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We propose how to achieve significantly enhanced quantum refrigeration and entanglement by coupling a

pumped auxiliary cavity to an optomechanical cavity. We obtain both analytical and numerical results, and find

optimal-refrigeration and -entanglement conditions under the auxiliary-cavity-assisted (ACA) mechanism. Our

method leads to a giant amplification in the net refrigeration rate, and reveals that the ACA entanglement has a

much stronger noise-tolerant ability in comparison with the unassisted case. By appropriately designing the

ACA mechanism, an effective mechanical susceptibility can be well adjusted, and a genuine tripartite

entanglement of cooling-cavity photons, auxiliary-cavity photons, and phonons could be generated.

Specifically, we show that both optomechanical refrigeration and entanglement can be greatly enhanced for

the blue-detuned driving of the auxiliary cavity but suppressed for the red-detuned case. Our work paves a way

towards further quantum control of macroscopic mechanical systems and the enhancement and protection of

fragile quantum resources.

I. INTRODUCTION

Exploring radiation-pressure interactions between light and

mechanical motion in cavity optomechanics [1–4] has lead to

an impressive development of efficient methods for generating

and controlling photon blockade [5–13], optomechanically

induced transparency [14–19], dynamical Casimir effect [20–

23], and nonreciprocal excitation transport [24–32]. In partic-

ular, optomechanical cooling [33–35] and entanglement [36–

43] studied here are, respectively, a prerequisite for observing

and manipulating quantum mechanical effects and a key

element in quantum information processing.

So far, several cooling mechanisms based on optomechan-

ical systems, such as resolved-sideband cooling [33, 34] and

feedback-aided cooling [35, 44–53], have been proposed to

cool mechanical resonators to their quantum ground states.

To further develop cooling performance, various new cooling

schemes have been proposed, such as those based on quantum

interference [54–56], parity-time symmetric [57], modulated

pulses [58, 59], domino effect [60, 61], strong couplings [62,

63], and nonreciprocity [28, 64]. Particularly, cooling

of mechanical resonators has also been simultaneously

achieved in optical [65–69] and microwave [70–76] platforms.

These theoretical and experimental advances enable the

generation of nonclassical mechanical states and the quantum

manipulation of macroscopic mechanical systems.

In parallel, optomechanical interfaces also provide a

powerful tool for achieving quantum entanglement between,

e.g., a cavity-field mode and a mechanical mode, two

∗ denggaolai@foxmail.com
† wei.qin@riken.jp
‡ bphou@sicnu.edu.cn
§ miran@amu.edu.pl
¶ fnori@riken.jp

cavity-field modes, and two mechanical resonators [36–

42]. However, this generated entanglement is often limited

by the stability conditions of the systems [36–38] and the

amplification effect in the unstable regime [77, 78]. In

particular, environmental thermal noises can destroy fragile

quantum entanglement in practical devices. To generate

highly pure quantum entanglement, reservoir engineering

techniques [79–85], quantum interference effect [86–91], time

modulation of the driving laser [92–95], photon counting

techniques [96], and Sagnac effect [97], have been proposed

based on cavity optomechanical systems. Despite such

achievements, the enhancement of both optomechanical

cooling and entanglement, and the protection of fragile

quantum correlations in practical devices still need

further studies.

In this paper, we again study how to significantly enhance

the performances of refrigeration and entanglement in an

auxiliary-cavity-assisted optomechanical system, revealing

the robustness of the ACA entanglement against thermal

noises. Inspired by optomechanical cooling and entanglement

in a single-cavity setup [33–36], we generalize the approach

for a two-cavity system, where a pumped auxiliary cavity is

coupled to an optomechanical cavity. Our study differs from

what is known in the double-cavity literature because we are

interested not in an EIT-like mechanism [88–90], but in a

pumped-auxiliary-device engineering. Using both analytical

and numerical calculations based on the ACA mechanism,

more than a ten-fold improvement can be achieved for

the net cooling rate, and the amplification factor almost

linearly depends on the pump power of the auxiliary cavity.

Physically, the ACA mechanism can significantly amplify the

effective optomechanical coupling strength and considerably

speed up the refrigeration process. Additionally, we show

that by appropriately designing the ACA mechanism, an

effective susceptibility of the mechanical resonator can

be tuned largely. Moreover, by assuming experimentally
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FIG. 1. (a) Schematics of the optomechanical system. A cooling cavity ac with resonance frequency ωc is, respectively, coupled to a mechanical

resonator with the position operator x, via radiation-pressure coupling with strength g, and to an auxiliary cavity through the tunneling

coupling with strength J. A monochromatic laser with frequency ωL (ωR) and field amplitude ΩL (ΩR) is introduced to drive the cooling

(auxiliary) cavity. (b) Effective mechanical frequency Ωeff(ω) [see Eq. (21a)] and (c) effective mechanical damping Γeff(ω) [see Eq. (21b)]

versus the Fourier frequency ω in the auxiliary-cavity-unassisted (J = 0, blue solid curves) and -assisted (J/ωm = 0.15 and PR = 50 mW, red

dashed curves) cases. The parameters are: ∆ = ωm, ∆a = 0, ωm/2π = 10 MHz, κc/ωm = κa/ωm = 0.1, γm/ωm = 10−5, ωc/ωm = 2.817 × 107,

PL = 30 mW, m = 250 ng, n̄ = 103, L = 0.5 mm, and λ = 1064 nm.

reachable parameters, we find that cooling-cavity photons,

auxiliary-cavity photons, and phonons can be entangled

with each other, such that the steady state of the system

exhibits a genuine tripartite entanglement.

In particular, a significant enhancement can be achieved for

optomechanical cooling, quantum entanglement, and noise

tolerance of quantum resources. Remarkably, the cooling

performance of the mechanical resonator in the ACA case

is 40% higher than in cases without the auxiliary cavity.

Physically, the optomechanical cooling is mainly governed by

the net cooling rate, which directly determines the extraction

efficiency of the thermal excitations stored in the mechanical

resonator. The multiply amplified net cooling rate leads to

a significant enhancement of the cooling performance of the

resonator. We find that, for the blue-detuned driving of the

auxiliary cavity, both optomechanical cooling and entangle-

ment are significantly enhanced; while for the red-detuned

case, are suppressed. Moreover, in comparison with the

auxiliary-cavity-unassisted case, our ACA optomechanical

entanglement has a stronger ability against thermal noises.

