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Explicitly Correlated Gaussian basis is used to calculate the energies and wave functions of one
dimensional few-electron systems in confinement potentials created by external potentials or coupling
to light in cavity. The appearance and properties of electron density peaks as the function of the
relative strength of the confinement and the Coulomb interaction is studied. It is shown that similar
Wigner crystal like structures can be formed by coupling electrons to light due to the dipole self-
interaction term in the light-matter Hamiltonian, provided an additional extremely weak confining
potential is present. The relation of these systems to Wigner-crystals is discussed.

I. INTRODUCTION

AWigner crystal is a solid phase of electrons, predicted
by Eugene Wigner in 19341. If an electron gas has a low
enough density in a uniform, neutralizing background,
the system can crystallize through the formation of an
electron lattice, driven by Coulomb interaction.
Experimental study of Wigner crystals is hindered by

the fact that low electron densities have to be reached
in the presence of defects and impurities. Neverthe-
less, Wigner crystals have been experimentally demon-
strated in liquid Helium2 and semiconductor hetero-
structures3,4. These experiments have led to intense the-
oretical work focusing on energetics and structures of
Wigner crystals5–13.
Recently, there is a renewed interest in Wigner

crystals after experimentally imaging them in
Moire superlattices14–16 and one-dimensional (1D)
systems17–19. These new systems emerge as a highly
conductive platform to study strong electronic cor-
relations as well as topology. The most interesting
experimental example of 1D Wigner crystals is found by
real space imaging the density profile of electrons con-
fined in carbon nanotubes18. Wigner lattice formation
of bipolarons in conducting polymer nanowires have also
studied recently20. The experimental observations gen-
erated renewed theoretical interest in one-dimensional
Wigner crystals21,22.
The real space imaging revealed the signatures of few-

electron Wigner crystals in 1D systems18 in form of
charge density peaks, and the number of peaks found to
be equal to the number of electrons. This picture is ex-
plained by the effect of strong Coulomb interaction18. If
there is no interaction then electrons populate the parti-
cle in the box states. For example, in case of two electrons
with one spin up and one spin down the two electron can
occupy the lowest particle in the box eigenstate resulting
one density peak. In case of strong Coulomb interaction,
a different picture is expected to emerge: the Coulomb
repulsion keeps apart the two electrons and two density
peaks appear. The same is true for N electrons, the num-
ber of peaks is equal to the number of electrons18. The
question is what is the role of the symmetry of the corre-
lated few-electron wave function in the formation of the

density peaks. Is the Coulomb repulsion the dominant
factor or the Pauli correlation dictated by the antisym-
metry requirement also plays a substantial role?

In this work, we will investigate the role of the elec-
tronic correlations and long range Coulomb interactions
in the energy and structure of confined 1D few-electron
systems using explicitly correlated basis functions. We
will study the limit between the regions where these sys-
tems can be considered to be Wigner crystals (where
the Coulomb interaction is dominant) and strongly cor-
related 1D systems (where the confinement and the Pauli
correlations determine the structure).

One-dimensional Wigner crystals have been stud-
ied using the bosonisation method23, with an effec-
tive Hamiltonian24 and the configuration interaction
(CI) approach21. Quantum Monte Carlo (QMC), in-
cluding Diffusion Quantum Monte Carlo methods are
also frequently used in calculation properties of Wigner
crystals8,25–28. The advantage of the QMC approaches
is that they can be relatively easily extended to systems
with larger number of electrons. See a recent review high-
lighting other approaches in Ref.29. In this paper we
complement these works with a more accurate approach
that includes the full Coulomb Hamiltonian, using cor-
related basis functions to avoid the convergence issues
of CI calculations, and addressing the structure of spin
configurations.

In this work, we refer the crystal-like arrangement of
electrons that minimizes the Coulomb interaction energy
as Wigner crystals if the electron density is significantly
different from the electron density determined by the con-
fining potential alone - in other words if the Coulomb
energy is dominant. A stringent definition of Wigner
crystallization would involve a critical density where the
potential energy of the system start to dominate over
the kinetic energy. In the few-electron systems consid-
ered here this critical density or phase transition from
a fluid to a crystalline phase cannot be easily identified.
Wigner crystallization in terms of phase transition in 1D
systems are studied and nicely explained in Refs.21,22.

