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The quantum approximate optimization algorithm (QAOA) is a near-term combinatorial opti-
mization algorithm suitable for noisy quantum devices. However, little is known about performance
guarantees for p > 2. A recent work [WL’21] computing MaxCut performance guarantees for 3-
regular graphs conjectures that any d-regular graph evaluated at particular fixed angles has an
approximation ratio greater than some worst-case guarantee. In this work, we provide numerical
evidence for this fixed angle conjecture for p < 12. We compute and provide these angles via nu-
merical optimization and tensor networks. These fixed angles serve for an optimization-free version
of QAOA, and have universally good performance on any 3 regular graph. Heuristic evidence is
presented for the fixed angle conjecture on graph ensembles, which suggests that these fixed angles
are “close” to global optimum. Under the fixed angle conjecture, QAOA has a larger performance
guarantee than the Goemans Williamson algorithm on 3-regular graphs for p ≥ 11.

I. INTRODUCTION

Near-term quantum computers have the potential for
advantage in the field of combinatorial optimization. Po-
tentially, an algorithm running on a small noisy quantum
device may soon exhibit quantum advantage by provid-
ing better approximate to combinatorial problems than
the best classical approximate solver [1]. One partic-
ular class of potential algorithms are variational quan-
tum algorithms (VQA) [2], which use a hybrid quantum-
classical loop to optimize ansatz wavefunctions that en-
code solutions to combinatorial problems.

One particular ansatz choice for VQA is the quantum
approximate optimization algorithm (QAOA) [3], which
is generated using p rounds of unitaries alternating be-
tween some “mixing” unitary and objective function uni-
tary. The ansatz is a function of 2p parameters {γ, β},
which are optimized through repeated query of a classical
optimizer to a digital quantum device.

While it is known that the QAOA converges to the
exact result for p → ∞ consistent with the adiabatic
theorem [3; 4], less is known about the guaranteed per-
formance of the algorithm at low depth. In the original
introduction of Farhi et. al [3], the performance solving
MaxCut was guaranteed to be at least 0.693 for p = 1
and 3 regular graphs, and in a later work [5], the perfor-
mance was guaranteed to be at least 0.7559 for p = 2 and
3 regular MaxCut graphs. The same work observed that
worst-case graphs have no small cycles, and conjectured
that the same holds for larger p.

In this work, we provide performance guarantees un-
der this conjecture for regular MaxCut graphs for p ≤ 11,
and show that for p ≥ 11 the QAOA has a larger per-
formance guarantee on 3 regular graphs than the best
general purpose classical solver.

Additionally, it has been observed that optimal QAOA
angles concentrate around typical values [6; 7], suggest-
ing that QAOA may bypass the quantum-classical vari-

ational optimization step, or pre-compute the angles us-
ing a tensor network quantum circuit simulator [8]. In
this work, we make this observation even more simple by
demonstrating that there exist a set of fixed angles that
are “universally good”. These fixed angles, when eval-
uated on any regular graph of fixed edge weights, will
return approximation ratios larger than some guarantee
and very close to the exact maximal approximation ra-
tio. These fixed angles allow QAOA to completely bypass
any variational optimization step, potentially increasing
execution times by a factor of 100 - 1000×.

In this work, we focus on the NP-complete combina-
torial optimization problem MaxCut [9]. Given a graph
G of edges E and vertices V , a MaxCut algorithm strives
to find a bipartition of vertices {A, V \A} such that a
maximal number of edges E have one vertex in each bi-
partition. In other words, a MaxCut strives to “cut” the
maximal number of edges via a bipartition.

A graph of N = |V | vertices and M = |E| edges can
be encoded into an objective function C over N qubits
and M clauses, as follows

Ĉ =
1

2

∑
〈ij〉∈E

(1− σ̂izσ̂jz). (1)

The eigenstates of Ĉ are bipartitions, with eigenval-
ues counting the number of cut edges. The partition is
assigned by measuring the ansatz state in the Z basis.

The QAOA strives to find optimal parameters which
maximize the expectation value of the objective function
with respect to some ansatz state. The QAOA ansatz is
defined as a function of 2p variables {γ, β} over p rounds
of repeated unitaries

|γ, β〉 = e−iβpB̂e−iγpĈ(· · · )e−iβ1B̂e−iγ1Ĉ |+〉 (2)

where ellipsis represent the p actions of objective function
Ĉ and mixing term B̂ =

∑
i σ̂

i
x. The initial state |+〉 is
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FIG. 1. A sketch of how to compute QAOA expectation values. Given some graph G of edges and vertices (A), QAOA will only
“see” local structure within p steps of an edge. In this way, a graph can be decomposed into |E| subgraphs S (B), one for each
edge, and expectation values be computed independently (D). One method of computing expectation values used in this work
are tensor networks (C), which efficiently decompose the local QAOA state into a tensor network for efficient computation.

the equally weighted superposition state and maximal
eigenstate of B̂.

