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Abstract

A semiclassical theory that describes a generation of the anti-Stokes CARS signal is presented

that maximizes vibrational coherence in a mode predetermined by the pump, the Stokes and

the probe chirped pulse trains and takes into account the field propagation effects in a cloud of

molecules. The built-up of the anti-Stokes signal which may be used as a molecular signature in

the backward CARS signal is demonstrated numerically. The theory is based on the solution of the

coupled Maxwell’s and the Liouville von Neumann equations, and focuses on the quantum effects

induced in the target molecules by the control pulse trains. A deep Convolutional Neural Network

technique is implemented to evaluate time-dependent phase characteristics of the control fields.

The effect of decoherence induced by spontaneous decay and collisional dephasing is examined.
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I. INTRODUCTION

Coherent anti-Stokes Raman scattering (CARS) belongs to the frontiers of non-linear

optics methods suited for imaging, sensing and detection without labeling or destruction [1].

The implementation of ultrafast pulses in the stimulated Raman spectroscopy in general

and CARS in particular brings advantages of the high peak power, the three-dimensional

spacial resolution, and the femtosecond time resolution to monitor vibrational dynamics

[2–12]. Femtosecond CARS has been widely used and nowadays advances toward solving

tasks related to a single molecule spectroscopy, molecular specific imaging, sensing traces of

molecules and remote detection [13–18]. Success in these areas depends on a high level of

chemical sensitivity and specificity, the signal to noise ratio, and the CARS signal intensity.

Because the Raman fields’ evolution is proportional to the macroscopic induced polarization

[19], which in its turn is proportional to a microscopic quantum property of the material,

quantum coherence, crafting ultrafast laser pulses to generate the maximum coherence in

the target molecules is the root to impact the molecular-specific response and to significantly

enhance the signal. To date, there has been a number of methods developed to achieve the

maximum coherence leading to the enhancement of the signal from predetermined vibra-

tional modes in CARS using the shaped ultrafast pulses. Among pioneering works including

those for remote detection are [20–22], [23, 24] and [25–32] proposing different phase shaping

of the ultrafast pulses. Other notable works are the multiplex CARS using a combination

of a narrow-band chirped pump and probe and a transform-limited broadband Stokes pulse

[33] and a proposal of double parabolic phase functions in the stimulated Raman scattering

(SRS) [34].

In this paper, we present a semiclassical theory of a generation of the anti-Stokes signal

by creating the maximum vibrational coherence in a predetermined mode with the pump,

the Stokes and the probe chirped pulse trains in the four-wave mixing in CARS and take into

account the field propagation effect in a cloud of molecules. The motivation is to demonstrate

the built-up of the anti-Stokes signal which may be used as a molecular signature in the

backward CARS signal. The theory is based on the solution of the coupled sets of Maxwell’s

and the Liouville von Neumann equations and focuses on the quantum effects induced in

the target molecules by the shaped laser pulse trains. We analyze the enhancement of

the backscattered anti-Stokes signal upon multiple scattering of radiation from the target
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molecules, which modifies propagating fields. We examine the impact of decoherence induced

by spontaneous decay and collisional dephasing. We demonstrate that decoherence due to

spontaneous decay can be mitigated by applying the control pulse trains with the train

period close to the decay time.

The novelty of the study is in the demonstration of the built-up of coherent anti-Stokes

signal as a result of controllability of vibrational coherence in the target molecules upon

four chirped pulse trains propagation subject to multiple scattering events, in utilizing the

pulse train properties to mitigate decoherence and in implementing the Deep Convolution

Network approach to evaluate the phase of the propagating fields, which provides with the

information about the relative phase change between the pump, the Stokes, the probe and

the anti-Stokes pulses.

As a case study we use the methanol vapor. Methanol molecules have Raman active

symmetric 2837 cm−1 (85.05 THz) and asymmetric 2942 cm−1 (88.20 THz) stretch modes.

These values are within the range of molecular group vibrations in various biochemical

species, which span from 2800 to 3100 cm−1 making the methanol a suitable choice as a

surrogate molecule for non-hazardous experiments in the lab. Thus, the results of methanol

studies would be useful for the development of remote detection schemes as well as for the

environmental analyses.

Various setups are available to perform CARS experiments satisfying the phase-matching

conditions to separate the directional anti-Stokes signal from the incident fields. However

for particles having a size comparable to the wavelength, the phase-mismatched factor is

small and it was shown that the non-phase-matched CARS can provide an effective method

to probe complex molecules [22, 35]. For methanol, the ratio 4πρ0/λ � 1, where ρ0 ∼

10−10m is the target molecule diameter; it relaxes the phase-matching condition and permits

consideration of the collinear copropagating fields configuration.

The paper is organized as follows. In Section II, a theoretical framework is formulated.

Section III discusses the machine learning approach for a numerical analysis of the phase

of the propagating fields. Section IV contains the numerical results for the methanol and a

discussion. The paper concludes with a Summary.
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FIG. 1: Schematic of CARS: the pump (ωp) and the Stokes (ωs) fields interact with the ground

vibrational state |1〉 and the excited vibrational |2〉 state of the ground electronic state in the

target molecule to create a superposition state with coherence ρ12. The probe (ωpr) field interacts

with this superposition state to generate anti-Stokes field at frequency ωas. Parameters ∆s and

∆as are the one-photon detunings, and δ is the two-photon detuning.

II. THEORETICAL FRAMEWORK

A. Maxwell - Liouville von Neumann formalism

CARS is a third order nonlinear process in which three beams, the pump, the Stokes and

the probe, at frequencies ωp, ωs and ωpr respectively, interact with the electronic vibrational

- vibronic - states of the target molecules to generate the anti-Stokes field at frequency

ωas = ωp + ωpr − ωs, Fig(1). In our control scheme, we use linearly chirped pulse trains

which read

Ei(t) =
N−1∑
k=0

Ei0exp{−
(t− tc − kT )2

2τ 2
} cos{ωi0(t− tc − kT ) + αi

(t− tc − kT )2

2
}. (1)

Here T is the pulse train period, tc is the central time when the peak value of the Gaussian

field envelope is E0, τ is the chirp-dependent pulse duration, ωi0 is the carrier frequency,

and αi, i = p, s, pr, is the linear chirp rate of an individual pump, Stokes and probe pulse

in the respective pulse train. The values of αi are chosen in accordance with the control
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scheme, which implies αs = −αp and αpr = αs − αp for t ≤ tc; and αs = αp and αpr = 0

for t > tc [36]. Such chirped pulses induce the maximum coherence between vibronic states

in the target molecules via adiabatic passage provided the two-photon detuning δ = 0.

Any slightly different vibrational mode not satisfying the two-photon resonance condition,

δ 6= 0, is suppressed. The selectivity of the mode excitation is determined by the condition

τδ ≥ 1. The chirped pulse duration τ relates to the transform-limited pulse duration

τ0 as τ = τ0(1 + α′2/τ 4
0 )1/2, and the temporal (α) and the spectral (α′) chirps relate as

α = α′τ−4
0 /(1 + α′2/τ 4

0 ).

