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A device capable of converting single quanta of the microwave field to the optical domain is an outstanding
endeavour in the context of quantum interconnects between distant superconducting qubits, but likewise can
have applications in other fields, such as radio astronomy or, in the classical realm, microwave photonics. A
variety of transduction approaches, based on optomechanical or electro-optical interactions, have been proposed
and realized, yet the required vanishing added noises and an efficiency approaching unity, have not yet been
attained. Here we present a new transduction scheme that could in theory satisfy the requirements for quantum
coherent bidirectional transduction. Our scheme relies on an intermediary mechanical mode, a high overtone
bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons through the piezoelectric
and strain-optical effects. Its efficiency results from the combination of integrated Si3N4 photonic circuits with
ultra low loss sustaining high intracavity photon numbers with the highly efficient microwave to mechanical
transduction offered by piezoelectrically coupled HBAR. We develop a quantum theory for this multipartite
system by first introducing a quantization method for the piezoelectric interaction between the microwave mode
and the mechanical mode from first principles (which to our knowledge has not been presented in this form),
and link the latter to the conventional Butterworth-Van Dyke model. The HBAR is subsequently coupled to a
pair of hybridized optical modes from coupled optical ring cavities via the strain-optical effect. We analyze
the conversion capabilities of the proposed device using signal flow graphs, and demonstrate that near quantum
coherent transduction is possible, with realistic experimental parameters. Combined with the high thermal
conduction via the device bulk, heating effects are mitigated, and the approach does not require superconducting
resonators that are susceptible to absorption of optical photons.

I. INTRODUCTION

Harnessing the effects of quantum mechanics is currently
being investigating with respect to producing technologies with
higher performance than their classical counter-parts in the do-
main of computing, sensing and communication, and proves to
be a formidable challenge in terms of the required engineering.
These improved performances of quantum technologies come
at the expenses of overcoming difficult obstacles [1]. Super-
conducting circuits are arguably among the most promising
platforms for quantum computing owing the remarkably high
nonlinearity of Josephson junctions [2]. However, coupling
between remote qubits has become an important consideration
in the development of superconducting quantum computing on
larger scales [3]. While superconducting technologies enable
consistently performing tasks in the quantum regime [4], the
GHz region of the electromagnetic spectrum they operate on is
largely populated by thermal excitations, requiring cryogenic
temperatures to preserve the quantum coherence of the logical
units [5]. In contrast, optical signals have a carrier frequency
in the 100’s of THz region of the spectrum, with negligible
thermal noise even at room temperature, and quantum states
of light can be transported along optical fibers, with excep-
tionally low propagation loss (∼ 0.5 dB/km) that have enabled
optical fibers to become the major actor of high speed com-
munication networks. One viable envisioned solution to the
scalability issue is to process information with superconducting
circuits at cryogenic temperature, and connect the different
computing nodes with optical photons via optical fibers at
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room temperature [3]. A quantum coherent transducer, the
type of device addressed in this article, would establish a link
between these two domains by coherently and bidirectionally
converting single photons at microwave and optical frequencies
with high efficiency and low added noise. In recent years,
significant progress toward quantum coherent microwave-to-
optical transduction has been made, primarily using cavity
optomechanical, cavity electro-optical or piezooptomechanical
conversion schemes, i.e. processes relying on radiation pres-
sure coupling [6], or the electro-optical equivalent [7]. The
concept of these approaches is illustrated in the frequency
domain on Fig. 1. However, achieving conversion efficiencies
approaching unity, which constitutes a stringent requirement
to preserve quantum correlations of the converted signals [8],
remains an outstanding engineering challenge, compounded
by a variety of technical issues [9], including e.g. impedance
matching, optical fiber-chip coupling, photorefractive effects,
or even the vulnerability of superconductors to optical photons
[10]. While there are many ways to overcome these challenges,
it is nevertheless interesting to pursue the exploration of alter-
native platforms for quantum coherent microwave-to-optical
transduction, that alleviate some of these shortcomings. It is
opportune to consider approaches based on wafer scale, high
yield, ultra low loss integrated photonic circuits, in particular
based on Si3N4, which sustain large intracavity photon numbers,
and have shown quality factorsQ > 30× 106 (i.e. propagation
losses < 1dB/m) [11, 12].

The cavity optomechanical approach to microwave-optical
conversion consists in parametrically coupling a mechanical
mode to both microwave and optical cavities. Notable im-
plementations include a Si3N4 membrane covered with Nb
in a Fabry-Pérot optical cavity [10, 13, 14] and Si photonic
crystal zipper cavities with Al [15]. This approach, although
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resorting to a low frequency mechanical mode that reduces the
conversion bandwidth to the kHz order, holds the record of
measured efficiency of 40% for only 38 added noise photons
[13].
For the cavity electro-optic approach, the microwave and

optical fields are directly coupled via Pockels’effect, and the
resulting Hamiltonian is equivalent to the optomechanical one
[7]. Efficient conversion requires both electric and optical fields
to overlap in a material with broken centrosymmetry, resulting
in a three wave mixing process. Coupled racetracks resonators
made from LiNbO3 fabricated on SiO2 [16, 17] and sapphire
[18, 19], electrooptic polymer grown on Si waveguides [20],
whispering gallery modes of bulk LiNbO3 crystals [21], AlN
single [22] and coupled rings optical cavities [23], as well
as Ti doped LiNbO3 phase modulators [24] all fall into this
category. These recent realizations have all relied on the use
of coplanar waveguides or lumped elements LC resonators
[25] to significantly increase the vacuum electric field strength,
compared to bulk approaches [7, 26]. Yet, despite impressive
advances, the approach is compounded by photorefractive
effects limiting the available optical power and resonance
frequency stability [27].

The third approach also makes use of an intermediary excita-
tion, similarly to the first one, but the microwave is subsequently
coupled to the mechanical oscillator using a piezoelectric mate-
rial. The auxiliary mechanical mode is thus resonant with the
microwave signal, which presents the advantage of exhibiting
larger conversion bandwidths, on the order of MHz. Moreover,
piezoelectric materials efficiently interconvert energy between
electrical and mechanical forms, which earns them an ubiqui-
tous place in MEMS and wireless communication technologies
[28]. To complete the conversion process, the strain field of
the mechanical mode couples phonons to the optical mode.
This method has been implemented with suspended AlN beams
patterned as optomechanical crystals [29], GaAs photonic crys-
tal nanobeams [30, 31], Si photonic crystal excited by AlN
[32], LiNbO3 photonic crystal [33], LiNbO3 thin film acoustic
resonator [34], optical and acoustic whispering gallery modes
of a LiNbO3 sphere [35], AlN microdisk [36]. Impedance
matching between the piezoelectrically excited acoustic excita-
tions and mechanical modes hindering the conversion process,
total conversion efficiencies up toO(10−5) have been achieved
[21] so far.

The transduction scheme presented in this paper falls in this
last category. In particular, we describe a modular interface
designed for bidirectional conversion of travelling microwave
and optical photons. It is inherently compatible with wafer-
scale manufacturing and offers unique advantages for efficient
conversion. Being based on ultra low loss Si3N4 photonic
circuits fabricated using the damascene process, the transducer
can sustain large intracavity photon numbers, and benefits from
low fiber-chip insertion loss and reduced optical absorption
[11]. Bulk acoustic resonances are chosen to amplify the mi-
crowave signal rather than superconducting resonators in order
not to suffer from Cooper pair breaking induced by scattered
optical photons. In contrast to flexural modes of thin film
nanomechanical and micromechanical resonators, the HBAR
geometry allows for thermalization through the surrounding

SiO2 cladding, and can additionally be cooled using 3He buffer
gas. The integration of the AlN actuator on the cladding further
allows for directly launching the acoustic wave in the HBAR cav-
ity, circumventing the problem of acoustic impedance matching
that can severely limit SAW-excited optomechanical crystals
[29, 31]. Combined with the release process to increase the
confinement of the HBAR mode in AlN, a material with high
piezoelectric coefficients [37], HBAR phonons fulfil their role
as intermediaries between microwave and optical photons and
allow for reaching high conversion efficiencies.
Our manuscript is organized as follows. We first describe

the general idea of the proposed device in section II. We then
quantize the piezoelectric interaction in section III in order to
derive the correct coupling and decay rates that describe the
conversion of the itinerant microwave photon to a phonon capa-
ble of interacting with the optical field, which to our knowledge
has not been carried out in this form before. We furthermore
explain how to experimentally measure these properties through
microwave reflections. The basic theory of radiation pressure
effects in the proposed device is exposed in section IV, together
with simulations results justifying the expectation regarding
the conversion efficiency exposed in section VI. The formula
for the conversion efficiency of the proposed scheme is derived
in section V, deriving the Langevin equations for the modes
of the transducer from the total Hamiltonian, which deviate
from prior treatments [17]. We introduce the use of signal
flow graphs to interpret the dependence of the conversion
efficiency on the system parameters, such as the cooperativi-
ties, in terms of feedback loops between the different modes.
Finally, we give in section VI an estimation of performance
of the proposed scheme for realistic values of the physical
parameters, obtained through simulations and confirmed by
preliminary measurements, corresponding to devices currently
under fabrication.

II. DESCRIPTION OF THE DEVICE

This section presents the new type of devices discussed in
this paper. The transducer proposed in this paper consists
of a pair of coupled optical ring Si3N4 cavities in a SiO2

cladding, that serves as resonator for a high overtone acoustic
resonance (HBAR) addressed by a stack of electrodes and
piezoelectric material, for example AlN. The aforementioned
device, illustrated in Fig. 1, is the result of recent efforts on the
combination of AlN technology with silicon nitride integrated
photonics that have led to the successful demonstration of on-
chip control over soliton microcombs [38], and the realization
of an integrated CMOS-compatible optical isolator [39].