The QAOA is a hybrid algorithm, in the sense that it
includes both a quantum and a classical device. Through
repeated query to a small quantum device to evaluate
expectation values FGp (γ, β) = 〈γ, β|Ĉ|γ, β〉, a classical
device optimizes the 2p angles {γ, β} to provide optimal
MaxCut solutions to a graph.

The performance of the algorithm is characterized by
the approximation ratio, which is the ratio between the
optimized value FGp (γ, β) and the MaxCut value

CGp = MAX:
γ,β

FGp (γ, β)

CGmax

. (3)

The approximation ratio ranges between 0 and 1, and
CGmax is the maximum possible number of edges cut for
graph G. A larger indicates better performance, and a
value of 1 indicates the exact solution. Given a class of
graphs and fixed value p, this approximation ratio may
be guaranteed to be above some performance guarantee.
For 3 regular graphs, C1 ≥ 0.692 [3], and C2 ≥ 0.7559
[5]. For p → ∞ the approximation ratio converges to 1
in accordance with the adiabatic theorem [3; 4].

Critically important to the evaluation of the perfor-
mance is the fact that QAOA is a local algorithm [10–
13]. Given p steps, a vertex can only be correlated with
other vertices within a distance ≤ p. This is because the
QAOA has a “lightcone” of interaction, which is clear to
see in the Heisenberg picture (See for example, [5] Eq.
7). The expectation value of the cost function is a sum
of clauses

FGp (γ, β) = 〈γ, β|Ĉ|γ, β〉

= 〈γ, β|
∑
〈ij〉∈E

1

2
(1− σ̂izσ̂jz) |γ, β〉

≡
∑
〈ij〉∈E

f 〈ij〉p (γ, β), (4)

where f
〈ij〉
p is an individual edge contribution to the total

cost function. The QAOA ansatz only correlates vertices

within p steps, so each clause f
〈ij〉
p may be computed on

a subgraph S
〈ij〉
p that only includes the edges that are

incident from vertices at a distance p from the vertices
i or j. The expectation value thus can be calculated
as a sum over M independent subgraphs, as sketched in
Fig. 1A-B.

Due to this locality, QAOA cannot take advantage of
graph structures that are greater than 2p steps away [3].
Additionally, QAOA cannot distinguish between graphs
with cycles of size > 2p + 1, which suggests that worst-
case graphs have no small cycles. This intuition was
made concrete in [5], which proved that worst-case 3
regular graphs with the smallest approximation ratio for
p = 1 and 2 are bipartite with no cycles ≤ 3 or 5, re-
spectively. A bipartite graph has a MaxCut value of M ,
cutting every edge. The only subgraphs of a graph with
no small cycles are the tree subgraph, which has no cycles
(see Fig. 1). The optimized value of a worst-case graph
G∗ is then

FG∗p (γ, β) =
∑
〈ij〉∈G∗

f ijp (γ, β) = Mf treep (γ, β). (5)

Thus, the approximation ratio of a worst-case graph
is simply the expectation value of the tree subgraph
f treep (γ, β). The expectation value of the tree subgraph
evaluated at optimal parameters {γ, β}tree serves as the
performance guarantee. These worst-case graphs are ex-
ponentially rare but can be found constructively [14].

Additionally, it was proven that any graph evaluated
at angles optimum to the tree subgraph have an approx-
imation ratio larger than the guarantee, for p = 1 and 2.
These facts naturally lead to two conjectures for larger
values of p [5]
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Large Loop conjecture: The worst-case graphs for
fixed p are bipartite and have no cycles less than 2p + 2.

Fixed Angle conjecture: Any graph evaluated at fixed
angles optimal to the tree subgraph will have an approx-
imation ratio larger than the guarantee.

These conjectures are proven True in [5] for p = 1 and
2 for 3 regular graphs. These fixed angles act as “uni-
versally good” parameters with good, but not maximum,
performance on any 3 regular graph.

This work provides heuristic evidence of these conjec-
tures for larger p < 12. First, as outlined in section
II, we compute expectation values of the tree subgraph
f treep (γ, β) for p < 12. Due to the doubly exponential
complexity of simulation (the p = 11 tree subgraph has
8190 vertices, each corresponding to a qubit), we use ten-
sor methods [15] for efficient classical simulation.

Next, we optimize the 2p variational parameters via a
modified multistart gradient ascent algorithm [16] to find
optimal angles for worst-case graphs {γ, β}tree, which
serve as fixed angles to evaluate on any graph of the
same regularity. The optimal expectation values of the
tree subgraph serve as a performance guarantee assuming
the large loop conjecture.