The matrix Hamiltonian written in the interaction representation and in the rotating

wave approximation (RWA) reads

H = h̄
2



0 0 Ωp0(t)ei∆st+i
αp
2 t2 Ωas0(t)ei∆ast

0 0 Ωs0(t)ei∆st+i
αs
2 t2 Ωpr0(t)ei∆ast+i

αpr
2 t2

Ω∗p0(t)e−i∆st−i
αp
2 t2 Ω∗s0(t)e−i∆st−iαs2 t2 0 0

Ω∗as0(t)e−i∆ast Ω∗pr0(t)e−i∆ast−i
αpr
2 t2 0 0


(2)

Here Ωp0(t) = −µ31/h̄Ep0(t), Ωs0(t) = −µ32/h̄Es0(t), Ωpr0(t) = −µ42/h̄Epr0(t), Ωas0(t) =

−µ41/h̄Eas0(t) are the Rabi frequencies of respective fields, µij is a dipole moment, ∆s and

∆as are the one-photon detunings on transitions |1〉 → |3〉 and |1〉 → |4〉 respectively.

To account for the propagation effects in the scattering process, we combine the Liou-

ville von Neumann equation for the states with Maxwell’s equations for the fields. The

displacement current is determined as D = ε0E + P , where P is the expectation value of

the induced dipole moment and ε0 is the permittivity of free space. The effects arising from

magnetization are neglected giving B = µ0H, where µ0 is permeability of free space. The

wave equation for a field propagating in the ẑ direction and having polarization in the XY

plane reads:

(
∂

∂z
+

1

c

∂

∂t

)(
− ∂

∂z
+

1

c

∂

∂t

)
E = −µ0

∂2P

∂t2
(3)

Assuming the field is E(z, t) = 1
2
(E0(z, t)e−i[ωt−kz−φ(z,t)] + c.c) and considering E0(z, t)

and φ(z, t) as slowly varying functions of position and time, Eq.(3) can be written as:

−2k

(
∂E0(z, t)

∂z
+

1

c

∂E0(z, t)

∂t

)
sin (ωt− kz − φ(z, t)) = −µ0

∂2

∂t2
P (z, t) (4)
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FIG. 2: The Gaussian distribution of the target molecules in (a) based on the density of

molecules and in (b) is converted into multi-layer model; molecules are given different colors to

distinguish the layers. Each layer in the multi-layer model is characterized by the fractional

number density η and a distance to it’s adjacent layer (∆z)η. If Ns is the number of the target

molecules and N is the number of total molecules associated with the layer, the fractional

number density of that layer is defined as η = Ns/N . The distance between the adjacent layers

(∆z)η changes according to the Gaussian distribution of molecules. The incoming pulses pass

through a series of scattering events with the target molecules within each layer to produce a

detectable backscattered CARS signal.

Substituting P (z, t) = 1
2
(P0(z, t)e−i[ωt−kz−φ(z,t)] + c.c) in the RHS, Eq.(3) becomes:

−2k(
∂E0(z, t)

∂z
+

1

c

∂E0(z, t)

∂t
) = µ0ω

2Im [P0(z, t)] . (5)

In quantum theory, the macroscopic polarization P is given by the expectation value of the

electric dipole moment µ̂; 〈P (z, t)〉 = NsTr{〈ρ(z, t) · µ〉}, where Ns is the atomic density of

the target molecules. Applied to the four-level system of CARS, the four components of P can

written as: P0p(z, t) = Nsµ13ρ13(z, t), P0s(z, t) = Nsµ23ρ23(z, t), P0pr(z, t) = Nsµ24ρ24(z, t),

and P0as(z, t) = Nsµ14ρ14(z, t). Eliminating the space component by substituting ∂
∂z

= 1
c
∂
∂t

and using these expressions of polarizations, Eq.(5) casts into

1

c

∂Eq
∂t

= −Nsµ0µij
Eq(t)

h̄
Im{ρij} (6)

where q = p, s, pr, as and i, j are the indexes of the states involved in the respective transi-

tions.
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The density matrix elements ρij are found from the Liouville von Neumann equation ih̄ρ̇ =

[H, ρ] with the Hamiltonian from Eq.(2). After applying the rotation wave approximation

and the adiabatic elimination of the excited states assuming that ρ̇13, ρ̇14, ρ̇23, ρ̇24, ρ̇34 ≈

0, ρ34 ≈ 0, ρ33, ρ44 � ρ11, ρ22 and ρ̇33, ρ̇44 ≈ 0, and using the control condition on the

chirp parameters αs − αp = αpr, the density matrix elements ρ13, ρ23, ρ14, ρ24 read in terms

of ρ11, ρ22 and ρ12 in the field interaction representation as follows

ρ13 =
1

2(∆s + αpt)
Ωp0(t)ρ11 +

1

2(∆s + αpt)
Ωs0(t)ρ12

ρ23 =
1

2(∆s + αst)
Ωs0(t)ρ22 +

1

2(∆s + αst)
Ωp0(t)ρ21

ρ14 =
1

2∆as

Ωas0(t)ρ11 +
1

2∆as

Ωpr0(t)ρ12

ρ24 =
1

2(∆as + αprt)
Ωpr0(t)ρ22 +

1

2(∆as + αprt)
Ωas0(t)ρ21

(7)

The details of the derivation of Eqs.(7) are presented in Appendix A. Further, substituting

Eq.(7) into Eq.(6) and rewriting the equations in terms of Rabi frequencies lead to the

following Maxwell’s equations:

∂Ωp0

∂t
= c

∂Ωp0

∂z
= − η

2(∆s + αpt)
κ13ωpΩs0(t) Im[ρ12]

∂Ωs0

∂t
= c

∂Ωs0

∂z
=

η

2(∆s + αst)
κ23ωsΩp0(t) Im[ρ12]

∂Ωpr0

∂t
= c

∂Ωpr0

∂z
=

η

2(∆as + αprt)
κ24ωprΩas0(t) Im[ρ12]

∂Ωas0

∂t
= c

∂Ωas0

∂z
= − η

2(∆as)
κ14ωasΩpr0(t) Im[ρ12].

(8)

Here κij = Nµ0µ
2
ijc

2/(3h̄), N is the number density of molecules given by NA/V0 under the

ideal gas conditions, where NA is the Avogadro’s Number, V0 is the molar volume, and η

is the fractional number density which will be described in detail in the next section. The

factor 1/3 comes from the averaging over all orientations of the molecular dipole 〈µxµy〉 =

〈µxµz〉 = 〈µyµz〉 = 0 and 〈µj〉 = (1/3)µ2, j = x, y, z [37]. Considering dipole moment of

methanol µij = 1.70D, the constant κij is found to be 3.636× 10−3[ω21].

The Eqs.(8) coupled with the multi-layer model described below are numerically solved

using the transform-limited and the control pulse trains to find the scattered anti-Stokes

signal. Note, that the right side of Eqs.(8), which describes the induced polarization in

the target molecules, depends only on the imaginary part of coherence ρ21 out of all density
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FIG. 3: An example of the multi-layer model of a molecular distribution for the width of the

Gaussian distribution in Eq.(11) of the target molecules σ = 0.19 m. Here, each of 200 vertical

lines represents the location of the scattering event and the scattering layers become more dense

as the density peaks at the center.

matrix elements. Thus, the maximum value of this coherence provides the optimal amplitude

of the scattered signal.