The evanescent coupling between cavity modes of identical
silicon nitride micro-rings leads to the formation of effective
supermodes, with a frequency splitting that can be controlled
with the device geometry. This optical mode splitting is chosen
to be equal to the frequency of the microwave signal to convert.
The conversion proceeds by annihilating a pump photon and
a microwave photon to create a photon in the other optical
mode. Direct transduction of single microwave photons thus
requires pumping the symmetric optical supermode, which has
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(a) (b)

FIG. 1. Microwave-optical conversion schemes. (a) 1: Illustration of the schemes relying on the parametric coupling of both the optical cavity
and MW cavity on a mechanical mode. 2: Schematic of the schemes relying on PockelsâĂŹeffect to establish a direct link between MW and
optics. 3: Schematic of the schemes relying on piezoelectricity to couple the MW to a mechanical mode acting on an optical cavity. This
approach is the one described in this paper. Contrarily to the first approach, it exhibits a high conversion bandwidth as the mechanical frequency
is matched to the electrical one. (b) Artistic rendering of the proposed device. The electrodes (in yellow and orange) guide microwave photons to
the piezoelectric material (in dark green) to be converted into HBAR phonons. The silicon substrate (in light green) is removed below the
silicon oxide (in pink) HBAR cavity to reduce the mechanical mode volume. This increases the interaction with optical photons in the microring
cavities (in blue). The inset in the top right of the figure indicates that a HBAR phonon annihilates with an optical photon of the symmetric
supermode of the coupled rings to create an optical photon of the asymmetric supermode. Conversely, an asymmetric supermode photon can be
annihilated to create a phonon.

a lower frequency than the asymmetric one, with an external
laser. This induces a direct coupling between the mechanical
mode and the unpopulated asymmetric optical supermode.
By using rings with a small radius (circa 20 microns), the
free spectral range of the optical cavity approaches 1 THz,
and thus guarantees that the device operates in a region of the
optical spectrum containing only the pair of optical supermodes
[40, 41]. Furthermore, silicon nitride waveguides with very
high intrinsic quality factors (Q > 30×106) have already been
demonstrated [11]. This constitutes an important advantage as
a slow decay rate of the optical photons in the cavity lowers
the input power threshold for optimal conversion.

The interfacing of the microwave signal to the optics is
achieved by a piezoelectric actuator (e.g. aluminium nitride)
connected to the electrical circuit, whose photons should be
upconverted to the optical domain. The voltage on the elec-
trodes produces strain in the bottom layers that excites vertical
acoustic waves in the stack. Here we propose to etch part of the
silicon layer beneath the silicon oxide cladding to control the
size of the mechanical cavity, enabling control the mechanical
mass and frequency of the high overtone bulk acoustic wave.
This is a major difference with the modulators used in our
previous work [39] as it gives a boost of almost two orders
of magnitude in optomechanical coupling, and is expected
to improve the quality factor of the HBAR resonator at low
temperatures [38, 39, 42, 43]. An important difference of the
proposed device with previous converters is that there is no
microwave resonator: it is the mechanical HBAR resonator
itself that is overcoupled to the microwave signal and gives it a
resonant enhancement.

III. QUANTUMMECHANICAL DESCRIPTION OF THE
PIEZOELECTRIC INTERACTION

This section describes how a mechanical mode in the bulk
beneath the actuator exchanges energy with the electromagnetic
field at microwave frequencies. In contrast to the description
of piezoelectric materials usually given in terms of equivalent
circuits [44, 45], we give an explanation in terms of scattering
amplitudes by starting from the microscopic relations in the
material and relying on energy conservation arguments. The
advantage of this procedure is that it directly provides a link to
quantum Langevin equations for solving the dynamics of the
piezoelectric in the quantum regime, which has not been found
in the existing literature to the best of the authors knowledge
[28, 44]. We then discuss how the parameters appearing in this
description can be related to the Butterworth-Van Dyke model
(BVD), commonly used in the MEMS community [28] to char-
acterize piezoelectric devices, and identify these parameters in
microwave reflection measurements.

A. Equations of motion

The aim of this subsection is to derive a coupling rate
between microwave photons and phonons in the HBAR cavity
formed by the stack of electrodes, piezoelectric, waveguide
and cladding. For this purpose, we start from the microscopic
relations in piezoelectric materials [28]. Here we choose to use
stress-charge formulation, which states that in these materials
a strain will induce a polarization, and conversely an applied
electric field will cause additional stress.
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FIG. 2. Electromechanical conversion in the released HBAR device. (a) Cross-section of the actual device showing the stress pattern of the
HBAR mode excited by the electrodes at 3.285 GHz. The inset shows the optical mode (norm of the electric field) in the optical ring waveguide.
The small radius of the ring cavity of 22.5 µm induces a shift of the mode from the waveguide center because of the strong bending potential.
(b) Admittance curve of a released HBAR resonator obtained by finite element simulations. Each pair of resonance and antiresonance in the
admittance Y (ω) corresponds to a mechanical resonance, around which the BVD model can be applied to model the interaction between the
electric field and the mechanical motion. This curve shows two strong HBAR resonances around 2.6 GHz and 3.3 GHz. The exact frequency of
the resonances and their optomechanical coupling rate depend on the position of the waveguide inside the cladding. (c) Signal flow chart to
describe microwave reflection measurements. It also justifies that near resonance we can consider the travelling input microwave photon to be
directly coupled to the mechanics. (d) Circuit diagram of the BVD model. It is used to model the behaviour of piezoelectric materials around a
mechanical resonance.

The stress Tij in the piezoelectric material contains two con-
tributions, one from Hooke’s law, via the stiffness coefficients
cijkl, and one from the stress induced by an external electric
field, via the piezoelectric stress coefficients ekij [28]

Tij =
∑
kl

cijklSkl −
∑
k

ekijEk (1)

Conversely, the electric displacement field in the piezoelectric
material contains an additional contribution which originates
from strain-induced charges

Di =
∑
k

εikEk +
∑
kl

eiklSkl (2)

with Ei as the electric field components, Sij as the strain
components, and εij as the elements of the permittivity tensor.

Further study of the piezoelectric interaction requires the
Hamiltonian density, which is derived from the Lagrangian
L of the corresponding fields. The procedure to follow for
deriving the Lagrangian from known equations of motion is
recalled in Appendix A. The Lagrangian density associated
with mechanical deformations and consequent charges of a
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piezoelectric material can be derived as

L =
∑
i

1

2
ρu̇iu̇i −

∑
ijkl

1

2
cijklui,juk,l

+
∑
ij

1

2
εijEiEj +

∑
ijk

ekijEkSij (3)

with the two first term corresponding to the kinetic and elastic
energy densities of the deformation, the third term to the energy
density of the electric field and the last term coming from
the piezoelectric interaction. Applying a Legendre transform
to the variables {ui, Ei} allows to recover the Hamiltonian
density describing the acoustic and electric fields coupled in
the piezoelectric

H =
∑
i

1

2
ρu̇iu̇i +

∑
ijkl

1

2
cijklui,juk,l

−
∑
ij

1

2
εijEiEj −

∑
ijk

ekijEkSij (4)

The classical Hamiltonian is obtained by integrating this density
over the whole space. The new term, only non-vanishing
on the piezoelectric material, suggests the electromechanical
interaction term on the electromagnetic field of the classical
Hamiltonian to be

Hint,piezo = −
∑
ikl

∫∫∫
piezo

(eiklEiSkl) dV (5)

Having derived the interaction Hamiltonian from first prin-
ciples, it is now possible to quantize the Hamiltonian by first
quantizing the fields themselves. The mechanical displacement
operator is defined as [46]

û(r, t) =

√
~

2meffωm
Q(r)b̂(t) + h.c. (6)

where b̂(t) is the annihilation operator describing the temporal
evolution of the mechanical mode and will be discussed in
the rest of the paper, meff is the effective mass of the mode,
related to the stiffness in the different materials encountered by
the acoustic wave, and ωm the eigenfrequency the mechanical
mode. The mode functionQ(r) is a solution of the spatial part

of the acoustic wave equation for the conditions given by the
geometry and materials of the device considered

− ω2
mQi(r) =

∑
jkl

∂

∂xj
[cijkl(r)Qk,l(r)] (7)

This mode function, corresponding to an adimensional dis-
placement function, is normalized such that∫∫∫

HBAR
ρ(r)Q∗(r) ·Q(r) dV = meff (8)

to remain consistent with the definition given for the displace-
ment operator. The prefactor in front of the spatial and temporal
parts gives the displacement fluctuations of the zero-point of
motion uZPF =

√
~

2meffωm
. The strains are then obtained from

the displacement operator Sij = 1
2 (ui,j + uj,i). The anti-

symmetric part of the deformation can be overlooked as it is
associated with local rigid rotations that have no implication in
the current context: the strains are thus identified as Sij ∼ ui,j
here [47].

