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We discuss the local equilibration of closed systems using the relative purity, a paradigmatic
information-theoretic distinguishability measure that finds applications ranging from quantum
metrology to quantum speed limits. First we obtain a upper bound on the average size of the
fluctuations on the relative purity: it depends on the effective dimension resembling the bound ob-
tained with the trace distance. Second, we investigate the dynamics of relative purity and its rate
of change as a probe of the speed of fluctuations around the equilibrium. In turn, such speed cap-
tures the notion of how fast some nonequilibrium state approaches the steady state under the local
nonunitary dynamics, somehow giving the information of the quantum speed limit (QSL) towards
the equilibration. We show that the size of fluctuations depends on the quantum coherences of the
initial state with respect to the eigenbasis of the Hamiltonian, also addressing the role played by
the correlations between system and reservoir into the averaged speed. Finally, we have derived a
family of lower bounds on the time of evolution between these states, thus obtaining an estimate
for the equilibration time at the local level. These results could be of interest to the subjects of
equilibration, quantum speed limits, and also quantum metrology.

I. INTRODUCTION

Both the subjects of equilibration and thermalization
fall into the very basic foundational questions of sta-
tistical mechanics: how to derive the macroscopic laws
of thermodynamics from the microscopic many-particle
laws. To do so, one can consider a quantum system ini-
tialized in a well defined pure state and, under some mi-
nimal assumptions, still conclude the system behaves as
if it were described by an equilibrium ensemble [1]. This
argument has been made technically rigorous, and also
numerically confirmed by simulating several interacting
quantum many-body systems [2, 3]. Indeed, the problem
of equilibration has attracted much interest in the last
decades from both the theoretical [4] and experimental
communities [5–10].

Overall, probing the mechanism of local equilibration
of a closed quantum system requires answering whether
and how some of its nonequilibrium states equilibrate,
even if such states do not belong to a Gibbs-like statis-
tical ensemble. The isolated system is initialized in a
pure state and undergoes a unitary evolution governed
by the time-independent Hamiltonian H. At the local
level, the notion of equilibration involves monitoring the
nonunitary dynamics of some reduced state of a small
subregion of the isolated system, and quantifying how
far apart it is from an equilibrium state [11]. In turn, the
task of distinguishing such states can be accomplished
by means of a suitable distance measure on the Hilbert
space, for example the Schatten 1-norm [12, 13]. So far,
while there are plenty of rigorous results showing that
equilibration should occurs under very general conditions
for small subsystems, there are a few results about the
time scales involved in such physical process [14].

Here we will study the relative purity as a figure of
merit for equilibration and show under which conditions

the subsystem equilibrates. The relative purity stand
as a versatile information theoretic-quantifier for distin-
guishing two quantum states, also being an experimental
friendly measure since it relies on the overlap of den-
sity matrices [15]. We also consider the rate of change
of relative purity as signaling the speed of the fluctua-
tions, thus deriving upper bounds on such velocity in a
similar fashion to the well-known discussion of quantum
speed limits (QSLs). Noteworthy, from these inequalities
we obtain lower bounds on the equilibration time of the
subsystem, thus connecting both the subjects of equili-
bration and quantum speed limits.

The paper is organized as follows. In Sec. II we re-
view basic concepts on the subject of equilibration, also
introducing the relative purity as a figure of merit to sig-
nal equilibration. In Sec. III we discuss the fluctuations
around the equilibrium of a bipartite closed quantum sys-
tem (S + B), thus analyzing the dynamics of relative pu-
rity between a marginal state of subsystem S and some
steady state. We proved a set of lower bounds on the
equilibration time that are fully characterized by the ini-
tial state and the Hamiltonian of the closed system [see
Secs. III A, III B, III C, III D, and III E]. In Sec. IV we
illustrate our findings by means of two paradigmatic spin
models, namely, the transverse field Ising model, and the
non-integrable XXZ model. Finally, in Sec. V we sum-
marize our conclusions.

II. RELATIVE PURITY AND EQUILIBRATION

Let us consider a quantum system described by a
finite-dimensional Hilbert space H = HS ⊗ HB, with
d = dimH, thus being splitted into a subsystem S of
dimension dS = dimHS, and its complement B of di-
mension dB = dimHB. The whole system S + B evolves
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unitarily under the time-independent Hamiltonian

H = HS ⊗ IB + IS ⊗HB +HSB . (1)

The Hamiltonian is chosen to be non-degenerate and dis-
plays the spectral decomposition H =

∑
nEn|En〉〈En|,

where {|En〉}n=1,...,dE spans an orthonormal eigenbasis
related to dE distinct energy levels. In addition, we as-
sume the energy gaps of the system are non-degenerated,
i.e., Ei−Ej 6= Ek−El for i 6= k and j 6= l. It is worth to
mention that such assumptions may be relaxed towards
degenerate systems [16]. The initial state of the system
is pure, ρ(0) = |Ψ(0)〉〈Ψ(0)|, and thus the instantaneous
state ρ(t) = U(t)ρ(0)U(t)† will remain as a pure state for
all times, with U(t) = e−itH . For simplicity, from now
on we set ~ = 1. Therefore to have some kind of equili-
bration we have to consider a subsystem S; the rest, B,
playing the role of a bath. The marginal states of the
quantum system are given by ρS(B)(t) = TrB(S)(ρ(t)),
also written as

ρS(B)(t) =
∑
j,l

〈Ej |ρ(0)|El〉 e−it(Ej−El) TrB(S)(|Ej〉〈El|) .

(2)
For finite dimensional systems, it follows that ρS(t)

never equilibrates since it never stops to evolve; there
will be recurrences. However, it may be very close
to some steady state ωS for most of the time. Let
D(x, y) be a suitable information-theoretic distinguisha-
bility measure of quantum states. We say subsystem
equilibration has taken place at time τ when, for some
ε > 0, it follows 〈D(ρS(t), ωS)〉T ≤ ε, for all T > τ ,

with 〈h(t)〉T := 1
T

∫ T
0
dt h(t) being the time-average [13].

Note that, if the time average is small, then D(ρS(t), ωS)
should be small most of the time, and in this sense we
say the system does equilibrate. We stress that recur-
rences will occur but they should be rare, and its time
scale should increase with the system size.

If the equilibration process really occurs, the equilib-
rium state of the closed system S+B is given by the infi-
nite time-averaged state ω := 〈ρ(t)〉∞ = limT→∞〈ρ(t)〉T ,
and would be identical to the dephased state1

ω = ∆(ρ(0)) , (3)

where ∆(•) =
∑
j 〈Ej | • |Ej〉|Ej〉〈Ej | stands for the

fully dephasing operator with respect to the eigenbasis
of the Hamiltonian. In this setting, the steady state of
subsystem S(B) is given by the marginal state ωS(B) =
TrB(S)(ω). Remarkably, if one uses the Schatten 1-norm

D(x, y) := 1
2‖x− y‖1 as a bona fide distance measure

1 Here we are not interested if the equilibrium state is a ther-
mal/Gibbs state, which is necessary to claim that the system
thermalizes. To have thermalization one need further conditions,
being the eigenstate thermalization hypothesis (ETH) the most
used one.
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FIG. 1. (Color online) Depiction of the physical setting. The
initial state ρS(0) undergoes a local nonunitary evolution go-
verned by the Hamiltonian H [see Eq. (2)]. The evolved state
ρS(t) follows a path (blue dashed curve) over the manifold
of marginal states M (gray surface). In practice, this state
never equilibrates since it keeps evolving nonunitarily, and
for instance can reach states ρS(τ), ρS(τ ′), or ρS(τ ′′) that are
arbitrarily close to the equilibrium state ωS. The relative pu-
rity f(τ) (black dotted curve) captures the distinguishability
between ρS(τ) and the equilibrium state ωS of the subsys-
tem, while f(0) (red solid curve) signals how distinguishable
the initial state ρS(0) is compared to such equilibrium state.
Note that, while not being a distance measure in the formal
sense, the relative purity f(t) provides insightful information
about how far apart is the subsystem S from ωS.

over the space of quantum states, it has been proved that

lim
T→∞

〈D(ρS(t), ωS)〉T ≤
1

2

√
d2

S

deff(ω)
, (4)

where deff(ω) := 1/Tr(ω2) is the so-called effective di-
mension [12, 17]. More precisely, the larger the effective
dimension deff(ω) compared to the subsystem dimension
dS, the closer the system to some steady state. Note
that the effective dimension measures the number of en-
ergy eigenstates that contribute to the superposition of
the initial state. It can be argued that for many-particle
systems with local interactions this is typically the case,
since the distance between the energy levels becomes ex-
ponentially small and it is very hard to prepare an initial
state with only a few levels [17].