To analyze the impact of decoherence due to spontaneous decay and collisional dephas-

ing of molecules, the Liouville von Neumann equations are augmented by the relaxation

terms. Spontaneous decay from state |i〉 to state |j〉 is denoted by γij, while collisional

dephasing between states |i〉 and |j〉 is denoted by Γij. Spontaneous decay impacts state

populations and coherence via the diagonal and off-diagonal reduced density matrix ele-

ments respectively, while collisional dephasing assumed to be weak enough not to change

state populations but to cause dipole phase interruption via off-diagonal reduced density

matrix elements. Vibrational energy relaxation [38, 39] within the ground electronic state

is accounted through parameter γ21. We neglect vibrational energy relaxation within the

excited electronic state since the respective vibrational states |3〉 and |4〉 are negligibly pop-

ulated during dynamics. Vibrational energy relaxation is an important topic in chemical

physics, since it relates to fundamental reaction processes [40, 41], conformational changes
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[42] or spectroscopic measurements [43, 44], and its understanding is the first step toward

controlling these phenomena.

ρ̇11 = −i/h̄[H, ρ]11 + γ21ρ22 + γ31ρ33 + γ41ρ44

ρ̇12 = −i/h̄[H, ρ]12 − (γ21/2 + Γ21)ρ12

ρ̇13 = −i/h̄[H, ρ]13 − (γ31/2 + γ32/2 + γ21/2 + γ41/2 + Γ31)ρ13

ρ̇14 = −i/h̄[H, ρ]14 − (γ41/2 + γ42/2 + γ21/2 + γ31/2 + Γ41)ρ14

ρ̇22 = −i/h̄[H, ρ]22 − γ21ρ22 + γ32ρ33 + γ42ρ44

ρ̇23 = −i/h̄[H, ρ]23 − (γ31/2 + γ32/2 + γ21/2 + γ42/2 + Γ32)ρ23

ρ̇24 = −i/h̄[H, ρ]24 − (γ41/2 + γ42/2 + γ21/2 + γ23/2 + Γ42)ρ24

ρ̇33 = −i/h̄[H, ρ]33 − (γ31 + γ32)ρ33

ρ̇34 = −i/h̄[H, ρ]34 − Γ43ρ34

ρ̇44 = −i/h̄[H, ρ]44 − (γ41 + γ42)ρ44.

(9)

B. The target molecules distribution

We consider the target molecules as a cluster of molecules with its center located a

large distance away from the source and its density following the Gaussian distribution.

We introduce a multi-layer model to analyze the propagation and scattering of the pump,

Stokes, probe and anti-Stokes pulses through this spatial distribution of molecules. The

model mimics the distribution of molecules in the air and allows us to solve the propagation

and scattering tasks in an elegant and simple way. In this model, each layer is characterized

by the fractional number density η and a distance to it adjacent layer (∆z)η. The distance

between the layers changes according to the Gaussian distribution of molecules. If Ns is the

number of the target molecules and N is the number of total molecules associated with the

layer, the fractional number density of that layer is defined as η = Ns/N . Suppose all target

molecules in the central layer are arranged vertically next to each other with no background

molecules between them, then the area occupied by these molecules is S = π(d/2)2Ns giving

Ns = 4S/πd2, where d is an approximate diameter of the target molecule. If (∆z)η is the

width of this layer, the total number of molecules N is (S(∆z)η/V0)NA, where V0 is the
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molar volume and NA is the Avogadro’s number. This gives

η =
Ns

N
=

4S

πd2

(
S(∆z)η
V0

)NA

=
4V0

πd2(∆z)ηNA

. (10)

We consider Ns be constant within each layer. Now, we take N = Ns for the central

layer and calculate its width. For any subsequent layer the total number of molecules is

different. Given Ns, the increase in the layer width by ∆zη increases the layers volume

and, thus, decreases the target’s density by the factor (1 + ∆zη/∆z0). The width of each

sequential layer is calculated using Eq.(10). Consider that the density changes as per the

Gaussian distribution function having the full width at the half maximum (FWHM) σ and

its maximum value at the center z0 of the cluster of molecules as

η =
NsV0

SNA

√
2πσ

e−(z−z0)2/(2σ2). (11)

The maximum density η0 of the central layer is found by substituting z = z0 in Eq.(11).

This value of η is then substituted in the Eq.(10) to find the width of the central layer

(∆z)η = (∆z)0. Once we find the width of the central layer, the η of the adjacent layer is

found by substituting the new value of z, z0 + (∆z)η, in Eq.(11). This process is repeated

to find the entire density distribution of the cluster of molecules. The distance between

scattering layers (∆z)η increases towards both ends of the distribution. So we converted

the three dimensional cluster of molecules into a set of two-dimensional layers of molecules.

Fig.(3) shows a set of layers, the distance between them and the density associated with

each layer. In numerical calculations, we consider σ = 0.2m with its center 1 km away from

the source, which together with η0 determines the total number of layers to be equal to 199.

C. Propagation through atmosphere

For a completeness of the picture, taking into account the effects of atmosphere as pulses

propagate through the molecular distribution is needed. The propagation of femtosecond

pulses through the atmosphere under various air conditions has been broadly investigated,

e.g. [45, 46]. Various effects during the propagation including the dispersion and the non-

linear self-focusing are not within the scope of this paper. We use Beer’s law under the ideal

conditions to account for the change in the amplitude of the pulses as they propagate through
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the atmosphere [47]. Assuming there is no turbulence and the air is homogeneous, the in-

tensity of the pulse trains attenuate exponentially due to scattering and absorption as they

propagate. The intensity I as a function of the distance z can be written as I(z) = I0e
−βez,

where βe is the extinction coefficient that contains factors of both scattering and absorp-

tion. We use the clear air atmospheric coefficient of 0.55 km−1 in numerical calculations [48]

shown in Section IV.

III. A DEEP NEURAL NETWORK FOR EVALUATION OF THE PHASE OF

THE FIELDS SCATTERED FROM THE TARGET MOLECULES

To investigate the controllability of population dynamics and vibrational coherence in

the target molecules by propagating electromagnetic fields we need to know the key fields’

parameters evolution after each scattering event. This allows us to accurately calculate

the quantum coherence and the induced polarization at the sequential steps of numerical

calculation. In the case of using the chirped pulse control scheme within the multi-layer

model of molecule distribution, the Maxwell - Liouville von Neumann equations alter the

initial, pre-determined phase of the incident pulses impacting the response of the target

molecules. Thus, extracting the analytical phase from the numerical solutions of Eqs.(8) and

verifying that the chirping scheme is applied to each scattering event becomes an extremely

important task for evaluating the response from the quantum system. To accomplish this

goal, we developed a mechanism for classifying different kinds of pulses from the numerical

data, based on their chirping and extracting the chirp parameters from these classified pulses

using a machine learning technique [49, 50]. This approach of extracting the information

about the phase of the pulses from the numerical grid and obtaining an accurate value of

the chirp parameters is principally novel and may have a wide range of applications in the

quantum control and spectroscopy.

The machine learning model we created is the deep Convolutional Neural Network (CNN).

A CNN is built to classify a given pulse into one of three kinds: linear, quadratic and the

chirp shape according to our control scheme αs = −αp and αpr = αs − αp for t ≤ tc;

and αs = αp and αpr = 0 for t > tc. Another CNN is built to do the regression work, it

calculates the parameters of the fields and shares a similar structure as the classification

neural network. The structure will be discussed later in Appendix B.
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FIG. 4: Different shapes of the phase of the field obtained numerically (solid line) and using the

deep convolution neural network model (dashed line) with different types of the phase of the

input pulse: (a) Linear chirp, φ(t) = a1t+ a2t
2; (b) Quadratic dependence of the phase on time

having a2 < 0 in φ(t) = a1t+ a2t
2 + a3t

3; (c) ’Roof’ chirp having positive chirp rate for the first

and negative chirp rate for the second part of the pulse [36], φ(t) = a1t+ ã2t
2 for t ≤ 0, and

φ(t) = a1t+
≈
a2t

2 for t > 0; (d) Quadratic dependence of the phase on time having a2 > 0 in

φ(t) = a1t+ a2t
2 + a3t

3. The values of parameters are printed in the titles of the pictures. Note

that there is no discrepancy in determination of the kind of the phase, only parameters have rare

errors.