Similarly the quantized form of the electric field relevant in
this setting of piezoelectric interaction is [48]

Ê(r, t) = −
√

~ωMW

2εeff
F(r)ĉ(t) + h.c. (9)

with an annihilation operator ĉ(t) for the temporal evolution
that will be formally eliminated from the description in a later
section, an effective permeability seen by the mode εeff and a
particular mode function F(r), solution of the spatial part of
Helmholtz equation

∇×∇× F(r) =
ε(r)

ε0

ω2
MW
c2

F(r) (10)

normalized such that∫∫∫
whole space

ε(r)

ε0
F∗(r) · F(r) dV = εr,eff (11)

to define the effective relative permittivity.
The quantum mechanical Hamiltonian for the piezoelectric

interaction between the acoustic and microwave fields is then
obtained by inserting these quantized displacement (6) and
microwave (9) fields in the interaction term (5)

Ĥint,piezo =
−1

2
~
√
ωMWωm

(∑
ikl

∫∫∫
piezo

√
e2
ikl

cEeffε
T
eff
Fi(r)

1

2
[Qk,l(r) +Ql,k(r)] dV

)
︸ ︷︷ ︸√

k2eff

(
b̂+ b̂†

) (
ĉ+ ĉ†

)
(12)

When defining an effective stiffness cEeff = meffω
2
m for the

mechanical mode and an effective permittivity for the corre-
sponding microwave mode εT at constant strain, we notice the

emergence of the electromechanical coupling factor as defined
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by the MEMS community [47]

K2 =
e2

cEεT
(13)

The integral over the piezoelectric volume of this quantity then
gives the effective electromechanical coupling factor

√
k2
eff, a

quantity easily extracted from the BVD model as explained in
the next section. Defining a piezoelectric electromechanical
coupling rate

gEM =
1

2

√
k2
eff
√
ωmωMW (14)

the quantized piezoelectric interactionHamiltonian finally takes
the form

Ĥint,piezo = −~gEM
(
b̂+ b̂†

) (
ĉ+ ĉ†

)
(15)

Importantly, the value of this coupling rate is independent of
the amplitude of the strain field and electric field, being only
determined by the material properties and geometry of the
device, as expected for linear piezoelectrics. We note that
this coupling rate has the same form as the one derived by E.
Zeuthen et al., although the derivation is based on a different
model [30, 44].

B. Butterworth-Van Dyke model

For experimental characterization of piezoelectrics, it is
common to resort to an equivalent circuit, which was conceived
by Butterworth and Van Dyke [28]. While later modifications
were brought to better fit experimental data, the essence of the
model lies in the parallel coupling between a branch containing
the behaviour of the electrodes in absence of piezoelectric effect
with a branch representing the motion of the mechanical degree
of freedom, up to some voltage conversion factor. The static
capacitanceC0 takes into account the usual capacitive behaviour
of the electrodes, from the energy stored via the permittivity
of the material without the piezoelectric effect. The motional
branch connected in parallel arises from the supplementary
charges created on the electrodes by themechanical deformation
via the piezoelectric effect. The motional capacitance Cm
accounts for the potential mechanical energy while the motional
inductance Lm accounts for the kinetic mechanical energy.
Finally the dissipation of acoustic waves is modelled by a
motional resistance Rm. This equivalent circuit is illustrated
in Fig. 2. Piezoelectric devices are usually characterized by
looking at their admittance, which is ideally represented by the
BVD model admittance

Y (ω) = iωC0 +
1

Lm

iω

−ω2 + iωγ0 + ω2
m

(16)

near a resonance. ωm and γ0 are respectively the resonant
frequency and linewidth of the electrically probed mechanical
resonance. A few parameters determining the behaviour of the
device and quality of the mechanical resonance can be extracted
from the curve of the admittance as a function of the frequency.

Each mechanical mode will exhibit a peak at what is called
a series resonance frequency ωs and a dip at what is called a
parallel resonance frequency ωp. Away from the resonance the
device behaves as a capacitor of value C0. The bandwidth of
the conversion between electromagnetic energy and mechanical
energy is described by the effective electromechanical coupling
factor

k2
eff =

ω2
p − ω2

s

ω2
p

(17)

which also fixes the value of the electromechanical coupling rate.
This coupling factor then indicates the scale of the motional
capacitance compared to the static effect

Cm = k2
effC0 (18)

The last parameters Lm and Rm are then extracted from the
frequency ωm and linewidth γ0 of the mechanical resonance. 1

Lm =
1

ω2
mCm

(19)

Rm = Lmγ0 (20)

Fig. 2 shows the admittance curve of the HBAR resonator
considered here. This curve was obtained by finite elements
simulations. Each mechanical resonance features a succession
of resonance and antiresonance on the admittance. The height
of the resonance indicates the strength of the coupling to the
microwave mode. While the simulated curve exhibits several
resonant features, two particular frequencies, corresponding
to the silicon oxide HBAR modes, are standing out near
2.6 GHz and 3.3 GHz. The latter one is the one considered
for the numerical evaluations presented in the rest of the pa-
per as its electromechanical coupling factor takes a higher value.

C. Link to MW reflection measurements

This section attempts to reconcile the engineers picture, pri-
marily using the notions of voltages, currents and immitance,
with the physicists picture, relying on coupling rates for an
Hamiltonian formulation, by showing how reflection measure-
ments performed in laboratory are linked to the ladder operators
description, which holds a central place in second quantization.
The admittance curve fitted by the BVD model as described
in the previous section is generally obtained via microwave
reflection measurements S11[ω]. These measurements are also
easily described in terms of annihilation operators. A single
microwave mode interacting with a single mechanical mode
via the piezoelectric interaction

Ĥpiezo = −~gEM
(
b̂+ b̂†

) (
ĉ+ ĉ†

)
(21)

1 Comparing the microwave reflection spectrum and the admittance shows
that the mechanical resonance is in the middle of the series and parallel
resonances ωm =

ωs+ωp
2

.
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are evolving according to the coupled modes equations

d

dt
b̂ =− iωmb̂−

γ0

2
b̂

+ igEM
(
ĉ+ ĉ†

)
+
√
γ0f̂m (22)

d

dt
ĉ =− iωMWĉ−

Γ

2
ĉ

+ igEM

(
b̂+ b̂†

)
+
√

Γ0f̂MW +
√

Γexĉin (23)

Taking Laplace’s transform 2 and defining susceptibilities
for the microwave field 3

χMW[s] =
1

s+ iωMW + Γ
2

(24)

and for the strain field

χm[s] =
1

s+ iωm + γ0
2

(25)

the microwave reflection coefficient S11[ω] is readily obtained
from the signal flow graph on Fig. 2 using Mason’s gain
formula [49]

S11[s] =
ĉout
ĉin

= −1 + Γex
χMW[s]

1 + g2
EMχMW[s]χm[s]

(26)

Finally, we wish to justify the form of the equation for the
mechanics that will be used in the section on the conversion
efficiency of the transducer, where the mechanical mode is
considered to be directly coupled to the input microwave photon,
without having to go through an intermediary microwave mode
with an equation of the type

d

dt
b̂ = −iωmb̂−

γm
2
b̂+
√
γpiezof̂piezo +

√
γexĉin (27)

to which the optomechanical interaction will be added. The
main point is that the internal dynamics of the microwave
mode can be hidden to the optics, which will effectively see
the mechanics as if it was directly pumped by the incoming
microwave photons. This is done using the microwave mode
susceptibility to express it as a function of the other terms in
the coupled modes of the piezoelectric

ĉ[s] = iχMW[s]gEMb̂[s]

+ χMW[s]
√

Γ0f̂MW[s] + χMW[s]
√

Γexĉin[s] (28)

2 Defined here and in the rest of the article such that f(t) → f [s] =∫∞
0 e−stf(t)dt

3 s is the complex frequency from Laplace transform. Its imaginary part is
related to the frequency with the physicist convention as Im(s) = −ω. This
convention is used in the rest of the paper to go from Laplace transform to
the frequency domain.

which fixes the coefficients to use in the desired equation
from the original coefficients of the separate mechanical and
microwave systems:

γm
2 = γ0

2 + χMW[s]g2
EM√

γnoisef̂piezo =
√
γ0f̂m + igEMχMW[s]

√
Γ0f̂MW√

γex = igEMχMW[s]
√

Γex

(29)

Since the electrodes are directly connected to the source and
no inductive element is added in the circuit, we can assume
that the coupling rate from the source to the microwave mode
is directly given by the charging time of the static capacitance
C0 by the characteristic impedance Z0 = 50 Ω

Γex =
1

Z0C0
(30)

Similarly the intrinsic decay rate of the microwave mode is
given by the discharge time of the static capacitance in the
parallel resistance of the modified BVD circuit shown in Fig. 2

Γ0 =
1

R0C0
(31)

Simulations and preliminary experiments show that C0 ≈
200 fF andR0 ≈ 10 kΩ. For these values the microwave mode
has a total linewidth Γ = Γ0 + Γex ≈ 15 GHz and is strongly
overcoupled to the source, with Γex

Γ > 95%. Under these
conditions, the effective linewidth of the mechanical mode
addressed by the microwave source is

γm ≈ γ0 + 4
g2
EM
Γ

(32)

and the microwave photon to phonon coupling rate is

|γex| ≈
4g2

EM
Γ

Γex

Γ
(33)

The large linewidth and strong overcoupling of the microwave
mode explain why mechanical modes of piezoelectric res-
onators can be directly probed with microwave reflection mea-
surements, and why no mode splitting is observed despite
having an electromechanical coupling rate greater than the
mechanical linewidth.