The aforementioned criterion for equilibration is based
on the closeness of states ρS(t) and ωS measured by the
Schatten 1-norm, i.e., a geometric distance that signals
the distinguishability between two quantum states. How-
ever, we emphasize that there are several ways to char-
acterize such a distance [18]. Indeed, the convex space
of quantum states is equipped with a plethora of bona
fide distances [19–22], and this non uniqueness have been
of relevance for several investigations in quantum infor-
mation processing, quantum thermodynamics [23, 24],
quantum speed limits [25, 26], and quantum metrolo-
gy [27, 28], to name a few.
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Here we will consider the relative purity f(ρ, %) :=
Tr(ρ%) as a natural distinguishability measure of two
quantum states [29]. Importantly, such an information-
theoretic quantifier has been useful in the study of quan-
tum speed limits [30–33], information scrambling and
Loschmidt echoes [34, 35], and also for probing quantum
coherence from photonic metrological setups [36]. While
not being a distance in the stringent sense, the relati-
ve purity is symmetric, f(ρ, %) = f(%, ρ), non-negative,
f(ρ, %) ≥ 0, for all states ρ and %, and vanishes for
the case in which the states are maximally distingui-
shable. Moreover, for ρ = % it recovers the quantum
purity: f(ρ, ρ) = Tr(ρ2) ≤ 1. Noteworthy, for pure states
ρ = |ψ〉〈ψ| and % = |φ〉〈φ|, relative purity reduces to the
pairwise fidelity, f(ρ, %) := |〈ψ|φ〉|2, which in turn was
already investigated for understanding the equilibration
of isolated thermodynamic systems [37].

Overall, while one can have equilibration at the local
level, the whole system never equilibrate since it evolves
unitarily. In fact, in Appendix A we verify that the
relative purity of states ρ(t) and ω remains as a con-
stant of motion of the dynamics, in turn being equal
to the quantum fidelity of these states2. Hence, as for
the Schatten 1-norm, we consider the relative purity
f(t) := TrS(ωS ρS(t)) of sub-system S [see Fig. 1]. From
Eqs. (2) and (3) it is straightforward to show that

f(t) =
∑
j,l

〈Ej |ρ(0)|El〉 e−it(Ej−El) 〈El|(ωS ⊗ IB)|Ej〉 .

(5)
For an initial nonequilibrium state, i.e., when states ρS(t)
and ωS have non-overlapping supports, one should expect
the relative purity take small values at the earlier times
of the dynamics, while it approaches the infinite time-
averaged value 〈f(t)〉∞ = TrS(ω2

S) as the system evolves
in time and equilibrates. In turn, the latter is nothing but
the quantum purity of the steady state ωS of subsystem
S. In this way, we now introduce the following figure of
merit for equilibration

g(t) := |f(t)− 〈f(t)〉∞|2 . (6)

Hence, the closer the system is to a given steady state,
the smaller the figure of merit in Eq. (6), i.e., g(t) ≈ 0
for t > τ , with τ being the equilibration time. Similarly
to what happens to the trace distance, it is possible to
upper bound the time average of g(t). In Appendix B,
we proved that the time-average of the figure of merit in
Eq. (6) is upper bounded as

〈g(t)〉∞ ≤
‖ωS‖2∞
deff(ω)

. (7)

2 Instead of looking at the state of the system, which can only
equilibrate locally, we can look at some observables and also show
they equilibrate under some general conditions. Note that even
global observables, as the total magnetization, can equilibrate
and in this sense one can have global equilibration.

Equation (7) is one of the main results of the paper. It
shows that the effective dimension plays a fundamental
role on the equilibration process when it is monitored
by the relative purity. Importantly, this result somehow
agrees with the aforementioned case in which the trace
distance is the distinguishability measure. The subsys-
tem S approaches the equilibrium whenever the effective
dimension deff(ω) of the global steady state is much larger
than the operator norm of the dephased marginal state
ωS. In fact, given that ‖ωS‖∞ = λmax(ωS) ≤ 1, where
λmax(•) sets the maximum eigenvalue of the density ma-
trix, it is reasonable to expect that ‖ωS‖2∞/deff(ω) � 1
since the effective dimension of the equilibrium state
ω typically takes large values. In addition, note that
‖ωS‖2∞ ≤ ‖ωS‖22, with ‖ωS‖22 = TrS(ω2

S) = 1/deff(ωS),
and thus the bound can be recasted as 〈g(t)〉∞ ≤
1/[deff(ωS) deff(ω)]. It is worth to mention that, regard-
less of its simplicity, we point out the latter inequality
might be less tighter than the bound in Eq. (7).

III. DYNAMICS OF RELATIVE PURITY

How fast does a given quantum system will fluctu-
ate around the equilibrium? So far, this problem have
been addressed in a few works showing that such speed
would be extremely small for almost all times in typ-
ical thermodynamic cases. Indeed, it can be proved
the infinity time-averaged speed of state ρS(t) quanti-
fied by the Schatten 1-norm read as 〈‖dρS(t)/dt‖1〉∞ ≤
2 ‖HS ⊗ IB +HSB‖∞

√
d3

S/d
eff(ω) [38], thus depending

on the effective dimension and the size of the interacting
term HSB [see Eq. (1)]. Furthermore, it has been shown
the speed of fluctuations around the equilibrium can be
signaled by means of quantum purity, also unveiling the
role correlations between system and environment in the
equilibration process [39].

Despite of these remarkable theoretical achievements,
much less is known about the time scales involved in
the equilibration process [14, 40, 41]. In this section we
will investigate the dynamical behavior of relative purity
[see Eq. (5)], thus bounding its rate of change in terms
of fundamental quantities such as the initial state and
the Hamiltonian of the system. Furthermore, we provide
bounds on the equilibration time τ in a similar fashion
to the framework of quantum speed limits, i.e., the very
basic question of how fast a quantum system evolves be-
tween two states.

Here we focus on the time-derivative of relative purity
as probing the speed of fluctuations around the equilib-
rium. We shall begin noticing that, since the dynamics
of the subsystem S is fully encoded in the differential
equation dρS(t)/dt = iTrB([ρ(t), H]), with the Hamil-
tonian H defined in Eq. (1), the absolute value of the
time-derivative of relative purity becomes∣∣∣∣ ddtf(t)

∣∣∣∣ = |iTrSB((ωS ⊗ IB)[ρ(t), H])| . (8)
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Importantly, from Eq. (8) we are able to derive bounds
on the rate of change of purity, which signals the fluctua-
tions of ρS(t) around the fixed point ωS of the dynamics.
From this we also derive bounds for the time in which
the system approaches the equilibrium. In the following
we will discuss in details such issues.