Finally, as outlined in section III, we provide a heuris-
tic proof of the fixed angle conjecture by evaluating the
approximation ratio on all 3 regular graphs with ≤ 16
vertices. Further, we index the merits of these pre-
computed, fixed angles to speed up and improve the vari-
ational optimization step of QAOA. We conclude in sec-
tion III with some of the implications of these fixed angle
conjectures, including bounds for quantum advantage on
regular graphs.

II. METHODOLOGY

A. Simulations

A necessary step of QAOA is evaluating the expecta-
tion value of the cost function. One option is to compute
the value on quantum hardware, by sampling from the
ansatz state |γ, β〉 and calculating the expectation value
statistically. While in principle this is the only method
that will work for arbitrary circuit parameters, it is possi-
ble to simulate expectation values on a classical computer
for some circuits even of extensive size.

One simple alternate method is state-vector evolution,
which requires storing the 2N values of the wavefunction
in memory, and evolving via sparse matrix exponenti-
ation methods. However, this method is infeasible for
large system sizes of & 20 qubits, due to the exponen-
tially scaling memory requirements.

For this work, we use the classical simulator QTensor
[17; 18] which is based on tensor network contraction and
allows for simulation of a much larger number of qubits
for a limited set of wavefunctions. Instead of storing the

full state vector of the system and evolving it by apply-
ing matrix transformations, the state is represented by a
tensor network, and the gates with tensors that have in-
put and output indices. The tensor network constructed
in this way can then be contracted in an efficient manner
to compute expectation values.

To compute the expectation value, we construct one

tensor network per term f
〈ij〉
p as defined in equation (4).

The ultimate result is then the sum over all contracted
tensor networks. As mentioned above, each tensor net-
work can be constructed using only small subset of all
gates in the quantum circuit. The amount of resources
required to contract a tensor network depends heavily on
subgraph structure.

While there may exist multiple approaches for deter-
mining the best way to contract a tensor network, we
use a contraction approach called bucket elimination [19],
which contracts indices of the tensor expression sequen-
tially. At each step, we choose some index j from the
tensor expression and then sum over a product of tensors
that have j in their index. The size of the intermediary
tensor obtained as a result of this operation is very sensi-
tive to the order in which indices are contracted. To find
a good contraction ordering we use a line graph [20] of
the tensor network. A tree decomposition [21] of the line
graph corresponds to a contraction path that guarantees
that the number of indices in the largest intermediary
tensor will be equal to the width of the tree decomposi-
tion [15]. Figure 1C shows the line graph of the tensor
network that corresponds to calculating edge contribu-

tion f
〈ij〉
p for subgraph shown on Fig. 1B. In this way, it is

possible to simulate QAOA to reasonable depth on hun-
dreds or thousands of qubits. More details of QTensor
and tensor networks are in [18; 22–24]. We observe that
the tree subgraph has a particularly simple and symmet-
ric tensor structure, which allows for efficient contraction
for depths p ∼ 11 which would not be possible for more
general and generic subgraphs. This implies that while it
is efficient to compute QAOA on large graphs with loop-
less subgraphs, it is more difficult to compute large-depth
QAOA on smaller graphs due to the more complicated
loop structure of each subgraph.

B. Angle optimization

A necessary step of QAOA is optimizing the expec-
tation value of the cost function with respect to the
variational parameters γ, β. One common optimization
method is gradient ascent, which moves the parameter
along the direction of the steepest gradient. To compute
gradients, we use automatic differentiation provided by
PyTorch and QTensor. To speed optimization, we use
the modified gradient descent algorithm RMSprop [16],
an established machine learning algorithm.

The optimization surface has multiple local maxima,
which provide a challenge to gradient descent algorithms.
For this reason, we choose two initialization routines.
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The first routine is that of Refs. [4; 25], which initializes
parameters in a counterdiabatic configuration. Starting
with p = 2, larger p + 1 are interpolated by deriving
the underlying continuous counterdiabatic schedule and
matching angles. The gradient ascent initialized from
these angles finds a local optimum with smooth angles,
although there is no guarantee that these smooth angles
are a global optimum.

To verify that the smooth angles are global optimum,
we also implemented a multistart routine [26], which exe-
cutes parallel optimization initialized from 1000 random
points in parameter space. With high probability, one of
the random initial points is in the same basin of attrac-
tion as the global optimum, and so the routine returns
the optimal angles. We find for p ≤ 6 that the global
optima returned by this method returns the same value
as the smooth angles within numerical precision, indi-
cating that the angles for p ≤ 6 are global optima. For
p > 6, multistart always returned lower results than the
counterdiabatic-initialized angles.