IV. OPTOMECHANICAL INTERACTION

In this section we move to the optical side of the device,
which is interfaced to the microwave part via the mechanics.
The optomechanical interaction essentially expresses the fact
that the optical energy can be transferred to a mechanical degree
of freedom, and vice-versa. For the proposed device, composed
of a silicon nitride waveguide in silicon oxide cladding, this
phenomenon finds its root in two effects: either the optical field
can act on the mechanical field via radiation pressure and the
latter reacts via moving boundaries, or the optical field acts on
the mechanical field via electrostriction and the latter reacts by
photoelasticity.
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A. Photoelastic effect

Strains in the material are changing the potential seen by the
electrons, which change the permittivity of the medium. This
directly translate to a change in refractive index, and this effect
is called photoelasticity.
Mathematically, photoelasticity is easily expressed as a

change in the impermeability η = 1
εr

∆ηij =
∑
kl

pijklSkl (34)

The modulation of impermeability obviously corresponds to a
modulation in relative permittivity

(∆εr)ij =
∑
kl

−εr,ikεr,kl(∆η)lj (35)

A change in permittivity corresponds to a variation of the
energy stored in the electromagnetic field, and thus a change in
the optical frequency given by Bethe-Schwinger formula for
optical cavity perturbation [50]

∆ω =
−ω0

2

∫∫∫
〈E|∆ε|E〉 dV∫∫∫
〈E|ε|E〉 dV

(36)

The optomechanical coupling rate for a single photon depends
on the cavity frequency shifts and the zero point fluctuations
motion of the quantity causing the modulation, here the dis-
placement in the waveguide and cladding g0 = ∂ω

∂SuZPF.4 The
contribution to the optomechanical single photon coupling
strength from photoelasticity is thus

g0,OM,PE = −ω0

2

〈
E ∂ε
∂SE

〉∫
E ·D dV

uZPF (37)

B. Moving boundaries effect

The deformation of the waveguide changes the confinement
of the optical mode in the different media, which in return
modifies its effective refractive index. The associated change in
frequency is again computed using Bethe-Schwinger formula
for cavity perturbation.

g0,OM,MB = −ω0

2

∮
(SZPF · n̄)(∆εE2

|| −∆ε−1D2
⊥)dS∫

E ·DdV
(38)

Here n̄ denotes the normal vector of the interface between
Si3N4 and SiO2, ∆ε = εSi3N4 − εSiO2 is the permittivity dif-
ference between supporting media, ∆ε−1 = ε−1

Si3N4
− ε−1

SiO2
is

the impermeability difference between the supporting media,
E|| is the electric field component parallel to the interface and
D⊥ is the electric displacement component perpendicular to
the interface. We note that this effect can cause a frequency
shift with a sign different from photoelasticity, and thus can
sometimes reduce the single photon coupling strength.

4 Here we used SZPF = uZPF.

C. Estimation of the single photon coupling strength

The mechanical behaviour of the undercut SiO2 HBAR
resonator was simulated via finite element methods using the
COMSOL software, including the piezoelectric effect. The
simulations were used to obtain the admittance curve, from
which the resonances could be determined, and to compute
the single photon optomechanical coupling strength, including
both photoelasticity and moving boundaries effects described in
the previous subsections. As the optical waveguides are made
of silicon nitride and silicon oxide in the amorphous phase,
symmetry arguments ensure that the form of the photoelastic
coefficients tensor is of the kind

pamorphous =


p11 p12 p12 0 0 0
p12 p11 p12 0 0 0
p12 p12 p11 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p44

 (39)

with p44 = 1
2 (p11 − p12). The values of the photoelastic

coefficients of silicon nitride have only been reported by few
authors. Here we chose the latest values reported in literature:
p11 = 0.239 [51] and p12 = 0.047 [52], giving p44 = 0.096.
The coefficients used for the silicon oxide cladding, which
contains around 30% of the TE optical mode volume were:
p11 = 0.121, p12 = 0.270 and p44 = −0.0745 [53].
The inset in Fig. 2a) shows the profile of the norm of

the electric field of the optical mode on which the device
will operate, while the core of Fig. 2a) shows the pattern
of the total stress along the vertical direction of an HBAR
resonance. The 900 nm thick Si3N4 waveguide is buried in
4 µm of SiO2 cladding, with a 1 µm thick AlN actuator. As
the acoustic impedance of the Si3N4 waveguide did not match
the acoustic impedance of the rest of the stack, its position
had to be optimized to obtain high optomechanical coupling
simultaneously with high electromechanical coupling. In the
end the position of the waveguide could be chosen such that the
strong acoustic resonance around 3.285 GHz shows a single
photon optomechanical coupling rate g0

2π ≈ 400 Hz.

V. MICROWAVE-TO-OPTICAL TRANSDUCTION

In this section, we finally derive the expression of the con-
version efficiency between the input microwave photon and the
output upconverted optical photon. Details on the derivation
can be found in the Appendices (B) and (C).

Here we consider a pair of coupled optical modes, of which
only one is accessed by a bus waveguide to receive and transmit
power, while the other interacts with the mechanical mode,
accessed by a microwave mode. This device is depicted on
Fig. 1. The input-output relation for the optical transmission
through the bus waveguide coupled to the first microring cavity
is

âout = âin −
√
κexâ1 (40)
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FIG. 3. Microwave-optical conversion efficiency. (a) Signal flow chart describing the MW-optical conversion process. The squares represent
the input and output modes, while the circles represent the internal modes of the converter. The arrows represent the coupling between the modes
and are weighted by the value of the coupling rate between the modes. The transfer functions between two different modes can be computed with
this diagram using Mason’s gain formula. (b) Theoretical conversion efficiency from the microwave port to the transmitted optical asymmetric
supermode as a function of the input pump laser power, obtained from eq.(47). The parameters used to draw this curve are indicated in the
textbox as well as in table (I), and correspond to the dashed red line in Fig. 3c). (c) Microwave to optical conversion efficiency as a function of
the input pump laser power and the coupling rate from the bus waveguide to the first ring cavity. The parameters used to draw this curve are
indicated in table (I).

while the input-output relation for the microwave reflection
from the HBAR is

ĉout = −ĉin +
√
γexb̂ (41)

The Hamiltonian describing the internal dynamics of this
system is given by

Ĥ = ~ω1â
†
1â1 + ~ω2â

†
2â2 + ~ωmb̂†b̂

− ~g0â
†
2â2(b̂+ b̂†)− ~J

(
â†1â2 + â†2â1

) (42)

The first three terms give the evolution of the subsystems when
they are isolated, the fourth term creates the interaction between
the optical mode in the second ring and the HBAR mechanical
mode, and the last term arises from the coupling between the
optical modes of the two microrings. The Hamiltonian is then
transformed following the procedure described in the Appendix
(B) and gives Langevin equations of the internal modes of the
converter as 5
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
d
dtδâ1 = i∆1δâ1 − κ1

2 δâ1 + iJδâ2 +
√
κ0,1f̂o,1 +

√
κex,1δâin (43a)

d
dtδâ2 = i∆2δâ2 − κ2

2 δâ2 + iJδâ1 + ig0ā2(b̂+ b̂†) +
√
κ0,2f̂o,2 (43b)

d
dt b̂ = −iωmb̂− γm

2 b̂+ ig0

(
ā∗2δâ2 + ā2δâ

†
2

)
+
√
γ0f̂m +

√
γexĉin (43c)

First, we solve these linear differential equations in the
frequency domain while neglecting the counter-rotating terms.
The solution is then more easily understood in terms of transfer
functions between the input and output modes. Noticing that a
few groups of terms appear recurrently in the transfer functions,
it is convenient to define the susceptibilities of the optical
modes and the mechanical mode

χo,1[s] = 1
s−i∆1+

κ1
2

χo,2[s] = 1
s−i∆2+

κ2
2

χm[s] = 1
s+iωm+ γm

2

(44)

as well as frequency dependent cooperativities for the op-
tomechanical coupling and for the coupling between the two
rings {

COM[s] = χo,2[s]χm[s]g2
OM[s]

COO[s] = χo,1[s]χo,2[s]J2
(45)

where gOM[s] = ∗g0ā2[s]6. This contrasts with the usual defini-
tion in the optomechanics community where the cooperativity
is a constant quantity, but has the advantage of taking into
account the frequency dependent behaviour of the total system,
and showing that these terms can be understood as coming from
the feedback loops between the different modes. By further
defining frequency dependent extraction efficiencies as{

ηopt[s] = κex
2 χo,1[s]

ηMW[s] = γex
2 χm[s]

(46)

and choosing to place the pump laser on the symmetric super-
modes of the coupled rings, the conversion efficiency from the
microwave input to the optical output now takes the simple
form

|Gâoutĉin [s]|2 ≈ ηMW[s]ηopt[s]
4|COM[s]COO[s]|

|COM[s] + COO[s] + 1|2
(47)

The first two factors are the extraction efficiencies, quantifying
how well a microwave photon or an optical photon can enter
or exit the transducer. These factors are determined by the
geometry of the device and are fixed after fabrication. The

5 ∆1 = ωL − ω1 and ∆2 = ωL − ω2 are the detuning of the pump laser to
the first and second ring cavities as defined in section (B 2). In all generality
they do not need to have the same value, even though it was assumed to be
the case in section (VI).