A. Relative purity and Schatten 2-norm

Here we will show that the speed in Eq. (8) satisfies a
upper bound that is related to the Schatten 2-norm and
the variance of the Hamiltonian H. Let |Tr(A1A2)| ≤
‖A1‖2‖A2‖2 be the Cauchy-Scharwz inequality for ope-
rators {Aj}j=1,2. In this case, Eq. (8) gives rise to the
following inequality∣∣∣∣ ddtf(t)

∣∣∣∣ ≤ dB ‖ωS‖2 ‖[ρ(t), H]‖2 , (9)

where we have also used that ‖ωS ⊗ IB‖2 = dB‖ωS‖2.
Since the time-independent Hamiltonian H commutes
with the evolution operator U(t) = e−itH , it is straight-
forward to conclude that [ρ(t), H] = U(t)[ρ(0), H]U(t)†.
Hence, due to the unitary invariance of Schatten 2-norm,
it follows that ‖[ρ(t), H]‖2 = ‖[ρ(0), H]‖2, and the time
average of Eq. (9) over the interval t ∈ [0, τ ] thus becomes

〈∣∣∣∣ ddtf(t)

∣∣∣∣〉
τ

≤ 2 dB ‖ωS‖2
√
IL(ρ(0), H) , (10)

where

IL(ρ(0), H) := −1

4
Tr([ρ(0), H]2) =

1

4
‖[ρ(0), H]‖22 .

(11)
We point out the right-hand side of Eq. (10) is time-
independent and depends on the Hamiltonian, the ini-
tial state of system S + B, the steady state ωS, and the
dimension of subsystem B that plays a role of a bath.
Importantly, the quantifier IL have been already intro-
duced in the context of quantum coherence characteri-
zation, in turn defining a lower bound on the so-called
Wigner-Yanase skew information [42]. In this sense, the
more commuting both the Hamiltonian and the initial
state ρ(0), the smaller the fluctuations on the speed
〈|df(t)/dt|〉τ .

In particular, for the pure state ρ(0) = |Ψ(0)〉〈Ψ(0)|
of the global system S + B, the quantity IL reduces fur-
ther to half of the variance of H, i.e., IL(ρ(0), H) =
(1/2)(∆H)2 := (1/2)(〈Ψ(0)|H2|Ψ(0)〉−〈Ψ(0)|H|Ψ(0)〉2).
Next, applying the inequality

∫
dx|g(x)| ≥ |

∫
dxg(x)|

into Eq. (10), one obtains the lower bound τ ≥ τ (1), with

τ (1) :=
|TrS(ωS ρS(τ))− TrS(ωS ρS(0))|√

2 dB‖ωS‖2 ∆H
. (12)

Noteworthy, the bound in Eq. (12) fits into the
Mandelstam-Tamm class of quantum speed limit times

for closed systems, i.e., the minimum evolution time is
inversely proportional to the variance of the generator
H [26, 43, 44]. If the system equilibrates at time τeq such
as the relative purity collapses into the purity of the de-
phased state, i.e., TrS(ωS ρS(τeq)) ≈ TrS(ω2

S), the lower
bound in Eq. (12) yields the estimation for the equilibra-

tion time as τeq ≥ τ (1)
eq , where

τ (1)
eq :=

‖ωS‖2√
2 dB ∆H

∣∣∣∣1− TrS(ωS ρS(0))

TrS(ω2
S)

∣∣∣∣ . (13)

In particular, when ρS(0) and ωS are maximally
distinguishable states, the orthogonality condition
TrS(ωS ρS(0)) = 0 implies the equilibration time will re-

duce to the case τ
(1)
eq ≈ ‖ωS‖2/(

√
2 dB ∆H), which will

be smaller the higher the dimension of the subsystem B.

B. Relative purity and `1-norm of coherence

Now we will present a bound on the speed in Eq. (8)
that is related to the Schatten 1-norm. Let ω be the
steady state of system S+B that is written in terms of the
eigenbasis of the Hamiltonian [see Eq. (3)]. In this case,
since ω and H are commuting operators, i.e., [ω,H] = 0,
we thus have that [ρ(t), H] = U(t)[ρ(0) − ω,H]U(t)†,
where we have used the fact that U(t)†HU(t) = H, and
also that U(t)†ωU(t) = ω is a fixed point of the unitary
dynamics. Hence, inserting this result into Eq. (8) and
taking its time-average over the interval t ∈ [0, τ ], one
gets〈∣∣∣∣ ddtf(t)

∣∣∣∣〉
τ

≤ 2 ‖ωS‖∞‖H‖∞‖ρ(0)− ω‖1 . (14)

where we have invoked the inequality |Tr(A1[A2, A3])| ≤
‖A1‖∞‖[A2, A3]‖1 ≤ 2 ‖A1‖∞‖A2‖1‖A3‖∞ [45, 46], and
employed the unitary invariance of the Schatten 1-norm,
‖[ρ(t)− ω,H]‖1 = ‖[ρ(0)− ω,H]‖1, also using the iden-
tity ‖ωS ⊗ IB‖∞ = ‖ωS‖∞.

Equation (14) means that the speed of fluctuations
around the equilibrium is upper bounded by the product
of maximum eigenvalues of both the Hamiltonian H and
the steady state ωS. Importantly, the bound depends on
the coherences of the initial state of the system. In fact,
since the dephased state ω is a fully diagonal matrix that
comprises the populations of ρ(0) in the energy eigenba-
sis of H, the Schatten 1-norm ‖ρ(0)− ω‖1 plays the role
of the `1-norm of coherence of ρ(0) respective to such
eigenbasis, thus quantifying how far apart it is from the
incoherent state ω [47]. Overall, the more incoherent the
initial state with respect to the steady state, the smaller
the speed of the fluctuations.

Next, applying the inequality
∫
dx|g(x)| ≥ |

∫
dxg(x)|

into Eq. (14), one gets the lower bound τ ≥ τ (2), with

τ (2) :=
|TrS(ωS ρS(τ))− TrS(ωS ρS(0))|

2 ‖ωS‖∞‖H‖∞‖ρ(0)− ω‖1
. (15)
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Suppose the system equilibrates at time τeq, with the rel-
ative purity TrS(ωS ρS(τeq)) ≈ TrS(ω2

S) = ‖ωS‖2 recover-
ing the purity of the steady state. In this case, given that
‖ωS‖2 ≥ ‖ωS‖∞, the lower bound in Eq. (15) implies that

τeq ≥ τ (2)
eq , with

τ (2)
eq :=

1

2 ‖H‖∞‖ρ(0)− ω‖1

∣∣∣∣1− TrS(ωS ρS(0))

TrS(ω2
S)

∣∣∣∣ , (16)

We stress that, for the case of two states overlapping

to zero as TrS(ωS ρS(0)) = 0, Eq. (16) reduces to τ
(2)
eq ≈

1/(2 ‖H‖∞‖ρ(0)− ω‖1). In words, the more coherent the
state ρ(0) in the eigenbasis of H, the smaller would be

τ
(2)
eq , thus showing that quantum coherence of the probe

state plays a role on the equilibration time.

C. Relative purity and Quantum Fisher
Information

We shall point out that one may arrive at a slightly
different upper bound on the speed of fluctuations by
exploiting another set of inequalities. To proceed, by
invoking both the inequality |Tr(A1A2)| ≤ ‖A1‖∞‖A2‖1
and the unitary invariance ‖[ρ(t), H]‖1 = ‖[ρ(0), H]‖1 of
Schatten 1-norm, Eq. (8) is written as∣∣∣∣ ddtf(t)

∣∣∣∣ ≤ ‖ωS‖∞‖[ρ(0), H]‖1 . (17)

Interestingly, the right-hand side of Eq. (17) can be upper
bounded via the inequality ‖[%,H]‖21 ≤ 4FQ(%,H) [48,
49], where FQ(%,H) is the so-called quantum Fisher in-
formation (QFI) and read as

FQ(%,H) =
1

2

∑
k,l

(λk − λl)2

λk + λl
|〈k|H|l〉|2 , (18)

where {λl, |l〉}l are the eigenvalues and eigenvectors of
some mixed state %. Hence, by inserting such bound
into Eq. (17), and also taking the time-average over the
interval t ∈ [0, τ ], it yields〈∣∣∣∣ ddtf(t)

∣∣∣∣〉
τ

≤ 2 ‖ωS‖∞
√
FQ(ρ(0), H) . (19)