Of principle importance for studying the phase of the numerical pulses is the availability

of training data. Massive training data is a necessary requirement for deep learning training

to concur a problem [51]. Since it is difficult to collect thousands of actual data from the

experiments, we created a program that generated the scattered laser pulses randomly based

on an arbitrary laser pulse model

E(t) = E0e
− t2

2τ2 cos[ωLt+M(t)]. (12)

Here τ is a single pulse duration, E0 is the peak value of the field having the Gaussian

envelope, and ωLt + M(t) is the phase of the field having the modulation M(t), which is
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the key to quantum control. A different parity of the phase modulation leads to different

control scenarios [52, 53]. Here we present M(t) as an expansion in the Taylor series

M(t) = a0 + a1t
1 + a2t

2 + a3t
3 + ... (13)

Since in most cases the higher orders have a very limited contribution, we created data for

three kinds of the phase using terms up to the third power in time: ’The Linear’, which is

determined by two parameters: the carrier frequency (a1) and the linear chirp (a2), then the

field phase reads φ(t) = a1t+ a2t
2; ’The Second’, which is determined by three parameters:

the carrier frequency (a1), the linear chirp (a2), and the second order chirp (a3), then the

phase reads φ(t) = a1t+a2t
2 +a3t

3; and ’The Roof’, which is comprised of two parts, before

central time and after, and is determined by three parameters: the carrier frequency (a1),

the linear chirp (ã2) for the first half of the pulse and the linear chirp (
≈
a2) for the second

half of the pulse, then the constructed phase of the field reads φ(t) = a1t + ã2t
2 for t ≤ 0,

and φ(t) = a1t+
≈
a2t

2 for t > 0.

We simulated the pulses with these three kinds of phases using characteristic values of the

field parameters and generated training data in quantity of 5× 104 for each kind by varying

the carrier frequency and the chirp rate. During the training process, we applied the Adam

Optimizer algorithm with the learning rate of 0.1, and the regularization of 0.02 [54]. The

loss function of the classification model is the cross entropy, but the mean squared error for

the regression model. The early stop technique was also used to control the overfitting [55].

The details of the construction of the neural networks for both the classification and the

regression models are presented in Appendix B.

After training the classification and the regression models, they are combined to be

used as directed. The classification block classifies the random pulse and sends it to the

corresponding regression block to solve for the analytical parameters of one of three kinds

of the phase. The classification reaches the accuracy of 97.93%, and the overall root mean

square error of the regression is smaller than 0.1, providing the deep learning model’s results

accurate enough. Both the classification and regression models are evaluated via a separate

test data set, which contains 3×103 samples. To demonstrate high accuracy of the analytical

fit to the numerical data of the phase of the field we show several prototypical phases in

Fig.(4).
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IV. NUMERICAL RESULTS

Numerical analyses of the effects of the pulse shaping on the optimization of quantum

coherence and mitigation of decoherence in the target molecules as well as the impact of

multiple scattering from the target molecules are performed using the methanol molecule and

addressing the Raman active symmetric mode having frequency 2837 cm−1 (85.05 THz) [5].

This mode is chosen as a frequency unit [ω21]. The control scheme provides the selectivity of

excitation of Raman active modes with the resolution up to 1/τ , where τ is a chirped pulse

duration, which is about 2 to 3 cm−1. Thus, the asymmetric stretch mode having frequency

2942 cm−1 (88.20 THz) is not excited by the control scheme. The selectivity of excitation

is not preserved when a broadband but transform-limited pulse trains are applied.

First we present the results of investigation of the dependence of the population and

coherence on the peak Rabi frequency of the control pulses and reveal adiabatic type of

solution leading to the maximum vibrational coherence. Then we analyze the four-level

system dynamics subject to the interaction with the control pulse trains in the presence of

decoherence and demonstrate a sustainable value of vibrational coherence. Finally, we show

the solution of the Maxwell - Liouville von Neumann equations for the control pulse trains

interacting with an ensemble of methanol molecules illustrating growth of the vibrational

coherence and the anti-Stokes component of the propagating fields. Where appropriate, we

compare the results with those for the transform-limited pulse trains interaction with the

symmetric stretch mode in the CARS configuration.

A. The analysis of the state population and coherence induced by the control

pulses

Fig.(5(a)-(d)) shows the dependence of the populations and coherence as a function of the

peak Rabi frequency for the case of the transform-limited pump, Stokes and probe pulses

with zero and non-zero one-photon detuning (a),(c), and control pulses with zero and non-

zero one-photon detuning (b),(d) respectively. The envelope of the Rabi frequency is the

same for all three transform-limited pulses, which are also used as an initial condition for

chirping in the control scheme. The values of the Rabi frequency on the abscissa are pre-

sented for the transform-limited pulse. Decoherence is not taken into account to get a clear
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picture of the dependence of the state population and coherence on the Rabi frequencies.

Under the one-photon resonance condition shown for the transform-limited pulses in (a)

and for the chirped pulses in (b), the population of the excited states is significant, which

prevents from achieving an equal population between the ground state |1〉 and the excited

state |2〉. In the transform-limited pulse scenario in (a), coherence periodically becomes

zero, which is not the case for the control pulses solution shown in (b). Such a behavior in

(a) is due to the pulse area type of solution, when the probability amplitude of the states

depends on the pulse area with π value leading to the population inversion and 2π - to the

population return. In contrast, the control pulse scheme provides adiabatic type of response

in the four-level system with nonzero value of coherence, which depends on the strength of

the fields as shown in (b). The one-photon detuning ∆s = ∆as = ∆ = 1.0[ω21] minimizes the

transitional population of the excited states |3〉 and |4〉 for both transform-limited and the

control pulse scenario shown in (c) and (d) respectively. The one-photon detuning shifts the

point of first zero coherence toward higher values of the Rabi frequencies in the transform-

limited case in (c). In the control case in (d), the first point of equal population giving the

maximum vibrational coherence occurs at the peak Rabi frequency Ωp0 = 0.75[ω21] and is

achieved due to two-photon adiabatic passage with a negligible involvement of the excited

state manifold into population dynamics. Beyond this point, coherence value varies within

the range from 0.5 to 0.35 for the peak Rabi frequency Ωp0 = 1[ω21] and higher. Once

coherence is built, it never drops to zero, in contrast to the transform-limited pulses solu-

tion. Thus, the detuned chirped pulse control scheme is more robust for the applications

in CARS microscopy and spectroscopy because it provides one with a sustainable value of

coherence resilient to fluctuations in the intensity of the Raman fields. To demonstrate

adiabatic passage generated under the condition of nonzero one-photon detuning, a time-

dependent picture is presented in Fig.(6(a-d)). The time dependence of the population and

coherence in the four level system interacting with the transform-limited pump, Stokes and

probe pulses, (a),(c), and with the control pulses, (b),(d) shows population dynamics and

coherence for two values of the peak Rabi frequency Ωp = 1.08 and 1.5[ω21]. The value of

the Rabi frequency Ωp0 = 1.08[ω21] is chosen according to the Fig.(5(d)), which generates

the second equal population between the ground state |1〉 and the excited state |2〉 and

the maximum coherence ρ21 in the control pulses scenario. It leads to adiabatic population

transfer from the ground state |1〉 to the excited state |2〉. Meanwhile, the value of the peak
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FIG. 5: The population and coherence in the four-level system as a function of the peak Rabi

frequency Ωp[ω21], which is the same for the pump, Stokes and probe pulses, ω21 = 85 THz.