III. RESULTS

Here, we present the fixed angles {γ, β}tree as well as
the heuristic evidence of the fixed angle conjecture. Using
the methods of Sec. II, we compute optimal parameters
for the tree subgraph {γ, β}tree via a loop between the
QTensor tensor simulator and the classical optimization
routine.

Optimized angles for 3 regular graphs and p < 12 are
shown in Table I. We provide this data in a machine-
readable JSON format for regular graphs of degrees 3
to 10 as a supplemental to this paper [27]. These an-
gles are also available to use in the QTensor package as
qtensor.tools.BETHE QAOA VALUES.

A. Guaranteed performance

Under the large loop conjecture, the expectation value
of the tree subgraph serves as a QAOA performance guar-
antee for any regular graph of the same degree. By eval-
uating the tree subgraph at these optimal angles, the
performance guarantee for 3 regular graphs is shown in
Table I, and plotted in Fig. 2 for regular graphs of de-
gree 3 to 10. For p ≥ 11, the performance guaran-
tee is C11 ≥ 0.8828. This threshold is important, as
it is larger than the performance guarantee of the best
general purpose algorithm of Goemans and Williamson
(GW)[28] which has a performance guarantee of 0.8786.
Having larger performance guarantees than competing
classical algorithms is one indicator of quantum advan-
tage [1]; however, there is no advantage here. The GW
algorithm is general-purpose and works on any graph of
any connectivity and edge weights, while these perfor-
mance guarantees only work for 3 regular graphs and
fixed edge weights. There exist better special-purpose
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FIG. 2. The performance guarantee for ν-regular graphs as a
function of p, assuming the large loop conjecture where worst-
case graphs are bipartite and have no small cycles. The guar-
antee appears to grow as 1/

√
p, and surpasses the guarantee

of Goemans Williamson (orange dashed) for p ≥ 11. The
performance guarantee for larger connectivity is smaller and
goes as 1/

√
ν for fixed p, consistent with a mean field picture.

implementations of GW for 3 regular graphs with larger
performance guarantees. For example, Ref. [29] outlines
a semidefinite programming solver similar to GW spe-
cialized to 3 regular graphs, with an approximation ratio
C > 0.9326. These fixed angles do not achieve advan-
tage over the “best” classical algorithms. However, this
still an important step towards quantum advantage for
QAOA.

There also exist powerful heuristic solvers [30; 31],
which do not provide any guaranteed performance, but
are designed to perform as well on typical graphs. For ex-
ample, we use the Gurobi algorithm [30] to exactly solve
3-regular graphs of sizes up to 256, which corresponds to
approximation ratio of 1. Nevertheless, there is still a
chance that for a particular graph a heuristic solver will
perform extremely poorly. Since the fixed angle QAOA
provides guaranteed performance, we focus on compar-
ing it with classical algorithms that also provide such
guarantees.

We observe that the performance guarantee as a func-
tion of p appears to grow slower as p increases. However,
for large p, the performance guarantee must converge to
a finite value ≤ 0.9351, due to indistinguishability [12].
For any girth g, there exist 3r graphs which have a cut
fraction of at most 0.9351 [32]. Such graphs have high
girth, and so is constructed only of the tree subgraph.
The approximation ratio is bounded from above by 1,
and so the value fp ≤ 0.9351. This suggests that guar-
anteed advantage may never occur, as the best classical
algorithms have a guarantee of 0.9326.

We also find that the performance guarantees for larger
degree are smaller (Fig. 2), and scale as 1/

√
ν consistent

with a mean-field picture. This result suggests that, con-
trary to common lore [11], low connectivity graphs may
have better performance than high connectivity graphs,
at least in terms of performance guarantees.
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p = 1 C1 ≥ 0.6925
γ 0.616
β 0.393

p = 2 C2 ≥ 0.7559
γ 0.488 0.898
β 0.555 0.293

p = 3 C3 ≥ 0.7924
γ 0.422 0.798 0.937
β 0.609 0.459 0.235

p = 4 C4 ≥ 0.8169
γ 0.409 0.781 0.988 1.156
β 0.600 0.434 0.297 0.159

p = 5 C5 ≥ 0.8364
γ 0.360 0.707 0.823 1.005 1.154
β 0.632 0.523 0.390 0.275 0.149

p = 6 C6 ≥ 0.8499
γ 0.331 0.645 0.731 0.837 1.009 1.126
β 0.636 0.534 0.463 0.360 0.259 0.139

p = 7 C7 ≥ 0.8598
γ 0.310 0.618 0.690 0.751 0.859 1.020 1.122
β 0.648 0.554 0.490 0.445 0.341 0.244 0.131