Equation (19) means that the speed of fluctuations
around the equilibrium is upper bounded by the QFI,
a paradigmatic quantity in quantum metrology that is
widely applied for enhance phase estimation [28, 50, 51].
In particular, for the pure state ρ(0) = |Ψ(0)〉〈Ψ(0)|,
QFI reduces further to the variance of the generator
H, i.e., FQ(ρ(0), H) = (∆H)2 := 〈Ψ(0)|H2|Ψ(0)〉 −
〈Ψ(0)|H|Ψ(0)〉2 [52]. It can be proved that Eq. (19) im-
plies the lower bound τ ≥ τ (3), where

τ (3) :=
|TrS(ωS ρS(τ))− TrS(ωS ρS(0))|

2 ‖ωS‖∞
√
FQ(ρ(0), H)

, (20)

where we used that
∫
dx|g(x)| ≥ |

∫
dxg(x)|. At the equi-

librium, using that TrS(ωS ρS(τeq)) ≈ TrS(ω2
S) = ‖ωS‖2,

and ‖ωS‖2 ≥ ‖ωS‖∞, the lower bound in Eq. (20) gives
rise to the following time scale for equilibration as τeq ≥
τ

(3)
eq , where we define

τ (3)
eq :=

1

2∆H

∣∣∣∣1− TrS(ωS ρS(0))

TrS(ω2
S)

∣∣∣∣ , (21)

which in turn will reduce to the simplest case τ
(3)
eq ≈

1/∆H for two maximally distinguishable states ρ(0) and
ωS.

D. Relative purity and mutual information

Lastly, we obtain a upper bound that depends on the
correlations between S and B. In order to do so, we will
introduce the traceless operator

ρ̃(t) := ρ(t)− ωS ⊗ ωB , (22)

which in turn leads to an infinity time-averaged operator
〈ρ̃(t)〉∞ = ω−ωS⊗ωB that is a fully correlated state. The
operator in Eq. (22) also implies the traceless marginal
states ρ̃S(t) = TrB(ρ̃(t)) = ρS(t) − ωS, and ρ̃B(t) =
TrS(ρ̃(t)) = ρB(t) − ωB, which are also zero-valued ope-
rators under the infinity time-average, i.e., 〈ρ̃S(t)〉∞ =
〈ρ̃B(t)〉∞ = 0. Next, by exploiting the cyclic property of
the trace, Tr(A1[A2, A3]) = Tr([A1, A2]A3), it is straight-
forward to show that TrSB((ωS ⊗ IB)[ωS ⊗ ωB, H]) = 0,
which immediately implies the identity

TrSB((ωS ⊗ IB)[ρ(t), H]) = TrSB((ωS ⊗ IB)[ρ̃(t), H]) .
(23)

Inserting Eq. (23) into Eq. (8), also noting that
TrSB((ωS ⊗ IB)[ρ̃(t), IS ⊗HB]) = 0, one obtains∣∣∣∣ ddtf(t)

∣∣∣∣ = |iTrSB((ωS ⊗ IB)[ρ̃(t), HS ⊗ IB +HSB])|

≤ 2 ‖ωS‖∞‖ρ̃(t)‖1‖HS ⊗ IB +HSB‖∞ , (24)

where we have used the inequalities |Tr(A1[A2, A3])| ≤
‖A1‖∞‖[A2, A3]‖1, ‖[A2, A3]‖1 ≤ 2 ‖A2‖1‖A3‖∞ [45, 46],
and the fact that ‖ωS ⊗ IB‖∞ = ‖ωS‖∞. We point
out that, from Pinsker’s inequality, the trace norm of
the traceless operator ρ̃(t) in Eq. (22) is upper bounded
as [53]

‖ρ̃(t)‖1 ≤
√

2S(ρ(t)‖ωS ⊗ ωB) , (25)

with the relative entropy defined as S(x‖y) = −S(x) −
TrSB(x ln y), and S(x) = −TrSB(x lnx) being the von
Neumann entropy. In particular, it can be proved the rel-
ative entropy is written as S(ρ(t)‖ωS⊗ωB) = ISB(ρ(t))+
S(ρS(t)‖ωS) + S(ρB(t)‖ωB), and thus it depends on the
correlations of the system measured by the mutual infor-
mation, ISB(ρ(t)) := S(ρS(t)) + S(ρB(t))− S(ρ(t)). This
also means the relative entropy depends on the distance
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S(ρS,B(t)‖ωS,B) between the marginal states ρS,B(t) and
ωS,B, thus assigning a geometric perspective to the bound

in Eq. (25). Inserting Eq. (25) into Eq. (24) and taking
the time-average over the interval t ∈ [0, τ ] yields

〈∣∣∣∣ ddtf(t)

∣∣∣∣〉
τ

≤ 2
√

2 ‖ωS‖∞‖HS ⊗ IB +HSB‖∞
√
〈S(ρ(t)‖ωS ⊗ ωB)〉τ , (26)

where we have exploited the concavity of the square-root
function.

Importantly, Eq. (26) means that the speed of fluctu-
ations is upper bounded by the relative entropy which
distinguishes the instantaneous state of the whole sys-
tem from its uncorrelated steady state, also being a func-
tion of the maximum eigenvalue of the marginal dephased
state ωS and the operator norm of HS⊗IB +HSB. In this
regard, it is worth to note that if the interacting Hamil-
tonian HSB couples the system to only a few degrees of
freedom of the bath, which is typically the case of spin
models with nearest-neighbor couplings, thus the upper
bound in Eq. (26) will be mostly independent of the size
of subsystem B. In Appendix C we discussed a simi-
lar bound to the speed of fluctuations for the quantum
purity for subsystem S.

In the limit τ → ∞, the infinity time-average of
the relative entropy is written as 〈S(ρ(t)‖ωS ⊗ ωB)〉∞ =
S(ωS) + S(ωB) = 2S(ωS). In detail, this comes from
the fact that the von Neumann entropy S(ρ(t)) =
S(ρ(0)) = 0 remains unchanged for a pure state ρ(t) =
U(t)ρ(0)U†(t) evolving unitarily, and also that the two
dephased marginal states ωS,B of the bipartite system
store the same amount of information, i.e., S(ωS) =
S(ωB). In this case, one readily gets〈∣∣∣∣ ddtf(t)

∣∣∣∣〉
∞
≤ 4 ‖ωS‖∞‖HS ⊗ IB +HSB‖∞

√
ln dS ,

(27)
where we have used that 0 ≤ S(ωS) ≤ ln dS.

Next, we can make use of Eq. (26) to bound the time
evolution τ of the closed quantum system. Indeed, we
obtain the bound τ ≥ τ (4), where

τ (4) :=
(1/2
√

2) |TrS(ωS ρS(τ))− TrS(ωS ρS(0))|
‖ωS‖∞‖HS ⊗ IB +HSB‖∞

√
〈S(ρ(t)‖ωS ⊗ ωB)〉τ

,

(28)
where we have applied the inequality |

∫
dxg(x)| ≤∫

dx|g(x)|. If the system approaches the equilibrium at
time τeq, with TrS(ωS ρS(τeq)) ≈ TrS(ω2

S) = ‖ωS‖2, it

follows that τeq ≥ τ (4)
eq , with

τ (4)
eq :=

1
2
√

2

∣∣∣1− TrS(ωS ρS(0))
TrS(ω2

S)

∣∣∣
‖HS ⊗ IB +HSB‖∞

√
ln[1/λmin(ωS ⊗ ωB)]

.

(29)
where we used that ‖ωS‖2 ≥ ‖ωS‖∞, and also invoked
the inequality S(ρ(t)‖ωS⊗ωB) ≤ ln[1/λmin(ωS⊗ωB)] [54,

55], with λmin(•) setting the minimum eigenvalue of the
density matrix.

E. Discussion

In the previous sections, we presented a set of lower
bounds on the speed of evolution and the equilibration
time for the subsystem S. The relative purity signals the
distinguishability between the reduced state ρS(t) and
the steady state ωS, thus indicating how far apart each
other are in the sense of witnessing whether both the
states have zero or nonzero overlapping supports. From
Eqs (10), and (14), we see that the average speed of the
fluctuations depends on the coherences of the pure initial
state ρ(0) of the bipartite system.

