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We study the statistical mechanics and the dynamical relaxation process of modulationally un-
stable one-dimensional quantum droplets described by a modified Gross-Pitaevskii equation. To
determine the classical partition function thereof, we leverage the semi-analytical transfer integral
operator (TIO) technique. The latter predicts a distribution of the observed wave function am-
plitudes and yields two-point correlation functions providing insights into the emergent dynamics
involving quantum droplets. We compare the ensuing TIO results with the probability distributions
obtained at large times of the modulationally unstable dynamics as well as with the equilibrium
properties of a suitably constructed Langevin dynamics. We find that the instability leads to the
spontaneous formation of quantum droplets featuring multiple collisions and consecutively are found
to coalesce at large evolution times. Our results from the distinct methodologies are in good agree-
ment aside from the case of low temperatures in the special limit where the droplet widens. In this
limit, the distribution acquires a pronounced bimodal character, exhibiting a deviation between the
TIO solution and the Langevin dynamics still captured by the modified Gross-Pitaevskii framework.

PACS numbers:

I. INTRODUCTION

The celebrated Gross-Pitaveskii model has proved par-
ticularly successful for studying and describing a va-
riety of macroscopic many-body phenomena in zero-
temperature Bose-Einstein condensates (BECs) [1–3].
On the other hand, more recently, a new type of mat-
ter wave has emerged [4, 5], namely the so-called quan-
tum droplets. The theoretical basis is a two-component
(binary) BECs, with intra-component self-repulsion, yet
also inter-component attraction that slightly exceeds the
self-repulsion. Here, the famous Lee-Huang-Yang quan-
tum correction [6] comes into play to account for the av-
eraged effect of quantum fluctuations beyond the mean-
field description. It competes with the mean-field ef-
fects [1, 2] and thus prevents the BEC collapse predicted
in the mean-field realm. Notice that this stabilization
mechanism depends crucially on the system’s dimension-
ality; namely beyond mean-field fluctuations are attrac-
tive in one-dimension (1D) while being repulsive in higher
spatial dimensions. Importantly, these predictions led to
a sequence of experimental realizations of such quantum
droplets [7–11], firstly observed in dipolar gases [12, 13].
Accordingly, these states constitute nowdays an emerg-
ing topic that is under intensive research in the context
of BECs.

Along this vein of experimental developments, it is re-
markable that collisions of such droplet patterns have
been experimentally observed recently (leading to merg-
ers for slow collisions and quasi-elastic passage for fast
ones) [10]. Additionally and while the above examples
focused on 39K droplets, heteronuclear binary BECs of
87Rb and 41K showcased very stable quantum droplets
on time scales of the order of a second [11]. In parallel to

this steady stream of experimental demonstrations, theo-
retical studies have spearheaded a number of parallel di-
rections. These include but are not limited to the explo-
ration of self-evaporation dynamics of droplets [14, 15],
quantum droplets with intrinsic vorticity [16], the impact
of discreteness in the form of semidiscrete droplets with
or without topological charge [17], or the investigation
of 3D stable generalizations of such states [18]. Many
of these developments have been recently summarized
in Ref. [19]. Interestingly, the 1D dynamical features
of droplet states are far less explored and are currently
mainly restricted to inelastic collisional aspects of these
configurations especially for high momenta and flat-top
droplets [20] or their spontaneous generation due to the
modulation instability (MI) [21]. Additionally, the phase
diagram of quantum droplets trapped in 1D optical lat-
tices was studied very recently [22].