Parameters used in the calculations are τ0 = 4.66[ω−1
21 ],Γ = γ = 0. In (a) the transform-limited

pump, Stokes and probe pulses with zero one-photon detuning are applied, ∆s = ∆as = ∆ = 0;

(b) the control pump, Stokes and probe pulses with zero one-photon detuning are applied

α′s/τ
2
0 = −1.0,∆ = 0; (c) the transform-limited pulses with non-zero one-photon detuning are

applied, ∆ = 1.0[ω21]; (d) Control pulses with non-zero one-photon detuning are applied,

α′s/τ
2
0 = −1.0,∆ = 1.0[ω21]. Once coherence is built by the control pulses, it never drops to zero,

in contrast to the transform-limited pulses solution. The detuned control scenario is robust for

the applications in CARS microscopy and spectroscopy because it provides sustainable value of

coherence resilient to fluctuations in the intensity of the Raman fields.

Rabi frequency Ωp0 = 1.5[ω21] is chosen because it gives the first zero coherence for the

transform-limited pulse scenario in Fig.(5(c)), which is not the case for the control scheme

in Fig.(5(d)). Parameter γ is non-zero in order to see how spontaneous decay impacts state

dynamics for the chosen representative values of the Rabi frequency. The time dependence

of the populations and a significant coherence is still observed in (d) demonstrating benefits

of the control scheme.
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B. The analysis of the four-level system dynamics subject to the interaction with

the control pulse trains in the presence of decoherence

We analyze the impact of decoherence in the four-level system through its interaction with

the control pump, Stokes and probe pulse trains each consisting of ten pulses in Fig.(7). The

results in (a-d) are given for the peak Rabi frequency Ωp0 = 1.08[ω21], and the results in

(e-h) for Ωp0 = 1.5[ω21]. The value Ωp0 = 1.08[ω21] provides the maximum coherence (1/2)

for the control pulse and high value of coherence (0.45) for the transform-limited pulse

according to Fig.(5c,d), and the Ωp0 = 1.5[ω21] gives a contrast value of coherence for the

control and the transform-limited pulse application, 0.39 and 0.07 respectively. We analyze

the controllability and sustenance of vibrational coherence in the four-level system subject

to a fast spontaneous decay and collisions (∼ 10fs); then we investigate the impact of

vibrational relaxation considering the decay on the order of 1ps and demonstrate how the

loss of coherence due to this process may be mitigated by periodically restoring population

of the excited vibrational state |2〉 of the ground electronic state; and then we compare this

result to the case when collisional dephasing is on the same order of magnitude (∼ 1ps).

Fast spontaneous decay and collisional dephasing rates (1014Hz) of the transitional ex-

cited states |3〉 and |4〉 impact population dynamics and coherence even though these states

are negligibly populated, shown in Fig.(7(a),(e)). Here populations and coherence ρ21 are

presented as a function of time for γ4i = γ3i = Γ4i = Γ3i = 1014Hz, i=1,2. Population of

states |1〉 ≈ 0.6 and |2〉 ≈ 0.4 is stable between pulses, but, even though |3〉 and |4〉 states

are negligibly populated owing to the control scheme applied, their fast decoherence while

pulse is on (chirped pulse duration is 55fs) impacts populations of states |2〉 and |1〉 and

coherence ρ21 periodically drops to ∼ 0.02. Between pulses, such a fast relaxation from the

excited states leads to a reduced but stable value of coherence ρ21 ∼ 0.2.

Fig.(7(b),(f)) shows the system dynamics in the presence of the vibrational relaxation

of state |2〉 described by γ21 = 1012Hz. Spontaneous decay from the excited states is

also present, γ4i = γ3i = γ21 = 1012Hz; Γ4i = Γ3i = Γ21 = 0. Figure demonstrates that

coherence ρ21 is periodically built up by the chirped pulses, and then insignificantly reduces

its value between the pulses in the trains. Spontaneous decay rate γ = 1THz from the

excited state |4〉 to |3〉 does not make any contribution to the population dynamics and

was neglected. However, because the pulse train period is chosen to match the decay time
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T = 1/γ21 = 1ps, (and no collisional dephasing, Γij = 0), the population of state |2〉

decreased due to spontaneous decay is periodically restored by control fields providing a

sustainable value of coherence. When vibrational relaxation is much faster (e.g., 1014Hz)

than the pulse repetition rate (1012Hz), coherence ρ21 becomes negligibly small between

pulses (not shown here). Switching on collisional dephasing such that Γ21 = γ21 = 1THz

results in a more dramatical reduction of coherence ρ21 as it is shown in Fig.(7(c),(g))

because collisional dephasing cannot be mitigated by this mechanism being represented by

off-diagonal density matrix elements. However, the resultant coherence ρ21 does not drop

to zero between pulses. This is due to the choice of the pulse repetition rate as well as the

control scheme leading to a negligible population of the excited states |3〉 and |4〉 in the

dynamics. In contrast, the simultaneous application of the transform-limited pump, Stokes

and probe pulse trains shown in Fig.(7(d),(h)) results in strong dependence of coherence

on the peak Rabi frequency in accordance with the pulse area solution. The simultaneous

application of the transform-limited pulses in this calculation aims to compare with the

chirped pulses scenario. (Note, that within a different control scheme, e.g., F-STIRAP [56],

which imposes a time delay between the Stokes and the pump pulses, the transform-limited

pulses generate the maximum coherence.) The results of calculations presented in Fig.(7) for

various values of the Rabi frequency of the control pulses and the transform-limited pulses

led to a conclusion that for the control scheme there is vibrational coherence in the system

for any value of the peak Rabi frequency within the adiabatic range, while for the related

transform-limited pulse scenario this is not the case.

C. The impact of Beer’s law on the average intensity of propagating anti-Stokes

signal

We apply Beer’s law under the ideal conditions to evaluate the change in the amplitude

of the anti-Stokes signal as pulses propagate through the atmosphere. I apply ten transform-

limited pulses in the pulse train. Numerical analysis shows that the amplitude of the pump,

Stokes and probe pulse trains is reduced upon propagation, while the average intensity of

the anti-Stokes pulse trains is amplified as shown in Fig.(8) for propagation through 699

layers for both cases, with and without impact from the air. The intensity of the anti-Stokes

pulse trains in the presence of the air is depreciated due to the scattering and absorption
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FIG. 6: Dynamics of the population of four states ρ11 (dashed red), ρ22 (dash-dotted green), ρ33

(dotted black), ρ44 (solid yellow) and coherence ρ21 (solid black) in the four-level system

interacting with the transform-limited pump, Stokes and probe pulses in (a),(c); and the control

pulses in (b),(d), α′s/τ
2
0 = −1.0 for the peak Rabi frequency of the pump, the Stokes and the

probe pulses, (before chirping for the control scheme), Ωp = 1.08 [ω21] in (a),(b), and 1.5 [ω21] in

(c),(d). Other parameters are τ0 = 4.66 [ω−1
21 ], all γij = γ = 1.176× 10−2[ω21],Γ = 0,∆ = 1.0[ω21].

effects.