On the one hand, the more commuting ρ(0) and H,
the smaller the fluctuations on the speed [see Eq. (10)].
However, this bound seems to be looser since it depends
on the dimension dB of the subsystem B, which in turn
can be large. On the other hand, the bound in Eq. (14)
show the fluctuations on the speed are constrained to the
quantum fluctuations of H captured by its variance re-
garding to ρ(0). Noteworthy, this bound sounds more ap-
pealing since it growth with the maximum eigenvalue of
the steady state, while being of interest for metrological
purposes due to its connection with the Quantum Fisher
information. From Eq. (19), note that the fluctuations
on the speed will decrease as ρ(0) approaches the equilib-
rium state ω, which in turn is a fully incoherent state into
the eigenbasis of H. Opposite to these results, Eq. (26)
depends on the correlations of the bipartite system via
the existing link between relative entropy and mutual in-
formation. It is worth to note that its right-hand side
is a function of time τ , while the previous upper bounds
are fully time-independent.

The speed of the relative purity captures the notion of
how fast some nonequilibrium state of subsystem S ap-
proaches its steady state under the local nonunitary dy-
namics, somehow giving the information of the quantum
speed limit (QSL) towards the equilibration. In turn,
such set of speeds limits implies a family of lower bounds
on the time of evolution between these states. Indeed,
from Eqs. (12), (15), (20) and (28), the minimum time of
evolution displays the QSL time as

τQSL := max{τ (1), τ (2), τ (3), τ (4)} . (30)

The QSL time is a quantity that fully characterizes the
dynamics of the set of eigenstates of the Hamiltonian
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FIG. 2. (Color online) Plot of the figure of the figure of
merit for the Ising model, with parameters J = 1, hx = 0.5,
hz = −1.05 [see Eq. (32)]. Here, we set the system sizes L =
{4, 6, 8, 10}, with open boundary conditions, while LS = 1,
and LB = {3, 5, 7, 9}. The system is initialized at the charge
density wave-like state |Ψ(0)〉 = |1, 0, 1, 0, . . . , 0, 1〉, with |0〉
and |1〉 denoting the spin up and down state, respectively.

governing the dynamics. Note that τQSL ≡ τQSL(τ) is
a time-dependent quantity, what is expected since we
are comparing states ρS(τ) and ωS. We point out that
most of the bounds on the time evolution of different
physical systems that have appeared in the literature ad-
dress time-dependent QSLs (see, for example, Ref. [44]
and references therein). This “caveat” in the QSLs is
not well discussed in the literature, and we are following
the aforementioned standard procedure. From the QSL
time, fixing ρS(τ) ≈ ωS , we also obtain a time scale for
equilibration at the local level (this one time indepen-
dent). Hence, from Eqs. (13), (16), (21) and (29), it is
possible to concatenate the previous results into a unified
estimation for the equilibration time yields

τ̃eq := max{τ (1)
eq , τ

(2)
eq , τ

(3)
eq , τ

(4)
eq } . (31)

We point out the bounds in Eqs. (13) and (21) are in-
versely proportional to the variance of the Hamiltonian
H, thus resembling the well-known class of QSLs a la
Mandelstam-Tamm [44].
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FIG. 3. (Color online) Plot of the figure of the normalized
figure of merit for the non-integrable XXZ model, with pa-
rameters J = 1, U = 2, Jnnn = 0.2 [see Eq. (33)]. Here,
we set the system sizes L = {4, 6, 8, 10}, with open boun-
dary conditions, while LS = 1, and LB = {3, 5, 7, 9}. The
system is initialized at the charge density wave-like state
|Ψ(0)〉 = |1, 0, 1, 0, . . . , 0, 1〉, with |0〉 and |1〉 denoting the
spin up and down state, respectively.

IV. EXAMPLES

In the following we will ilustrate our findings by focus-
ing on two prototypical quantum many-body systems.
The first is the transverse field Ising model with local
fields,

HIsing = J

L−1∑
j=1

σxj σ
x
j+1 +

L∑
j=1

(
hxσ

x
j + hzσ

z
j

)
, (32)

with parameters J = 1, hx = 0.5, hz = −1.05 [40]. The
equilibration properties of this model have already been
numerically investigated, particularly identifying initial
states and sets of parameters for which equilibration oc-
curs rapidly [56], or even never takes place [57]. The se-
cond is the non-integrable XXZ model with next-nearest-
neighbor hopping

HXXZ = J

L−1∑
j=1

(
σxj σ

x
j+1 + σyj σ

y
j+1

)
+ U

L∑
j=1

σzjσ
z
j+1

+ Jnnn

L−2∑
j=1

(
σxj σ

z
j+1σ

x
j+2 + σyj σ

z
j+1σ

y
j+2

)
, (33)
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where we set the input configuration J = 1, U = 2,
and Jnnn = 0.2 [40]. The two spin models are initial-
ized in a charge density wave-like state, i.e., |Ψ(0)〉 =
|1, 0, 1, 0, . . . , 0, 1〉, with |0〉 and |1〉 denoting the spin up
and down state, respectively. Here we will investigate
the role played by the figure of merit g(t) [see Eq. (6)]
for signaling the equilibration process in both many-body
quantum systems. We will also discuss the tightness of
the bound in Eq. (7) by introducing the relative error

δτ :=
‖ωS‖2∞
deff(ω)

− 〈g(t)〉τ . (34)

Overall, the smaller the relative error, the tighter the
bound on the fluctuations of the relative purity captured
by the function g(t). In general, it is reasonable to expect
that limτ→∞ δτ ≈ 0 as we increase the system size L
of the system. From now on we set the system sizes
L = {4, 6, 8, 10}, where LS = 1, and LB = {3, 5, 7, 9}.

In Fig. 2, we show plots of the figure of merit g(t) [see
Eq. (6)] for the Ising model with open boundary condi-
tions. In Fig. 2(a), we plot the normalized time-signal
g(t)/g(0) as a function of time. Noteworthy, the recur-
rences exhibited in the signal are mostly suppressed as
we increase the system size L. In other words, we ex-
pect that the fluctuations tend to decrease in the limit
of larger system sizes. In Fig. 2(b), we plot the finite
time-average of the figure of merit, 〈g(t)〉τ/g(0). Next, in
Fig. 3 we show our results for the XXZ model with open
boundary conditions. In Fig. 3(a), we show the plots
of the normalized time-signal g(t)/g(0), while Fig. 3(b)
show the plot of 〈g(t)〉τ/g(0). The results are quite sim-
ilar to the case of the Ising model. Overall, note the size
of fluctuations in g(t) decreases as we increase the system
size L, thus signaling the system equilibrates.

The insets in Figs. 2(b) and 3(b) show the plot of the
relative error δτ [see Eq. (34)] as a function on time τ .
In agreement with Eq. (7), the relative error satisfies the
condition δτ ≥ 0 for all τ ≥ 0. In addition, the am-
plitude of the relative error decreases as the system size
increases. We see that each of the plots saturates at fixed
values for all times. To see this in detail, we first note that
〈g(t)〉τ is a time-dependent function, while the quantity
‖ωS‖2∞/deff(ω) is time-independent and stand as a con-
stant for a given system size L. We point out that the
time averaged quantity 〈g(t)〉τ is smaller than the ratio
‖ωS‖2∞/deff(ω) by some orders of magnitude, for all τ ≥ 0
and system size L. In other words, the time oscillations
of 〈g(t)〉τ are negligible when compared to the constant
value of ‖ωS‖2∞/deff(ω).