p = 8 C8 ≥ 0.8674
γ 0.295 0.587 0.654 0.708 0.765 0.864 1.026 1.116
β 0.649 0.555 0.500 0.469 0.420 0.319 0.231 0.123

p = 9 C9 ≥ 0.8735
γ 0.279 0.566 0.631 0.679 0.726 0.768 0.875 1.037 1.118
β 0.654 0.562 0.509 0.487 0.451 0.403 0.305 0.220 0.117

p = 10 C10 ≥ 0.8785
γ 0.267 0.545 0.610 0.656 0.696 0.729 0.774 0.882 1.044 1.115
β 0.656 0.563 0.514 0.496 0.469 0.436 0.388 0.291 0.211 0.112

p = 11 C11 ≥ 0.8828
γ 0.257 0.528 0.592 0.640 0.677 0.702 0.737 0.775 0.884 1.047 1.115
β 0.656 0.563 0.516 0.504 0.482 0.456 0.421 0.371 0.276 0.201 0.107

TABLE I. The fixed 3 regular {γ, β}tree QAOA angles optimal to the tree subgraph, in radians. Under the fixed angle
conjecture, 3 regular graphs evaluated at these angles will have an approximation ratio larger then the performance guarantee
of column 2. Angles are normalized to be consistent with Eq. (2). We find this conjecture to be True on all graphs with ≤ 16
vertices, as shown in Fig. 3. A JSON file with these angles, plus fixed angles for regular graphs of larger degree, is provided as
a supplemental [27].

B. Heuristic performance

In Sec. III A, we provide strict performance guarantees
for regular graphs, which for p > 2 only assume the large
loop conjecture. However, QAOA is usually considered a
heuristic algorithm, where performance is surveyed over
an ensemble of graphs. While the guaranteed perfor-
mance of QAOA may be small, the worst-case bipartite
graphs with no small cycles are extremely atypical. The
approximation ratio of any particular typical graph may
be much larger than the guarantee.

Here, we provide heuristic evidence for the fixed an-
gle conjecture, which posits that any graph evaluated
at these fixed angles have an approximation ratio larger
than the guarantee. Further, we will show that typical

performance does not saturate performance guarantees,
and is competitive with the GW algorithm even at fixed
angles.

As an ensemble, we choose all 3 regular graphs with
≤ 16 vertices. There are 4681 such graphs [33][34]. For
each graph, we evaluate the expectation value FGp (γ, β)
at the fixed angles of Table I. Note that because the op-
timization step is bypassed, the QAOA execution is very
fast (< 1sec), as it requires only one query to the quan-
tum simulator. Using an exhaustive search we find the
exact MaxCut value CGmax to compute the approximation
ratio CGp . Data for this ensemble of graphs is shown in
Fig. 3. It is clear that the minimum approximation ratio,
representing the worst-case over the ensemble, is always
greater than the performance guarantee. This is heuris-
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FIG. 3. Approximation ratio for an ensemble of all 4681 3-
regular graphs with ≤ 16 vertices. For each graph and depth,
QAOA is evaluated at the angles shown in Table I, then di-
vided by the optimal MaxCut value for the graph. The shaded
region shows the absolute range between the worst and best
approximation ratios of the ensemble. The bottom line shows
the guarantee for any 3-regular graphs. This plot is numeri-
cal evidence of the fixed angle conjecture, which states that
the approximation ratio for any 3-regular graph evaluated at
fixed angles is larger than the guarantee.
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FIG. 4. Performance ratio as defined in Eq. (6) vs. the clas-
sical GW algorithm, for the ensemble of all 4681 3 regular
graphs with ≤ 16 vertices. For each graph and depth, QAOA
is evaluated at the angles shown in Table I, then divided by
the average approximation ratio of solutions given by GW for
the graph. The shaded region shows the absolute range be-
tween the worst and best performance ratios of the ensemble.
The dashed yellow line corresponds to parity between GW
and QAOA. For p ≥ 6, QAOA with fixed angles has an aver-
age case advantage over the classical GW algorithm. Bottom
lines plot the average performance ratio over an ensemble of
32 graphs with N vertices, indicating a reduced but increasing
with p performance as a function of N .

tic evidence of the fixed angle conjecture: there are no
graphs with ≤ 16 vertices evaluated at these fixed angles
which are below the worst-case guarantee. To prove the
fixed angle conjecture False, one needs simply to pro-
vide a 3 regular graph whose approximation ratio is less
than the guarantee.
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FIG. 5. Approximation ratio as a function of N and p. Each
point is the average over an ensemble of 32 3-regular graphs of
N vertices. The shaded region shows the absolute range be-
tween the worst and best approximation ratios of the ensem-
ble. Average approximation ratios appear to slowly converge
to some N -independent value, as expected, and no graph vi-
olates the fixed angle conjecture (dashed).