The Wigner crystals are formed in external confining
potentials. An alternative possibility to confinement is
the use of electrons interactions with cavity photons. The

dipole self-polarization term, 1
2 (
~λ · ~R)2 (where ~λ is the
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interaction strength and ~R is the dipole moment), of
the light-matter interaction Hamiltonian creates a har-
monic oscillator-like confinement. We will show that cou-
pling a very weakly confined few-electron system to light
in cavity leads to tightly localized Wigner crystal like
structures. Such systems have not yet been experimen-
tally discovered, but carbon nanotubes have been stud-
ied in microwave cavities30, and coherent spin states in
carbon nanotubes coupled to cavity photons have been
investigated31. Other 1D systems confined in parabolic
potentials32 or 1D optical lattices in cavity33 have also
been studied.

1D systems have been used as test cases mimicking
more complicated dynamics because numerical solutions
are easier in 1D. This interest is intensified with the in-
vestigation of light-matter coupling, where the represen-
tation of the coupled light-matter wave function requires
the high dimensional product of spatial and photon bases.
Restricting the nuclear or electronic motion to 1D makes
model calculations feasible34–40. Our calculations might
help to improve these 1D model calculations and extend
them to more complicated cases.

The ground state energies and wave functions will be
calculated using Explicitly Correlated Gaussian (ECG)
basis functions41. The basis parameters have been
optimized using the stochastic variational approach
(SVM)42. The advantage of the approach is that the
matrix elements are analytically available6,42,43 and it
produces very accurate energies and wave functions41.
This method has been used to describe excitonic
complexes8,41,44–47 and two and three-dimensional quan-
tum dots48,49.

We will compare our results to density functional the-
ory (DFT)50,51 calculations. Spin-polarized DFT calcu-
lations have often been used to analyze the structure and
energetics of two-dimensional confined electron systems
and Wigner crystals52–57. In this work, we will investi-
gate how well the DFT densities approximate the accu-
rate few-particle results. The advantage of the DFT is
that it can easily be extended for larger systems while
our ECG approach scales with N ! due to the explicit an-
tisymmetrization of the N electron wave function, which
reduces the application to small systems.

II. FORMALISM

A. Few-electron system in an external confining

potential in 1D

The Hamiltonian of an N electron system interacting
with a Coulomb interaction and confined in an external
potential Vc reads as

He = −1

2

N
∑

i=1

∂2

∂x2i
+

N
∑

i<j

V (xi, xj) +

N
∑

i=1

Vc(xi), (2.1)

where xi is the coordinate of the ith electron, and atomic
units are used. Due to the singular nature of the Coulomb
potential, a soft Coulomb potential will be used

V (xi − xj) =
1

√

(xi − xj)2 + a2
, (2.2)

and the confining potential is a quadratic Vc(x) =
1
2ω

2x2

potential. Similar potentials are used in Ref.21. The
softening parameter a was chosen to be a = 1. This is a
typical choice in calculations using numerical grids allow-
ing relatively large (0.1 a.u) grid spacing. The results of
the calculations are not sensitive to this parameter pro-
vided that it is not very small (a≪ 1). Very small values
lead to prohibitively small grid spacing in the DFT cal-
culations.
The wave function is expanded into ECGs of the form

ψk(~x) = A{e− 1

2

∑
N
i<j

αk
ij(xi−xj)

2

e−
∑N

i=1
βk
i (xi−ski )

2

χS}
(2.3)

where ~x = (x1, ..., xn), A is an antisymmetrizer, χS is
the N electron spin function (coupling the spin to S)
and αk

ij ,β
k
i and ski are nonlinear parameters (k stands for

the k-th set of parameters). The

e−βi(xi−si)
2

(2.4)

function is a Gaussian shifted into position si. By opti-
mizing the center si and the width βi, one can describe
the position of particle i. The

e−
1

2

∑
N
i<j αij(xi−xj)

2

(2.5)

part can be used to represent the correlation between
particles i and j. The N particle wave function then can
be written as

Ψ(~x) =
K
∑

k=1

ckψk(~x), (2.6)

where K is the dimension of the basis. The linear coeffi-
cients, ck, can be determined by diagonalization, and the
nonlinear ones are optimized by SVM. In the SVM, the
nonlinear parameters are optimized by randomly gener-
ating a large number of candidates and selecting the ones
that give the lowest energy41,42. The size of the basis can
be increased by adding the best states one by one and a
K dimensional basis can be refined by replacing states
with randomly selected better basis functions. This ap-
proach is very efficient in finding suitable parameters in
high dimensional spaces.

