ partially, and
two single-photon X or Z measurements. The two photons
arrive in inputs 1 and 2. BS: beam splitter, PBS: polariza-
tion BS, HWP: half wave plate (rotated by 45◦) and Det are
single-photon detectors.

|φ〉L. It follows that:

|0〉L =
1√
2

(
|T 〉+

∣∣T̄〉) ; |1〉L =
1√
2

(
|T 〉 −

∣∣T̄〉)
|+〉L = |T 〉 ; |−〉L =

∣∣T̄〉 ,
with |T 〉 =

∣∣∣T~b1〉⊗b0 .
(B5)

Note that this logical encoding is compatible with in-
direct Z measurements of qubits, for qubits at the first
level and deeper. Indeed, any Kv for qubit v at the sec-
ond level of the initial tree or deeper stabilize both |T 〉
and

∣∣T̄〉, and thus any logical state |φ〉L.
An alternative description of a logical code (which en-

code one logical qubit) is through its logical operators
ZL, XL, and its n− 1 stabilizers, where n is the number
of physical qubits of the code. As stated before, for any
physical qubit v at level-2 or deeper in the tree, the graph
stabilizer Kv is also a stabilizer of the code. Therefore,
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there remains b0 − 1 stabilizers to find. Since the XL

operator can be applied using each of the b0 first-level
qubits of the tree, we can rewrite it by denoting which
qubit we are using to apply this operator:

XL,v = Xv

∏
w∈Nv

Zw (B6)

. From this, we can find the remaining b0−1 independent
stabilizers of the code, which are given by the products
XL,iXL,j for any pair of first-level qubits, i and j.

Appendix C: Replacing a logical measurement by
physical measurements

In this section, we discuss why the measurement of
logical operators such as XL or ZLZ

′
L, which are multi-

qubit operators, can be replaced by many single-qubit or
two-qubit measurements. We begin by illustrating the
problem with a minimal example using two simple trees
with branching parameters ~b = (2) (depth-one tree with
only three physical qubits). In that case, |T 〉 = |++〉.
An arbitrary product states of two logical qubits is:

|ψ〉L |ψ
′〉L = µµ′ |+ + ++〉+ µν′ |+ +−−〉

+ νµ′ |− −++〉+ νν |− − −−〉
(C1)

We need to do physical Bell measurements on pairs of
qubits taken from |ψL〉 and |ψ′L〉, and so to facilitate this,
we switch the order of qubits 2 and 3:

|ψ〉L |ψ
′〉L = µµ′ |+ + ++〉+ µν′ |+−+−〉+ νµ′ |−+−+〉+ νν |− − −−〉

= (µµ′ + νν′)(
∣∣φ+〉 ∣∣φ+〉+

∣∣ψ+
〉 ∣∣ψ+

〉
) + (µµ′ − νν′)(

∣∣φ+〉 ∣∣ψ+
〉

+
∣∣ψ+

〉 ∣∣φ+〉)
+ (µν′ + νµ′)(

∣∣φ−〉 ∣∣φ−〉+
∣∣ψ−〉 ∣∣ψ−〉) + (νµ′ − µν′)(

∣∣φ−〉 ∣∣ψ−〉+
∣∣ψ−〉 ∣∣φ−〉). (C2)

In this case, ZLZ
′
L = Z1Z2Z3Z4 and we have two op-

tions for XLX
′
L: XLX

′
L = X1X2 or XLX

′
L = X3X4.

In the static protocol, we reconstruct the outcomes for
these logical measurements from measurements of Z1Z2,
X1X2, Z3Z4, X3X4, which are obtained from physical
Bell measurements. An ordinary linear-optical Bell mea-
surement on two photons only successfully yields the out-
come for both ZZ ′ and XX ′ with probability 1/2. For
concreteness, we can account for this by assuming that
the XX ′ measurement only succeeds if ZZ ′ yields +1.
As an example, suppose the physical Bell measurements
yield the following outcomes: Z1Z2 → +1, X1X2 → +1,
Z3Z4 → −1, X3X4 → failed. The logical two-qubit state
collapses:

|ψL〉 |ψ′L〉 →
∣∣φ+〉 ∣∣ψ+

〉
. (C3)