Although rare, the worst-case in the ensemble may still
saturate the performance guarantee if the graph is bipar-
tite with no cycles ≤ 2p+ 1, as can be seen for p = 1 and
2. The smallest worst-case graph is a “cage” [35]. The
smallest worst-case p = 2 graph has 14 vertices while the
smallest worst-case graph for p = 3 has 30 vertices. Such
worst-case graphs must be at least exponentially large in
p to fit the exponentially large tree subgraph; a p = 11
graph must have at least 8190 vertices, and more to sat-
isfy the condition of having no small cycles and bipartite.
A minimal cage graph is a Moore graph [36].

While quantum advantage in terms of performance
guarantees occurs for p ≥ 11, it is also interesting to
check performance in comparison to competing classical
algorithms. If the quality of the solution returned by a
quantum algorithm is larger than that returned by the
competing classical algorithm for a particular graph, then
the quantum algorithm has advantage over the particular
classical algorithm for the particular graph. This condi-
tion is parameterized by the performance ratio

BGp (γ, β) = FGp (γ, β) / 〈CGcl〉 (6)

where 〈CGcl〉 is the average number of cut edges re-
turned by the classical algorithm, if the algorithm is non-
deterministic. If BGp > 1, the quantum algorithm has
advantage for the particular graph G, as it will return
solutions which are better on average than the classical
algorithm. If 〈BGp 〉 > 1, where 〈∗〉 indicates average over
some graph ensemble {G}, then the algorithm has aver-
age case advantage over the graph ensemble. The perfor-
mance ratio is bounded from below by the performance
guarantee of the quantum algorithm, and bounded from
above by the inverse performance guarantee of the clas-
sical algorithm.
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We evaluate the performance ratio over the same en-
semble of all 3 regular graphs with ≤ 16 vertices in Fig. 4.
The QAOA expectation value is evaluated at the fixed
angles {γ, β}tree, and the classical expectation value is
evaluated using 100 queries of the Goemans Williamson
algorithm [37]. For all p evaluated, there exist graphs in
the ensemble which do not have advantage (lower edge
of the shaded region). However, for p ≥ 2 there exist
graphs in the ensemble which do have advantage (upper
edge of the shaded region); the only graph with advan-
tage for p = 2 is the 10 vertex Peterson graph, which is
the smallest graph of girth 5. For p ≥ 6 the QAOA at
fixed angles has average case advantage over the ensemble
of all graphs with ≤ 16 vertices.

While Fig. 4 suggest average case advantage for p ≥ 6,
there is the caveat that it may be a result of particular
choice of small graphs in the ensemble. To strengthen the
evidence of fixed angle QAOA outperforming the classi-
cal GW algorithm, we next evaluate the performance on
larger graphs.

C. Heuristic performance for larger N

While these heuristic results are strong evidence of the
fixed angle conjecture and an optimization-free QAOA,
the argument is weakened by the fact that the ensemble
is only over small graphs. Here, we strengthen the ar-
gument by evaluating the approximation ratio at fixed
angles over an ensemble of graphs of increasing sizes
N ∈ { 8, . . . , 256 }. While state-vector evolution is infea-
sible for such exponentially large Hilbert spaces, tensor
network computation of expectation values is still feasi-
ble, at least for p ≤ 4. The size of subgraphs are exponen-
tial with p and so the calculations are unfeasible for larger
p. Similarly, while brute enumeration of all solutions is
infeasible to compute the exact MaxCut value, we use
the industry-standard solver GUROBI [30] to find MaxCut
values. The solver still requires exponential time, but
with a reduced prefactor, enabling computation of exact
MaxCut values for a 256 vertex graph in . 20sec.

Results for the approximation ratio of this ensemble
are shown in Fig. 5. For each size N , we choose 32 graphs
as a random subset of all 3 regular graphs with N ver-
tices. For each graph, we evaluate the expectation value
FGp (γ, β) at the fixed angles of Table I using QTensor.
For smaller N , the approximation ratio is larger and,
as N grows, converges to some size-independent typical
value. For all p and N chosen, the approximation ratio
of each graph in the ensemble is larger than the guar-
antee, which further strengthens the fixed angle conjec-
ture. Similarly, results for the performance ratio of this
ensemble are shown in Fig. 4. For larger graphs, the
performance decreases, but may converge to some size-
independent value. This is consistent with the fact that
the GW algorithm also has consistent performance across
a range of graph sizes. Due to this decrease in perfor-
mance, average-case advantage for large graphs may oc-

cur for slightly larger p, although the crossover is yet to
be determined.