The above efforts have mainly focused on the dynami-
cal aspects of the droplets, and principally so at the zero
temperature setting. However, naturally, studying the
finite temperature dynamics of BEC systems is a topic
of broad theoretical and experimental appeal [23]. It is
indeed challenging to completely eliminate thermal ef-
fects in current experiments, a fact that further justifies
the usage of models that can operate at finite tempera-
tures [24]. This is particularly intriguing in 1D where
the role of quantum fluctuations, being inherently re-
lated to droplet formation, is more prominent [25–27] and
three-body losses are suppressed [28] compared to higher
dimensions while the experimental probe of these config-
urations is still elusive. One of the commonly used meth-
ods to include the temperature induced fluctuations is the
so-called truncated Wigner method [29, 30]. Recently, a
considerable amount of attention has been drawn towards
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the so-called positive P-method too [31, 32]. In general,
the final task of these methods is solving a stochastic
equation that incorporates the thermal fluctuations to
the corresponding Hamiltonian dynamical system. In
statistical mechanics, a principal task consists of the eval-
uation of the partition function corresponding to the en-
ergy functional of the system at hand. A central tool to
this effect in 1D settings consists of the so-called trans-
fer integral operator (TIO) method [33]. Indeed, this
method renders the above problem equivalent to solv-
ing the single particle Schrödinger equation. Moreover,
it has been shown that a stochastic method represented
by a suitable Langevin equation is comparable with the
solution of TIO [34–36]. Further, recently it has been
shown that the steady state of molecular dynamics and
the classical field method also reproduces the TIO results
[35, 37].

To the best of our knowledge, such techniques moti-
vated by statistical mechanics, while being successful at
the level of single-component GP model [35], have yet
to be explored in the quantum droplet realm of multi-
component systems. Indeed, this is a central focus of the
present work. More concretely, we study the statistical
mechanics of a quantum droplet in a 1D ring geometry.
One of the peculiarities of a quantum droplet is its in-
compressibility leading to a maximal critical density for
sufficiently large particle numbers.

This relevant system, as mentioned above, can be rep-
resented with a modified binary Gross-Pitaveskii (MGP)
equation, where the form of a Lee-Huang-Yang term is
determined by the dimension of the system [5, 20, 38, 39].
For the case of particle-balanced components with equal
masses and equal intra-component interaction strengths,
which will be of primary interest herein, the binary MGP
equation reduces to a single-component one. We deter-
mine the classical partition function corresponding to our
model by mapping the functional integration of the par-
tition function to a single-particle Schrödinger equation
via the TIO technique. Note that the classical parti-
tion function corresponds to the high-temperature limit
of the quantum partition function describing an interact-
ing Bose gas [40]. We then numerically verify the predic-
tions of TIO via a suitably crafted Langevin dynamics
[34, 35]. Our results indicate that the equilibrium prop-
erties of the Langevin dynamics are well in line with the
TIO solution at intermediate and high temperatures for
µ → µ0, the limit where the droplets tend to disappear;
the agreement is less adequate at low temperatures. We
also compare the TIO results with the long-time dynam-
ical evolution of the original droplet system in the regime
where the latter falls into MI [41] and subsequently re-
laxes. The recent studies on the statistical properties of
MI motivate this analysis [42, 43]. Indeed, in Ref. [21],
it has been shown that the MI resulting from the small
perturbation of a plane-wave state leads to the formation
of quantum droplet structures that undergo inelastic col-
lisions. Interestingly, we find that, as a result of the
inelastic collisions these generated droplet structures co-

alesce and their equilibrium properties are well matched
by the TIO analysis. It is worthwhile to mention here
that within our study we neglect any possible tempera-
ture dependence of the Lee-Huang-Yang term, a prospect
that remains still an open question.

The work is organized as follows. We introduce the
MGP model in Sec. II and then determine the classical
partition function by using the TIO method in Sec. III.
Section IV is devoted to developing and exploring the rel-
evant Langevin dynamics. We report the results of the
MI dynamics within the MGP framework in Sec. V and
provide an outlook in Sec. VI. Appendix A elaborates
on the extraction of the single-particle Schrödinger pic-
ture through the transfer integral method. Appendix B
explicates the derivation of the Langevin equations in in-
teraction imbalanced two-component mixtures. Finally
in Appendix C it is shown that the inclusion of thermal
effects in the mixture, emulated by a dissipative term in
the MGP, leads to a more pronounced coalescence pro-
cess of the droplets associated with the suppression of
the background fluctuations.