6 g2
OM[s] will thus imply ∗g2

0 (ā2[s] ∗ ā2[s]).

factor containing the cooperativities is the internal conversion
efficiency of the transducer. The internal efficiency increases
with the pump power until reaching a maximal value of 100%
before slowly decreasing. Fig. 3b) and Fig. 3c) show that, for
realistic values of the parameters given in the table (I), the con-
version efficiency is limited by the extraction efficiencies and
not the internal conversion process. Using this new piezoop-
tomechanical scheme conversion efficiencies almost reaching
50% should already be within reach of today’s technological
capabilities.
We note that the form of the formula eq.(47) for the con-

version efficiency, which is similar to the results obtained for
other converters using three internal modes [15, 30], is slightly
different from the one reported in literature for transducers
relying on only one optical mode and one microwave mode.
The additional terms can be understood as arising from the
feedback loops created by the bidirectional couplings between
the modes. This also implies that this linearized system of
equations can be solved from the diagram (3) by using Mason’s
gain formula [49, 54, 55], similarly to the method introduced by
L. Ranzani et al. to study nonreciprocity [56]. The complete
conversion efficiency accounting for the counter-rotating terms
is the square modulus of the transfer function Gâoutĉin [s] = N

D
between the microwave input ĉin and the optical output âout.
The numerator of this transfer function is

N =
√
γex
√
κexχo,1[s]χo,2[s]χm[s]JgOM(

1 + χ∗o,1[s∗]χ∗o,2[s∗]J2
) (48)

and its denominator is

D = 1 + |gOM|2
(
χo,2[s]− χ∗o,2[s∗]

)
(χm[s]− χ∗m[s∗])

+ J2
(
χo,1[s]χo,2[s] + χ∗o,1[s∗]χ∗o,2[s∗]

)
+ 2|gOM|4

(
χo,2[s]χm[s]χ∗o,2[s∗]χ∗m[s∗]

)
+ J4χo,1[s]χo,2[s]χ∗o,1[s∗]χ∗o,2[s∗]

− |gOM|2J2χo,2[s]χ∗o,2[s∗]
(
χo,1[s]− χ∗o,1[s∗]

)
(χm[s]− χ∗m[s∗]) (49)

This formula is obtained fromFig. 3a) by applyingMason’s gain
rule for signal flow graphs [54]. The details of the derivation
are reported in the appendix (C 3). The validity of this formula
does not depend on the detuning of the laser to the optical modes
and can be used to analyze the behaviour of the transducer in
different regimes of operation, e.g. for amplification by setting
the pump laser on the asymmetric supermode. The conversion
efficiency (47) can be retrieved by neglecting the terms with
the conjugate susceptibilities, which is equivalent to applying
the rotating wave approximation.
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TABLE I. Values of the parameters used to compute the conversion
efficiencies.

Optical frequency ωc
2π

193 THz

Optical coupling rate κex
2π

125 MHz

Intrinsic optical linewidth κ0
2π

25 MHz

Intrinsic optical quality factor Qo 7.5× 106

Single photon optomechanical coupling rate g0,OM
2π

400 Hz

Input laser power Pin 100 mW

Number of optical photons |ā2|2 O(108)

Optomechanical coupling rate gOM
2π

20 MHz

Detuning to the symmetric supermode ∆S
2π

0 MHz

Detuning to the asymmetric supermode ∆A
2π

3.285 GHz

Mechanical frequency ωm
2π

3.285 GHz

Intrinsic mechanical linewidth γ0
2π

2.6 MHz

Mechanical quality factor Qm 600
Electromechanical coupling factor k2

eff 4.3× 10−3

Electromechanical coupling rate gEM
2π

100 MHz

Mechanical coupling rate |γex|
2π

2.9 MHz

Total mechanical linewidth γtotal
2π

5.3 MHz

VI. DEVICE IMPLEMENTATION

Finally, we give an estimation of realistic values of the
parameters to assess the feasibility of this approach. The
values used in this section were obtained from finite elements
simulations, and confirmed with preliminary experimental data
on devices similar to the one proposed here for transduction.
Fig. 3c) shows the conversion efficiency with the input laser
power for different coupling rate of the bus to the ring cavities.
It shows that the maximal conversion efficiency achievable is
increasingwith the bus-ring coupling rate, but the required input
power increases similarly. The requirement of not exceeding
the cooling power of the fridge for cryogenic operations thus
sets the limit to the achievable optical extraction efficiency. Fig.
3b) shows the cross-section of Fig. 3c) for a bus-ring coupling
rate κex

2π = 125 MHz. The corresponding parameter values can
easily be reached on devices fabricated with current CMOS-
compatible technologies and achieves up to 40% conversion
efficiency between the microwave and optical domains with
a reasonable input laser power on the symmetric supermode
of 100 mW. The table II shows that the approach proposed
here competes with the state-of-the-art of microwave-optical
transducers. While the theoretical results presented here were
obtained in the assumption of a continuous wave pump laser, the
same conclusions would applied in the case of a pulsed pump,
at least for a repetition rate up to a few MHz. While direct
quantum coherent transduction requires slight technological
improvements, the proposed scheme provides high conversion
efficiencies that are compatible with protocols guarranteeing
quantum coherent conversion [57, 58].
The efficiency is not limited by the internal conversion

process, and can thus be improved by overcoupling the optical

and mechanical modes to their input baths. This can be done
by optimizing the position of the bus waveguide relatively
to the coupled rings while achieving lower optical loss, or
optimizing the geometry of the HBAR resonator to increase the
electromechanical coupling factor. Using another piezoelectric
material with a better electromechanical coupling factor K2,
such as Sc doped AlN, is another viable option to reach a
higher k2

eff, and thus improving the microwave-to-mechanics
extraction efficiency.

VII. CONCLUSION

With this paper we propose a new type of transducer to
convert travelling photons between the microwave and optical
domains, harnessing the synergy between photonic integrated
circuit and MEMS technologies that are fully compatible with
high-yield wafer-scale manufacturing. The results of the theo-
retical analysis show that conversion efficiencies above 50%,
the threshold required to apply quantum error correction tech-
niques over the microwave-optical link, will soon be within
reach [23]. We furthermore presented a general method to solve
the dynamics of amultipartite quantum system in order to assess
its performance as mode converter. While significant optical
power is still required to reach the maximal internal conversion
efficiency, improvements in the electromechanical coupling can
easily be achieved by usingmaterials with stronger piezoelectric
behaviour, such as ScAlN or even LiNbO3. Nevertheless, this
transducer could readily be used even with power much lower
than what is required for maximizing the conversion efficiency,
for example, for generating entangled pairs of microwave and
optical photons, or for amplifying weak microwave signals that
would be read out with a photodetector.

ACKNOWLEDGMENTS

The authors are thankful to Liu Qiu for fruitful discussions
on the theory of optomechanics and Anat Siddharth for insights
about experimental aspects of the measurements of HBAR
devices. This material is based upon work supported by the
Air Force Office of Scientific Research under number FA9550-
21-1-0047 (Quantum Accelerator), as well as NSF QISE-Net
under grant DMR 17-47426. This work was further supported
by funding from the European Union H2020 research and
innovation programme under grant agreement No. 732894
(FET-Proactive HOT)), and the European Research Council
(ERC) under grant agreement No. 835329 (ExCOM-Cceo).

Appendix A: Lagrangian formulation of the piezoelectric fields

1. Lagrangians of the uncoupled fields

The derivation of the electromechanical coupling rate from
the piezoelectric interaction requires to quantize the mechanical
and electromagnetic modes inside the piezoelectric material.
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TABLE II. Comparison of state-of-the-art microwave-to-optical transducers.

Reference Device type Input power Frequency On-chip efficiency Normalized efficiency Temperature Laser scheme Material

[22] EO 6 mW 8 GHz 2.05× 10−2 3.4 W−1 1.7 K CW AlN
[23] EO 72 µW 6 GHz 2.4× 10−5 0.3 W−1 40 mK Pulsed AlN
[19] EO 20 mW 8 GHz 1.02× 10−2 0.5 W−1 1.9 K Pulsed LiNbO3
[30] PiezoOM 107 nW 3 GHz << 2.5× 10−5 233.6 W−1 20 mK Pulsed GaAs
[10] OM - 7 GHz 8.6× 10−2 - 4 K CW Free space
[13] OM - 1 MHz 4.7× 10−1 - 35 mK CW Free space
[21] EO 0.42 mW 9 GHz 1.09× 10−3 2.6 W−1 RT CW LiNbO3
[32] PiezoOM 20 µW 5 GHz 8.8× 10−6 0.4 W−1 15 mK Pulsed Si
[15] OM 625 pW 10 MHz 1.2× 10−2 1.9× 108 W−1 50 mK CW Si
[59] EO 1.48 mW 9 GHz 3.16× 10−4 0.2 W−1 320 mK CW LiNbO3
[16] EO - 3 GHz 2.7× 10−5 - 1 K CW LiNbO3
[21] PiezoOM 3.3 µW 2 GHz 1× 10−5 3.0 W−1 RT CW LiNbO3
[35] PiezoOM 372 µW 300 MHz 1.2× 10−6 3.0× 10−3 W−1 RT CW LiNbO3
[60] PiezoOM - 3 GHz 6.8× 10−8 - 20 mK Pulsed GaP
This work PiezoOM 100 mW 3 GHz 4.0× 10−1 4.0 W−1 3 K Pulsed Si3N4

This can be done after obtaining the proper Hamiltonian densi-
ties. To derive the Hamiltonian of the fields it is useful to first
go through their Lagrangian formulation.

The Lagrangian enables to describe the evolution of a system
for a given set of generalized coordinates and their derivatives
{φi, φi,j}

L(φi, φi,j) = T − V =

∫∫∫
L(φi, φi,j) dV (A1)

thanks to Euler-Lagrange’s equations

∂L(φi, φi,j)

∂φi
=
∑
j

∂

∂xj

(
∂L(φi, φi,j)

∂φi,j

)
(A2)

Lagrangian density of the elastic waves is

Le.w. =
∑
i

1

2
ρu̇iu̇i −

∑
ijkl

1

2
cijklui,juk,l (A3)

for which the corresponding Hamiltonian density

He.w. =
∑
i

1

2
ρu̇iu̇i +

∑
ijkl

1

2
cijklui,juk,l (A4)

is derived with Legendre’s transformationH =
∑
i φ̇i

∂L
∂φ̇i
−L

[61]. By the same principle, the Lagrangian density of the
electromagnetic waves in presence of external charges and
currents

LEM = −ρeφe + j ·A +
ε0E

2

2
− B2

2µ0
(A5)

leads to the Hamiltonian density [61]

HEM =
1

2
(E ·D + H ·B) (A6)

2. Piezoelectric coupling

A Lagrangian describing a system is only legitimate if it
reproduces the known equations of motion. In the case of
piezoelectric materials, these equations of motion are the
conservation of linear momentum

ρüi =
∑
j

Tij,j (A7)

and the conservation of charges in the medium∑
i

Di,i = 0 (A8)

with the stress and the electric displacement given by eq.(1)
and eq.(2), together with Maxwell’s equations.
The conservation of momentum translates to