B. Few-electron system in 1D coupled to photons

in cavity

In this case the Hamiltonian is given by

H = He +Hph = He +Hp +Hep +Hd. (2.7)
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Hph describes the electron-photon interaction and He

is the same electronic Hamiltonian as in the previous
section. The electron-photon interaction can be de-
scribed by using the Pauli-Fierz (PF) non-relativistic
QED Hamiltonian. The PF Hamiltonian can be rig-
orously derived39,58–61 by applying the Power-Zienau-
Woolley gauge transformation62, with a unitary phase
transformation on the minimal coupling (p ·A) Hamilto-
nian in the Coulomb gauge

Hph =
1

2

M
∑

α=1

[

− ∂2

∂p2α
+ (ωαpα − λαX)

2

]

, (2.8)

where X =
∑N

i=1 qixi is the dipole operator (qi = −1
is the electron charge). This Hamiltonian describes M
photon modes with elongation pα, frequency ωα, and po-
larization λα. The sum can be decomposed into sum of
a photonic part Hp, dipole self-interaction Hd, and Hep

that describes the lightmatter interaction in the electric-
dipole form. The photonic part is

Hp =

M
∑

α=1

(

−1

2

∂2

∂p2α
+
ω2
α

2
p2α

)

=

M
∑

α=1

ωα

(

a+α âα +
1

2

)

,

(2.9)

where âα =
√

ωα

2

(

pα − 1
ωα

∂
∂pα

)

is the annihilation op-

erator, and â+α =
√

ωα

2

(

pα + 1
ωα

∂
∂pα

)

is the creation op-

erator. With the introduction of the creation and annihi-
lation operators, the photon states |nα〉 can be generated
by multiple applications of the creation operators on the
vacuum state nα = (â+α )

n|0〉, and all other photon oper-
ations can be done by using âα and â+α . The interaction
term is

Hep = −
M
∑

α=1

ωαpαλαX = −
M
∑

α=1

√

ωα

2
(âα + â+α )λαX.

(2.10)
Note that âα and â+α only connect photon state |nα〉 to
|nα ± 1〉, and the matrix elements of the dipole operator
X are only nonzero between spatial basis functions of
angular momentum l and l ± 1. The strength of the
electron-photon interaction is described by the effective
coupling parameter

gα = |λα|
√

ωα

2
. (2.11)

The dipole self-interaction is

Hd =
1

2

M
∑

α=1

(λαX)
2
, (2.12)

which describes how the polarization of the electrons acts
back on the photon field. The importance of this term
for the existence of a ground state is discussed in Ref.58.
We will only consider one photon mode and the wave

function in this case will be defined as

Ψ(~x) =
∑

n

Kn
∑

k=1

ckψ
n
k (~x)|n〉, (2.13)

where ψn
k is the spatial basis function belonging to an n

photon state and |n〉 is the photon state. The summation
over n includes photon states that significantly lower the
energy. Kn is the dimension of the basis belonging to
photon state |n〉.
The necessary matrix elements can be analytically cal-

culated for both the spatial and the photon parts. Note
that the basis functions in Eq. (2.3) do not have definite
angular momentum quantum numbers. During the opti-
mization, the symmetry of the Hamiltonian will dictate
the selection of basis functions with appropriate symme-
try. For example, if the Hamiltonian is spherically sym-
metric (which is not true in the present case due to the
interaction with the photons), then the wave function
converges to L = 0 angular momentum for the lowest
state. In principle, one can use Wigner rotation matrices
to project out good angular momentum functions, but in
our present case many angular momentum states will be
coupled with the photons and we will let SVM to select
the proper ground state.