We also reveal that due to the joint effect of optomechanical

and tunneling couplings, the indirectly coupled cavity photons

and phonons can be entangled strongly, and the robustness

of quantum entanglement against thermal noises is even up

to three times that of the directly coupled case. These

results provide the possibility to enhance or steer the

optomechanical refrigeration and entanglement, manipulate

macroscopic mechanical coherence, generate nonclassical

mechanical states, as well as enhance and protect fragile

quantum resources against thermal noise.

The rest of this paper is organized as follows. In Sec. II, we

present the ACA optomechanical model and its Hamiltonians.

In Sec. III, we derive the Langevin equations, obtain the

analytical and numerical results of steady-state average

phonon numbers, and calculate the logarithmic negativity. In

Sec. IV, we analyze the cooling performance. In Sec. V,

we study bipartite and tripartite entanglements. Finally, we

conclude in Sec. VI. Two Appendixes include the detailed

calculations of the steady-state mean phonon numbers and the

bistability analysis.

II. MODEL AND HAMILTONIAN

We consider an ACA optomechanical system, where a

pumped auxiliary cavity is coupled to a standard optome-

chanical cavity through a tunnelling coupling, as illustrated

in Fig. 1(a). A mechanical resonator is coupled to the

cooling-cavity field via radiation-pressure coupling. A

monochromatic laser with frequency ωL (ωR) and field

amplitude ΩL (ΩR) is applied to drive the cooling (auxiliary)

cavity, so that the optical and mechanical degrees of freedom

can be manipulated. The Hamiltonian of the system reads

(~ = 1)

H = ωca†cac + ωaa†aaa +
p2

x

2m
+

mω2
m x2

2
− ga†cacx

+J(a†caa + a†aac) + ΩL(a†ce−iωL t + aceiωLt)

+ΩR(a†ae−iωRt + aaeiωRt), (1)

where ac and aa (a
†
c and a

†
a) are the annihilation (creation)

operators of the cooling-cavity and auxiliary-cavity field

modes with resonance frequencies ωc and ωa, respectively.

The mechanical resonator is described by the momentum px

and position x operators with mass m and resonance frequency

ωm. The g term in Eq. (1) describes the optomechanical

coupling between the mechanical resonator and the cavity

field, where g = ωc/L is the strength of a single-photon

radiation-pressure force, with L being the rest length of the

optical cavity. The tunnelling coupling (with strength J)
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between the two cavity-field modes is described by the J

term. The last two terms in Eq. (1) describe, respectively,

the laser driving for the cooling and auxiliary cavities. Their

amplitudes are ΩL =
√

2PLκc/ωL and ΩR =
√

2PRκa/ωR,

with PL (PR) and κc (κa) being the driving power and the

cavity-field decay rate for the cooling (auxiliary) cavity,

respectively. Note that the photon-tunneling interaction

between the two cavity-field modes can be realized by

optical backscattering [97, 98]. This backscattering of the

photons is induced by the surface roughness and material

defects in practical devices. Therefore, in realistic systems,

the value of the photon-tunneling coupling used in our

simulations should be of the same order of the decay rates

of the cavity-field modes [97, 98].

For convenience, we introduce the dimensionless coor-

dinate and momentum operators q =
√

mωm x and p =

px/
√

mωm ([q, p] = i). In a rotating frame defined by

exp(−iωLta
†
cac − iωRta

†
aaa) with ωL = ωR, Hamiltonian (1)

becomes

HI = ∆ca†cac + ∆aa†aaa +
ωm

2
(q2 + p2) − g0a†cacq

+J(a†caa + a†aac) + ΩL(a†c + ac) + ΩR(a†a + aa), (2)

where ∆c = ωc − ωL (∆a = ωa − ωR) and g0 = g/
√

mωm are,

respectively, the driving detuning of the cooling (auxiliary)

cavity field and the strength of the optomechanical coupling

expressed in terms of the dimensionless momentum and

coordinate operators.

III. LANGEVIN EQUATIONS AND STEADY-STATE MEAN

PHONON NUMBERS

In this section, we derive the quantum Langevin equations

of the system and obtain the steady-state average phonon

numbers in the mechanical resonator.

A. Langevin equations

To include the damping and noise effects in this system,

we consider the case where the optical mode is coupled to

a vacuum bath and the mechanical mode is subjected to the

quantum Brownian force. In this case, the evolution of the

system can be described by the quantum Langevin equations

q̇ = ωm p, (3a)

ṗ = − ωmq − γm p + g0a†cac + ξ, (3b)

ȧc = − [κ + i(∆c − g0q)]ac − iJaa − iΩ +
√

2κcac,in, (3c)

ȧa = − (κa + i∆a)aa − iJac − iΩR +
√

2κaaa,in, (3d)

where γm is the decay rate of the mechanical resonator.

The operators ξ and ac,in (aa,in), respectively, denote the

Brownian force acting on the mechanical resonator and the

noise operator of the cooling (auxiliary) cavity. These noise

operators have zero mean values and have the following

correlation functions [35, 99],

〈ac,in(t)a
†
c,in

(t′)〉 = δ(t − t′), 〈a†
c,in

(t)ac,in(t′)〉 = 0, (4a)

〈aa,in(t)a
†
a,in

(t′)〉 = δ(t − t′), 〈a†
a,in

(t)aa,in(t′)〉 = 0, (4b)

〈ξ(t)ξ(t′)〉 = γm

ωm

∫

e−iω(t−t′)ω

[

coth

(

ω

2kBT

)

+ 1

]

dω

2π
, (4c)

where kB is the Boltzmann constant and T is the reservoir

temperature associated with the mechanical resonator. The

correlation function in Eq. (4c) becomes a standard

white noise input with delta correlations for sufficiently

high temperatures kBT ≫ ~ωm. This function can be

approximated by 〈ξ(t)ξ(t′)〉 ≈ (2n̄ + 1)γmδ(t − t′), where the

initial mean thermal excitation number of the mechanical

resonator is given by n̄ = 1/[exp(~ωm/kBT )−1] ≈ kBT/~ωm.