On the other hand, the outcomes of the logical operators
in this case are ZLZ

′
L → −1 and XLX

′
L → +1, and the

corresponding logical Bell state is∣∣ψ+
〉
L

= |TT 〉 −
∣∣T̄ T̄〉 = |+ + ++〉 − |− − −−〉 , (C4)

which remains the same if we switch the ordering of
qubits 2 and 3. Obviously, this is not the state we ob-
tained above in Eq. (C3). A similar finding occurs re-
gardless of what the outcomes of the physical measure-
ments are. This can be seen from the fact that every
term in Eq. (C2) combines two Bell states with the same
XX ′ eigenvalue, so that only one of these eigenvalues is
needed to uniquely identify a single term in this state.
Thus, so long as one of the physical Bell measurements

succeeds, the state collapses to a single term, and it does
not get projected onto a logical Bell state. The only
way to project onto a logical Bell state is to measure
Z1Z2Z3Z4 without separately measuring Z1Z2 and Z3Z4

. If we performed a true Z1Z2Z3Z4 measurement and
obtained outcome −1 (and also obtained XLX

′
L → +1),

then the state would instead collapse to

|ψ〉L |ψ
′〉L →

∣∣φ+〉 ∣∣ψ+
〉
+
∣∣ψ+

〉 ∣∣φ+〉 = |+ + ++〉−|− − −−〉 ,
(C5)

which is the desired logical Bell state. Thus, if the goal
is to project the system onto a logical Bell state, physical
Bell measurements on pairs of qubits do not suffice.

However, in practice, the photonic qubits are generally
absorbed by the photon detectors and the question of the
outcome state becomes irrelevant since it cannot be used
again after a measurement. Therefore, we consider that
a set of single-qubit or two-qubit measurements is a mea-
surement of a logical operator if the following conditions
are met. The set of measurements should have the same
outcome probabilities as the logical operator measure-
ments, and the total state after the set of measurements
should be a product state |Ψout〉⊗|Ψqubit〉 where |Ψqubit〉
corresponds to the measured qubit (or qubits) subspace
and |Ψout〉 corresponds to the state of the other qubits
that were not measured. After the set of single- or two-
qubit measurement, the state |Ψout〉 should be the one
expected by the measurement of the logical operator. In
other words, a set of many single-qubit and two-qubit
measurements is a measurement of a logical operator if
it acts the same way on the qubits outside of the logical
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subspace.
To see that this is the case here, we keep track of

the qubit subpsace state while progressively realizing the
measurements of the protocol. When all but one qubit
in the operator is correctly measured, we see that the
measurement of the logical operator is mapped onto this
last physical qubit measurement. Let’s take ZL and a
general quantum state |0〉L |Ψout〉+ |1〉L

∣∣Ψ̄out

〉
, as an il-

lustration. This can be easily generalized to two-qubit
measurements. The qubit subspace is described by the
logical operators and by the stabilizers:

ZL =
∏
v∈C0

Zv,

XL = Xv

∏
w∈Cv

Zw,∀v ∈ C0,

Ku = Xu

∏
r∈Nu

Zr,∀u ∈ V \C0,

(C6)

where the stabilizers are for all the vertices of the tree,
except the first-level qubits.

After one qubit measurement, say Zv with outcome
m = ±1, we can recover the new qubit subspace by fol-
lowing these rules:

• For all the operators S that act on qubit v trivially
(with identity operator Iv), S is not modified by
the measurement.

• For all S containing Zv (i.e. the measurement ba-
sis), S is converted into S′ = mZvS (similar to S
except that Zv is replaced by mIv).

• The remaining operators contain Xv (if there are
operators containing Yv, we can multiply them by
a previous operator containing Zv). If there is
only one such operator, we can replace it by mZv,
stating that after the measurement the qubit is in
state |0〉v or |1〉v. Considering destructive measure-
ments, we can also discard this operator since the
measured photon does not exist anymore. If there
is more than one operator containingXv, we denote
them by S0, S1, ... SN . S0, S0S1, S0S2, ..., S0SN

is another set of independent stabilizers where only
S0 contains Xv (the others contain Iv). After the
measurement we replace S0 by mZv and we keep
the other one containing Iv.

We illustrate this with a three-qubit linear clus-
ter state: |ψ〉 = |+0+〉 + |−1−〉, stabilized by
{X1Z2I3, Z1X2Z3, I1Z2X3}. If we measure the sec-
ond qubit in Z2 and apply these rules we obtain as
expected the stabilizers {mX1I2I3,mI1Z2I3,mI1I2X3}
corresponding to the states |ψm=1〉 = |+0+〉 or
|ψm=−1〉 = |−1−〉. If we perform an X2 measurement
on the second qubit instead of a Z2 measurement, the
stabilizer set is {mZ1I2Z3, X1I2X3,mI1X2I3} which cor-
responds to |ψm=1〉 = |0 + 0〉 + |1 + 1〉 or |ψm=−1〉 =
|0− 1〉+ |1− 0〉.

