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The use of phase shifting interferometry (PSI) in the ultra-low light region would open the way
for important applications, such as imaging of phototoxic substances and sensing of ultrafast phe-
nomena. In the ultra-low light region, the statistical nature of photons can be a dominant source of
noise compared with other noise caused by experimental instruments. Here, we theoretically derive
the precision limit determined by the statistical nature of photons for simultaneously measuring the
transmittance and phase of a sample with PSI. We show that the precision of PSI depends on the
phase and transmittance themselves. We also show a trade-off relation between transmittance and
phase. Then, we compare PSI with sequential optimal measurements in which the transmittance
and phase of a sample are separately measured for each corresponding optimal measurement. We
also discuss the case where the input number of photons fluctuates with a Poisson distribution and
show that the fluctuation affects both the transmittance and phase precision for PSI.

PACS numbers:

I. INTRODUCTION

Phase shifting interferometry (PSI) is a powerful and well established technique to measure the phase and trans-
mittance of a sample [1], widely used for various applications, such as optical surface quality measurements [1, 2],
quantitative phase microscopy [3–7] and digital holography [8–14]. In PSI, a phase shifter is placed on one arm of
an interferometer and a sample is placed on the other arm, and the output light intensities of the interferometer are
measured for several reference phases added by the phase shifter. The transmittance and phase of the target are
estimated from these measured intensities.
Recently, PSI has been applied to measurements at the photon-counting level [15, 16]. The use of PSI in the

ultra-low light region would open the way for important applications, such as the imaging of cells containing photo-
toxic molecules and the measurement of ultrafast phenomena. In the ultra-low light region, the statistical nature of
photons can be a dominant source of noise compared with noise caused by experimental instruments. Consequently,
it is important to understand the effect of noise caused by the statistical nature of photons in PSI.
In a pioneering study, Yamamoto et al. experimentally observed how the measurement precision in digital holog-

raphy using PSI is affected by the statistical nature of photons [15]. The experiment was performed at the photon-
counting level using a weak coherent light and a photon detector. PSI was used to estimate the phase shift caused
by a sample and the precision of the estimated phase was evaluated from the experimental data. In another study,
a numerical simulation of digital holography taking into account the Poisson fluctuation of input photon number
was conducted to evaluate the precision of transmittance estimates using PSI [17]. Recently, the precision of phase
measurement for PSI has been theoretically derived by considering the fluctuation of photo-generated electrons in a
photodetector, but the input light was assumed to have no statistical nature [18]. Thus, the fundamental precision
limit determined by the statistical nature of photons for PSI has not yet been theoretically derived.
In this paper, we theoretically derive the precision limit when estimating the transmittance and phase for a sample

with PSI. We find that the measurement precision for transmittance and phase depends on the unknown transmittance
and phase themselves. A trade-off relation between transmittance and phase is also observed. Then, we compare
PSI with sequential optimal measurements (SOM) in which the transmittance and phase of a sample are separately
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measured for each corresponding optimal measurement for single photon inputs. While the transmittance estimation
used in standard PSI gives a slightly worse precision than that for SOM, an alternative approach, which is not
commonly used in PSI, almost reaches the precision for SOM. Regarding the phase estimation, we show that PSI can
achieve a better precision than SOM. We also discuss the case where the input number of photons fluctuates with a
Poisson distribution. We show that the input photon number fluctuation affects both the transmittance and phase
precision for PSI and the dependence on the phase disappears.
This paper is organized as follows. In section 2, we define the precision for SOM. In section 3, we theoretically

derive the precision for PSI and then numerically analyze and compare the performance. Section 4 concludes the
paper.

II. PRECISION FOR SEQUENTIAL OPTIMAL MEASUREMENTS OF TRANSMITTANCE AND

PHASE

In this section, we define the measurement precision for SOM. In the following sections, we compare the precision
for SOM with that for PSI. If one is interested in only the transmittance of a sample, combining a single-photon state
as an input with photon counting detection just after the sample gives the optimal precision at the ultimate quantum
limit beyond the classical limit (shot-noise limit) [19, 20], although it is completely insensitive to the phase of the
sample. On the other hand, if one is interested in only the phase of the sample, the standard interferometric limit
gives the best precision for phase measurement with single photon inputs [21]. For simplicity, we assume N input
photons divided into N/2 photons for each measurement. Thus, when we sequentially estimate the transmittance T
and phase φ for a sample with each optimal measurement, the uncertainties of the transmittance ∆TS and phase ∆φS

for SOM are given as follows [19–21]:

∆TS =
1√
N

√

2T (1− T ) (1)

∆φS =
1√
N

1 +
√
T√

2T
. (2)