II. THE MODIFIED GROSS-PITAEVSKII
FRAMEWORK

The starting point of our analysis will be the dimen-
sionless MGP equation describing 1D quantum droplets
emerging in symmetric binary mixtures [5, 21]. In par-
ticular,

i
∂ψ

∂t
= −1

2

∂2ψ

∂z2
+ |ψ|2ψ − |ψ|ψ − µψ, (1)

with the normalization condition∫ +∞

−∞
n dz = N, and n = |ψ(z)|2. (2)

Here, N is the number of atoms and µ represents
the chemical potential. The effective single-component
Eq. (1) is obtained as a reduction of the respective
coupled set of two-component modified Gross-Pitaveskii
equations [see also Appendix B] under symmetry consid-
erations. The latter refer to a mixture with same particle
number per species (N1 = N1 ≡ N/2), equal repulsive
intra-component interaction strengths (g1 = g2 ≡ g > 0)
and equal masses (m1 = m2 ≡ m), see for details [5, 20].
Moreover according to Eq. (1), the units of length, time
and wave function are expressed in terms of the heal-
ing length ξ, ~/(mξ2), and (2

√
g)3/2/

√
πξ(2|δg|)3/4, re-

spectively, with ξ = π~2

m

√
2|δg|
g3/2 . Also, δg = g12 + g and

g =
√
g1g2, where g > 0 represent the repulsive intra-

component interaction strengths of the symmetric mix-
ture, while g12 < 0 denotes the inter-component attrac-
tive interaction. Additionally, for the existence of a quan-
tum droplet δg � g should hold. In a corresponding ex-
periment, δg can be tuned using the Feshbach resonance
technique [7, 8].
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For δg/g > 0, Eq. (1) gives rise to an exact localized
flat-top (FT) solution [20]. The latter represents a quan-
tum droplet which originates from the balance between
the effective cubic self-repulsion and quadratic attraction
characterized by the central density n0 and the chemical
potential µ0, where

n0 =
4

9
, µ0 = −2

9
, (3)

respectively. In what follows we shall focus on the
δg/g > 0 regime. However, for reasons of complete-
ness we remark that solutions to Eq. (1) exist also for
δg/g < 0, see Ref. [21] for a more elaborated discussion.

III. STATISTICAL MECHANICS

To study the statistical mechanics of the model un-
der consideration, as described by Eq. (1), we establish
the corresponding classical partition function via the TIO
method, as indicated in the Introduction in line with
Refs. [33–35]. For completeness, we will present selected
results for the two-component case in Appendix B. In
order to proceed, we consider the droplet on a periodic
domain (i.e., effectively a ring) of length L. Then, the
form of the classical partition function reads

Z =

∫
D(ψ,ψ∗)e−βF [ψ,ψ∗], (4)

where

F =

∫
dz(H − µN) (5)

is the free energy, β is the inverse temperature, H rep-
resents the Hamiltonian corresponding to Eq. (1) and N
is the total number of particles. In accordance with the
TIO methodology, the functional integration can be re-
duced to an eigenvalue problem [33, 44]. For the Eq. (1),
we arrive at the corresponding eigenvalue equation (see
Appendix A for a detailed derivation)[

− 1

2β2

δ2

δψ2
+ Vd(ψ)

]
φn(ψ) = Enφn(ψ). (6)

Evidently, Eq. (6) corresponds to a 1D single-particle
Schrödinger equation. In this expression, φn represent
the corresponding single-particle eigenfunctions, being
functionals of the ψ field, while En denote the eigenval-
ues. Importantly, the effective TIO potential appearing
in Eq. (6), possesses the form

Vd(ψ) =
1

2
|ψ|4 − 2

3
|ψ|3 − µ|ψ|2. (7)

Notably, this represents the common mean-field poten-
tial of the Gross-Pitaevskii theory [5]. The shape of these
effective potentials in the different parameter regions of

the system is crucial in order to understand where bound
state solutions, and thus droplet-like configurations, are
prone to appear. For this reason, we next show Vd(ψ = u)
in Fig. 1 since the one-component case will be our focus
in the following. According to Eq. (7) the minimum of

Vd(ψ = u) is given by u = (3b +
√

9b2 + 32aµ)/(8a) for

µ > 0, while u = (3b ±
√

9b2 + 32aµ)/(8a) for µ ≤ 0
where a = 1

2 and b = 2
3 . As a result for µ < 0 the effec-

tive potential features a double-well structure, see Fig. 1.
This feature is related to the presence of a bimodal prob-
ability distribution as it will be argued later on [Eq. (8)].