Going back to the calculation of ZL on a tree (see
Eq. (C6)) and measuring all but one qubit v′ in the first
level, we obtain:

ZL =

 ∏
v∈C0\{v′}

mv

Zv′ ,

XL = Xv′

∏
w∈Cv′

Zw,

Ku = Xu

∏
r∈Nu

Zr, ∀u ∈ V \(L1 ∪ L2),

Ku = mvXu

∏
r∈Cu

Zr, ∀v ∈ C0\v′,∀u ∈ Cv,

Ku = Zv′Xu

∏
r∈Cu

Zr, ∀u ∈ Cv′ ,

(C7)

where mv is the measurement outcome of Zv, and we
used Lk to denote the set of all the qubits at level k (e.g.
L1 = C0). After all of these measurements, we observe
that ZL is indeed mapped onto the measurement of the
last physical qubit (up to a sign that depends on the
previous measurements). Therefore, when all the other
qubits were correctly measured, the effect of this last Zv′

physical measurement, yields the same effect as ZL on the
remaining qubits outside of the logical qubit subspace.

Appendix D: Error analysis

1. Error of a two-photon BSM

The following error and performance analyses depends
on the type of two-photon linear optical setup. We use
the one presented in Fig. 5(b), which allows to actively
switch between single-photon measurements and a two-
photon BSM that measure ZZ ′ unambiguously and XX ′
only when ZZ ′ → 1. Note that for the static protocol
only requires the central part of this setup (in yellow),
and the active switches and single-photon measurements
can be removed.

We assume that the photons in each tree have a single-
qubit depolarization error rate ε, i.e. E [DW ] = ε, for
W = X or Z. It corresponds to a depolarization channel:

E(ρ) = (1− εd)ρ+
εd
3

(XρX + Y ρY + ZρZ), (D1)

with εd = 3
2ε.

We now derive the Bell state measurement error for
two qubits from these two trees.

The error induced on the density matrix that charac-
terizes the two qubits is therefore:
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E ◦ E ′(ρ) = (1− εd)(1− εd)ρ

+ (1− εd)
εd
3

(XρX + Y ρY + ZρZ)

+ (1− εd)
εd
3

(X ′ρX ′ + Y ′ρY ′ + Z ′ρZ ′)

+
εd

2

9

∑
W∈{X,Y,Z}

W ′∈{X′,Y ′,Z′}

WW ′ρW ′W,

(D2)

where we use the prime to distinguish operators acting
on the second qubit.

To understand better the effect of the depolarization
on a BSM, we summarize here the effect of the Pauli
operators on the stabilizers ZZ ′ and XX ′:

X(XX ′)X = XX ′; X(ZZ ′)X = −ZZ ′,
Y (XX ′)Y = −XX ′; Y (ZZ ′)Y = −ZZ ′,
Z(XX ′)Z = −XX ′; Z(ZZ ′)Z = ZZ ′,

(D3)

and similarly for X ′, Y ′, Z ′.
For these different terms, if only one Pauli matrix is

applied, this leads to at least one error in the stabilizer
measurement (ZZ ′ or XX ′) of the Bell state measure-
ment. The error on the two qubits can compensate them-
selves only if the Pauli matrices applied are the same
for the two qubits (i.e. for XX ′ρX ′X, Y Y ′ρY ′Y or
ZZ ′ρZ ′Z). The term in E ◦ E ′(ρ) that is errorless is
therefore ((1 − εd)(1 − εd) +

ε2d
3 )ρ, corresponding to an

error rate of:

εBSM = 2εd −
4εd

2

3
= 3ε(1− ε) (D4)

For the XX ′ measurement of the BSM only, due to
the way these measurements are realized, both the ZZ ′
and the XX ′ measurement should succeed, as otherwise
it leads to an indeterminate result, so:

E [DXX ] = εBSM. (D5)

For the ZZ ′ measurement, however, an error on the
XX ′ parity measurement does not lead to an error on
the ZZ ′ measurement. So the error should be smaller
than εBSM. If there is only one single-qubit error, (a
single Pauli matrix applied on ρ), this does not lead to
errors if this Pauli matrix is either Z or Z ′. For errors
applied on two qubits, as in the first case, there is no
error if the Pauli matrices applied on the two qubits are
the same, but also if XY ′ or Y X ′ matrix are applied.
The error-less term in that case is therefore:

E [DZZ ] = εBSM − 2(1− εd)
εd
3
− 2εd

2

9

=
2

3
εBSM.