To cool this mechanical resonator, we consider the strong-

driving regime for both cavities, so that our physical model

can be simplified by a linearization procedure. Then, we write

the operators in Eq. (3) as sums of the steady-state averages

and the quantum fluctuations: o = 〈o〉ss + δo for operators ac,

a
†
c , aa, a

†
a, q, and p. By separating the quantum fluctuations

and the classical motion, the linearized quantum Langevin

equations become

δq̇ = ωmδp, (5a)

δ ṗ = − ωmδq − γmδp +G∗δac +Gδa†c + ξ, (5b)

δȧc = − κ̄cδac + iGδq − iJδaa +
√

2κac,in, (5c)

δȧa = − κ̄aδaa − iJδac +
√

2κaaa,in, (5d)

where κ̄c = κc + i∆ and κ̄a = κa + i∆a. ∆ = ∆c − g0〈q〉ss is the

normalized detuning of the cooling cavity, and G = g0〈a〉ss is

the effective optomechanical coupling. Here 〈ac〉ss = −i(Ω +

J〈aa〉ss)/(κc + i∆) and 〈aa〉ss = −i(ΩR + J〈ac〉ss)/(κa + i∆a).

Note that we have chosen the phase reference of the cavity

field, such that 〈ac〉ss is real and positive.

B. Analytical and numerical steady-state mean phonon

numbers

Now, we derive both analytical and numerical results of

the steady-state mean phonon numbers in the mechanical

resonator.

1. Analytical steady-state average phonon numbers

The steady-state average phonon numbers of the mechani-

cal resonator can be obtained by the relation [35, 60]

n f =
1

2
[〈δq2〉 + 〈δp2〉 − 1], (6)

where 〈δp2〉 and 〈δq2〉 are the variances of the momentum and

position operators, respectively. We obtain these variances by
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solving Eq. (5) in the frequency domain, and integrating the

corresponding fluctuation spectra [35, 99],

〈δq2〉 = 1

2π

∫ ∞

−∞
S q(ω) dω, (7a)

〈δp2〉 = 1

2πω2
m

∫ ∞

−∞
ω2S q(ω) dω, (7b)

where the fluctuation spectra of the momentum and position

operators are defined by

S o(ω) =

∫ ∞

−∞
e−iωτ〈δo(t + τ)δo(t)〉ss dτ, (o = q, p). (8)

In the frequency domain, the fluctuation spectra can also be

expressed as

〈δõ(ω)δõ(ω′)〉ss = S o(ω)δ(ω + ω′). (9)

According to Eqs. (6) and (7), exact results of the steady-

state average thermal excitations can be obtained analytically,

which is presented in detail in the Appendix.

2. Numerical steady-state average phonon numbers

Now, we introduce the annihilation (creation) operator for

the mechanical resonator b = (q+ ip)/
√

2 [b† = (q− ip)/
√

2]

and then study the cooling performance by numerically

evaluating the final mean phonon number. After performing

the linearization, the linearized quantum Langevin equations

can be rewritten as the following compact form

u̇(t) = Au(t) + N(t), (10)

where the fluctuation operator vector u(t) =

(δac, δb, δaa, δa
†
c, δb

†, δa†a)T , the noise operator vector N(t) =

(
√

2κcac,in,
√

2γmbin,
√

2κaaa,in,
√

2κca
†
c,in
,
√

2γmb
†
in
,
√

2κaa
†
a,in

)T ,

and the coefficient matrix A:

A =

















































−κ̄ −iG̃ −iJ 0 −iG̃ 0

−iG̃∗ −γ̄m 0 −iG̃ 0 0

−iJ 0 −κ̄s 0 0 0

0 iG̃∗ 0 −κ̄∗ iG̃∗ iJ

iG̃∗ 0 0 iG̃ −γ̄∗m 0

0 0 0 iJ 0 −κ̄∗s

















































, (11)

where G̃ = G/
√

2 and γ̄m = γm + iωm. We then obtain the

formal solution of the linearized Langevin equation (10),

u(t) =M(t)u(0) +

∫ t

0

M(t − s)N(s)ds, (12)

where M(t) = exp(At). From Eq. (12), the steady-state

mean phonon number of the mechanical resonator can be

calculated by solving the Lyapunov equation. In the following

calculations, all the parameters satisfy the stability conditions

which are derived based on the Routh-Hurwitz criterion,

i.e., the real parts of all the eigenvalues of A are negative.

Additionally, we have confirmed that for the left pump

power PL < 35 mW, only a single stable solution exists and

the compound system has no bistability (see the stability

analysis in Appendix B).

Mathematically, the steady-state mean phonon number

can be obtained by calculating the steady-state value of the

covariance matrix V, defined by the matrix elements

Vi j =
1

2
[〈ui(∞)u j(∞)〉+ 〈u j(∞)ui(∞)〉], i, j = 1−6. (13)

Under the stability conditions, the steady-state covariance

matrix V fulfills the Lyapunov equation

AV + VAT = −Q, (14)

where the superscript T represents transposition and

Q =
1

2
(C + CT ), (15)

with C being the noise correlation matrix defined by the

matrix elements

〈Nk(s)Nl(s′)〉 = Ck,lδ(s − s′). (16)

For the Markovian bath considered in our work, the constant

matrix C is expressed as

C =















































0 0 0 2κ 0 0

0 0 0 0 2γm(n̄ + 1) 0

0 0 0 0 0 2κs

0 0 0 0 0 0

0 2γmn̄ 0 0 0 0

0 0 0 0 0 0















































. (17)

By calculating the covariance matrix V, we obtain the steady-

state mean phonon number

n f = 〈δb†δb〉 = V52 −
1

2
, (18)

where V52 is obtained by solving the Lyapunov equation (14).

IV. ACA OPTOMECHANICAL COOLING

In this section, we study the ACA cooling by analyzing the

effective mechanical susceptibility, the net laser-cooling rate,

and the noise spectra.

A. Analytical results of the effective susceptibility and net

cooling rate

We obtain the position fluctuation spectrum of the

mechanical resonator as

S q(ω) = |χeff(ω)|2
[

S rp(ω) + S th(ω)
]

, (19)

where χeff(ω) is the effective susceptibility of the mechanical

resonator, given by

χeff(ω) = ωm[Ω2
eff(ω) − ω2 − iωΓeff(ω)]−1, (20)
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with Ωeff(ω) and Γeff(ω) being, respectively, the effective

resonance frequency and damping rate of the mechanical

resonator, defined as

Ωeff =

√

ω2
m − 2 |G|2 ωm(ϕΠ + 2∆κaω2Φ)/ζ, (21a)

Γeff = γm + γC. (21b)

Here, γC denotes the net cooling rate of the mechanical

resonator, defined as

γC = 2 |G|2 ωm(2∆κaΠ − ϕΦ)/ζ, (22)

and other parameters are

Π = β+β− + τ+τ−, (23a)

Φ = 2[κ2cκa + J2(κc + κa) + κa(∆2 − ω2)

+κc(κ2a − ω2 + ∆2
a)], (23b)

ζ = (β2
+ + τ

2
+)(β2

− + τ
2
−), (23c)

ϕ = J2∆a − ∆(κ2a − ω2 + ∆2
a), (23d)

with

β± = ± J2 ± κcκa ∓ (ω ± ∆)(ω ± ∆a), (24a)

τ± =κc(ω ± ∆a) + κa(ω ± ∆). (24b)

In Eq. (19), the thermal noise spectrum S th(ω) is given by,

S th(ω) =
γmω

ωm

coth

(

~ω

2κBT

)

, (25)

and the radiation-pressure noise spectrum S rp(ω) is so

complicated that we don’t show it here.