The decrease in approximation ratio as function of N is
expected. For p = 1, the QAOA is only sensitive to graph
structure within 3 steps, and ultimately only “sees” cy-
cles of size 3 in the graph. The fraction of edges which
participates in a cycle of size 3 is asymptotically zero for
N → ∞ [38] and so for large N the only subgraphs of
a typical graph are the tree subgraph, and is close to
worst-case. Such a typical graph would saturate the per-
formance guarantee if it was bipartite; however, bipartite
graphs are atypical [39]. Thus, the average approxima-
tion ratio for large N is the performance guarantee, di-
vided by the average fraction of MaxCut edges cut, which
we observe to converge to 0.91 as N grows [40]. A similar
argument holds for larger p, except with a sensitivity to
larger cycles. The fraction of edges that participate in a
cycle of a fixed size approaches zero with N → ∞, with
logarithmically slower convergence for large cycles [38].
Consequentially, the average approximation ratios also
converge to asymptotic values, although logarithmically
slower for larger p.

D. Fixed angles vs. global optima

While the fixed angle conjecture states that fixed an-
gles will have good performance, as the approximation
ratio must be above a reasonably large guarantee, it is
interesting to compare fixed angles to global maxima.
How close are these fixed angles to optimal angles?

To investigate the relative performance of these fixed
angles vs. global maxima, we compute their global op-
tima for the ensemble of all 3 regular graphs with N ≤ 16
and p ≤ 2. These optima are found via the same multi-
start gradient ascent procedure of section II.

Heuristic results comparing the approximation ratios
of the global maxima vs fixed angles are shown in Table
II. On average (rows 1-3), the difference in the approx-
imation ratio between global optimum and that evalu-
ated at fixed angles is less than 0.003, at least over all
small graphs. These values indicate that the fixed an-
gles are extremely close to optimal. This suggests that
using these fixed angles can allow QAOA to bypass the
variational optimization step by simply evaluating a reg-
ular graph at these pre-computed angles, and get an ap-
proximation ratio which is almost the same as the global
optimum.

That these pre-computed angles are very close to op-
timal is not a priori obvious. However, this phenomenon
has been heuristically observed before as the transfer of
parameters [6–8], which observes that optimal parame-
ters for one graph are good for other graphs in the same
class. These fixed angle results are potentially an under-
lying explanation for this observation: optimal angles for
an ensemble of graphs may concentrate in a small region
of parameter space around these fixed angles.

This conjecture about parameter concentration can be
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QAOA depth p p = 1 p = 2
Average approximation ratio

evaluated at fixed angles
0.7754 0.8499

Average approximation ratio
evaluated at optimal angles

0.7764 0.8522

Average difference between
fixed and optimal AR

0.001016 0.002288

Global optima found
from fixed angles

4681 / 4681
(100.00%)

4655 / 4681
(99.445%)

Euclidian distance between
fixed and optimized

0.0175 0.0410

TABLE II. Comparing the approximation ratio of graphs eval-
uated at global optima vs. fixed angles. Ensemble is all 4681 3
regular graphs with ≤ 16 vertices. Rows 1 and 2 index the av-
erage approximation ratio of the ensemble, evaluated at fixed
angles (1) vs. globally optimal angles (2). The average im-
provement of evaluating at optimal angles is, on average, very
small, as indexed by row (3). Row (4) indexes the number of
graphs for which a gradient ascent initialized at the fixed an-
gles finds some global optima for the graph. Row (5) is the
average Euclidean difference between the fixed angle and the
gradient ascent optimized angles. For p = 1, this warm start
finds the optima for every graph, and for p = 2 finds the
optima for an overwhelming majority. These results indicate
that these angles are very good for a majority of graphs, and
serve as a good initial guess for optimizers.

heuristically checked by checking if the fixed angles are
close to global optima. Note that this task is nontriv-
ial: both optimal angles, and fixed angles, are degenerate
(see for example, [5] Table 1), which excludes evaluating
closeness by Euclidean distance between particular op-
tima. Instead, we use the fixed angles as a warm start for
the gradient ascent variational optimization procedure.
If the fixed angles are in the same basin of attraction
as a global optimum, the optimization returns the global
optima and the fixed angles are “close”. The probability
that this occurs is indexed in Table II. For a vast majority
of graphs in the small ensemble, the warm start gradient
ascent optimization finds the global maximum (row 4).
Additionally, the gradient ascent procedure changes the
parameters very little. As shown in row 5, the Euclidean
distance between the optimized angles and initial point
is usually very small (in units of π). These results sug-
gest that using these fixed angles as an initial guess may
speed up the optimization, and that optimization does
not give a lot of improvement.