(D6)

Similarly to Eqs 10, the error probability for the com-
plete logical BSM is:

E [M(c)
BSM,L] = E [MZLZ′L

] + (1− E [MZLZ′L
])E [MXLX′L

].

(D7)

2. Logical qubit error analysis

We denote by E [A], the error probability of the event
A. The error correction is based on the fact that the
error of indirect measurements can be reduced thanks to
a majority vote on indirect measurements.

Therefore, for the error correction to work, the error
of an indirect measurement must be lower than that of
a direct measurement E [IW,k] ≤ E [DW,k]. Consequently,
we should rely preferrably on the indirect measurement
outcomes:

E [MW,k] = Pr[IW,k|MW,k]E [IW,k]

+ (1− Pr[IW,k|MW,k])E [DW,k]
(D8)

where Pr[A|B] denotes the conditional probability of A
given B:

Pr[IW,k|MW,k] =
Pr[IW,k]

Pr[MW,k]
, (D9)

since Pr[MW,k|IW,k] = 1.
The qubits situated at the last level k = d can only be

directly measured:

E [MW,d] = E [DW,d] (D10)

In addition, the error of an indirect measurement IW,k

is given by:

E [IW,k] =
1

Pr[IW,k]

bk∑
ms=1

Pr[IW,k,ms]E [IW,k,ms],

(D11)
where Pr[IW,k,ms] denotes the probability of having ms

individual indirect measurements SW,k that have suc-
ceeded:

Pr[IW,k,ms] =

(
bk
ms

)
Pr[SW,k]ms(1− Pr[SW,k])bk−ms

(D12)
and E [IW,k,ms] is the error probability for ms indirect
individual measurements. We use a majority vote to re-
duce this error. Given that ms indirect measurements
are successful, an error still occurs in the majority vote if
more than half of the indirect measurements (ms/2) are
faulty:
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E [IW,k,ms] =

ms∑
i=dms/2e

(
ms

i

)
E [SW,k]i(1− E [SW,k])ms−i, ms odd

=

ms−1∑
i=ms/2

(
ms − 1

i

)
E [SW,k]i(1− E [SW,k])ms−1−i, ms even

(D13)

For the even case, the sum goes only up to mk− 1 because we cannot do better than randomly removing one result
and return to the odd case.

E [SW,k] =

1∑
i=0

E [D
W̃ ,k+1

]i(1− E [D
W̃ ,k+1

])1−i
bk+1∑
j=0,

i+j odd

(
bk+1

j

)
E [MW,k+2]j(1− E [MW,k+2])bk+1−j . (D14)

In this equation, we only consider odd numbers of er-
rors because in a parity measurement even numbers of
errors compensate each other.

For logical measurements, we therefore have:

E [MXLX′L
] = E [IZZ′,0] (D15)

E [MZLZ′L
] =

b0∑
i=1

i=1[2]

(
b0
i

)
E [MZZ′,1]i(1− E [MZZ′,1])b0−i,

(D16)

where the index i takes odd values (i = 1[2]), since even
numbers of parity errors lead to a correct global parity
measurement outcome.

Appendix E: Dynamic protocol

In the dynamic protocol, the type of measurements
performed depends on the measurement outcome of the
parent qubits. We need to discriminate the three BSM
outcomes: complete (c), partial (p) and failed (f). Now
the ZZ ′ measurement probabilities at level k are given
by:

Pr[MZZ′,k] = η2 + (1− η2)Pr[IZZ′,k, f ]. (E1)

Indeed, if the measurement is complete or partial (with
probability η2), ZZ ′ is measured but if the measurement
has failed (f), we should indirectly measure it with prob-
ability Pr[IZZ′,k, f ]. If a two-photon BSM fails (f) or is
partial (p), it is impossible to recover indirectly the XX ′
components. But in that case, the indirect ZZ ′ measure-
ment at level k can also be performed with higher proba-

bility via two single-qubit measurements, which have suc-
cess probabilities Pr[IZ,k] and Pr[IZ′,k] and errors E [IZ,k]
and E [IZ′,k], respectively. Therefore,

Pr[IZZ′,k, f ] = Pr[IZZ′,k, p] = Pr[IZ,k]Pr[I ′Z,k],

E [IZZ′,k, f ] = E [IZZ′,k, p]

= E [IZ,k](1− E [IZ′,k]) + E [IZ,k](1− E [IZ′,k])

= E [IZ,k] + E [IZ′,k]− 2E [IZ,k]E [IZ′,k].
(E2)

Here again, we consider that a combination of two errors
would yield the correct outcome. For a complete mea-
surement, the indirect ZZ ′ measurement probability is
again given by:

Pr[IZZ′,k, c] = 1− (1− Pr[SZZ′,k])bk (E3)

.
The error analysis in the case of a complete measure-

ment is more complicated since we need to keep track of
all the measurement probabilities at each level.