In Fig. 4, we plot the QSL time in Eq. (30) for both the
Ising model [see Fig. 4(a)] and XXZ model [see Fig. 4(b)].
Note that the QSL time exhibits nonperiodic oscillations
whose amplitude are suppressed as we increase the sys-
tem size. From Figs. 4(a) and 4(b), we see that the
larger the system size L, the smaller the amplitude of
the QSL time. We find that, regardless of the time-
dependent behavior of τ (1), τ (2), and τ (4), it follows
that τ (3) dominates the numerical maximization indi-
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L = 4 L = 6 L = 8

(b)

FIG. 4. (Color online) Plot of the QSL time τQSL [see Eq. (30)]
for (a) the Ising model, with parameters J = 1, hx = 0.5, hz =
−1.05 [see Eq. (32)], and (b) the non-integrable XXZ model,
with parameters J = 1, U = 2, Jnnn = 0.2 [see Eq. (33)].
Here, we set the system sizes L = {4, 6, 8}, with open bounda-
ry conditions, while LS = 1, and LB = {3, 5, 7}. The system
is initialized at the charge density wave-like state |Ψ(0)〉 =
|1, 0, 1, 0, . . . , 0, 1〉, with |0〉 and |1〉 denoting the spin up and
down state, respectively.

cated in Eq. (30). We refer to Appendix D for more
details on the set of QSL times. Note that τ (3) is in-
versely proportional to the variance ∆H [see Eq. (20)].
Given the initial pure state |Ψ(0)〉 = |1, 0, 1, 0, . . . , 0, 1〉,
the variance of the Ising Hamiltonian in Eq. (32) read

as ∆HIsing =
√

(L− 1)J2 + Lh2
x, while one gets the

variance ∆HXXZ = 2J
√
L− 1 for the XXZ model in

Eq. (33) with respect to such initial state. For larger
system size L, these variances become ∆H ∼ L1/2, and
in this case the QSL time will behave as τQSL = τ (3) ∼
(1/2)L−1/2 ‖ωS‖−1

∞ |TrS(ωS ρS(τ))− TrS(ωS ρS(0))|. We
expect this result should hold in the limit of larger va-
lues of L, but it can already be seen in Fig. 4 that the
amplitude of the QSL time decreases as the system size
L grows.

Next, we comment on the equilibration time τ̃eq

in Eq. (31). For both the aforementioned spin sys-

tems, we find that τ̃eq = τ
(3)
eq = (1/2)(∆H)−1|1 −

TrS(ωS ρS(0))[TrS(ω2
S)]−1|. For the transverse field Ising

model we find the equilibration time τ̃eq ≈ 9 × 10−3

(L = 4 and L = 6), and τ̃eq ≈ 10−3 (L = 8). For the
non-integrable XXZ model, the equilibration time read
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as τ̃eq ≈ 3× 10−3 (L = 4 and L = 6), and τ̃eq ≈ 4× 10−4

(L = 8). In both cases, τ̃eq has units of ~/J . In
the limit of large system size L, since the variances be-
have as ∆ ∼ L1/2, thus Eqs. (21) and (31) implies that

τ̃eq = τ
(3)
eq ∼ (1/2)L−1/2

∣∣1− TrS(ωS ρS(0))[TrS(ω2
S)]−1

∣∣.
Hence, again we expect the lower bound on the equili-
bration time to scale with 1/

√
L for large L, but already

see evidence of such decay for the small values of L we
used.

We close this section discussing the equilibration time
and the lower bound obtained on both spin systems. In
Figs. 2 and 3, we see that system starts to equilibrate at
a time τ such that the figure of merit g(τ) approaches a
zero value. On the one hand, for the transverse fiel Ising
model, Fig. 2(a) shows that this time is of order τ ≈ 1
for the most of system sizes, while one gets τ̃eq ≈ 10−3.
On the other hand, for the non-integrable XXZ model,
Fig. 2(b) shows that τ ≈ 0.5, but we have found the
earlier times 10−4 . τ̃eq . 10−3 for the referred system
sizes. In both cases, we see that the bound is fulfilled
(τ ≥ τ̃eq), but is not tight for these two spin models and
the initial state we choose. While the bound may be tight
for other models for larger L, we offer some reasons for
it not being tight.

The QSL bound is obtained bounding from above the
time-derivative of the relative purity f(t); we are trying
to obtain the minimum time for a change in f(t) assum-
ing it always varies at its maximum rate [see Sec. III]. In
this sense, the bound is expected to not be tight if f(t)
strongly oscillates. In fact, the tightness of the QSL is
related to the distinguishability measure between quan-
tum states. Tighter QSL bounds have been discussed
for information-theoretic quantifiers such the quantum
Fisher information [58, 59], Wigner-Yanase skew infor-
mation [26], and also geometric measures based on the
Bures angle [60]. Furthermore, we have invoked several
inequalities to derive those lower bounds. In spite of sim-
plifying the calculations, applying such inequalities may
have compromised the tightness of the bounds.

Finally, although the bound does not provide quanti-
tatively information about the equilibration time for the
spin models and initial state used as examples, they still
provide insight in the physical properties involved on the
equilibration process [see Sec. III E]. They are also of in-
terest, since they allow to connect both the subjects of
equilibration and speed limits. Lastly, we also showed
that the relative purity is a useful witness for equilibra-
tion, and it has the advantage of being more amenable
to analytical calculation and experimental measure than
other figures of merit as the trace distance, for example.
We emphasize that the lower bounds on the equilibra-
tion time could be tightened by invoking some minimal
amount of inequalities, and also verifying another distin-
guishability measures. Indeed, this is an issue that we
hope to address in further investigations.

V. CONCLUSIONS

In conclusion, we have discussed the local equilibra-
tion of closed quantum systems and the speed of fluctu-
ations around the equilibrium. We provided a criterion
for witnessing equilibration at the local level by introduc-
ing a figure of merit that is rooted on relative purity [see
Eq. (7)]. In turn, the latter stand as a distinguishabil-
ity measure of quantum states, particularly quantifying
the overlap between a nonequilibrium state of a small
subsystem and a given steady state. We show that the
relative purity is a useful witness for equilibration, and it
has the advantage of being more amenable to analytical
calculation and experimental measure than other figures
of merit as the trace distance, for example. We have
proved an upper bound on such figure of merit that de-
pend on the effective dimension of the equilibrium state
of the closed system. We find that the larger the effective
dimension, the smaller the size of fluctuations around of
the system. Indeed, this somehow agrees with previous
results reported in the literature where the authors have
considered the Schatten 1-norm as a bona fide measure
for equilibration.

We have analyzed the dynamics of relative purity and
its rate of change as a probe of the speed of fluctuations
around of equilibrium. Indeed, we have proved a set of
upper bounds on such averaged speed that depends on
the initial state and the Hamiltonian of the isolated sys-
tem [see Eqs. (10), (14), (19), and (27)]. Overall, the
bounds show that such fluctuations depend on the co-
herences of the pure initial state regarding to the referen-
ce eigenbasis of the Hamiltonian. Furthermore, we show
the averaged speed also depends on the correlations of
the bipartite system that are quantified via the relative
entropy and mutual information. We find that if the in-
teracting Hamiltonian HSB couples the system to only a
few degrees of freedom of the bath, which is the case of
spin models with nearest-neighbor couplings, such upper
bound does not scales with the size of the subsystem B.