μ=-μ0

μ=0

μ=+μ0
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Figure 1: Effective anharmonic potential Vd(u), described by
Eq. (7). Shown are different values of the chemical potential
µ (see legend) with µ0 given by Eq. (3).

We solve the Eq. (6) numerically to determine the cor-
responding eigenvalues and eigenvectors utilizing exact
diagonalization. Notice that this is the only aspect that
renders the TIO approach semi-analytical. The main
contribution to the partition function in Eq. (4) will be
from the lowest TIO eigenvalue. The thermodynamic
properties of an equilibrium system can be well under-
stood by resorting to the underlying probability distri-
bution of amplitudes (PDA), P (|φ| = u). The latter can
be expressed in terms of the eigenfunction corresponding
to the lowest eigenvalue E0 of Eq. (6) [35]. In particular
P (|φ| = u) acquires the form

P (|φ| = u) = 2u|φ0(u)|2. (8)

Moreover, the steady state properties of a thermody-
namic system can be further characterized by employing
the two-point spatial correlation function C(z) [45, 46].
Here, z denotes the relative distance between two distinct
spatial locations. This correlation function can be writ-
ten with respect to the eigenvalues and eigenfunctions of
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Eq. (6) as

C(z) = 〈ψ(.)ψ(.+ z)〉

=
∑
n

|
∫
duφ∗n(u)uφ0(u)|2e−β|z|(En−E0).

(9)

It provides a measure of the coherence among the parti-
cles [45, 47]. Concretely, it is bounded from above and
below taking as a maximal and minimal value the con-
sidered particle number and zero respectively. If C(z) is
maximal for every z then the system is termed fully co-
herent and it is characterized by quasi long-range order.
Otherwise losses of coherence occur. In the thermody-
namic equilibrium, the long-range order is expected to
vanish and accordingly C(z) tends to zero for increasing
z [48]. We finally remark that, for the settings considered
herein, the contributions of the (higher) excited states of
the effective potentials (described by Eqs. (8) and (9))
are neglected, as being exponentially smaller than the
dominant lowest-lying states.

IV. LANGEVIN DYNAMICS

It has been demonstrated that, for any positive tem-
perature, the exact results obtained from the TIO in a
BEC system can be compared with that of a Langevin
equation with a Gaussian additive white noise term [35].
This type of stochastic dynamics contributes towards re-
laxing the system configuration to the free-energy mini-
mum, while at the same time accounting for the thermal
fluctuations arising around this minimum [49]. Indeed,
the point of the Langevin dynamics is to allow the fields
to evolve in a way such that they eventually relax to the
appropriate equilibrium distribution and then to sam-
ple the suitable observables. I.e., this dynamics relaxes
the field configuration via fictitious dynamics to the rele-
vant minimum of the free energy surface, while the white
noise randomly drives the field. In the following, we con-
sider the Langevin equations corresponding to Eq. (1),
in line also with the earlier work of [35] for regular one-
component BECs

∂ψ

∂t
= −

[
− 1

2

∂2ψ

∂z2
+ |ψ|2ψ − |ψ| − µ

]
ψ + ξ1(z, t). (10)

The term ξi represents the white noise having a Gaussian
distribution with the correlation

〈ξ∗i (z, t)ξi(z
′, t′)〉 =

2

β
δ(z − z′)δ(t− t′). (11)

The Langevin equations are indeed found to relax to the
equilibrium state at large evolution times. This is caused
by the fact that the time average of the spatio-temporal
correlation relaxes to its equilibrium spatial correlation
or in other words the time average of the noise approaches
its equilibrium distribution [50]. We solve Eq. (10) nu-
merically by using the xmds package [51].

Figure 2: Probability distribution function obtained from
TIO (solid lines) and within the Langevin dynamics for dif-
ferent values of the inverse temperature β. Namely, β = 0.2
(green crosses), β = 2 (blue circles) and β = 95 (red squares).
The other parameter refer to µ = µ0 + 0.00001.