C. Density functional approach

In DFT, the Hamiltonian is defined as

He = −1

2

d2

dx2
+ VH [ρ(x)] + Vex[ρ(x)] + Vc(x), (2.14)

where Vex is the exchange-correlation potential and VH is
the Hartree potential. The local density approximation
(LDA) is used for the exchange-correlation potential63

and the Hartree potential is defined as

VH [ρ(x)] =

∫ ∫

ρ(x′)V (x− x′)dx′, (2.15)

where V is the soft Coulomb potential defined in Eq.
(2.2). The LDA adopted in this calculation is based on a
three dimensional homogeneous free electron gas63. The
solution of the eigenvalue problem of the DFT Hamilto-
nian

Heφi(x) = ǫiφi(x) (2.16)

gives the Kohn-Sham orbitals and the density is calcu-
lated as

ρ(x) =

N
∑

i=1

φi(x)
2. (2.17)

In this case we solve the eigenvalue equation on a numer-
ical grid with 400 grid points and 0.1 a.u. grid spacing.
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FIG. 1: Electron density of the two electron system. Top S=0, bottom S=1, left ω = 1, right ω = 0.1 a.u. The solid
curve is calculated by ECG; the dashed line is by DFT. The distance r is in a.u.
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FIG. 2: Electron density of the three electron system. Top S=1/2, bottom S=3/2, left ω = 1 a.u., right ω = 0.1 a.u.
The distance r is in a.u.

The solid curve is calculated by ECG; the dashed line is by DFT.

III. RESULTS AND DISCUSSION

In this section we will present our numerical results.
Atomic units are used. In a typical system electron has

an effective mass

m∗

e = mem0 (3.1)

wherem0 is the physical mass of the electron and κ is the
dielectric constant of the medium. With this can define
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FIG. 3: Electron density of the four electron system. Top S=0, middle S=1, bottom S=2, left ω = 1 a.u., right
ω = 0.1 a.u. The solid curve is calculated by ECG; the dashed line is by DFT. The distance r is in a.u.

an effective Bohr radius as

a∗ =
~
2κ

m∗

ee
2
=

κ

me

a0 (3.2)

where a0 = ~
2

m0e2
is the hydrogenic Bohr radius (a0 =

0.529177 Å). Similarly, the effective Bohr energy

E∗ =
e2

κa∗
=
me

κ2
E0, (3.3)

where E0 = e2/a0 is the Hartree energy (E0 = 27.211
eV).To convert the results to eV and Å one has to mul-
tiply the energies by E∗ and the distances by a∗. In
the experiment of Ref.18 me = 0.0062 and κ=1 which
gives a∗=85 Åand E∗ =169 meV. In this case a harmonic
oscillator confinement with ω=0.1 a.u. corresponds to
~ω =17.9 meV. The unit of λ is

√
E∗/a/∗. The weak-

est harmonic oscillator confinement with ω = 0.01 used
in this work is roughly correspond to the confinement in
the experiment of Ref.18.

A. Electrons in a harmonic confinement

The DFT and ECG results are compared in Figs. 1-5
for N=2-6 particle systems with different spin configu-
rations. The ECG results are well converged and can
be considered as benchmark calculations, the DFT cal-
culations seem to provide good approximations to the
electron density in certain cases. There is a very small
asymmetry between the peaks of the ECG and DFT den-
sities due the the grid resolution in the DFT calculations.
We have tried two different confinement potentials. The
first potential, ω = 1 a.u., is strong and confines the elec-
trons into a [-5,5] a.u. box (high electron density). The
second one, ω = 0.1 a.u., confines the electrons into a [-
20,20] a.u. box. We also have calculations64 for ω = 0.01
which roughly correspond to a [-80,80] a.u. box but the
results are not significantly different from the ω = 0.1
a.u. results. Besides the quadratic confinement, we have
also tested quartic confinement64, but we did not observe
any important change in the tendencies.