Because we are performing BSMs on the child qubits,
once again we have three different outcomes: complete
(both XX ′ and ZZ ′ are measured), partial (only ZZ ′)
or failed (no outcome). For a successful BSM on child
qubits denoted B and B′ at level k + 1, BSMs are also
performed on all the pairs of child qubits of B and B′. An
indirect measurement of the qubit at level k thus requires
that all the children of B are measured at least in ZZ ′.
An individual indirect measurement of ZZ ′ at level k,
SZZ′,k, in this setting thus requires the successful BSM of
B and B′ (with probability PBell) and the measurements
of ZZ ′ on all the child qubits of B and B′. Let’s denote
by m(c), m(p) and m(f) the number of complete, partial,
and failed BSMs performed on the child qubits of B and
B′. A successful indirect measurement of ZZ ′ (with or
without errors) occurs with probability:

Pr[SZZ′,k, c] =
η2

2

∑
m(c)+m(p)+m(f)=bk+1

m(c),m(p),m(f)≥0

PBSM(m(c),m(p),m(f))(Pr[IZ,k+2]Pr[IZ′,k+2])m
(f)

(E4)
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Here η2/2 signifies that the BSM on B and B′

has to succeed, the sum goes through all the
possible BSM outcomes on the child qubits, and
(Pr[IZ,k+2]Pr[I ′Z,k+2])m

(f)

accounts for the fact that

when the BSMs fail, these child qubits should be indi-
rectly measured.

The error of an individual indirect measurement with
m(c) complete and m(p) partial measurements is given
by:

E [SZZ′,k|m(c),m(p),m(f), c] =

1∑
i=0

m(c)∑
j=0

m(p)∑
k=0

m(f)∑
l=0,

i+j+k+l=1[2]

εBell
i(1− εBell)

1−i

×
(
m(c)

j

)
E [MZZ′,k+2, c]

j
(1− E [MZZ′,k+2, c])

m(c)−j

×
(
m(p)

k

)
E [MZZ′,k+2, p]

k
(1− E [MZZ′,k+2, p])

m(p)−k

×
(
m(f)

l

)
E [MZZ′,k+2, f ]

l
(1− E [MZZ′,k+2, f ])m

(f)−l.

(E5)

The individual indirect error probability is therefore:

E [SZZ′,k, c] =
∑

m(c)+m(p)+m(f)=bk+1

m(c),m(p),m(f)≥0

PBSM(m(c),m(p),m(f))E [SZZ′,k|m(c),m(p),m(f), c]. (E6)

If mk indirect measurements are performed, the error is therefore:

E [IZZ′,k|mk, c] =

mk∑
i=dmk/2e

(
mk

i

)
E [SZZ′,k, c]

i
(1− E [SZZ′,k, c])

mk−i, mk odd,

=

mk−1∑
i=mk/2

(
mk − 1

i

)
E [SZZ′,k, c]

i
(1− E [SZZ′,k, c])

mk−1−i, mk even.

(E7)

Finally, we find the error probability of an indirect
measurement to be:

E [IZZ′,k, c]

=
1

Pr[IZZ′,k, c]

bk∑
mk=1

Pr[IZZ′,k,mk, c]E [IZZ′,k|mk, c],

(E8)
with

Pr[IZZ′,k,mk, c]

=

(
bk
mk

)
Pr[SZZ′,k, c]

mk(1− Pr[SZZ′,k, c])
bk−mk ,

(E9)

and

Pr[IZZ′,k, c]

=

bk∑
mk=1

Pr[IZZ′,k,mk, c] = 1− (1− Pr[SZZ′,k, c])
bk .

(E10)

Appendix F: “Loss-only” adaptive protocol

It is also worth noting that in principle, it is also pos-
sible to realize a loss-tolerant BSM by performing single-
qubit measurements on all qubits below level 1, but this
strategy fails to enable error correction. Indeed, in that
case, the child qubits of a complete BSM (ZvZv′ and
XvXv′) at level 1 need to be measured in the Z basis to
measure XLX

′
L so that they cannot provide an indirect

ZvZv′ measurement of the qubit at level 1, which is nec-
essary for error correction of ZLZ

′
L. Error correction is

therefore impossible with this protocol and the improve-
ment of loss-tolerance is relatively small compared to the
dynamic protocol.
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