Figure 3: Probability distribution function P (|ψ| = u) at
different total evolution times tF (see legend) for β = 95
obtained within the Langevin dynamics. A saturation of
P (|ψ| = u) is observed for tF > 200. Other parameter used
correspond to µ = µ0 + 0.00001.
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Note that for the numerical simulations of Eq. (10), to
be presented below, a sample of 1000 trajectories is found
to be sufficient for the convergence of the relevant prob-
ability distributions, with the domain size being L = 30.
We first fix the chemical potential µ = µ0 + 0.00001,
where the exact solution of Eq. (1) is a FT shaped
droplet. Figure 2 depicts the probability distribution
P (|ψ| = u) results of the Langevin dynamics for (long)
total evolution time tF ≥ 200. The green (crosses), blue
(circles) and red (squares) symbols represent the numer-
ically obtained steady states for β = 0.2, β = 2 and
β = 95, respectively; the solid lines represent the corre-
sponding TIO solutions. Inspecting P (|ψ| = u) [Fig. 2]
we can readily deduce that as the temperature increases
(from β = 95 to β = 0.2), it changes from a single peak
distribution (unimodal) to a bimodal one in terms of the
TIO prediction. The comparison between the TIO re-
sults and the ones within the Langevin approach high-
lights that the steady state of the Langevin dynamics
is in very good agreement with the TIO solutions both
at higher and intermediate temperatures. On the other
hand, at the low temperature regime, the steady state of
the Langevin dynamics deviates from the TIO solution.
The latter case is the more numerically delicate one due
to the nature of the relevant effective TIO potential, a
feature to which we attribute the observed discrepancy.
In order to confirm that this discrepancy is not due to the
considered total evolution time tF that allows to reach
the steady state, we determine the P (|ψ| = u) for differ-
ent tF at β = 95, see in particular Fig. 3. Interestingly,
we observe that the probability distribution for evolu-
tion times in the range of tF ∈ (160 − 240) develops a
bimodal structure, being proximal to the expected pic-
ture from the TIO analysis. However, upon considering
larger timescales the relative difference in the amplitude
between the humps appearing in P (|ψ| = u) tends to be
suppressed.

We will further address this discrepancy when consid-
ering the dynamics of the full model, Eq. (1), (rather than
the modified Langevin one) in the following section. To
gain additional insight on the dependence of the steady
state distribution at intermediate temperatures, we now
vary the chemical potential µ by fixing the inverse tem-
perature parameter β = 95. The obtained results for the
P (|ψ| = u) are provided in Fig. 4. It shows that the
TIO solution develops a bimodal distribution only when
µ → µ0. As µ deviates from this FT droplet limit, the
TIO solution leads to a unimodal distribution and the
results of the Langevin dynamics match well with these
solutions. This once again suggests that presumably the
Langevin dynamics is not able to capture the delicate FT
configuration of the droplet at the intermediate temper-
ature limit, as we will argue further below. Nevertheless,
in all other settings, the TIO semi-analytical prediction
is very adequately captured by the modified Langevin
dynamics.

To gain further insight into the emergent steady state
of the droplets, we additionally determine the two-point

Figure 4: Probability distribution P (|ψ| = u) obtained from
the Langevin dynamics for µ = µ0 + 0.00001 (red crosses),
µ = µ0 + 0.005 (green circles), µ = µ0 + 0.01 (blue squares),
µ = µ0 + 0.05 (black triangles). The solid lines represent the
corresponding TIO solutions. Other parameter is β = 95.

correlation function C(|z|) [Eq. (9)]. The latter is pro-
vided in Fig. 5 for sufficiently large evolution times, i.e.,
tF ≥ 200. This observable allows to assess the underlying
coherence losses which are induced here by the temper-
ature. It evinces that the predictions of the TIO are in
accordance with the ones of the Langevin dynamics for
both lower and higher inverse temperatures [see lower
and upper panels of Fig. 5]. Particularly, quasi long-
range order is suppressed and therefore coherence is lost
since C(|z|) → 0 for increasing z. This fact also sup-
ports the appearance of a steady state [48] for the droplet.
Note that coherence losses are more dramatic for large β,
compare lower and upper panels of Fig. 5. On the other
hand, at the intermediate inverse temperature (β = 0.5),
in line with the mismatch in the probability distributions,
the behavior of the correlation function deviates from the
respective transfer integral prediction in the µ→ µ0 limit
as seen in the middle panel of Fig. 5. Concretely, the TIO
method shows a vanishing coherence for larger values of
z, whilst the Langevin dynamics predicts that the coher-
ence of the system is maintained.