The two electron density (Fig. 1) does not show two
peaks for strong confinement for S = 0, but the two peaks
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FIG. 4: Electron density of the five electron system. Top S=1/2, middle S=3/2, bottom S=5/2, left ω = 1 a.u.,
right ω = 0.1 a.u. The solid curve is calculated by ECG; the dashed line is by DFT. The distance r is in a.u.

appear for the weaker case. The confinement alone would
create only one peak in this system, so the appearance of
the two peaks is due to the relative increase of Coulomb
interaction. In the spin-polarized S = 1 case we have two
peaks for strong and weak confinements because the Pauli
and the Coulomb repulsion together are strong enough
to localize the electrons. The localization is naturally
more significant in the weak confinement case, which is
shown by the increased distance and the lower density
between the density peaks. The two peak structure does
not disappear when the strength of the confinement in-
creases; for ω = 20 a.u. the electrons are squeezed into
a [-1,1] a.u. interval, but the two peaks are present in
the spin-polarized case. The reason is simple: in the
case of very strong confinement, the single particle states
of the confining potential determine the structure of the
system and the Coulomb contribution is negligible. The
two spin-polarized electrons have to occupy different or-
bitals, the first is the ground state and the second is the
first excited state. The ground state single particle wave

function is node-less, the first excited state has one node
and is more extended in space than the ground state.
The density, the sum of the square of the two wave func-
tions, will always have two peaks coming from the first
excited state.

The contributions of the kinetic, Coulomb, and con-
finement part to the total energy are shown in Table
I. For very strong confinement (ω = 20 a.u.) the low-
est single particle energy of the harmonic confinement is
E0 = 1

2ω = 10 a.u., and the energy of the first excited

state is E1 = 3
2ω = 30 a.u. As we have discussed above,

for S = 0 the two electrons can occupy the lowest state,
and the calculated kinetic energy 9.99 a.u. and the con-
finement energy 10.01 a.u. (for a harmonic oscillator, the
kinetic and potential energy contributions are equal ac-
cording to the virial theorem) show that this is the case.
For the spin-polarized case the electrons occupy the first
two states and the energy contribution is equal to 20 a.u.
for the kinetic and harmonic part. The Coulomb con-
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FIG. 5: Electron density of the six electron system. Top S=0, middle S=1 and S=2, bottom S=3, left ω = 1 a.u.,
right ω = 0.1 a.u. The solid curve is calculated by ECG; the dashed line is by DFT. The distance r is in a.u.

tribution is nearly equal in both the S = 0 and S = 1
cases, but it is very small compared to the kinetic and
harmonic contributions. For ω = 1 a.u., E0 = 0.5 a.u.,
and E1 = 1.5 a.u., the single particle dominance is much
less, the kinetic and confinement energy contributions are
not equal to 0.5 a.u. (S = 0) and 1 a.u. (S = 1), and
the Coulomb energy is significant compared to the other
terms. For weaker confinements the Coulomb energy be-

comes the largest term (about half of the total energy)
and the kinetic energy becomes very small.

Similar arguments are true for spin-polarized states
with N=3,4,5,6 electron number cases shown in Figs. 2,
3, 4 and 5. In particular, each spin-polarized case with N
particles exhibits N density peaks regardless of the con-
finement, for a similar reason as in the two electron case.
For example, for N=6 the first 6 states with increasing
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number of nodes are occupied, each contributing to the
density. However, the number of density peaks does not
necessarily agree with the number of particles in mixed-
spin systems and cannot be readily determined in a sim-
ple way. As before, the electron density is more localized
in the stronger confinements in most cases. Quartic or
other forms of confinement do not change the shapes too
much and the nodal structure is still the same64. This 1D
picture is significantly different from the 2D or 3D cases
where several single particle states are degenerate and
the electrons can be placed in different spatial configura-
tions. In 1D the electron peaks are aligned in a line with
equal spacing while in higher dimensions more complex
crystal structures (square or trigonal lattice, concentric
rings) can be formed.

Both the 3 and 4 electron systems can show a single
peak (see Figs. 2, 3) in mixed-spin cases if the confine-
ment is strong. The two density peaks in the S = 0,
ω = 1 case of N = 4 can be easily explained. There are
two electrons with up spins and two with down spins and
the distinguishable particles can occupy the same spatial
regions. In the S = 1, ω = 1 case of N = 4, there is one
peak with two shoulders. In this case, most likely an up-
down electron pair occupies the middle region, and the
two remaining electrons with spin up are on the outer
region forming the shoulders.