III. PRECISION FOR SIMULTANEOUS MEASUREMENT OF TRANSMITTANCE AND PHASE

WITH PSI

In this section, we theoretically derive the precision for PSI. Figure 1 shows a schematic of PSI. First, photons are
input into a beam splitter (BS1) and are divided into two paths. Then, the photons pass through the phase shifter
(PS) in one of the paths and through the sample having transmittance T and phase φm in the other path. After being
recombined at a second beam splitter (BS2), the photons are detected at the output by two single-photon detectors
(SPD1 and SPD2). Note that we assume that the single photon detectors have a perfect detection efficiency and no
dark count in order to focus on the precision limit given by the statistical nature of the photons.
For a reflectivity of the first beam splitter (BS1) of r and that of the second (BS2) of 50%, the probability that a

photon is detected by SPD1 can be written as follows:

p(θ) =
1

2

(

1− r(1 − T ) + 2
√

Tr(1− r) cos(φm − (θoff + θ))
)

, (3)

where θoff and θ are the offset phase of PS and the phase shift given by PS, respectively. The probability that a
photon is detected by SPD2 is p(θ + π). Therefore, when N photons are input into the setup, the photon counts
detected by SPD1 and SPD2 are given by N × p(θ) and N × p(θ + π), respectively.
Different versions of PSI use different numbers of steps for the phase shift. In this paper, we focus on four-step

PSI, which is most widely used. When photons are detected at both outputs, we can obtain four kinds of counts
corresponding to the required four phases from just two phases (0 and π/2) of the PS. We assume that the total
input photon number N is distributed equally over the two phase shifts. Thus, the four kinds of photon counts are
written as Ni ≡ N/2× pi, where pi ≡ p((i− 1)π/2) and i = 1, 2, 3, 4. The transmittance and phase can be extracted
as follows:

T =
1

N2r(1 − r)
(N2

24 +N2
13) (4)

φ = arctan
N24

N13

, (5)



3

FIG. 1: Schematic of PSI. Photons are input into the interferometer. The phase (φm) and transmittance (T ) for the sample
are measured through the detection of the photons with single-photon detectors (SPD1 and SPD2) at the output. The phase
shifter (PS) is used to control the phase of the interferometer. BS: beam splitter. θoff : offset phase of PS. θ: phase shift given
by PS.

where φ ≡ φm−θoff , N13 ≡ N1−N3 andN24 ≡ N2−N4. Since θoff can be determined by an independent measurement,
we can obtain the phase for the sample φm. We also consider another approach to estimate T from the photon counts
as follows:

T =

√

4

r2N2
(N2

1 +N2
2 +N2

3 +N2
4 ) + 3

(

1− r

r

)2

− 2
1− r

r
. (6)

Although this is not commonly used in PSI, the precision for the transmittance estimated from Eq. (6) can be higher
than that estimated from Eq. (4), as we will show in the following analysis.
First, we consider the case where the number of photons used is constant for each measurement. This corresponds

to the situation in which N photons from a single photon source are used for each measurement. In this case, the
variance of the detected photon count is given by ∆N2

i = N
2
pi(1 − pi). We also took into account the covariance

between N1 and N3 and between N2 and N4, which are given by Cov(Ni, Nj) = −N
2
pipj ({i, j} = {1, 3} or {2, 4}).

The uncertainties of the estimated transmittance, ∆TPS and ∆TPS′ , and phase ∆φPS are obtained using Eqs. (4), (6)
and (5), respectively, through an error propagation analysis as follows:

∆TPS =
1

√

N

√

2T (1 − r − (2 − 3r)rT − r(1− r)T cos(4φ))

r(1− r)
(7)

∆TPS′ =
1

√

N

√

(1− r)3 + (1 − r)2(1 + 8r)T − r(1− r)(11 − 20r)T 2
− r2(7− 8r)T 3

− r3T 4
− 2r(1 − r)2T 2 cos(4φ)

r(2 + r(T − 2))2
(8)

∆φPS =
1

√

N

√

1− r + r2T + r(1− r)T cos(4φ)

2r(1 − r)T
. (9)

These equations show that all uncertainties depend on T and φ in a nontrivial manner. Equation (8) indicates that

∆TPS′ is minimized when r = 1 and reaches the quantum limit for an N photon input: ∆TPS′ = 1√
N

√

T (1− T ) =

∆TS/
√
2. However, in this case, ∆TPS and ∆φPS diverge to infinity.