V. MI DYNAMICS IN THE MODIFIED
GROSS-PITAEVSKII APPROACH

Recently, it has been shown that the dynamics of a
classical field method (CFM) adequately traces the fea-
tures of the TIO solution for the equilibrium statisti-
cal mechanics of the single-component BEC case [35].
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Figure 5: Correlation function C(z) obtained from the TIO
method (solid lines) and from the Langevin dynamics (dots)
for different temperatures. Namely, β = 0.2 (top panel), β =
95 (middle panel) and β = 2 (bottom panel) at µ = µ0 +
0.00001. Here the considered total evolution time is tF ≥ 200.

Indeed, a key point of that work is the comparison of
three different methods: the Langevin approach detailed
above with a molecular dynamics (MD) one [37] (based
on Hamiltonian dynamics of Klein-Gordon type) and the
CFM. Considering the MD methodology as less directly
related to the system at hand, we focus here on the
CFM as a complement of the Langevin approach pre-
sented above. The core idea of the CFM is to obtain a
steady state where dynamics is governed by the Gross-
Pitaevskii equation and then compare this steady state
solution with the TIO solution. In this method, the
initial state is a non-equlibirium one where only a few
modes in momentum space are excited. Moreover, it is
well known that in such systems the MI phenomenon
naturally creates non-equilibrium conditions when sub-
jected to a small perturbation (seeding the relevant in-
stability) [41, 52]. The Gross-Pitaevskii equation with
an effective attractive interaction is known to be mod-
ulationally unstable. The MI dynamics of the model as
described by Eq. (1) has been recently studied in de-
tail [21] and argued to lead to droplet nucleation. Moti-
vated by this finding we shall subsequently focus on the
dynamical response of the symmetric mixture generated
by its direct time-evolution within the MGP and being
associated with the unstable dynamics stemming from
the MI. In particular, we aim to unravel the spontaneous
creation of droplets due to MI and their fate in the long-
time dynamics. Indeed, we allow the system to evolve
into its asymptotic (equilibrium) state from an initially
dynamically unstable initial condition and “observe” the
resulting effective temperature by comparison with the
TIO solution results.

As an initial condition we consider a homogeneous par-
ticle density distribution subjected to a weak amplitude
perturbation of the form δψ = Ape

iθr . The strength Ap

|ψ|
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Figure 6: MI dynamics for the system parameter values n ≈
0.1 and µ = µ0 + 0.00001. (a) Spatiotemporal evolution of
|ψ(z, t)|. (b) Probability distribution function P (|ψ| = u)
and (c) correlation function in momentum space 〈|ψ(k)|2〉 at
a final evolution time of tF = 4000. The results shown in (b)
and (c) are averaged ones over a sample of twelve different
initial conditions and the error bars shown in (b) represent the
respective standard deviation. The green solid line represents
the TIO solution at β = 95, while, the blue dotted points
are obtained through the direct simulation of the MGP as
described by Eq. (1).
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of the perturbation is of the order of 10−8 and θr repre-
sents the uniform noise distribution taking values in the
interval [0, π] [21]. We fix µ = µ0 + 0.00001 that corre-
sponds to n ≈ 0.11. The results are presented in Fig. 6.
The MI initially leads to the formation of small droplets
as discussed in [21]. In the course of the evolution these
small droplets undergo inelastic collisions (analogously to
what was observed in [10]) and thus undergo a coarsening
stage. This results in the formation of “large” droplets
as shown in Fig. 6(a). Also, we noted that the ampli-
tude of these waveforms is close to the central density,
n0 of the FT shaped droplet. The corresponding PDA is
depicted in Fig. 6(b) (blue dotted points). Interestingly,
the PDA exhibits a bimodal distribution, where the peak
at large amplitude (u ≈ 0.66) represents the large ampli-
tude droplets, while peaks at small amplitude (u ≈ 0.33)
are related to small-amplitude phononic excitations [38]
that are widespread within the spatial extension of the
cloud.