B. Amplified net cooling rate

In the preceding subsection, the effective mechanical

resonance frequency Ωeff, mechanical damping rate Γeff

[see Eq. (21)], and the expression of the steady-state

average thermal excitation [see Eq. (A1)] have been analyzed

analytically. Now, we study how the ACA mechanism

improves the cooling performance by analyzing the effective

decay rate Γeff and mechanical resonance frequencyΩeff.

When the system works in the auxiliary-cavity-unassisted

(J = 0, see solid curves) and -assisted (J/ωm = 0.2 and

PR = 30 mW, see dashed curves) cases, we plot the effective

mechanical resonance frequency Ωeff and decay rate Γeff as a

function of the frequency ω, as shown in Figs. 1(b) and 1(c).

We find that the modification of the mechanical frequency,

mainly determined by the optomechanical coupling shown

in Eq. (21a), is the so-called “optical spring effect”, which

may lead to significant frequency shifts in the case of

low-frequency mechanical resonators. However, for our

higher-resonance frequency (ωm/2π = 10 MHz), the

optical spring term in Eq. (21a) does not significantly alter

the mechanical frequency, i.e., Ωeff ≈ ωm when ω/ωm = ±1

[see Fig. 1(b)]. Moreover, we show in Fig. 1(c) that by using

the ACA mechanism, Γeff is significantly increased at ω =

±ωm. For example, when we switch the unassisted to assisted

(b) (c)
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FIG. 2. (a) Net-cooling-rate amplification factor Λ [see Eq. (26)]

versus the tunneling coupling J and the drive laser power PR of the

auxiliary cavity. The white dashed curve denotes Λ = 1. (b)Λ versus

J when PR = 50 mW (blue solid curve) and PR = 100 mW (red solid

curve). (c) Λ versus PR when J = 0 (black horizontal dashed line)

and J/ωm = 0.2 (red symbols). Here the black horizontal dashed

line denotes the auxiliary-cavity-unassisted case, i.e, J = 0. Other

parameters are the same as those used in Fig. 1.

cases, the effective mechanical decay rate Γeff at ω = ±ωm

can be increased from ≈ 104γm to ≈ 4.5 × 104γm. This giant

enhancement of the effective mechanical damping Γeff plays

an important role in improving the cooling performance of

the mechanical resonator.

To further understand the underlying physics of the ACA

cooling, we consider the red-sideband resonance case, i.e.,

∆ = ωm and ω = ωm, and then define a net-cooling-rate

amplification factor

Λ =
γC,assisted

γC,unassisted

. (26)

In Fig. 2(a), we plot the net-cooling-rate amplification factor

Λ with respect to the tunneling coupling J and the pump

power PR of the auxiliary cavity. It shows that the ACA

method can significantly amplify the net cooling rate of the

mechanical resonator. For example, in the unassisted case

(i.e., when J = 0), there is no cooling-rate amplification

(i.e., Λ = 1), while in the assisted case, the amplification

of the net cooling rate emerges and even the amplification

factor can increase up to Λ = 15. In particular, when

PR → 0 and J/ωm → 0.6, we obtain 0 < Λ < 1 [see the

upper left corner in Fig. 2(a)], which is due to the optical
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FIG. 3. (a) Steady-state average phonon number n f versus the

effective driving detuning ∆a when κa/κc = 1. Curves show our

analytical predictions and symbols are the numerical results. Here

the black horizontal solid line denotes the auxiliary-cavity-unassisted

case, i.e, J = 0. (b) Steady-state average phonon number n f as a

function of κa when ∆a = 0. Other parameters are the same as those

used in Fig. 1.

backscattering losses in practical devices. Physically,

various imperfections of devices, such as material defects

and surface roughness, can induce backscattering of

photons, as described by the tunneling coupling J [97, 98].

In a recent experiment [100], a dynamical suppression

of backscattering was already observed by breaking the

time-reversal symmetry with Brillouin devices. The

dependence of the net-cooling-rate amplification factor Λ on

the tunneling coupling J between the two cavities is shown

in Fig. 2(b). We find that in the region 0 < J/ωm <

0.25 (0.25 < J/ωm < 0.5), Λ increases (decreases) with

increasing J, and the optimal amplification factor emerges at

J/ωm = 0.25. Particularly, in comparison with the typical

optomechanical systems, a proportional amplification of the

net cooling rate can be observed with the pump power PR

when J ≈ 0.2ωm [see Figs. 2(c)]. Physically, the effective

optomechanical coupling strength can be amplified and the

refrigeration process can be accelerated, by utilizing the ACA

mechanism. This study provides a new strategy to improve

the net cooling rate of the mechanical resonator by just using

a pumped auxiliary device.

C. ACA optomechanical cooling

The foremost task of studying cooling properties in such

an ACA optomechanical system is to find the optimal driving

detuning ∆a and decay rate κa of the pumped auxiliary cavity.

In Fig. 3(a) we show the steady-state average phonon numbers

n f of the mechanical resonator versus driving detuning ∆a

of the pumped auxiliary cavity. We find a significant

enhancement for the cooling performance for blue-detuned

driving, ∆a < 0, and that the optimal cooling is located at

∆a = 0. In contrast, the red-detuned driving, ∆a > 0, leads

to the suppression of the cooling efficiency. Here, the black

horizontal solid line denotes the auxiliary-cavity-unassisted

case, i.e, J = 0. Additionally, we plot the steady-state mean

phonon numbers n f as a function of the decay rate κa of

the auxiliary cavity, as shown in Fig. 3(b). We can see that

the optimal cooling efficiency of the mechanical resonator

emerges in 0.5 < κa/κc < 1. Note that our numerical (marked

by symbols) and analytical (solid curves) results exhibit an

excellent agreement, as shown in Fig. 3. These results indicate

a large improvement of the cooling performance, which is

realized by an appropriate design of the auxiliary cavity.