We find that both ∆TPS and ∆φPS will be minimized when r satisfies the relation r = 1

1+
√
T
. Note that this relation

is also required to achieve the standard interferometric limit [21]. After substituting this relation into Eqs. (7), (8)
and (9), we obtain the following equations:

∆TPS =
1√
N

√

2T
(

1 + 2
(√

T − T
)

− T cos(4φ)
)

(10)

∆TPS′ =
1√
N

√√
T + 9T + 10

√
TT − 10T 2 − 7

√
TT 2 − T 3 − 2T 2 cos(4φ)

2 +
√
T

(11)

∆φPS =
1√
N

√

1 + 2
√
T + T cos(4φ)

2T
. (12)
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Equations (10) and (11) show that ∆TPS and ∆TPS′ are minimized for a given T when the phase φ satisfies cos(4φ) = 1.
In this case, ∆TPS = ∆TPS′ = ∆TS = 0 at T = 1. At T = 0, ∆TPS = ∆TPS′ = ∆TS = 0 with arbitrary φ. Equation
(12) shows that ∆φPS is equal to or smaller than ∆φS. ∆φPS is minimized for a given T when the phase φ satisfies

cos(4φ) = −1. In this case, when T = 1, ∆φPS reaches the standard quantum limit 1/
√
N for an N photon input.

∆φPS is maximized and is equal to ∆φS when the phase φ satisfies cos(4φ) = 1.
Figures 2(a) and 2(c) illustrate ∆TPS and ∆TPS′ for N = 100, respectively. In Figs. 2(b) and 2(d), we compare

∆TPS and ∆TPS′ with ∆TS for φ satisfying cos(4φ) = 1 (orange dashed curve) and cos(4φ) = −1 (red dot-dashed
curve). The blue solid curves in Figs. 2(b) and 2(d) correspond to ∆TS. ∆TPS and ∆TPS′ depend on φ except for at
T = 0. For φ satisfying cos(4φ) = 1, both ∆TPS and ∆TPS′ are 0 at T = 0 and 1. ∆TPS and ∆TPS′ have different
maximum values of 0.096 at T = 0.53 and 0.077 at T = 0.47, respectively. ∆TPS′ almost reaches ∆TS while ∆TPS is
maximally 37% larger than ∆TS. When φ satisfies cos(4φ) = −1, ∆TPS monotonically increases with T , reaching a
maximum value of 0.2 at T = 1, while ∆TPS′ has a maximum value of 0.087 at T = 0.59 and has a slightly smaller
value of 0.067 at T = 1. The comparison between ∆TPS (Fig. 2(b)) and ∆TPS′ (Fig. 2(d)) reveals that the T
estimation with Eq. (6) allows a higher precision than that with Eq. (4) except for the region around 0 < T < 0.1.
Figure 2(e) illustrates ∆φPS for N = 100. In contrast to ∆TPS, ∆φPS diverges to infinity at T = 0. As T increases,

∆φPS decreases and an oscillation with φ appears. Figure 2(f) shows ∆φPS when φ satisfies cos(4φ) = 1 (orange
dashed curve) and cos(4φ) = −1 (red dot-dashed curve). The blue solid curve in Fig. 2(f) corresponds to ∆φS. As

FIG. 2: Measurement uncertainties in the estimation using PSI for N = 100 input photons. (a)-(d): uncertainties in T .
(a) and (c) illustrate ∆TPS and ∆TPS′ , respectively. In (b), the orange dashed and red dot-dashed curves indicate ∆TPS

with cos(4φ) = 1 and cos(4φ) = −1, respectively. In (d), the orange dashed and red dot-dashed curves indicate ∆TPS′ with
cos(4φ) = 1 and cos(4φ) = −1, respectively. The blue solid curves in (b) and (d) indicate ∆TS. (e), (f): uncertainties in φ.
(e) illustrates ∆φPS. In (f), the orange dashed and red dot-dashed curves indicate ∆φPS with cos(4φ) = 1 and cos(4φ) = −1,
respectively. The blue solid curve indicates ∆φS.
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discussed above, ∆φS is equal to ∆φPS for φ satisfying cos(4φ) = 1. When φ satisfies cos(4φ) = −1, ∆φPS reaches

the standard quantum limit of 1/
√
N = 0.1 at T = 1.0.

Comparing Figs. 2(a) and 2(c) with Fig. 2(e), we see that the values of φ minimizing ∆φPS maximize ∆TPS and
∆TPS′ , and vice versa. Also, for the T dependence, ∆φPS diverges to infinity at T = 0 while ∆TPS and ∆TPS′ take a
minimum value of 0 at T = 0. This suggests a trade-off between the uncertainties in the estimation of T and φ. Note
that we can control θoff of PS to satisfy a desired condition (such as cos(4φ) = 1) through the relation φ = φm − θoff .
An adaptive strategy is available for this purpose even if we have no information about the target phase φm [22–26].
Similarly, we can adaptively tune the reflectance of BS1 to be r = 1

1+
√
T

using a tunable BS.