To compare this equilibrium state with the TIO so-
lution, we considered different values of β and obtained
that, e.g., for β = 95 the probability distribution func-
tions are in close correspondence with each other as
shown in Fig. 6(b) with the green solid line. Interest-
ingly, the accordance between the PDA and TIO solu-
tion predictions holds also for the corresponding corre-
lation function in momentum space [53] i.e. 〈|ψ(k)|2〉 =
(1/2π)

∫
dzC(z)e−ikz. The latter is routinely accessible

in current ultracold atom experiments via time-of-flight
imaging [54]. This observable is provided in Fig. 6(c)
at tF = 4000 and β = 95. As can be seen, it features a
central peak structure around k = 0 signaling the steady
state of the droplet while its shape is in perfect agreement
between the two approaches. To further corroborate that
the same argumentation holds also for other values of the
chemical potential, we exemplarily showcase in Fig. 7 the
cases of µ = µ0 + 0.01 and µ = µ0 + 0.1. It becomes ap-
parent that even for these values of the chemical poten-
tial, the final state resulting from the MI dynamics is a
large excitation on top of a fluctuating background bear-
ing small amplitudes. Hence, the corresponding PDA is
a bimodal distribution. However, the weight of the small
amplitude excitations in the corresponding PDA distri-
bution decreases with increasing µ, in line with the re-
spective TIO prediction shown in Fig. 4. In our consid-
erations so far, we have limited the study of an effective
temperature and chemical potential associated with the
free energy and atom number of our droplet forming sys-
tem. In Appendix C, we also briefly consider a variant of
the MGP dynamics involving dissipative perturbations,
as a first glimpse towards the role of finite temperature
effects in the spontaneous generation of droplets. In par-
ticular, we explicate that the above-discussed coalescence
process of droplets becomes more prominent in the pres-
ence of thermal effects of the background as captured by
the direct inclusion of a damping term in the modified
Gross-Pitaevskii equation.

|ψ|
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Figure 7: Time-evolution of |ψ(z, t)| explicating the MI dy-
namics, the subsequent generation of droplets and their coa-
lescence while (a) µ = µ0 + 0.01, and (b) µ = µ0 + 0.1.

VI. CONCLUSIONS AND FUTURE
CHALLENGES

In the present work, we have sought to address
the equilibrium statistical mechanics of one-dimensional
quantum droplets. This system is represented by a mod-
ified two-component Gross-Pitaevskii equation and un-
der the symmetry considerations (equal wave functions
and equal intra-component interactions strengths and
masses) it reduces to a single-component equation. To
determine the classical partition function, we first reduce
the functional integration of the partition function to a
single-particle Schrödinger problem by using the trans-
fer integral operator (TIO) technique. The probability
distribution of the amplitudes obtained from TIO shows
unimodality in the limit µ → µ0 at intermediate and
large temperatures. However, at small temperatures the
relevant probability exhibits a bimodal shape. On the
other hand, for the values of µ far from µ0, the probabil-
ity distribution is always found to be unimodal.
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We compared the results of the TIO analysis with the
equilibrium properties of a suitably crafted Langevin dy-
namics. The equilibrium properties of the Langevin dy-
namics reproduce well the corresponding ones of the TIO
solutions except in the limit µ → µ0 for low tempera-
tures. In this latter scenario, a bimodal distribution is
featured showing in turn a partial discrepancy between
the equilibrium properties of the Langevin dynamics and
the TIO solutions. Additionally, we contrasted the prob-
ability distribution of the modulational instability dy-
namics at large times with the TIO findings, obtaining
good agreement in the cases under consideration for a
suitable choice of the temperature. Importantly, we have
shown that the modulational instability inherent to the
system gives rise to spontaneous quantum droplet nucle-
ation. These in turn undergo a coarsening stage experi-
encing collision events and leading to their coalescence.