In Fig. 4(a) the final average phonon numbers n f are plotted

as a function of the effective driving detuning ∆ of the cooling

cavity when the system works in both the auxiliary-cavity-

unassisted (see the blue curve) and -assisted (see the red

curve) regimes. We can see that when the system is in the

assisted case, the cooling performance is much better than that

in the unassisted case [see Fig. 4(a)]. This is because the use

of the pumped auxiliary cavity can significantly amplify

the net-cooling rate of the mechanical resonator and, then,

considerably improve its refrigeration performance. Note

that for the unassisted case, the mechanical resonator is

cooled in the same manner as in a typical optomechanical

sideband-cooling scheme [33–35]. The optimal driving

detuning is located at ∆ ≈ ωm, which indicates the maximum

energy extraction efficiency between the cooling-cavity-field

mode and the mechanical resonator.

In realistic simulations, we find a small deviation of the

exact value of ωm. This is caused by the counter-rotating-

wave term in the linearized coupling between the cooling-

cavity field and the mechanical resonator. The underlying

physics is that the generation of an anti-Stokes photon leads

to the cooling of the mechanical resonator by taking away a

phonon from this resonator. For the optimal cooling ∆ ≈ ωm,

the frequency ωm of the phonon exactly matches the driving

detuning ∆, and hence ∆ ≈ ωm corresponds to the optimal

cooling.

To further elucidate this cooling improvement, we plot the

final average phonon numbers n f as functions of the tunneling

coupling J and the pump power PR of the auxiliary cavity,

as shown in Fig. 4(b). By using the ACA mechanism, the

mechanical resonator can be cooled efficiently (n f ≪ 1), and

the lowest final average occupancies are 0.09, which is much

smaller than that of the auxiliary-cavity-unassisted case. We

can see from Figs. 4(c) and 4(d) that the cooling performance

is fully unchanged (see the black dashed lines, n f = 0.15)

in the unassisted case, but in stark contrast is improved
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strongly (see the solid curves and symbols, n f = 0.09) in

the assisted case. Note that the numerical (symbols) and

analytical (solid curves) results show an excellent agreement,

as seen in Figs. 4(c) and 4(d).

To study how large the significant improvement of the

cooling performance can be reached, we here introduce a

cooling-performance improvement rate χ, defined as

χ =
n f ,assisted − n f ,unassisted

n f ,unassisted

. (27)

Based on Eq. (27), we investigated the dependence of the

cooling-performance improvement rate χ on the parameters

J and PR, as shown in Fig. 5. We can see for the ACA system,

that the rate χ can reach 40% compared with the unassisted

case, and that the optimal cooling performance is for: 0.07 <

J/ωm < 0.2 and 35 < PR < 140 mW. Physically, the

optomechanical cooling is mainly governed by the net cooling

rate, which directly determines the extraction efficiency of

thermal excitations stored in the mechanical resonator and,

therefore, the greatly amplified net cooling rate leads to a

significant improvement of the cooling performance.

In the above simulations, we have found that the optimal

cooling performance is observed at ∆ ≈ ωm [see Fig. 3(a)],

corresponding the maximum phonon extraction efficiency.

Thus, based on our analytical expression in Eq. (A1) of

the final mean phonon number, the analytical result of the

minimum occupation number can be achieved by setting

∆ = ωm and γm = 0. However, the analytical expression

of the minimum occupation number is so complicated that

we do not show it here. Below, we study this by numerical

simulations.

Under the optimal effective driving detuning, ∆ =

ωm, we plot the steady-state average phonon number

n f as a function of the mechanical decay rate γm in

the auxiliary-cavity-unassisted (blue solid curve) and

auxiliary-cavity-assisted (red dashed curve) cases, as

shown in Fig. 6(a). We find that in both unassisted and

assisted cases, the redundant single-phonon probability

could be further suppressed by choosing the mechanical

resonator with a smaller decay rate. Physically, the

thermal phonon extraction rate (between the mechanical

resonator and its heat bath) is faster for a larger value

of the mechanical decay rate, and, then, the thermal

excitations in the heat bath increase the phonon numbers

in the mechanical resonator. In particular, we observe

that the cooling efficiency of the mechanical resonator

in the assisted case is higher than that of the unassisted

case (i.e., n f ,assisted < n f ,unassisted), and that the minimum

occupation number of the resonator in the assisted case

is smaller than that in the unassisted case when γm →
0. This is because our ACA mechanism can significantly

amplify the effective optomechanical coupling strength

and considerably improve the refrigeration performance.

In Fig. 6(b), the final steady-state mean phonon number

n f is plotted as a function of the cavity-field decay rate κ,

when the system operates in both unassisted and assisted

cases. To clearly study the influence of the sideband-

resolution condition on the cooling performance, we also

choose the mechanical frequency ω1 as the frequency

scale. We can see that in both unassisted and assisted

cases, the phonon sidebands can be well resolved from

the cavity-emission spectrum when κ/ωm ≪ 1 [see the

left area of the dashed back line in Fig. 6(b)], which is

called the resolved-sideband limit. In the unresolved-

sideband regime κ/ωm > 1, the cooling performance of the

mechanical resonator becomes much worse for a larger

cavity-field decay rate κ [see the right area of the dashed

back line in Fig. 6(b)]. This is due to the decrease of the

net-cooling rate γC. In particular, the optimal cooling

performance is observed for κ/ωm ≈ 0.1 − 0.3, and that

the cooling performance of the assisted case is better than

that of the unassisted case (i.e., n f ,assisted < n f ,unassisted).

When κ/ωm < 0.1, the cooling performance becomes

worse with the decrease of κ, because the net-cooling rate

γC → 0 when κ/ωm → 0 [101]. Physically, the thermal

excitations stored in the mechanical resonator are mainly
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first transferred to the cavity and then leak from the cavity

through the bath coupled to the cavity. When κ/ωm → 0,

the thermal energy leakage from the cavity is too weak

and one could not obtain a strong cooling. These findings

provide a method to develop the cooling performance of

the mechanical resonator by appropriately designing a

auxiliary device.