D. The analysis of the Maxwell - Liouville von Neumann equations and demon-

stration of a generation of the anti-Stokes signal

Using Maxwell’s equations Eqs.(8) coupled to the Liouville von Neumann equations Eqs.

(9) we numerically analyzed the propagation effects of the control pump, Stokes, probe

and the generated anti-Stokes fields scattered from the target molecules and observed the

amplification of the anti-Stokes component. The machine learning approach was imple-

mented to reveal the modulation of the phase of four field components after each scattering

Fig.(9) shows the control pump, Stokes, probe and the built-up anti-Stokes pulses after

each of five consecutive scattering events for the parameters of the fields Ωp(s,pr) = 85THz
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FIG. 7: Dynamics of the population of four states ρ11 (dashed red), ρ22 (dash-dotted green), ρ33

(dotted black), ρ44 (solid yellow) and coherence ρ21 (solid black) in the four-level system

interacting with the control pulse trains having the repetition rate of 1 THz and the value of the

peak Rabi frequency in (a-d) equal to Ωp0 = 1.08[ω21], and in (e-h) equal to Ωp0 = 1.5[ω21]. In

(a),(e) γ4i = γ3i = Γ4i = Γ3i = 1014Hz, i=1,2, but no vibrational relaxation, γ21 = Γ21 = 0; in

(b),(f) γ4i = γ3i = γ21 = 1012Hz; Γ4i = Γ3i = Γ21 = 0; in (c),(g)

γ4i = γ3i = Γ4i = Γ3i = γ21 = Γ21 = 1012Hz; and (d),(h) the four-level system interacting with

the transform-limited pulse trains and γ4i = γ3i = Γ4i = Γ3i = γ21 = Γ21 = 1012Hz. The rest field

parameters are τ0 = 4.66[ω−1
21 ],∆s = ∆as = 1.0[ω21] and α′s/τ

2
0 = −1.0 for the control pulse

scenario.

(Ep(s,pr)0 ∼ 1.6 × 109V/m), τ0 = 54.8fs, αs = −7THz/fs, and ∆s = ∆as = ∆ = 850THz.

The neural networks explained in the previous section were optimized to work for these

parameters. The classifier neural network predicted the pulses as the third kind described

above and the regression neural network provided the chirping parameters. After 5 scatter-
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FIG. 8: An average intensity of the anti-Stokes pulses as a function of the number of scattering

layers calculated applying Beer’s law to the propagation of a transform-limited pulse train

consisting of 10 pulses. The black solid curve represents the change in the average intensity as

pulses undergo scattering through layers for the case of βe = 0 (without taking air into

consideration), and red dashed curves shows for βe = 0.55 km−1. The one-photon detuning is

∆ = 1[ω21] in (a), and ∆ = 10[ω21] in (b). The width of the target molecules distribution is

σ = 1m. The depreciation of intensity is due to scattering and absorption in the air.

ing events, the change in the initial chirp rate αs is less than 0.001% indicating that the

control scheme would work for large number of layers. The anti-Stokes component is built

up having the peak Rabi frequency about 10−6Ωp after the fifth iteration.

We also analyzed propagation effects using the transform-limited pump, Stokes, and

probe pulse trains having the peak Rabi frequency Ωp(s,pr) = 85THz = ω21 and been largely

detuned from the one-photon transitions, the detuning is ∆s = ∆as = ∆ = 10ω21 = 850THz

for the adiabatic regime. We consider 10 pulses in the pulse train having period T = 1ps.

The increase of the peak value of the anti-Stokes Rabi frequency Ωas(t) by two orders of

magnitude is observed 1 meter (199 layers) away from the peak molecular density. Coherence

is increasing from pulse to pulse and the population is adiabatically transferred from the

ground state |1〉 to the excited state |2〉 in the four-level system during the interaction with

four fields in the CARS configuration. Here adiabatic regime is achieved due to a large
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FIG. 9: The pump, the Stokes, the probe and the built-up anti-Stokes chirped pulses after each of

five consecutive scattering events. 0,1,2,3,4,5 represent incoming, 1st, 2nd, 3rd, 4th and 5th

scattering event respectively. The incident pulses are chirped in accordance with the control

scheme. The parameters of the fields are Ωp(s,pr) = 85THz (Ep(s,pr)0 ∼ 1.6× 109V/m),

τ0 = 54.8fs, αs = −7THz/fs, and ∆s = ∆as = ∆ = 850THz. The anti-Stokes field is built up

gradually and constitutes ∼ 10−6 of the amplitude of the incident field.

one-photon detuning ∆ = 10ω21 and the choice of the peak Rabi frequency Ωp(s,pr) = ω21,

which result in a negligible population of the transitional states |3〉 and |4〉.

From the results above it follows that the implementation of the control pulse trains in

the four-wave mixing in CARS is more robust for the generation of a sustainable anti-Stokes

backscattered signal compared to the use of a set of transform-limited pulses. This is due

to the adiabatic regime of light-matter interaction which preserves vibrational coherence

and facilitates a built-up of the anti-Stokes signal. For the case of the phase-matching
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FIG. 10: Scattering dynamics using the transform-limited pump, Stokes, and probe pulse trains

having the peak Rabi frequency equal to the frequency between states |1〉 and |2〉, Ωp(s,pr)0 = ω21,

and been largely detuned from the one-photon transitions, the detuning is

∆s = ∆as = ∆ = 10ω21 = 850THz for adiabatic regime. There are 10 pulses in each pulse train.

The first raw shows ten anti-Stokes pulses (top), the state coherence (middle) and populations

(bottom) after the first scattering event; the second raw shows the same after the 199th

scattering event. Parameters σ = 0.2m; 199 layers provide a distance of 1 m away from the peak

molecular density; τ0 = 54.8fs; T = 1ps.

conditions relaxed, given the size of the molecules is less than the wavelength of the incident

fields, a collinear copropagating configuration of CARS may be created using the methanol

as a surrogate target. Because the anti-Stokes radiation is generated as a result of the

stimulated Raman scattering process, it is highly directional and is built up in the forward

and the backward directions dominantly [22, 57]. Therefore, the backscattered anti-Stokes

signal will reach a detector near the laser source. The following parameters of the fields may

be used in an experiment: the pulse duration of order 100fs, the peak field amplitude of

E0p(s,pr) ∼ 1.6 × 109V/m; the control pulse chirps obeying the relationship αs = −αp, and

αpr = αs − αp for the first half of the pulse duration t ≤ tc, and αs = αp, αpr = 0 for t > tc;

the value of αs = −7THz/fs, the pulse train period of order of spontaneous decay time and

the one-photon detuning of order ∆ ∼ 1/fs.
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V. SUMMARY

We present a semiclassical theory of the four-wave mixing process in the coherent anti-

Stokes Raman scattering implementing the control pulse trains. The theory is based on

a set of Maxwell’s equations for propagation of the pump, the Stokes, the probe and the

anti-Stokes components of the fields coupled to the Liouville von Neumann equations with

relaxation for dynamics in the target molecules. It is intended for the investigations of the

remote detection of biochemical molecules. The multi-layer model is developed to account

for the spatial distribution of the target molecules in the air mimicking the environmental

conditions. The machine learning approach is developed to analyze the evolving phase of

the pulse trains as they undergo scattering within each layer. The approach makes use

of the deep Convolutional Neural Network. The quantum control method for the incident

pulse shaping is implemented, which optimizes the macroscopic induced polarization in the

target molecules by maximizing vibrational coherence. The method implies chirping of the

incident pulse trains, which induce adiabatic population transfer within four states in the