From these speeds we have derived a family of lower
bounds on the time of evolution between such states, thus
obtaining an estimate for the equilibration time at the
local level. Importantly, regarding to the equilibration
time, we follow the same procedure as the one that is
commonly applied in the derivation of quantum speed
limits [see Eqs. (13), (16), (21), (29), and (31)]. We have
verified the bounds on the equilibration time are not tight
for the spin models and initial state used as examples,
but they still provide insight in the physical properties
involved on the equilibration process. Indeed, some of the
bounds fits into the Mandelstam-Tamm’s class of QSLs
due to its dependence on the inverse of the variance of
the Hamiltonian. Hence, our results somehow may bridge
both the subjects of QSLs and equilibration. Finally,
we believe that our results may find applications in the
study of equilibration of many-body quantum systems,
quantum speed limits, also being useful for discussing
the enhancing of phase estimation in quantum systems
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around equilibrium that is of interest to quantum metro-
logy.
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APPENDIX

A. RELATIVE PURITY AND UHLMANN
FIDELITY

In this Appendix we will show that both the relative
purity and Uhlmann fidelity stand as constant of mo-
tions with respect to the global unitary evolution, also
taking identical values for states ρ(t) and ωS. Let ρ(0) =
|ψ(0)〉〈ψ(0)| be the initial state of the system S + B that
undergoes the unitary evolution ρ(t) = U(t)ρ(0)U†(t),
with U(t) = e−itH being the evolution operator, and
H =

∑
j Ej |Ej〉〈Ej | is the time-independent Hamilto-

nian of the system. In turn, ω = 〈ρ(t)〉∞ is the infinite
time-averaged state of the full system, also written in the
energy eigenbasis of H as

ω =
∑
j

〈Ej |ρ(0)|Ej〉|Ej〉〈Ej | . (A1)

From Eq. (A1), note that both the Hamiltonian H and
the dephased state ω are commuting operators, thus im-
plying that U†(t)ωU(t) = ω. In this case, it is straight-
forward to conclude the relative purity F (ρ(t), ω) =
Tr(ωρ(t)) of such states is given by

F (ρ(t), ω) = Tr(ωU(t)ρ(0)U†(t))

= Tr(U†(t)ωU(t)ρ(0))

= Tr(ωρ(0)) . (A2)

Clearly, Eq. (A2) show that F (ρ(t), ω) = F (ρ(0), ω) =
Tr(ωρ(0)) stand as a time-independent quantity that de-
pends on the initial state of the full system and also its
steady state.

Next, the Uhlmann fidelity of states ρ(t) and ω is writ-
ten as [22]

F̃ (ρ(t), ω) =

(
Tr

[√√
ρ(t)ω

√
ρ(t)

])2

. (A3)

We stress that Uhlmann fidelity is a positive quantity for
all quantum states, also being a symmetric function over

its entries, i.e., F̃ (ρ(t), ω) = F̃ (ω, ρ(t)). Invoking the

identity
√
ρ(t) = U(t)

√
ρ(0)U†(t), which holds for any

density matrix undergoing a given unitary evolution [61,
62], and since that U†(t)ωU(t) = ω, one gets√

ρ(t)ω
√
ρ(t) = U(t)

√
ρ(0)ω

√
ρ(0)U†(t)

= 〈ψ(0)|ω|ψ(0)〉 ρ(t) , (A4)

where we have also used the fact that
√
ρ(0) = ρ(0) =

|ψ(0)〉〈ψ(0)| since the initial state is pure. Hence, by
plugging Eq. (A4) into Eq. (A3), one readily gets

F̃ (ρ(t), ω) = 〈ψ(0)|ω|ψ(0)〉 . (A5)

Analogously to the case of relative purity, this means
the Uhlmann fidelity stands as a time-independent quan-
tity, also being a function of both the initial and equili-
brated states. Indeed, from Eq. (A2), we point out that

F̃ (ρ(t), ω) is nothing but the relative purity F (ρ(0), ω),
and it yields

F̃ (ρ(t), ω) = Tr(ω |ψ(0)〉〈ψ(0)|)
= Tr(ωρ(0))

= F (ρ(t), ω) . (A6)

As a final remark, we emphasize the identities presented
in Eqs. (A2) and (A5) comes from the fact that ω is a
fixed point of the unitary dynamics of the system, thus
implying that the relative purity and Uhlmann fidelity
characterize such a constant of motion.

B. BOUND ON THE FIGURE OF MERIT

In this Appendix we will present in details the deriva-
tion of the inequality presented in Eq. (7), which in turn
stand as a upper bound on the figure of merit for equili-
bration given by

g(t) = |TrS [(ρS(t)− ωS)ωS]|2 . (B1)

From Eqs. (3) and (6), it is straightforward to conclude
that

ρS(t)− ωS =
∑
k 6=l

ckc
∗
l e
−it(Ek−El) TrB(|Ek〉〈El|) , (B2)

where we have defined cj := 〈Ej |ψ(0)〉. From Eq. (B2),
the time-average of the figure of merit in Eq. (B1) be-
comes
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〈g(t)〉∞ =
∑
k 6=l

∑
m 6=n

ckc
∗
l cmc

∗
n

〈
e−it(Ek−El+Em−En)

〉
∞

TrSB [|Ek〉〈El|(ωS ⊗ IB)] TrSB [|Em〉〈En|(ωS ⊗ IB)] . (B3)

To evaluate the time-average in the right-hand side of Eq. (B3), we will use the fact that the Hamiltonian H has
non-degenerate energy gaps, and thus the double summation will only include terms where k 6= l and m 6= n [12]. In
this case, we find the only nonzero terms are those matrix elements labelled as n = k and m = l, thus implying that

〈g(t)〉∞ =
∑
k 6=l
|ck|2|cl|2 TrSB [|Ek〉〈El|(ωS ⊗ IB)] TrSB [|El〉〈Ek|(ωS ⊗ IB)]

=
∑
k 6=l
|ck|2|cl|2 〈El|ωS ⊗ IB|Ek〉〈Ek|ωS ⊗ IB|El〉 , (B4)

where from the first to the second line we have used the cyclic property of trace. We point out that the sum in
Eq. (B4) can be recasted as

∑
k 6=l =

∑
k,l −

∑
k=l, and thus one gets

〈g(t)〉∞ =
∑
k,l

|ck|2|cl|2 〈El|ωS ⊗ IB|Ek〉〈Ek|ωS ⊗ IB|El〉 −
∑
k

|ck|4 〈Ek|ωS ⊗ IB|Ek〉2

= TrSB [ω(ωS ⊗ IB)ω(ωS ⊗ IB)]−
∑
k

|ck|4 〈Ek|ωS ⊗ IB|Ek〉2

≤ TrSB [ω(ωS ⊗ IB)ω(ωS ⊗ IB)] , (B5)

where we have recognized the equilibrium state ω =∑
j |cj |2|Ej〉〈Ej | [see Eq. (3)], and also used that∑
k |ck|4 〈Ek|ωS ⊗ IB|Ek〉2 ≥ 0. Invoking the Cauchy-

Scharwtz inequality for operators, i.e., |Tr(AB)| ≤
‖A‖2‖B‖2, and choosing A = B = ω(ωS ⊗ IB), one may
verify Eq. (B5) implies that

〈g(t)〉∞ ≤ TrSB

[
(ωS ⊗ IB)ω2(ωS ⊗ IB)

]
. (B6)

Next, given that Tr(PQ) ≤ ‖P‖∞Tr(Q) for two positive
operators P and Q, it follows that

〈g(t)〉∞ ≤ ‖ωS ⊗ IB‖∞TrSB

[
ω2(ωS ⊗ IB)

]
≤ ‖ωS ⊗ IB‖2∞TrSB

(
ω2
)
. (B7)

Note that Eq. (B7) can be recasted by using that
‖ωS ⊗ IB‖∞ = ‖ωS‖∞, and also recognizing the effec-
tive dimension deff(ω) = 1/TrSB

(
ω2
)
. Hence, the time-

average of the figure of merit is upper bounded as

〈g(t)〉∞ ≤
‖ωS‖2∞
deff(ω)

. (B8)

C. FLUCTUATIONS OF THE PURITY OF THE
REDUCED STATE

In this Appendix we follow Ref. [39] and investigate
the role of quantum purity as a figure of merit for equili-
bration of subsystem S, for which we evaluate the pu-
rity pS(t) = TrS(ρS(t)2), where ρS(t) = TrB(ρ(t)) is
the reduced density matrix, with ρ(t) = |Ψ(t)〉〈Ψ(t)|.
The dynamics of the subsystem S is governed by the
equation dρS(t)/dt = iTrB([ρ(t), H]), where H = HS ⊗

IB + IS ⊗ HB + HSB is the Hamiltonian of the sys-
tem. In particular, by exploiting the cyclic property of
the trace, Tr(A1[A2, A3]) = Tr([A1, A2]A3), also using
the identites TrSB((ρS(t) ⊗ IB)[ρ(t), HS ⊗ IB]) = 0 and
TrSB((ρS(t)⊗ IB)[ρ(t), IS ⊗HB]) = 0, one may prove the
time-derivative of the purity can be written as

d

dt
pS(t) = 2iTrSB((ρS(t)⊗ IB)[ρ(t), HSB]) . (C1)