The structure in N = 5 and N = 6 cases can be un-
derstood using similar arguments to the N = 3, 4 cases.
One can also think of these as a structure formed by an
N = 3 or N = 4 system by adding two electrons. For
example, the middle peak in the S = 3/2, ω = 1 a.u.,
N = 5 case is very similar to the S = 1/2, ω = 1 a.u.,
N = 3 density, with two electrons added forming the
outer shoulders. The same is true for S = 2, ω = 1 a.u.,
N = 6 comparing with S = 1, ω = 1 a.u., N = 4.

If the confinement gets weaker then Wigner crystal
like structures appear. For example, 3 and 4 peaks are
present for N = 3 and N = 4 electrons in case of ω = 0.1
a.u. (see Figs. 2, and 3). The confinement alone creates
only one peak for N = 3 and two peaks for N = 4 (simi-
lar to the densities shown on Figs. 2, 3 for ω = 1). The
Coulomb interactions leads to the appearance of 3 and
4 peaks. Similar tendency is true for larger systems but
the confinement has to be even smaller in those cases.

The DFT and ECG densities are in very good agree-
ment for ω = 1. In these cases the densities are very simi-
lar and the energies are comparable. For weaker confine-
ments the agreement is not as good, probably because
the present LDA is not a good approximation for low
densities where the Coulomb interaction plays a more
pronounced role. For spin-polarized systems the DFT
density remains close to the ECG even for weaker con-
finements. As we have mentioned, the present LDA func-
tional is adopted from 3D free electron gas. LDA func-
tionals are also developed for 1D cases65,66. The long
1/|x| tail has a much more dominant effect in 1D than in
3D. This probably leads to the inaccuracy of the present
DFT calculation in the weak confinement (low density)

ω T V Vc E

S=0 0.01 0.007 0.032 0.025 0.0691

0.1 0.07 0.017 0.014 0.39

1.0 0.44 0.76 0.57 1.77

20.0 9.99 0.97 10.01 20.97

S=1 0.01 0.007 0.032 0.025 0.0691

0.1 0.07 0.017 0.014 0.39

1.0 0.92 0.54 1.09 2.55

20.0 20.0 0.94 20.00 40.94

TABLE I: Energy contributions (in atomic units) for a
two electron system as a function of the confinement
strength. T is the kinetic energy, V is the Coulomb

energy, Vc is the confinement contribution, and E is the
total energy.

case. A 1D LDA functional65,66 would perhaps improve
the solution.
Table II shows the energy of the N=2-6 systems for

ECG and DFT. Besides general trends no agreement is
expected, and the DFT with LDA is not close to ac-
curate ECG energies for small atoms like H, He, or Li
either41. The general trends, however, are similar. For
example, energy orders of different spin states are pre-
dicted to be the same by ECG and DFT, especially for
strong confinements. One particular failure of DFT is
the negative energy for the N = 2, S = 1 case and this
clearly shows that one needs to go beyond LDA. Due to
the shell structure, the energies of different spin states
are very different in cases of strong confinements, but for
weak confinements the energies are nearly degenerate.

B. Electrons in a cavity

In figures 7-9, we further present our results of ECG
calculations for N=2-4 electron systems formed and con-
trolled by light-matter coupling. In these systems we use
a weak harmonic oscillator confining potential (ω = 0.1
a.u.). Although this confinement allows the density to
spread out far away from the center, the interaction of
these systems with light strongly squeezes the density
toward the center.
We test the systems for three different ωp’s (photon

frequency) and different coupling strengths. The first
strong coupling λ = 1 confines the system into a [-5,5]
a.u. box; the second moderate coupling λ = 0.1 con-
fines the system into a [-10,10] a.u. box; and the weakest
λ = 0.01 forces the system into a roughly [-12,12] a.u.
box. Note that λ2 appears in the dipole self interaction
term so the confinement cause by this term in the λ < 1
cases is very weak. In this case we do not make com-
parison with DFT because the LDA based DFT does not
produce meaningful results. Only selected spin states are
included, as others show similar density distributions.
Note that in this case we are not merely dealing with
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a harmonic confinement as in the previous section, but
as the wave function in Eq. (2.13) shows, the electrons
are confined in different photon number spaces coupled
to each other. The electron density is the sum of the elec-
tron density calculated in the orthogonal photon number
spaces. An example is shown in Fig. 6 for a case of a
single electron. The figure shows the probability of dif-
ferent photon number spaces, the fraction of the norm of
the wave function belonging to different |n〉 in Eq. (2.13).
In this one electron case the coupling is relatively strong;
high photon spaces are coupled and less than fifty percent
of the density is in the zero photon space.