CARS scheme leading to a sustainable, high vibrational coherence. Importantly, the tran-

sitional excited states get negligibly populated, thus minimizing the impact of spontaneous

decay and associated losses of coherence from these states. Moreover, the choice of the

pulse train period to match the spontaneous decay time permits for mitigation of the vi-

brational decay. The enhancement of the anti-Stokes field is observed upon propagation

through the ensemble of the target molecules, achieved by the control pulse trains as well

as by the transform-limited pulse trains with a large detuning and a carefully chosen Rabi

frequency. The coherent enhancement of the anti-Stokes signal and mitigation of decoher-

ence by chirped control fields form a foundation for the propagation of the anti-Stokes signal

through distances on a kilometer scale.
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Appendix A: Derivation of Maxwell - Liouville von Neumann Equations

Maxwell’s equations, with no free currents and charges, read

∇ · (ε0E + P ) = 0 (A1)

∇× E = −∂B/∂t (A2)

∇×B = µ0∂(ε0 + P )/∂t (A3)

∇ ·B = 0 (A4)

From Eqs.(A2,A3) we obtain the wave equation

∇2E − ε0µ0
∂2E

∂2t
= ∇(∇ · E) + µ0

∂2P

∂2t
. (A5)

It follows from Eq.(A1) that ∇ ·E = ∇ · P/ε0 in a space free from charges. In a plane wave

limit, when the wave length is much less than the beam radius and neglecting any diffraction

effects in transverse direction, fields propagate in the ẑ direction and have polarization in

the XY plane. Then ∇ · P may be set to zero and the wave equation reads(
∂

∂z
+

1

c

∂

∂t

)(
− ∂

∂z
+

1

c

∂

∂t

)
E = −µ0

∂2P

∂t2
(A6)

Assuming the field is E(z, t) = 1
2
(E0(z, t)e−i[ωt−kz−φ(z,t)] + c.c) and polarization is P (z, t) =

1
2
(P0(z, t)e−i[ωt−kz−φ(z,t)]+c.c) and considering E0(z, t) and φ(z, t) as slowly varying functions

of position and time, we write

−∂E(z, t)

∂z
= −1

2
(e−iωteikzeiφ(z,t)∂E0(z, t)

∂z
+ ikE0(z, t)e−iωteikzeiφ(z,t) (A7)

+i
∂φ(z, t)

∂z
E0(z, t)e−iωteikzeiφ(z,t) + c.c.)

1

c

∂E(z, t)

∂t
=

1

2c
(e−iωteikzeiφ(z,t)∂E0(z, t)

∂t
− iωE0(z, t)e−iωteikzeiφ(z,t) (A8)

+i
∂φ(z, t)

∂t
E0(z, t)e−iωteikzeiφ(z,t) + c.c.)

Then (
− ∂

∂z
+

1

c

∂

∂t

)
E = −ik

2
(E0(z, t)e−iωteikzeiφ(z,t) − c.c.)

−iω
2c

(E0(z, t)e−iωteikzeiφ(z,t) − c.c.) (A9)

= −ik(E0(z, t)e−i(ωt−kz−φ(z,t)) − c.c.) = −2ik Im{E}.
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By substituting Eq.(A9) to Eq.(A6) and using ω/c = k and later assuming real fields we

arrive at

−ik
(
∂
∂z

+ 1
c
∂
∂t

)
(E0(z, t)e−i(ωt−kz−φ(z,t)) + c.c.) =

−ik ∂E0(z,t)
∂z

e−i(ωt−kz−φ(z,t)) + ik
∂E∗

0 (z,t)

∂z
ei(ωt−kz−φ(z,t))

− ik
c
∂E0(z,t)

∂t
e−i(ωt−kz−φ(z,t)) + ik

c

∂E∗
0 (z,t)

∂t
ei(ωt−kz−φ(z,t)) =

−ik
[(

∂E0(z,t)
∂z

+ 1
c
∂E0(z,t)

∂t

)
e−i(ωt−kz−φ(z,t)) −

(
∂E∗

0 (z,t)

∂z
+ 1

c

∂E∗
0 (z,t)

∂t

)
ei(ωt−kz−φ(z,t))

]
=

−2k
(
∂E0(z,t)

∂z
+ 1

c
∂E0(z,t)

∂t

)
1
2i

(
−e−i(ωt−kz−φ(z,t)) + ei(ωt−kz−φ(z,t))

)
= −2k

(
∂E0(z,t)

∂z
+ 1

c
∂E0(z,t)

∂t

)
sin (ωt− kz − φ(z, t)) =

−µ0
∂2

∂t2
P (z, t) (A10)

For P (z, t) = 1
2
(P0(z, t)e−i[ωt−kz−φ(z,t)] + c.c),

∂2

∂t2
P (z, t) = −ω2

(
1

2
(P0(z, t)e−i[ωt−kz−φ(z,t)] + c.c)

)
= −ω2 Re [P (z, t)] (A11)

Substituting these in Eq.(A10) gives

−2k(∂E0(z,t)
∂z

+ 1
c
∂E0(z,t)

∂t
) sin (ωt− kz − φ(z, t)) =

µ0ω
2 (Re [P0(z, t)] cos (ωt− kz) + Im [P0(z, t)] sin (ωt− kz − φ(z, t))) , (A12)

leading to

−2k(∂E0(z,t)
∂z

+ 1
c
∂E0(z,t)

∂t
) = µ0ω

2Im [P0(z, t)] . (A13)

In quantum theory, a measurable quantity is the expectation value, which for macroscopic

polarization is an expectation value of the electric dipole moment operator µ̂, 〈P (z, t)〉 =

NsTr{〈ρ(z, t) · µ〉}, where Ns is the atomic density of the target molecules. Applied to

the four-level system of CARS, it contains four components corresponding to each of four

transitions:

Pp(z, t) = 2Ns Re
[
µ13ρ13(z, t)ei(ωpt−kpz−φ(z,t))

]
Ps(z, t) = 2Ns Re

[
µ23ρ23(z, t)ei(ωst−ksz−φ(z,t))

]
Ppr(z, t) = 2Ns Re

[
µ24ρ24(z, t)ei(ωprt−kprz−φ(z,t))

]
Pas(z, t) = 2Ns Re

[
µ14ρ14(z, t)ei(ωast−kasz−φ(z,t))

]
,

(A14)

26



giving P0p(z, t) = Nsµ13ρ13(z, t), P0s(z, t) = Nsµ23ρ23(z, t), P0pr(z, t) = Nsµ24ρ24(z, t), and

P0as(z, t) = Nsµ14ρ14(z, t).

For four components of propagating fields in CARS, the Eq.(A13) reads as follows

∂Ep
∂z

+ 1
c

∂Ep
∂t

= −Ns
µ0µ13ω2

p

kp
Im{ρ13(z, t)} (A15)

∂Es
∂z

+ 1
c
∂Es
∂t

= −Ns
µ0µ23ω2

s

ks
Im{ρ23(z, t)}

∂Epr
∂z

+ 1
c

∂Epr
∂t

= −Ns
µ0µ24ω2

pr

kpr
Im{ρ24(z, t)}

∂Eas
∂z

+ 1
c
∂Eas
∂t

= −Ns
µ0µ14ω2

as

kas
Im{ρ14(z, t)}.