ρüi =
∑
kl

cijklSkl,j −
∑
k

ekijEk,j (A9)

A Lagrangian density can then be constructed knowing that
(A9) has to arise from (A2). We can see by direct identification
that

∂L
∂u̇i

= ρu̇i (A10)

will lead to the mechanical kinetic energy term 1
2ρu̇

2
i up to

some constant, and that

∂

∂xj

(
∂L
∂ui,j

)
=

∂

∂xj
(cijkluk,l − ekijEk) (A11)

will lead to potential terms − 1
2cijklui,juk,l + ekijEkui,j , up

to some constants. This form of the elastic potential energy
strongly suggests that the piezoelectric interaction is produced
by adding a term ekijEkSij in the Lagrangian density. It is
then required to check if a Lagrangian density constructed with
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this term will still obey Maxwell’s equations while reproducing
the constitutive relations for linear piezoelectric matierals.
We follow the reasoning exposed in [62] in order to check

the validity of the new Lagrangian density

L =
∑
i

1

2
ρu̇iu̇i −

∑
ijkl

1

2
cijklui,juk,l

+
∑
ij

1

2
εijEiEj +

∑
ijk

ekijEkSij (A12)

The Lagrangian density for electromagnetic fields in a dielectric
is known to be LEM =

∑
i

1
2EiεijEj −

∑
ij

1
2Bi

1
µij
Bj . Two

of Maxwell’s equations,∇·B = 0 and∇×E = −∂B∂t , can be
automatically satisfied by choosing to work with the scalar po-
tentialA0 and the vector potentialA, related to the electric and
magnetic fields through E = −∂A∂t −∇A0 and B = ∇×A.
The Euler-Lagrange equations (A2) for i = 1, 2, 3 are related to
Ampère’s law ∇×B = µ

(
J + ∂D

∂t

)
. The development is not

shown here as it has no important consequence for the quantiza-
tion of the piezoelectric interaction, but the reasoning is similar
to what is done for the last component. The Euler-Lagrange
equation (A2) for the scalar component of the potential i = 0

∂L
∂A0

=
d

dt

∂L
∂ ∂A0

∂t

+

3∑
j=1

∂

∂xj

∂L
∂ ∂A0

∂xj

(A13)

is the one relevant for verifying (A8) as it leads to Gauss’law
∇ ·D = ρfree, and is therefore linked to charge conservation.
Focusing on the parts of the Lagrangian (A12) containing the
electric field

Lelectricpiezo =
∑
ij

1

2
EiεijEj −

∑
ijk

ekijEkSij

=
∑
ij

1

2
εij(A

2
0,i +A2

i,0 + 2A0,iAi,0)

+
∑
ijk

ekij (−Ak,0 −A0,k)Sij

we apply (A13) to find

3∑
k=1

∂

∂xi
(εklA0,l + εklAl,0 − ekijSij) = 0

⇔
3∑
k=1

∂

∂xi
(εklEl + ekijSij) = 0

which is equivalent to charge conservation with a displacement
electric field given by the constitutive equation eq.(2) for
piezoelectric materials. (A12) is thus a valid Lagrangian
density for starting the piezoelectric interaction quantization as
it reproduces the laws of continuum mechanics and Maxwell’s
equations, while adding electromechanical coupling through
piezoelectricity.
Finally, the corresponding Hamiltonian density is obtained

taking a Legendre transform on the coordinates {ui, Ei}, lead-

ing to

H =
∑
i

1

2
ρu̇iu̇i +

∑
ijkl

1

2
cijklui,juk,l

−
∑
ij

1

2
εijEiEj −

∑
ijk

ekijEkSij (A14)

Interestingly, this Hamiltonian exactly coincides with the elec-
tric enthalpyHE(Sij , Ei) = U(Sij , Di)−E ·D [47]. This is
due to the fact that the internal energy needs to be expressed in
terms of extensive variables, here the components of D, while
the operation of piezoelectric devices is done by controlling
the electric field components through the voltage, which are
intensive variables. A Legendre transform hence has to be
applied on the variables {Di} to change the electrical coordi-
nates to {Ei}, a more natural choice for studying piezoelectric
coupling.

Appendix B: Transformation of the Hamiltonian

1. Unitary transformation

In this appendix, we justify the formula used to apply a
unitary transformation to the Hamiltonian.
Starting from Schrodinger equation

i~
∂

∂t
|ψ〉 = Ĥ |ψ〉 (B1)

and the new state
∣∣∣ψ̃〉 = Û |ψ〉 obtained after applying the

unitary transformation Û , we obtain

i~
∂

∂t

(
Û†
∣∣∣ψ̃〉) = ĤÛ†

∣∣∣ψ̃〉
⇔ i~

∂

∂t

(
Û†
) ∣∣∣ψ̃〉+ i~Û†

∂

∂t

(∣∣∣ψ̃〉) = ĤÛ†
∣∣∣ψ̃〉

⇔ i~Û†
∂

∂t

(∣∣∣ψ̃〉) = ĤÛ†
∣∣∣ψ̃〉− i~ ∂

∂t

(
Û†
) ∣∣∣ψ̃〉

⇔ i~
∂

∂t

(∣∣∣ψ̃〉) = ÛĤÛ†
∣∣∣ψ̃〉− i~Û ∂

∂t

(
Û†
) ∣∣∣ψ̃〉

(B2)

which justifies the form of the Hamiltonian in the new frame

Ĥnew = ÛĤoldÛ† − i~Û ∂Û
†

∂t
(B3)

2. Rotating frame

The form of the Hamiltonian in the frame rotating at the
frequency of the pump laser ωL is computed using the relation
derived in the previous section.
In this case the transformation is given by Û = eiâ

†âωLt so
that

∣∣ψold〉 = e−iâ
†âωLt |ψnew〉, i.e. the optical wavefunctions
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in the new frame correspond to slowly varying envelopes.
Using the fact that

Û(~ωcâ†â)Û† = ~ωcâ†â (B4)

and

∂Û†

∂t
= −iωLâ†â Û† (B5)

the effect of applying Û = eiωL(â†1â1+â†2â2)t to move in the
rotating frame is only to transform the terms from the isolated
optical subsystems into

Ĥnew = ~ωcâ†â− ~ωLâ†â = −~∆â†â (B6)

where we defined the detuning of the optical mode to the pump
laser as ∆ = ωL − ωc.

3. Optomechanical interaction linearization

The optomechanical interaction Hamiltonian [6]

ĤOM = −~g0â
†â(b̂+ b̂†) (B7)

reveals itself to be problematic when looking at the evolution
of annihilation operators because of the triple product, that
leaves nonlinear terms in the Langevin equations. Conventional
solution to this problem used by the community of researchers
in the field of optomechanics is to linearize the optical field
amplitude around the average value of the field in the cavity
ā = 〈â〉. This approximation consists in separating the mean
value and the fluctuations, which take into account for the
quantum properties we are interested in with this transduction
scheme proposal,

â ≈ ā+ δâ (B8)

With this expansion of the optical field, the optomechanical
Hamiltonian becomes

~g0â
†â(b̂+ b̂†) ≈

~g0

[
|ā|2 + δâ†δâ+ āδâ† + ā∗δâ

]
(b̂+ b̂†)

(B9)

where we can identify three kind of terms:

1. a constant term causing a shift of the displacement origin
~g0|ā|2(b̂+ b̂†)

2. a term that will be kept as the linearized optomechanical
Hamiltonian ~g0

[
āδâ† + ā∗δâ

]
(b̂+ b̂†)

3. and a term ~g0δâ
†δâ(b̂+ b̂†) that is neglected for having

a contribution at least |ā| smaller than the two other,
which rapidly becomes consequent for reasonable pump
power.

The first disappears by applying an appropriate shift δx of
the displacement origin. The value of this shift is obtained
by evaluating the susceptibility of the mechanical oscillator
in the steady state χ[0] = 1

k = 1
meffω2

m
multiplied by the

average radiation pressure force F̄rad. press. = ~G|ā|2, giving
the displacement at equilibrium

δx =
~G|ā|2

meffω2
m

(B10)

for a frequency shift per displacement unitG = −∂ωcav
∂x = g0

xZPF
.

Writing the displacement and the associated momentum in
terms of annihilation operatorsx̂ =

√
~

2meffωm
(b̂+ b̂†)

p̂x =
√

~meffωm
2

1
i (b̂− b̂

†)
(B11)

we can then easily construct the appropriate translation operator
as [63]

T̂ (δx) = e
1
i~ δxp̂x (B12)

Applying this operator to the original Hamiltonian, we find
that the first term occurring in the linearization of the optome-
chanical Hamiltonian vanishes at the cost of shifting the optical
resonances frequency, leading to a modified detuning

∆new = ∆old +Gδx̄ (B13)

4. Intracavity fields

In this section we explain how to obtain the intracavity
photon numbers for the two rings of the photonic dimer, terms
that arise in the optomechanical coupling rate.
We consider a pair of coupled optical modes from which

only the first one can be probed via a bus waveguide. This
situation is illustrated with the signal flow graph on Fig. 4.
Linearizing the annihilation operators of the optical modes as
described in the previous section, we can separate the evolution
of the fluctuations from the evolution of the average cavity field

d

dt
â1 =

d

dt
ā1 +

d

dt
δâ1 (B14)

d

dt
â2 =

d

dt
ā2 +

d

dt
δâ2 (B15)