Fig. 7 shows the electron density of an N = 2 system
as a function of ωp and λ. The coupling between different
photon spaces is controlled by g (see Eq. (2.11)), and the
strength of confinement in a given photon space is deter-
mined by λ. For a given λ value the dependence on ωp is
relatively small because the coupling is proportional to√
ωp. For a given ωp the positions and structures of the

peaks are strongly dependent on λ. One significant differ-
ence between the harmonic confinement and the photon
coupled case (Figs. 1 and 7) is that the density is much
smaller between the peaks in the latter case.

Figs. 8 and 9 show a similar dependence on ωp for a
given λ. The confinement is determined by λ and the
density distributions have almost identical widths and
peak positions. By increasing ωp, the peak structure may
become less emphasized for non spin-polarized cases (E.g.
for N = 4 S = 0 case only two or three peaks manifest
for larger ωp or λ). Similar to harmonic confinement,
the number of the density peaks still matches with the
number of electrons in spin-polarized cases.

For a given ωp, the dependence on λ is strong (Figs.
7-9). Larger λ values make more compact systems. Over-
all, the λ dependence seems to be very similar in all cases.
Photon spaces with small photon number (n=0,1,2) con-
tain almost all the electron densities even for stronger λ.
The dependence of the densities and energies64 on the
photon frequency is moderate. The strong dependence
on λ is due to two reasons. First, as Eq. 2.11 shows
the coupling is proportional to λ. Second and more im-
portantly the dipole self-interaction strength grows as λ2.
The latter fact also explains that for a given λ and chang-
ing ω (see Figs. 7,8 and 9), the spread of the density is
nearly identical and only the relative heights of the peaks
change. The dipole self-interaction term is responsible for
squeezing the density toward the center.

These systems would not be bounded harmonically
without an external confining potential. The photons
couple to the electrons through the center of mass coor-
dinate of the system (see Eqs. (2.10) and (2.12)). The
total wave function of the electrons can be factorized as
a wave function of relative motion (depending on the rel-
ative coordinate) and the wave function of the center of
mass motion (depending on X only). If there is no con-
finement, then the relative motion is governed by the
repulsive Coulomb interaction and the system dissoci-
ates. The strength of the confinement, however, plays

very little role. Fig. 10 shows three and four electron
systems with a very weak confining potential for the spin
polarized (S=3/2 and S=2) cases. Without coupling, the
density spreads out to 40 a.u. The coupling squeezes the
density and the electrons form a tightly localized electron
peaks. These three and four electron densities are very
similar to the ω = 0.1 a.u. cases shown in Figs. 8 and 9.

IV. SUMMARY

1D few-electron systems are investigated using ECG
basis functions. All matrix elements are analytically cal-
culated and the basis parameters are optimized to gen-
erate flexible basis and accurate wave functions. N=2-6
electron systems with different spin states are studied.
Two different confinements are considered. In the first

case, an external potential is used to localize the elec-
trons. In the second case, there is a weak confining poten-
tial but the electrons are coupled to light and the dipole
self-polarization determines the confinement. 1D Wigner
crystal-like structures appear in both cases if the confine-
ment or the coupling is very weak and there is a similar
tendency in the shape of the density as the confinement
strength changes.
In spin-polarized cases the number of density peaks is