Next, we consider the case where the input photons have a Poisson distribution in photon number per unit time, and
it affects the statistics of the output photons. This situation can occur in many conventional systems where a coherent
light is used for the input and the photon number or power at the output is measured during an accumulation time.
In this case, the Poisson fluctuation affects the variance of the detected photon count and changes it to ∆N2

i = Nipi
from ∆N2

i = Nipi(1− pi). The uncertainties of the estimated transmittance, ∆TPSP and ∆TPSP′, and phase ∆φPSP

are obtained using Eqs. (4), (6) and (5), respectively, through an error propagation analysis as follows:

∆TPSP =
1√
N

√

2T (rT + 1− r)

(1− r)r
(13)

∆TPSP′ =
1√
N

√

(1− r)3 + 9r(1 − r)2T + 9r2(1− r)T 2 + r3T 3

r(2 + r(T − 2))
(14)

∆φPSP =
1√
N

√

rT + 1− r

2rT (1− r)
, (15)

Because the φ-dependent terms cancel each other in the derivation process, these uncertainties do not depend on φ
but only on T , unlike ∆TPS, ∆TPS′ and ∆φPS. Note that the cancellation of the φ-dependent terms is a feature that
occurs specifically in four-step PSI. It does not occur, for instance, in three-step PSI. Equation (14) is minimized to

be ∆TPSP′ =
√

T/N when r = 1. However, in this case, ∆TPSP and ∆φPSP diverge to infinity. Equations (13) and
(15) are minimized when r satisfies the relation r = 1

1+
√
T
, which was also used to optimize Eqs. (7) and (9). After

substituting this relation into Eqs. (13), (14) and (15), we obtain the following equations:

∆TPSP =
1√
N

√
2T

(

1 +
√
T
)

(16)

∆TPSP′ =
1√
N

1 +
√
T

2 +
√
T

√

(

1 + T + 8
√
T
)√

T (17)

∆φPSP =
1√
N

1 +
√
T√

2T
. (18)

We can see that ∆φPSP is exactly the same as ∆φS and ∆φPS with cos(4φ) = 1.
Figure 3(a) illustrates ∆TPSP (red dashed curve) and ∆TPSP′ (purple dotted curve) when N = 100. ∆TPSP

and ∆TPSP′ are 0 at T = 0 and monotonically increase with T and have maximum values of about 0.28 and 0.21,
respectively. These T dependences are similar to that for ∆TPS with cos(4φ) = −1 (red dot-dashed curve in Fig. 2(a))
but the maximum values are different. ∆TS is smaller than both ∆TPSP and ∆TPSP′ and the difference is largest at
T = 1. Note that the input photons for SOM are assumed to be a single-photon state. Thus, when the input photons
has a Poisson fluctuation, the uncertainty in T for the sequential strategy increases and has a similar shape to ∆TPSP

and ∆TPSP′. Note also that SOM has a drawback in practical implementation; it requires two separate experimental
setups to measure the phase and transmittance of a sample.
Figure 3(b) shows ∆φPSP when N = 100. ∆φPSP (red dashed curve) diverges to infinity at T = 0 and decreases

with T , reaching a minimum value of about 0.14 at T = 1. As shown above, ∆φPSP is the same as ∆φS (blue solid
curve in Fig. 3(b)).
Comparing Fig. 3(a) with Fig. 3(b), we see that the T minimizing ∆φPSP maximizes ∆TPSP and ∆TPSP′ , and vice

versa. This suggests that there is a trade-off between the uncertainties in the estimation of T and φ also when the
input photons have a Poisson fluctuation.
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FIG. 3: Measurement uncertainties in the estimation with PSI for N = 100 input photons which have a Poisson fluctuation.
(a) uncertainties in T . The red dashed curve, the purple dotted curve and the blue solid curve indicate ∆TPSP, ∆TPSP′ and
∆TS, respectively. (b) uncertainties in φ. The red dashed curve and the blue solid curve indicate ∆φPS and ∆φS

, respectively.

IV. CONCLUSION

In conclusion, we have derived the theoretical precision of PSI. We found that the precision of PSI depends on the
transmittance and phase for the sample when single photons are input into the interferometer and can be optimized
by tuning the second beam splitter of the interferometer. We also showed the trade-off relation between transmittance
and phase precision. Then, we compared PSI with SOM. While the transmittance estimation used in standard PSI
gives a slightly worse precision than that for SOM, an alternative approach, which is not commonly used in PSI, almost
reaches the precision for SOM. Regarding the phase estimation, we found that PSI can achieve a better precision
than SOM. We then showed that the phase dependence in the precision disappears when the input photons fluctuate
with a Poisson distribution and the precision for the transmittance and phase are inferior to those without Poisson
fluctuation. We believe that our results not only open the door to explore sensing and imaging using PSI in the ultra-
low light region but also provide the fundamental understanding of precision limit for simultaneous transmittance
and phase estimation with photons. It would be interesting to extend the study to quantum-enhanced interferometry
[27–30].
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