The observation of gradient ascent achieving little ex-
tends to larger p. To show this, we analyize a subensem-
ble of 200 random graphs drawn from the ensemble of 3
regular graphs with 16 vertices. We find that the aver-
age improvement between fixed angles, and the gradient
ascent warm started from fixed angles, is 0.008233 for
p = 11 (e.g. extending row 3 of Table II), and less for
smaller p. This implies that for regular graphs, the im-
provement is typically so marginal (< 10−2) that a warm
start optimization procedure may not be necessary. How-
ever, it may be an interesting use of these fixed angles

to warm start optimization for other classes of problems,
such as weighted or general connectivity MaxCut graphs,
or general QUBO problems.

The fact that fixed angles are so close to global optima,
at least for small p and graphs, suggest that we can com-
pletely bypass the variational optimization step of QAOA
for MaxCut on regular graphs. Instead of having a vari-
ational optimization step, one may pre-compute a fixed
circuit with the objective function set by the graph, and
fixed angles from table I chosen for a particular connec-
tivity and p. In particular, this may yield a significant
speed up in computation: optimization requires many
repetitions of querying various points in parameter space
to compute low-noise expectation values of the objec-
tive function. In opposition, using fixed angles may yield
close to optimal bitstrings even if the quantum device is
only queried a few times [8], which may be a factor of
100-1000× speedup and enable real-time solutions.

IV. CONCLUSION

In this work, we provide numerical evidence for the
fixed angle conjecture of Ref. [5], which states that any
graph evaluated at fixed angles will have an approxima-
tion ratio larger than the guarantee. This conjecture
has the interesting implication that, for regular graphs
of fixed degree and constant edge weight, there is a set of
angles that are “universally good” for any graph, in that
they may not be global optima but still guarantee good
performance.

This evidence was provided by numerical simulation of
large graphs using tensor networks for p < 12. Through
simulation of worst-case graphs, which under the large
loop conjecture have no small cycles, we compute the
fixed angles that serve as the universally good parame-
ters for any regular graph of connectivity < 12 and con-
stant edge weight. The expectation value of these graphs
serves as a performance guarantee for the QAOA, and
are provided, along with angles, in Table I and as a sup-
plemental JSON file [27].

For p ≥ 11, the performance guarantee for QAOA on
3 regular graphs is larger than the guarantee of the Goe-
mans Williamson algorithm, the best general-purpose
MaxCut solver with a performance guarantee. This is
a major step towards quantum advantage [1]. However,
there exist algorithms that are more focused and pro-
vide better performance that GW, both guaranteed and
heuristic.

As numerical evidence of the fixed angle conjecture, we
evaluate the approximation ratio at fixed angles for all 3
regular graphs with ≤ 16 vertices. We observe that no in-
stance violates the performance guarantee, which proves
that the fixed angle conjecture is True on all small graphs
with ≤ 16 vertices, and provides heuristic evidence that
the conjecture is True for all 3 regular graphs.

Additionally, we observe that the fixed angles are usu-
ally very close to global optima, with the typical differ-
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ence between the fixed angle approximation ratio and
global approximation ratio being < 0.003 for p = 2, and
∼ 0.08 for p = 11. This result is above and beyond the
fixed angle conjecture, and removes the need for varia-
tional optimization by providing universal precomputed
angles of Table I. Similarly, we observe that with high
likelihood that the fixed angles are usually “close” to
global optima, in that they are in the same basin of
attraction. This may explain the previously observed
phenomena of transfer of parameters [6–8], where good
angles for one graph are good for others, because most
graphs optimal angles are “close” to these fixed angles.

It is a curious fact that the optimal fixed angles look
smooth, eg counterdiabatic [4; 41]. In conjunction with
the observation that global optima are very close to these
fixed angles, it suggests that for a vast majority of graphs,
smooth angles (under symmetry transformations in the
parameter space of degenerate optima) may be optimal.
This raises an interesting question: when are globally
optimal angles adiabatic and smooth, vs non-adiabatic
and non-smooth?

In conclusion, we show that there is extra structure in
the optimization landscape amongst ensembles of graphs,
with fixed angles in parameter space being universally
good among graphs. These fixed angles may allow QAOA

implementations to bypass the optimization step and
simply query one set of angles, speeding computation by
potentially orders of magnitude. However, these results
are limited in scope: the graphs must be d-regular, with
fixed weights of +1 on every edge. An interesting future
direction may be to evaluate fixed angle conjectures on
more general graphs or problems.

While there are limits on graph degree and p for
which we are able to classically optimize the γ, β param-
eters, these results enable a single-shot QAOA on specific
graphs. The power of QAOA may then reside only in the
sampling capabilities of the quantum device.
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