Next, let ρcor(t) = ρ(t)−ρS(t)⊗ρB(t) be the traceless cor-
relation operator, i.e., TrS(ρcor(t)) = TrB(ρcor(t)) = 0.
This operator is identically zero when the global state
ρ(t) is fully uncorrelated, also satisfying the identity
TrSB((ρS(t)⊗ IB)[ρS(t)⊗ ρB(t), HSB]) = 0, which implies
that

d

dt
pS(t) = 2iTrSB((ρS(t)⊗ IB)[ρcor(t), HSB]) . (C2)

In the following, we will derive a upper bound to the rate
dpS(t)/dt exploiting the role of quantum correlations of
the bipartite system S + B. To do so, note the absolute
value of both sides of Eq. (C2) can be recasted as∣∣∣∣ ddtpS(t)

∣∣∣∣ ≤ 2 ‖(ρS(t)⊗ IB)[ρcor(t), HSB]‖1

≤ 2 ‖ρS(t)⊗ IB‖∞ ‖[ρcor(t), HSB]‖1 , (C3)

where we have used the inequalities |Tr(A1A2)| ≤
‖A1A2‖1 ≤ ‖A1‖∞‖A2‖1, with ‖ρS(t)⊗ IB‖∞ =
‖ρS(t)‖∞. Moreover, invoking the triangle inequal-
ity ‖A1 +A2‖1 ≤ ‖A1‖1 + ‖A2‖1 and also apply-
ing the upper bound ‖A1A2‖1 ≤ ‖A1‖∞‖A2‖1, it
follows that ‖[ρcor(t), HSB]‖1 ≤ 2 ‖ρcor(t)HSB‖1 ≤
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FIG. 5. (Color online) Plot of the set of QSL times {τ (k)}k=1,...,4 in Eqs. (12), (15), (20) and (28). The panels 5(a), 5(b), 5(c)
refer to QSL times for the transverse field Ising model [see Eq. (32), with J = 1, hx = 0.5, hz = −1.05], and panels 5(d), 5(e), 5(f)
describe the QSL times for the non-integrable XXZ model with next-nearest-neighbor hopping [see Eq. (33), with J = 1, U = 2,
Jnnn = 0.2]. The system is initialized at the Néel state |Ψ(0)〉 = |1, 0, 1, 0, . . . , 0, 1〉, with open boundary conditions, for the
system sizes L = 4 [Figs. 5(a), 5(d)], L = 6 [Figs. 5(b), 5(e)], and L = 8 [Figs. 5(c), 5(f)].

2 ‖ρcor(t)‖1‖HSB‖∞. Inserting such results into Eq. (C3),
one gets∣∣∣∣ ddtpS(t)

∣∣∣∣ ≤ 4 ‖ρS(t)‖∞ ‖ρcor(t)‖1‖HSB‖∞ . (C4)

Interestingly, note the Schatten 1-norm of the correlated
operator is upper bounded according to the Pinsker’s in-
equality as [53]

‖ρcor(t)‖1 ≤
√

2 ISB(ρ(t)) , (C5)

where the mutual information is defined

ISB(ρ(t)) := S(ρS(t)) + S(ρB(t))− S(ρ(t)) , (C6)

with S(%) = −Tr(% ln %) being the von Neumann entropy.
Hence, by combining Eqs. (C4) and (C5), it yields∣∣∣∣ ddtpS(t)

∣∣∣∣ ≤ 4
√

2ISB(ρ(t)) ‖ρS(t)‖∞ ‖HSB‖∞ . (C7)

Importantly, Eq. (C7) relates the fluctuations of pu-
rity of the subsystem S with the quantum correlations
of the whole bipartite system captured by the mu-
tual information. On the one hand, since ‖ρS(t)‖∞ ≤
1, Eq. (C7) implies the upper bound |dpS(t)/dt| ≤
4
√

2ISB(ρ(t)) ‖ρS(t)‖∞ ‖HSB‖∞, which was already pre-
sented in Ref. [63]. On the other hand, since ‖ρS(t)‖∞ ≤
‖ρS(t)‖2 =

√
TrS(ρS(t)2) =

√
pS(t), we thus obtain the

tighter upper bound∣∣∣∣ ddtpS(t)

∣∣∣∣ ≤ 4
√

2ISB(ρ(t))
√
pS(t) ‖HSB‖∞ . (C8)

We point out that, since the bipartite system is initial-
ized in a pure state, i.e., Tr(ρ(0)2) = Tr(ρ(0)) = 1, its
instantaneous state ρ(t) = U(t)ρ(0)U†(t) will be pure
for all time t, i.e., Tr(ρ(t)2) = Tr(ρ(t)) = 1. As a con-
sequence, the mutual information of the input state tri-
vially collapses into the sum of the von Neumann entropy
of the marginal states, ISB(ρ(t)) = S(ρS(t))+S(ρB(t)) =
2S(ρS(t)) = 2S(ρB(t)). In this case, Eq. (C8) can be
recasted as∣∣∣∣ ddtpS(t)

∣∣∣∣ ≤ 8
√
S(ρS(t))

√
pS(t) ‖HSB‖∞ , (C9)

with the von Neumann entropy satisfying the inequality
0 ≤ S(ρS(t)) ≤ ln(dS). Hence, by integrating Eq. (C9)
over the range 0 ≤ t ≤ τ , it follows that

τ ≥

∣∣∣√pS(τ)−
√
pS(0)

∣∣∣
4
√

ln(dS) ‖HSB‖∞
. (C10)

where we have used that
∫
dx|g(x)| ≥ |

∫
dxg(x)|. Here

τ stand for the time to reach the equilibrium purity, i.e.,
pS(τ) ≡ peq

S . Particularly, if the initial state is fully un-
correlated, i.e., ρ(0) = ρS(0) ⊗ ρB(0), while ρS(0) is a
pure state with pS(0) = Tr(ρS(0)) = 1, we finally arrive
at the bound

τ ≥

∣∣∣√peq
S − 1

∣∣∣
4
√

ln(dS) ‖HSB‖∞
. (C11)

We point out Eq. (C11) is slightly different from the re-
sult presented in Ref. [39], where here one finds the equili-
bration time depend on the square root of the equilibrium
purity.



13

D. DETAILS ON THE SET OF QSL TIMES

In this Appendix we provide details on the lower
bounds {τ (k)}k=1,...,4 for both the spin models discussed
in Sec. IV. In Figure 5, we show the set of QSL times
in Eqs. (12), (15), (20) and (28) as a function of time τ ,
for the transverse field Ising model [see Figs. 5(a), 5(b),
and 5(c)], and the non-integrable XXZ model with next-
nearest-neighbor hopping [see Figs. 5(d), 5(e), and 5(f)].
In both cases, the spin system is initialized at the Néel
state |Ψ(0)〉 = |1, 0, 1, 0, . . . , 0, 1〉, with open bound-
ary conditions. Here we set the system sizes L = 4
[Figs. 5(a), 5(d)], L = 6 [Figs. 5(b), 5(e)], and L = 8

[Figs. 5(c), 5(f)]. We see that, for all τ ≥ 0 and
system size L, the curve of τ (3) is always above of
the QSL times τ (1), τ (2), and τ (4), regardless the spin
system. This clearly illustrate the fact that τQSL =

max{τ (1), τ (2), τ (3), τ (4)} = τ (3), i.e., the QSL time in
Eq. (30) is given by the lower bound τ (3), the latter be-
ing inversely proportional to the variance of the Hamil-
tonian governing the dynamics [see Eq. (20)]. The quan-
tity τ (1) stand as a lower bound to the set of QSL
times {τ (2), τ (3), τ (4)}, and approaches small values as
the size L grows. In addition, we see the amplitude of
{τ (k)}k=1,...,4 decreases as we increase the system size L.
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