equal to the number of electrons because the shell struc-
ture, created by the confining potential, dominates. For
non spin-polarized cases the number of peaks depends
on the confinement strength and the total spin. This
shows that one cannot identify the number of density
peaks with the number of electrons in experiments. The
symmetry of the few-electron wave function determines
the number of peaks and the shape of the density. A
direct comparison between the experiment18 and theory
is difficult because in the experiment the wave function
of the electrons is three-dimensional in the nanotube and
four-fold degeneracy is present due to the valley and spin
degrees of freedoms. The one dimensional nature of the
wave function of the electrons on the nanotube in the ex-
periment, however, is likely to show the same properties
as our calculated system.
We have shown that the crystal like peak structure is

also present in the case of strong confinement. These
structures are not Wigner crystals because in the strong
confinement regime, the Coulomb interaction becomes
negligible compared to the kinetic energy and the con-
finement. In this region in 1D a shell structure is over-
whelming and the nodes of the wave functions define the
crystal-like peaks in the density.
Simpler models like DFT based calculations can cap-

ture the crystal-like peak structure in certain cases, es-
pecially for spin-polarized systems. Better exchange-
correlation potentials can potentially extend the range of
applications of the DFT based approach to other cases.
The advantage of the DFT is that it is easily applicable
to much larger electron systems. The densities calculated
by ECG can be used to create better exchange-correlation



10

ω E (ECG) E (DFT)

2e−

S=0 0.1 0.392 0.005

1.0 1.774 1.111

S=1 0.1 0.396 -0.1

1.0 2.554 1.827

3e−

S=0.5 0.1 1.009 0.256

1.0 4.481 3.385

S=1.5 0.1 1.016 0.246

1.0 6.078 4.872

4e−

S=0 0.1 1.877 0.982

1.0 7.808 6.261

S=1 0.1 1.887 0.846

1.0 8.589 7.005

S=2 0.1 1.894 0.837

1.0 11.024 9.293

5e−

S=0.5 0.1 2.999 1.678

1.0 12.490 10.443

S=1.5 0.1 2.985 1.671

1.0 14.069 11.955

S=2.5 0.1 3.020 1.663

1.0 17.379 15.064

6e−

S=0 0.1 4.362 2.822

1.0 17.733 15.164

S=1 0.1 4.357 2.715

1.0 18.566 15.919

S=2 0.1 4.336 2.716

1.0 20.911 18.221

S=3 0.1 4.413 2.716

1.0 25.099 22.167

TABLE II: Total energy E (in atomic units) for
few-electron systems as a function of the external

confinement strength ω.

potentials for these 1D systems.

We have considered electrons with (soft) Coulomb in-
teraction in this work, but other systems with repulsive
interactions, such as degenerate Fermi gases in cavities33,
would be expected to show similar structures because the
dipole self interaction term presents a confinement like
potential for the particles.

Wigner crystals in systems confined by external po-
tentials have already been observed18. The experimental
realization of the light coupled systems might be possible
by using nanotubes or optical lattices in cavities.
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FIG. 6: Photon number as a function of the photon space for a single electron system with λ = 0.1 a.u., and
ωp = 0.1 a.u.

-10 0 10
r

0.0

0.1

0.2

0.3

ρ(
r)

ω
p
= 0.1

ω
p
= 1

ω
p
= 2

-10 0 10
r

0.0

0.2

0.4

0.6

ρ(
r)

λ=0.1
λ=0.5
λ=1

FIG. 7: Electron density of the two electron S = 1 system coupled to light. Left λ = 0.1 a.u., right ωp = 1 a.u. The
distance r is in a.u.

Acknowledgments

This work has been supported by the National Science Foundation (NSF) under Grant No. IRES 1826917.

∗ Electronic address: kalman.varga@vanderbilt.edu
1 E. Wigner, Phys. Rev. 46, 1002 (1934), URL https://link.aps.org/doi/10.1103/PhysRev.46.1002.
2 C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979), URL https://link.aps.org/doi/10.1103/PhysRevLett.

42.795.
3 Y. P. Monarkha and V. E. Syvokon, Low Temperature Physics 38, 1067 (2012), URL https://doi.org/10.1063/1.4770504.
4 E. Y. Andrei, G. Deville, D. C. Glattli, F. I. B. Williams, E. Paris, and B. Etienne, Phys. Rev. Lett. 60, 2765 (1988), URL
https://link.aps.org/doi/10.1103/PhysRevLett.60.2765.
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