We group the terms with δâ1 and δâ2 to obtain the Langevin
equations for the fluctuations operators

d

dt
δâ1 = i∆1δâ1 −

κ1

2
δâ1 + iJδâ2

+
√
κ0,1f̂o,1 +

√
κex,1δâin (B16)

d

dt
δâ2 = i∆2δâ2 −

κ2

2
δâ2 + iJδâ1

+ ig0ā2(b̂+ b̂†) +
√
κ0,2f̂o,2 (B17)
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FIG. 4. Optical transmission of the coupled microrings. (a) Signal flow chart describing the behaviour of the two coupled optical modes,
without the effect of the mechanics. The transfer functions of the intracavity fields can also be obtained by applying Mason’s gain rule to this
diagram. (b) Optical transmission of the coupled rings system. Both rings are set to have the same frequency ωc (there is on detuning δ between
the rings resonant frequency). The strong coupling J between them causes modes hybridization, which results in two effective resonance
frequency separated by 2J . The two absorption peaks corresponds to the symmetric (lower frequency) and asymmetric supermodes of the
photonic dimer. The transmission spectrum is showed in the frame rotating at ωc.

while the remaining terms give the equation of motion of the
average intracavity fields

d

dt
ā1 = −iω1ā1 −

κ1

2
ā1 + iJā2 +

√
κex,1āin (B18)

d

dt
ā2 = −iω2ā2 −

κ2

2
ā2 + iJā1 (B19)

Taking Laplace’s transform, we then obtain the values of the
intracavity fields in the frequency domain{

ā1[s] =
√
κex

χo,1[s]
(1+J2χo,1[s]χo,2[s]) āin[s]

ā2[s] = iJχo,2[s]ā1[s]
(B20)

The output spectrum corresponding to these intracavity fields
is shown on Fig. 4.

5. Input laser spectrum

We assume an input laser with a Lorentzian lane shape, with
linewidth kL and total power Pin.
Setting the laser spectrum to be

āin[−iω] =
κL
2

−i(ω − ωL) + κL
2

√
Pin

~ωL
eiφL (B21)

it possesses the correct linewidth and gives the correct total
number of photons

|āin[−iωL]|2 =
Pin

~ωL
(B22)

Taking, for example, a total power of 10 mW and a linewidth
of κL2π = 10 kHz for the pump laser, which are realistic values,
its spectrum is very narrow compared to all the other MHz
order linewidth of the modes in the transducer. This justifies
that we assume a Dirac peak for the laser spectrum during the
computation of the conversion efficiency.

Appendix C: Transfer functions

In this appendixwe give a brief reminder on notions of control
theory applied here to solve the linear system of equations
describing the transducer. The complete set of transfer functions
is given applying this state space model, while neglecting the
counter-rotating terms The derivation of the microwave-optical
transfer function with counter-rotating terms is obtained using
the signal flow graph 3 and Mason’s gain rule.

1. State space representation

The Langevin equation obtained by correspondance rules
from Poisson’s bracket [63]

d

dt
â =

1

i~

[
â, Ĥ

]
+
∂â

∂t
(C1)

is applied to the Hamiltonian (42) to obtain the equation of
motion of the internal modes of the transducer. Neglecting the
counter-rotating terms that are not playing a significant role
here, the Langevin equations describing the conversion process
of the transducer are

d

dt
δâ1 = i∆1δâ1 −

κ1

2
δâ1 + iJδâ2

+
√
κ0,1f̂o,1 +

√
κex,1δâin (C2)

d

dt
δâ2 = i∆2δâ2 −

κ2

2
δâ2

+ iJδâ1 + ig0ā2b̂+
√
κ0,2f̂o,2 (C3)

d

dt
b̂ = −iωmb̂−

γm
2
b̂+ ig0ā

∗
2δâ2

+
√
γ0f̂m +

√
γexĉin (C4)
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It is convenient to write this linear system of differential
equations in a matrix form

ẋ = Ax + Bu (C5)

with the state vector

x =

δâ1

δâ2

b̂

 (C6)

and the input vector

u =


âin
ĉin
f̂o,1
f̂o,2
f̂m

 (C7)

where the first two terms are the input fields in the device, and
the remaining three comes from the noises. The system matrix
is then given by

A =


i∆1 − κ1

2 iJ 0

iJ i∆2 − κ2

2 igOM

0 igOM −γ2 − iωm

 (C8)

and the input matrix is

B =


√
κex 0

√
κ0,1 0 0

0 0 0
√
κ0,2 0

0
√
γex 0 0

√
γ0

 (C9)

The input-output relations [8]

âout = âin −
√
κexâ1 (C10)

ĉout = −ĉin +
√
γexb̂ (C11)

then give the output matrix

C =

−√κex 0 0

0 0
√
γex

 (C12)

and the feedthrough matrix

D =

1 0 0 0 0

0 −1 0 0 0

 (C13)

for an output vector

y =

(
âout
ĉout

)
= Cx + Du (C14)

Taking Laplace’s transformation we have in the frequency
domain

sx̃[s]− x(0) = Ax̃[s] + Bũ[s]

⇔ x̃[s] = (sI−A)−1 (x(0) + Bũ[s])
(C15)

that gives the output in the frequency domain

ỹ[s] = C(sI−A)−1x(0)

+ C(sI−A)−1Bũ[s] + Dũ[s]
(C16)

Assuming that x(0) = 0, the frequency domain input-output
relation ỹ[s] = G[s]ũ[s] is obtained for a transfer functions
matrix

G[s] = C(sI−A)−1B + D (C17)

2. Transfer functions of the transducer

Signal flow graphs similar to Fig. 3 can be drawn for each
source in the equations of motion. Applying the rotating wave
approximation, which is valid as long as the pump laser is set
with a detuning ∆ = ωm to the asymetric optical supermode,
can be understood as neglecting the blocks of the creation
operators in the signal flow graphs.

In that limit, the annihilation operators transfer functions are
given by:

• from the optical input âin to the optical output âout

Gâoutâin [s] = 1− κexχo,1[s](1 + |gOM|2χo,2[s]χm[s])

1 + |gOM|2χo,2[s]χm[s] + J2χo,1[s]χo,2[s]
(C18)

• from the microwave input ĉin to the optical output âout

Gâoutĉin [s] =

√
γex
√
κexgOMJχo,1[s]χo,2[s]χm[s]

1 + |gOM|2χo,2[s]χm[s] + J2χo,1[s]χo,2[s]
(C19)

• from the noise in the first optical ring cavity f̂o,1 to the
optical output âout

Gâoutf̂o,1 [s] =
−√κ0,1

√
κexχo,1[s](1 + |gOM|2χo,2[s]χm[s])

1 + |gOM|2χo,2[s]χm[s] + J2χo,1[s]χo,2[s]
(C20)

• from the noise in the second optical ring cavity f̂o,2 to
the optical output âout

Gâoutf̂o,2 [s] =
−i√κ0,2

√
κexχo,1[s]χo,2[s]J

1 + |gOM|2χo,2[s]χm[s] + J2χo,1[s]χo,2[s]
(C21)

• from the noise in the mechanical resonator f̂m to the
optical output âout

Gâoutf̂m [s] =

√
γ0
√
κexgOMJχo,1[s]χo,2[s]χm[s]

1 + |gOM|2χo,2[s]χm[s] + J2χo,1[s]χo,2[s]
(C22)

and for the microwave output ĉout
• from the optical input âin to the microwave output ĉout

Gĉoutâin [s] =
−√γex

√
κexg

∗
OMJχo,1[s]χo,2[s]χm[s]

1 + |gOM|2χo,2[s]χm[s] + J2χo,1[s]χo,2[s]
(C23)
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• from the microwave input ĉin to the microwave output
ĉout

Gĉoutĉin [s] = −1 +
γexχm[s](1 + J2χo,1[s]χo,2[s])

1 + |gOM|2χo,2[s]χm[s] + J2χo,1[s]χo,2[s]
(C24)

• from the noise in the first optical ring cavity f̂o,1 to the
microwave output ĉout

Gĉoutf̂o,1
[s] =

−√γex
√
κ0,1g

∗
OMJχo,1[s]χo,2[s]χm[s]

1 + |gOM|2χo,2[s]χm[s] + J2χo,1[s]χo,2[s]
(C25)

• from the noise in the second optical ring cavity f̂o,2 to
the microwave output ĉout

Gĉoutf̂o,2
[s] =

i
√
γex
√
κ0,2g

∗
OMχo,2[s]χm[s]

1 + |gOM|2χo,2[s]χm[s] + J2χo,1[s]χo,2[s]
(C26)

• from the noise in the mechanical resonator f̂m to the
microwave output ĉout

Gĉoutf̂m
[s] =

√
γ0
√
γexχm[s](1 + J2χo,1[s]χo,2[s])

1 + |gOM|2χo,2[s]χm[s] + J2χo,1[s]χo,2[s]
(C27)

3. Mason’s gain of the microwave-to-optical transduction
process

The transfer function from the input microwave mode to the
output optical mode can be obtained from Fig. 3 by applying
Mason’s rule for the gain of signal flow graph [54]

G =

∑
kGk∆k

∆
(C28)

where the sum acts on all the possible forward paths from the
input mode, the source, to the output mode, the sink. Gk is
the gain of the kth forward path, ∆k is the subdeterminant
for the loops not touching the kth forward path, and ∆ =

1−
∑
i Li +

∑not touching
i,j LiLj + . . . is the total determinant

obtained from the individual loop gains Li. The conversion
efficiency of the transducer is obtained by first computing the
transfer function G between the annihilation operators ĉin and
âout, and then taking the square of its norm |G|2.

Here only two paths join ĉin and âout without going through
the same nodes more than once: ĉin → b̂→ â2 → â1 → âout

and ĉin → b̂ → â† → b̂† → â2 → â1 → âout. The authors
would like to bring the attention of the reader to the fact
that the self-loops of each mode have to be split in order to
see the susceptibilities appearing. The gain of the first for-
ward path is thus √

κex
√
γexJχm[s]χo,2[s]χo,1[s]gOM,

and the gain of the second forward path is
−√γex

√
κexχo,1[s]χo,2[s]χm[s]gOMJχ

∗
m[s∗]χ∗o,2[s∗]|gOM|2.