If t̄ = (t− z
c
), then dt

dz
= ( dt̄

dz
+ 1

c
), which leads to ∂

∂z
= ∂

∂t
∂t
∂z

= 1
c
∂
∂t

. Taking into account that

kq = ωq/c, and cωqh̄ = Eq, where q = p, s, pr, as, the Eq. (A15) becomes

1

c

∂Eq
∂t

= −Nsµ0µij
Eq(t)

h̄
Im{ρij} (A16)

We find the density matrix elements ρij from the Liouville von Neumann equation ih̄ρ̇ =

[H, ρ] and using the above Hamiltonian in Eq.(2). We start by opening the commutator and

applying the substitutions

ρ12 = ρ̃12e
i(αp−αs)t2/2

ρ13 = ρ̃13e
i(∆st+αpt2/2)

ρ14 = ρ̃14e
i∆ast

ρ23 = ρ̃23e
i(∆st+αst2/2)

ρ24 = ρ̃24e
i(∆ast+αprt2/2)

ρ34 = ρ̃34e
i(∆as−∆s)t−iαpt2/2 (A17)

Next, we apply the rotating wave approximation and use the control condition on the chirp
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parameters αs − αp = αpr, and arrive at

ρ̇11 = −iΩp0(t)/2ρ̃31 + iΩ∗p0(t)/2ρ̃13 − iΩas0(t)/2ρ̃41 + iΩ∗as0(t)/2ρ̃14

ρ̇22 = −iΩs0(t)/2ρ̃32 + iΩ∗s0(t)/2ρ̃23 − iΩpr0(t)/2ρ̃42 + iΩ∗pr0(t)/2ρ̃24

ρ̇33 = iΩp0(t)/2ρ̃31 − iΩ∗p0(t)/2ρ̃13 + iΩs0(t)/2ρ̃32 − iΩ∗s0(t)/2ρ̃23

ρ̇44 = iΩas0(t)/2ρ̃41 − iΩ∗as0(t)/2ρ̃14 + iΩpr0(t)/2ρ̃42 − iΩ∗pr0(t)/2ρ̃24

˙̃ρ12 = iαprtρ̃12 − iΩp0(t)/2ρ̃32 − iΩas0(t)/2ρ̃42 + iΩ∗s0(t)/2ρ̃13 + iΩ∗pr0(t)/2ρ̃14

˙̃ρ13 = −i(∆s + αpt)ρ̃13 − iΩp0(t)/2(ρ33 − ρ11)− iΩas0(t)/2ρ̃43 + iΩs0(t)/2ρ̃12

˙̃ρ14 = −i∆asρ̃14 − iΩp0(t)/2ρ̃34 − iΩas0(t)/2(ρ44 − ρ11) + iΩpr0(t)/2ρ̃12

˙̃ρ23 = −i(∆s + αst)ρ̃23 − iΩs0(t)/2(ρ33 − ρ22)− iΩpr0(t)/2ρ̃43 + iΩp0(t)/2ρ̃21

˙̃ρ24 = −i(∆as + αprt)ρ̃24 − iΩpr0(t)/2(ρ44 − ρ22)− iΩs0(t)/2ρ̃34 + iΩas0(t)/2ρ̃21

˙̃ρ34 = i(∆s −∆as + αpt)ρ̃34 − iΩ∗p0(t)/2ρ̃14 − iΩ∗s0(t)/2ρ̃24 + iΩas0(t)/2ρ̃31 + iΩpr0(t)/2ρ̃32.

After performing adiabatic elimination of the excited states assuming that

ρ̇13, ρ̇14, ρ̇23, ρ̇24, ρ̇34 ≈ 0, ρ34 ≈ 0, ρ33, ρ44 � ρ11, ρ22 and ρ̇33, ρ̇44 ≈ 0, the density

matrix elements ρ13, ρ23, ρ14, ρ24 read in terms of ρ11, ρ22 and ρ12 as follows

ρ13 =
1

2(∆s + αpt)
Ωp0(t)ρ11 +

1

2(∆s + αpt)
Ωs0(t)ρ12

ρ23 =
1

2(∆s + αst)
Ωs0(t)ρ22 +

1

2(∆s + αst)
Ωp0(t)ρ21

ρ14 =
1

2∆as

Ωas0(t)ρ11 +
1

2∆as

Ωpr0(t)ρ12

ρ24 =
1

2(∆as + αprt)
Ωpr0(t)ρ22 +

1

2(∆as + αprt)
Ωas0(t)ρ21

(A18)

Substituting Eq.(A18) in Eq.(A16) and rewriting the equations in terms of Rabi frequen-

cies provide the following Maxwell’s equations:

∂Ωp0

∂t
= c

∂Ωp0

∂z
= − η

2(∆s + αpt)
κ13ωpΩs0(t) Im[ρ12]

∂Ωs0

∂t
= c

∂Ωs0

∂z
=

η

2(∆s + αst)
κ23ωsΩp0(t) Im[ρ12]

∂Ωpr0

∂t
= c

∂Ωpr0

∂z
=

η

2(∆as + αprt)
κ24ωprΩas0(t) Im[ρ12]

∂Ωas0

∂t
= c

∂Ωas0

∂z
= − η

2(∆as)
κ14ωasΩpr0(t) Im[ρ12].

(A19)
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Appendix B: The structure of the Deep Neural Networks

Both the classification and the regression neural networks share the same core structure.

Since the numerical pulses, which we generated as the training data, have 2500 time steps,

all models have the input shape of 2500×1. There are three blocks of the mini-convolutional

neural network in the models. The first block contains three 1D convolutional layers with

the kernel size of 3. The second block has two layers of the 1D convolutional network with

kernel size of 5. The third block has a single 1D convolutional layer of kernel of 7. All the

convolutional layers are activated by the Rectified Linear Units Function [58] and the Group

Normalization [59]. There is a maximum pooling layer of pool size 4 after each block. There

is a linear layer of size 1024 after the output of the convolutional blocks is flattened.

The structure of the neural network, shown in Fig.(11), is determined by the validation

results, together with the other hyperparameters, such as the learning rate, the choice of

optimizer and regularization. We adjust the kernel size, the number of blocks and the number

of layers in each block to have the optimal validation result. The 1D convolution layers are

used because they are suitable for extracting the information within the sub-region of the

whole input tensor. It is a match to our aim, which is to extract the instantaneous value

of the analytical parameter from the numerical sequential, time-dependent data. Besides,

we use several 1D convolution layers as a block to extract the high dimension information

from the input tensor. Three kernels of size of 3 cover the same area of the input tensor as

a single kernel of size of 7, but the former catches the higher dimension information than

the later one. We didn’t set all blocks to three layers of kernel size of 3 because we would

like to control the overfitting problem.
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Input Tensor 2500 × 1

1D Conv, 3 × 32
1D Conv, 3 × 32
1D Conv, 3 × 32

1D Conv, 5 × 64
1D Conv, 5 × 64

MaxPooling 4

MaxPooling 4

1D Conv, 7 × 128
MaxPooling 4

Linear 1024

Linear 3 Linear 2 Linear 3 Linear 3

Classification Regression for 
Linear

Regression for 
Second

Regression for 
Roof

FIG. 11: The structure of the Deep Neural Network. The same structure is shared by the phase

type classifier and the three phase value regression models, except for the last output layer.

Three convolutional blocks are used sequentially to extract the highly non-linear information

from the input time dependent tensor. The linear layer is used after flatten the output from the

last convolutional block.
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