V. ACA QUANTUM ENTANGLEMENT AND ITS

NOISE-TOLERANT ABILITY

Now we study the effect of the ACA cooling mechanism

on quantum entanglement and its robustness against thermal

noises by calculating the logarithmic negativity.

A. Logarithmic negativity and minimum residual contangle

Let us define the quadrature fluctuations with δXo = (δo† +

δo)/
√

2 and δYo = i(δo† − δo)/
√

2 for o ∈{ ac, a
†
c , aa, a

†
a,

q, p}, and the corresponding Hermitian input noise operators

with δXin
o = (o

†
in
+ oin)/

√
2 and δY in

o = i(o
†
in
− oin)/

√
2. Then,

the linearized equations of fluctuations can be written as

˙̃u(t) = Ãũ(t) + Ñ(t), (28)

where ũ(t) = [δXac
, δYac

, δXaa
, δYaa

, δq, δp]T

is the vector of fluctuation operators, Ñ(t) =
(√

2κXin
ac
,
√

2κY in
ac
,
√

2κaXin
aa
,
√

2κaY in
aa
, 0, ξ

)T
is the vector
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FIG. 6. Steady-state average phonon number n f versus (a) the

mechanical decay rate γm when κ/ωm = 0.1, and (b) the cavity-

field decay κ when γm/ωm = 10−5, in the auxiliary-cavity-unassisted

(n f ,unassisted, blue solid curves) and auxiliary-cavity-assisted (n f ,assisted,

red dashed curves) cases. Here we take the optimal effective driving

detuning ∆ = ωm. Other parameters are the same as those used in

Fig. 1.

of input noises, and the coefficient matrix A is given by

Ã =



















































−κc ∆ 0 J 0 0

−∆ −κc −J 0
√

2G 0

0 J −κa ∆a 0 0

−J 0 −∆a −κa 0 0

0 0 0 0 0 ωm√
2G 0 0 0 −ωm −γm



















































. (29)

The formal solution of Eq. (28) is ũ(t) = M̃(t)ũ(0) +
∫ t

0
M̃(t −

s)Ñ(s)ds, where M̃(t) = exp(Ãt). Now we can calculate

the steady-state value of the covariance matrix Ṽ, which is

defined by the matrix elements Ṽkl =
1
2
[〈ũk(∞)ũl(∞)〉 +

〈ũl(∞)ũk(∞)〉], for k, l = 1-6. Under the stability condition,

the covariance matrix Ṽ fulfills the Lyapunov equation ÃṼ +

ṼÃT = −Q̃, where Q̃ = diag{κc, κc, κa, κa, 0, γm(2n̄ +
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1)}. To study the bipartite entanglement of the system, we

adopt quantitative measures of the logarithmic negativity EN ,

defined as [103–105]

EN = max[0,−ln(2ζ−)], (30)

where ζ− ≡ 2−1/2{Σ(Ṽ
′
) − [Σ(Ṽ

′
)2 − 4detṼ

′
]1/2}1/2, with

Σ(Ṽ
′
) ≡ detA + detB − 2detC. Here the matrix Ṽ

′
is written

as

Ṽ
′
=

(

A C
CT B

)

, (31)

whereA, B, and C are 2 × 2 subblock matrices of Ṽ
′
.

For studying the tripartite entanglement of the system,

we first apply a quantitative measure of the residual

contangle Ē
r|s|t
τ [106–108], which is given by

Ēr|s|t
τ ≡ Er|(st)

τ − Er|s
τ − Er|t

τ , (r, s, t = d1, d2, c), (32)

where E
u|v
τ denotes the contangle of subsystems u (u

contains only one mode) and v (v contains one or two

modes). E
u|v
τ is a proper entanglement monotone and it can

be defined as the squared logarithmic negativity [106–108].

The residual contangle satisfies the monogamy property of

quantum entanglement, E
r|(st)
τ ≥ 0, i.e.,

Er|(st)
τ ≥ Er|s

τ + Er|t
τ . (33)

This inequality is analogous to the popular Coffman-

Kundu-Wootters monogamy inequality, which holds for

three qubits [107].

A bona fide quantification of continuous-variable tri-

partite entanglement is provided by the minimum residual

contangle [106–108]

Er|s|t
τ ≡min

(r,s,t)
[E

r|(st)
τ − E

r|s
τ − E

r|t
τ ], (34)

where (r, s, t) ≡ (d1, d2, c) denotes all the permutations

of the three mode indexes [106]. The nonzero minimum

residual contangle E
r|s|t
τ > 0 means that the genuine

tripartite entanglement is generated.

B. ACA bipartite entanglements

To study quantum entanglement properties of this system,

the foremost task is to find the optimal detuning ∆a and decay

rate κa of the pumped auxiliary cavity. In Figs. 7(a), 7(b),

and 7(c), we present a quantum entanglement measure, i.e.,

the logarithmic negativity, versus the driving detuning ∆a

and decay rate κa: Eaab, Eacb, and Eaaac
are the auxiliary-

cavity-phonon, cooling-cavity-phonon, and photon-photon

entanglements, respectively. Note that all the parameters

satisfy the stability conditions, which are derived from

the Routh-Hurwitz criterion, i.e., the real parts of all the

eigenvalues of Ã are negative. We can see from Figs. 7(a)

and 7(c) that, for the red-detuned driving of the auxiliary

cavity, i.e., ∆a > 0, there is no quantum entanglement

between the auxiliary cavity and the mechanical resonator (the

optomechanical cavity), i.e., Eaab = 0 (Eaaac
= 0). In contrast

to this, they become strongly entangled for the blue-detuned

case, i.e., ∆a < 0, and the highest quantum entanglement can

be achieved for ∆a/ωm ≈ −1.

Physically, the combined effect of the optomechanical and

tunneling couplings leads to strong entanglement between

the indirectly coupled cavity photons and phonons. We

also find that the optomechanical entanglement Eacb can be

greatly enhanced for the blue-detuned driving of the auxiliary

cavity but suppressed for the red-detuned case, and that the

maximum entanglement is generated at ∆a/ωm ≈ 0.

In particular, the complementary distribution of the

entanglement in Figs. 7(b) and 7(a), 7(c) indicates that

the initial cooling-cavity-phonon entanglement is partially

transferred to the auxiliary-cavity-phonon and photon-photon

subsystems. This effect is prominent when the auxiliary-

cavity detuning ∆a/ωm = −1. In additional, Fig. 7 shows that

the entanglement is higher for a smaller decay rate κa of the

auxiliary cavity.