The next step to compute this transfer function is to identify
all the loops of the graph. The loops with only one node are
treated by considering that they are split in the following. No
loop with more than two nodes is present in this graph. The
loops to take into account are thus:

• b̂↔ â2 : L1 = −χo,2[s]χm[s]|gOM|2

• b̂† ↔ â†2 : L2 = −χ∗o,2[s∗]χ∗m[s∗]|gOM|2

• â1 ↔ â2 : L3 = −χo,1[s]χo,2[s]J2

• â†1 ↔ â†2 : L4 = −χ∗o,1[s∗]χ∗o,2[s∗]J2

• b̂↔ â†2 : L5 = χ∗o,2[s∗]χm[s]|gOM|2

• b̂† ↔ â2 : L6 = χo,2[s]χ∗m[s∗]|gOM|2

Only the loops L2 and L4 do not touch the first forward path,
and they do overlap on the node â†2. The subdeterminant of the
first forward path is thus

∆forward path 1 = 1 + χ∗o,2[s∗]χ∗m[s∗]|gOM|2

+ χ∗o,1[s∗]χ∗o,2[s∗]J2 (C29)

The second forward path touches all the loops. Its subdetermi-
nant is thus ∆forward path 2 = 1
The final step to obtain the total determinant is to identify

the loops that are not touching:

• L1 with [L2, L4]

• L2 with [L1, L3]

• L3 with [L2, L4, L5]

• L4 with [L1, L3, L6]

• L5 with [L3, L6]

• L6 with [L4, L5]

The total determinant of the graph is thus
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∆total = 1− L1 − L2 − L3 − L4 − L5 − L6 + L1L2 + L1L4 + L2L3 + L3L4 + L3L5 + L4L6 + L5L6

= 1 + (χo,2[s]χm[s]|gOM|2) + (χ∗o,2[s∗]χ∗m[s∗]|gOM|2) + (χo,1[s]χo,2[s]J2)

+ (χ∗o,1[s∗]χ∗o,2[s∗]J2)− (χ∗o,2[s∗]χm[s]|gOM|2)− (χo,2[s]χ∗m[s∗]|gOM|2)

− (χo,2[s]χm[s]|gOM|2)(−χ∗o,2[s∗]χ∗m[s∗]|gOM|2)− (χo,2[s]χm[s]|gOM|2)(−χ∗o,1[s∗]χ∗o,2[s∗]J2)

− (χ∗o,2[s∗]χ∗m[s∗]|gOM|2)(−χo,1[s]χo,2[s]J2)− (χo,1[s]χo,2[s]J2)(−χ∗o,1[s∗]χ∗o,2[s∗]J2)

− (χo,1[s]χo,2[s]J2)(χ∗o,2[s∗]χm[s]|gOM|2)− (χ∗o,1[s∗]χ∗o,2[s∗]J2)(χo,2[s]χ∗m[s∗]|gOM|2)

+ (χ∗o,2[s∗]χm[s]|gOM|2)(χo,2[s]χ∗m[s∗]|gOM|2)

(C30)

Mason’s rule (C28) can now be applied to find the final result
of section (V), equations (48) and (49).

4. Added noise

The optical output can be decomposed in the signal coming
from the microwave and the noise added during the conversion
process.

δâout[ω] ≈ √η
(
ĉin[ω] +

√
1− η
η

ĉadded[ω]

)
Here the efficiency is given by the microwave-optical transfer
function expressed in terms of quanta η = |Gâoutĉin [ω]|2,
while the added noise

√
1−η
η ĉadded[ω] is related to the transfer

functions of the other sources and their power spectral density.√
1− η ĉadded[ω] = Gâoutâin [ω]δâin[ω] +Gâoutf̂o,1 [ω]f̂o,1[ω]

+Gâoutf̂o,2 [ω]f̂o,2[ω] +Gâoutf̂MW
[ω]f̂MW[ω]

Here the first term corresponds to the laser noise, the second and
the third terms correspond to the thermal noise in the optical
ring cavities, and the fourth one corresponds to the thermal
noise from the HBAR. Each noise term thus contributes to∣∣∣∣ Gâoutf̂ [ω]

Gâout b̂in
[ω]

∣∣∣∣2 Sf̂ f̂ [ω] added noise quanta to the output, where

Sf̂ f̂ [ω] = 1
2

(〈
f̂ [ω]f̂†[ω]

〉
+
〈
f̂†[ω]f̂ [ω]

〉)
refers to the sym-

metrized power spectral density [64]. The high pump powers
required to reach sufficient conversion efficiencies imply that
the transducer has to be operated on the 3K flange of the
fridge, which provides sufficient cooling power. Fig. 5b)
shows the noise added at the optical output for a transducer at
the 3K flange of the fridge, using Bose-Einstein distribution
nth[ω, T ] = 1

e
~ω
kBT −1

for the thermal occupation in each mode.

The noise from the term Gâoutâin [ω]δâin[ω] correspond to the
noise coming from the pump laser. Given that the optomechan-
ical interaction depends on the laser intensity and not its phase,
the only noise to take into account here is the relative intensity
noise. Assuming a value of 1× 10−14 Hz−1 for the RIN [65]
and taking into account the line shape of the laser, the noise
transducer from the pump laser is found to be much smaller
than a quantum.
The added noise is dominated by the contribution of the

thermal excitations in the acoustic mode, the optical noise only

contributing to a few quanta of added noise. While direct
conversion is not quantum limited, the low noise level and high
conversion efficiency would enable to use protocols for perfect
transduction [57, 58].

Appendix D: Technical limitations

1. Heat load on the dilution fridge

As consequent power is required to reach the maximal
efficiency, it is important to verify that the dilution fridge
will be able to provide enough cooling power to maintain the
3K environment. We identify two sources of heat from the
transducer: the power dissipated on the chip, and the power
scattered from the fiber-chip interfaces. In order to get an upper
bound on the heat load, we assumed that the entire dissipated
on chip and scattered from the chip facets is converted into
heat. The fiber-chip insertion loss is approximatively 40%
per facet [11], implying that roughly 60% of the power on the
fiber reaches the transducer. The power at the output facet
is reduced because most of the photons are absorbed in the
cavity. The power dissipated inside the transducer estimated
assuming the intracavity optical photons are converted into
heat at a rate given by the intrinsic optical linewidth. The two
optical ring cavities thus give contributions of ~ω1κ0,1|ā1|2
and ~ω2κ0,2|ā2|2 respectively.
Fig. 5a) gives an estimation of the heat load, based on the

formula

Pdissipated =
IL

1− IL
Pin + IL|Gainaout |2Pin

+ ~ω1κ0,1|ā1|2 + ~ω2κ0,2|ā2|2

We conclude that the dilution fridge has to compensate for heat
corresponding of the order of magnitude of the on-chip power
at the input of the transducer. While this load is surpasses the
limit of of the mK stages, the 3 K flange can provide cooling
power > 1 W. The transducer can thus be operated on that
stage.

2. Kerr parametric instabilities

As silicon nitride microrings exhibit ultra-low propagation
losses together with decent Kerr coefficients, they are known
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FIG. 5. Technical constraints on the transducer design. (a) Heat load on the dilution fridge. Power dissipated while operating the transducer
in the continuous wave regime, as a function of the on-chip power at the input of the trasnducer. (b) Added noise. Noise added during the
conversion process for a transducer at the 3K stage of the fridge. (c) Optomechanical bistability. Intracavity photon number in a single Si3N4
optical ring cavity coupled to a HBAR resonance at 3.3GHz as a function of the laser detuning. (d) Integrated dispersion. Dispersion curve of
the TE optical mode in the silicon nitride waveguide. Negative values of the integrated dispersion insures to avoid Kerr parametric oscillations,
which would prevent quantum coherent frequency conversion.

for the generation of Kerr frequency combs with low pump
laser powers. Unfortunately this effect would here constitute
an additional loss channel, and must therefore be avoided. We
refer to [66], that indicates that the first sidebands occurs at the
mode number

µthresh =

√√√√ κ

D2

(√
Pin

Pthresh
− 1− 1

)
(D1)

This equation implies that Kerr parametric instabilities will
not occur for normal dispersion d2ω

dk2 < 0. Further studies have
shown that for the parametric oscillations to occur in the case
of normal dispersion, the laser has to be detuned from the
resonance [67], which is not the case in the scheme presented
here. In practice, modes crossing might still compensate for the
normal dispersion and there is a small chance that high pump
power produce this deleterious effect. In this case, changing the
wavelength of operation will allow to avoid the local anomalous

dispersion. Nonetheless, it is important to make sure that the
integrated dispersion is as far as possible from the anomalous
regime. The Fig. 5d) shows weak normal dispersion for the
chosen set of parameters, which were optimized relatively to
other constrains, such as for example the fact that the effective
mass of the HBAR mode increases with the ring radius.

3. Optomechanical bistability

Strong optomechanical coupling can bring the optical cavity
to a bistable regime, where two different intracavity photon
numbers are stable solutions for the steady state of the op-
tomechanical system [68]. This process would limit the pump
laser power that could be use to operate the transducer. Fig.
5c) shows a simulation of the intracavity photon number for a
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single Si3N4 optical ring cavity,[(
∆ +

2g2
0ncav

ωm

)2

+
κ2

4

]
ncav = κex

Pin

~ωL
(D2)

which would indicate the upper limit on the power that can be
send in the coupled rings configuration. This figure shows that
the bistable regime cannot be reached with the system, even
for powers larger than 1 W.
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