Because the above enhancement of the entanglement results

from the ACA mechanism, it is natural to ask the question

whether we can further explore the quantum entanglement by

tuning the parameters of the ACA mechanism. To further

elucidate this aspect, we plot the logarithmic negativities

Eaab, Eacb, and Eaaac
as functions of the tunneling coupling

J and the pump power PR of the auxiliary cavity, as shown

in Figs. 7(d), 7(e), and 7(f), respectively. We find

that, by using the ACA mechanism, both photon-phonon

and photon-photon entanglement are generated, and the

photon-phonon entanglement is much larger than photon-

photon entanglement, i.e., Eaab, Eacb > Eaaac
. The highest

entanglement Eaab and Eaaac
is observed for: 0.3 ≤ J/ωm ≤

0.6 and 45 ≤ PR mW, and Eacb is observed for: 0.15 ≤ J/ωm ≤
0.3 and 50 ≤ PR mW. This offers a new method to generate

and enhance fragile quantum resources by utilizing auxiliary

devices.

C. ACA noise-tolerant ability

Thermal noises in practical devices can destroy fragile

quantum resources. To protect quantum resources from

environmental thermal perturbations, we introduce the ACA

mechanism, which can significantly improve the robustness

of quantum entanglement against thermal noises.

When the system works in both auxiliary-cavity-unassisted

(the green solid line) and -assisted (marked by green symbols)

cases, we plot the logarithmic negativities Eaab and Eacb as a

function of the thermal excitation number n̄ of the mechanical

resonator, as shown in Fig. 8. We find that the optomechanical

entanglement Eacb is greatly improved by the ACA method,

and its robustness against thermal noises is much stronger

than that of the unassisted case. For example, when we switch

the auxiliary-cavity-unassisted to -assisted cases, Eacb can be

increased from Eacb ≈ 0.07 to Eacb ≈ 0.17 when n̄ = 0. This

means that the ACA mechanism can significantly enhance the

optomechanical entanglement.
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In addition, we can see from Fig. 8 that, in the unassisted

case, quantum entanglement only emerges when n̄ ≪ 200

(see the green solid line), while in the assisted case, it can

persist for thermal phonons near n̄ = 900 (see the green

symbols), which means that the noise robustness in the ACA

case is 4.5 times greater than that in the unassisted case. This

indicates that the ACA mechanism provides a feasible method

to protect fragile quantum resources from environmental

thermal perturbations in practical devices, and to build noise-

tolerant quantum processors. Moreover, we find that due

to the combined effect of the optomechanical and tunneling

couplings, the indirectly coupled cavity photons and phonons

can be entangled strongly (Eaab, marked by blue symbols),

and the robustness of quantum entanglement against noise

is even up to three times that of the directly coupled case,

as shown in Fig. 8. In particular, owing to the tunneling

coupling between the cooling and auxiliary cavities, the

cooling-cavity photons and auxiliary-cavity photons can

be entangled, and this entanglement is strongly robust

against thermal noise (Eaaac
, marked by the red symbols).

These findings provide a useful strategy to improve the

performance of fragile quantum resources by just utilizing

auxiliary devices.

D. Tripartite entanglement

Besides bipartite entanglements, the application of

the ACA mechanism can lead to a genuinely tripartite

entanglement, as demonstrated by the nonzero minimum

residual contangle in Eq. (34). In Fig. 9, we plot

the tripartite entanglement, quantified by the minimum

residual contangle E
r|s|t
τ , versus the scaled effective driving

detuning ∆a/ωm when J = 0 (see the horizontal black

solid line), J/ωm = 0.15 and PR = 0 (blue solid curve),

and J/ωm = 0.15 and PR = 50 mW (red dashed curve).

We find that, without the ACA mechanism (i.e., J =

0), no tripartite entanglement is generated (i.e., E
r|s|t
τ =

0, see the horizontal black solid line); while with the

ACA mechanism (i.e., J/ωm = 0.15), strong tripartite

entanglement is generated (i.e., E
r|s|t
τ > 0, see the blue

or red curves). In particular, the tripartite entanglement

in PR , 0 case (see the red dashed curve) is much

stronger than that when in PR = 0 case (see the blue

solid curve). Very recently, the tripartite entanglement

has been achieved in a cavity magnomechanical system,

which consists of cavity microwave photons, magnons, and

phonons [108–110].

Finally, we remark that in experiments, quantum en-

tanglement can be detected by measuring the covariance

matrix Ṽ under a proper readout choice via a filter [111–

113]. The optical quadratures can be measured via the

homodyne or heterodyne detection of the output [113–

115], and the readout of mechanical quadratures requires

a probe being resonant with the anti-Stokes sideband,

mapping the mechanical motion to the output field [113].
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VI. CONCLUSION

In conclusion, we have shown how to achieve a giant

amplification in the net cooling rate of a mechanical res-

onator, and to realize significantly enhanced optomechanical

refrigeration and entanglement in an auxiliary-cavity-assisted

optomechanical system. We have demonstrated that the

genuine tripartite entanglement of cooling-cavity photons,

auxiliary-cavity photons, and phonons can be generated

by using the ACA method. Specifically, we have revealed

that the tripartite entanglement arises from the ACA

mechanism, without which it vanishes. We also found that

the blue-detuned driving of the auxiliary cavity leads to an

enhanced cooling and entanglement, while the red-detuned

driving suppresses them.

More importantly, we have revealed that the ACA entangle-

ment has a much stronger robustness against thermal noises

in comparison with the auxiliary-cavity-unassisted case. Our

work could potentially be used for further manipulating

and observing quantum mechanical effects, protecting fragile

quantum resources from environmental thermal noises, and

building noise-tolerant quantum processors.
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Appendix A: Analytical expressions of the steady-state mean

phonon number

In this Appendix, we show the exact analytical expressions

of the steady-state average phonon numbers in the mechanical

resonator. As shown in Sec. III B, by calculating the integral

in Eq. (7) for the position and momentum fluctuation spectra,

the exact steady-state mean phonon number can be obtained

in the form [35, 51]

n f =
1

2

(

iD6

2∆6

+
iM6

2∆6

− 1

)

. (A1)

Here, we introduce the variables
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∆6 = a5{a4(−a1a2a3 + a2
3 + a2

1a4) + [−a2a3 + a1(a2
2 − 2a4)]a5 + a2

5}
−[a3

3 − a1a3(a2a3 + 3a5) + a2
1(a3a4 + 2a2a5)]a6 + a3

1a2
6, (A2)

D6 =
[ − a3a4a5 + a2

3a6 + a5(a2a5 − a1a6)
]

b1 + (a1a4a5 − a2
5 − a1a3a6)b2

+(−a1a2a5 + a3a5 + a2
1a6)b3 +

[ − a2
3 − a2

1a4 + a1(a2a3 + a5)
]

b4

+
1

a6

[

a2
3a4 − a2a3a5 + a2

5 + a2
1(a2

4 − a2a6) + a1(−a2a3a4 + a2
2a5 − 2a4a5 + a3a6)

]

b5, (A3)

and

M6 =
1

ω2
m

{

−
[

a5

(

−a2a3a4 + a2
2a5 + a4(a1a4 − a0a5)

)

+
(

−a1a3a4 + a0a3a5 + a2(a2
3 − 2a1a5)

)

a6 + a2
1a2

6

]

b1

+[−a3a4a5 + a2
3a6 + a5(a2a5 − a1a6)]b2 + (a1a4a5 − a2

5 − a1a3a6)b3

+(−a1a2a5 + a3a5 + a2
1a6)b4 + [−a2

3 − a2
1a4 + a1(a2a3 + a5)]b5

}

, (A4)

where the coefficients are defined by:

a0 = 1,

a1 = −i[2(κc + κa) + γm],

a2 = −2J2 − 2κc(2κa + γm) − κa(κa + 2γm) − gc − (κ2c + ∆
2
a),

a3 = i{κ2aγm + 2J2(κc + κa + γm) + κ2c(2κa + γm) + 2κagc

+γm(∆2 + ∆2
a) + 2κc(2κaγm + ω

2
m + f +a )},

a4 = J4 − 2|G|2ωm∆ + (2κaγm + ω
2
m)∆2 + f +a gc + 2J2[κaγm + κc(κa + γm) + ω2

m − ∆∆a]

+κ2c(κ2a + 2κaγm + ga) + 2κc(γm f +a + 2κaω
2
m),

a5 = i{−J4γm + κa[κc
(

−κcκaγm − 2(κc + κa)ω2
m

)

+ 4|G|2ωm∆ − (κaγm + 2ω2
m)∆2]

−(2κcω
2
m + γm f +c )∆2

a − 2J2[κaω
2
m + κc(κaγm + ω

2
m) − γm∆∆a]},

a6 = −ωm{J4ωm + 2J2(κcκaωm + |G|2∆a − ωm∆∆a) + [−2|G|2∆ + ωm f +c ] f +a }, (A5)

and

b0 = 0,

b1 = γmω
2
m(1 + 2n̄),

b2 = 2ω2
m[|G|2κc − (1 + 2n̄)γm(2J2 − f −c − f −a )],

b3 = ω
2
m{2|G|2[J2(−2κc + κa) + κc( f +c + 2 f −a )] + (1 + 2n̄)γm[6J4 − 4∆2 f −a + f +2

c + f +2
a

+4κ2c f −a + 4J2(κcκa − ∆∆a − f −c − f −a )]},

b4 = 2ω2
m

{

− (1 + 2n̄)γm

{

2J6 + κ4c(∆2
a − κ2a) + J4(4κcκa − 4∆∆a − f −c − f −a )

−2J2[κcκa(κ2c − κcκa + κ2a) + κa(κc + κa)∆2 + (4κcκa + κ
2
a + f +c )∆∆a

+(κcκa + f −c + ∆∆a)∆2
a] − κ2c(2∆2 f −a + f +2

a ) + ∆2( f +2
a − f −a ∆

2)

}

+ |G|2
{

J4(κc − 2κa)

+κc(2 f +c f −a + f +2
a ) + J2

[

3κ2cκa + κa(∆2 + 4∆∆a + f +a ) + 2κ(∆∆a − f −a )
]

}

}

,

b5 = ω
2
m[J4 + 2J2(κcκa − ∆∆a) + f +c f +a ]

{

2|G|2(J2κa + κc f +a ) + (1 + 2n̄)γm

[

J4 + 2J2(κcκa − ∆∆a) + f +c f +a
]

}

, (A6)

where

gc = ω
2
m + ∆

2, ga = ω
2
m + ∆

2
a, f ±c = κ

2
c ± ∆2, f ±a = κ

2
a ± ∆2

a. (A7)

Appendix B: Bistability analysis By separating the degrees of classical motion from
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FIG. 10. The steady-state average displacement 〈x〉ss of the

mechanical resonator as a function of the left optical power PL. The

green dashed curve indicates the unstable solutions. Here we set

∆c = ωm and ∆a = −ωm. Other parameters are the same as those

used in Fig. 1.

the quantum fluctuations in Eq. (3), the classical-motion

equations can be written as

d

dt
〈ac〉 = −

[

κc + i (∆c − g0 〈q〉)
] 〈ac〉 − iΩL − iJ 〈aa〉 ,

d

dt
〈aa〉 = − (κa + i∆a) 〈aa〉 − iJ 〈ac〉 − iΩR,

d

dt
〈p〉 = −ωm 〈q〉 + g0

〈

a†c
〉

〈ac〉 − γm 〈p〉 ,
d

dt
〈q〉 = ωm 〈p〉 . (B1)

The steady-state mean values of the dynamical variables

can be obtained as

〈ac〉ss =
i(ΩL + J 〈aa〉ss)

−(κc + i∆)
,

〈aa〉ss =
i(ΩR + J 〈ac〉ss)

−(κa + i∆a)
,

〈p〉ss = 0,

〈q〉ss =
g0

〈

a
†
c

〉

ss
〈ac〉ss

ωm

,

〈x〉ss =
〈q〉ss√
mωm

, (B2)

where

∆ = ∆c − g0 〈q〉ss ,

∆a = ωa − ωR. (B3)

In Fig. 10, we plot the steady-state average displacement

〈x〉ss of the mechanical resonator as a function of the

left optical power PL. One can see that the steady-state

average displacement 〈x〉ss varies with the driving power

PL of the left driving field by solving Eqs. (B2) numerically.

It is shown that when PL < 35 mW, only one solution of

〈x〉ss exists and the system is not bistable. When 35 < PL <

150 mW, three solutions of 〈x〉ss exist and the green dashed

curve corresponds to the unstable solutions. So the system

exhibits bistability in this case. To obtain the cooling and

entanglement, a single solution region should be chosen,

and we set PL < 35 mW throughout this work.
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