Very recently, significant attention has been drawn to
the thermodynamics of quantum droplets [24]. Beyond
the realm of the present study, several topics remain
open for future studies. An extension of thermodynamic
considerations in higher dimensional settings would be a
topic of particular interest for a variety of reasons. On the
one hand, semi-analytical tools such as the TIO do not
straightforwardly generalize to higher dimensions, hence
different theoretical approaches would need to be brought
to bear. Moreover, even numerically the nonlinearities of
the system being logarithmic in 2D and featuring a dif-
ferent form than the one considered herein (∝ |ψ|3ψ) in
3D could yield different outcomes as regards the proba-
bility distributions and the correlation functions. On the
other hand, the genuinely multi-component case where
the two components are not forced to be equal and its
systematic consideration and direct comparison e.g. with
a variational approach [47] is also of interest for further
study.
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Appendix A: Derivation of the transfer integral
problem

Here, we briefly discuss the derivation of the single-
particle Schrödinger Eq. (6), describing the equilibrium
state of the symmetric mixture, from the underlying clas-
sical partition function of Eq. (4) [33]. For a ring of
length L = M∆z, where M represents the number of
grid points and ∆z denotes the (quite fine) spatial dis-
cretization used in the numerical implementation of the
problem, we can discretize the free energy functional in-
troduced in Eq. (5) as

F = ∆z

M∑
i=1

f(ψi, ψi+1) = ∆z

M∑
i=1

[1

2
|ψi+1 − ψi

∆z
|2

+
1

2

δg

g
n2
i −

1

2

25/2

3π
n

3/2
i − µni

]
,

(A1)

and we obtain the partition function [33]

Z =

M∏
i=1

∫ ∞
−∞

dψ̃
′

1dψ̃ie
−β∆zf(ψi,ψi+1)δ(ψ̃1 − ψ̃

′

1), (A2)

where dψ̃i =
√

β
2π∆zdψi and M is the number of seg-

ments within the ring of width ∆z. We now expand the
δ function in terms of a normalized set of (complete)
eigenfunctions and obtain

Z =
∑
n

M∏
i=1

∫ ∞
−∞

dψ̃
′

1dψ̃iφn(ψ̃
′

1)e−β∆zf(ψi,ψi+1)φn(ψ̃1).

(A3)
We can calculate this partition function from the eigen-
value problem∫ ∞

−∞
dψ̃ie

−β∆zf(ψi,ψi+1)φn(ψ̃i) = e−β∆zEnφn(ψ̃i+1),

(A4)
where φn and En are the eigenfunctions and eigenvalues
of the transfer matrix equation. We then reduce this
equation to the single-particle Schrödinger problem as
follows. Performing the Taylor series expansion of the
eigenfunction φn(ψ̃i) around (ψ̃i+1) we arrive at

∫ ∞
−∞

dψ̃ie
−β∆zf(ψi,ψi+1)φn(ψ̃i) = e

−β∆z

[
1
2
δg
g n

2− 1
2

25/2

3π n3/2−µn
]
×
(

1 +
∆z

2β

∂2

∂ψ2
i+1

)
φn(ψ̃i+1)

= e−β∆zHφn(ψ̃i+1)

≡ e−β∆zEnφn(ψ̃i+1)

(A5)
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where
(

1 + ∆z
2β

∂2

∂ψ2
i+1

)
≈ e

∆z
2β

∂2

∂ψ2
i+1 . The effective Hamil-

tonian reads

H = − 1

2β2

∂2

∂ψ2
+

1

2

δg

g
n2 − 1

2

25/2

3π
n3/2 − µn. (A6)

Here, the second term corresponds to the mean-field con-
tribution and the third one is the leading-order beyond
mean-field correction accounting for quantum fluctua-
tions.

Figure 8: Two-dimensional probability distribution function
P [Re(ψ1) = u1,Re(ψ2) = u2] obtained from the Langevin
dynamics (left panels) and the TIO approach (right panels)
for β = 0.2 (top panels), β = 2 (middle panels) and β = 95
(bottom panels). Other parameters used are µ = µ0+0.00001,
δg/g = 0.05, and P = 1. The total evolution time is tF = 240.

Appendix B: Two-component Langevin equations

Having analyzed in the main text the case of symmet-
ric mixtures, here we briefly discuss the generalization
of our method to interaction imbalanced two-component
settings. For this reason we resort to the dimensionless

MGP equation for a 1D binary quantum droplet [5, 21],

i
∂ψ1

∂t
= −1

2

∂2ψ1

∂z2
+Q(P + GP−1)|ψ1|2ψ1 −Q(1− G)|ψ2|2ψ1

− P
√
P|ψ1|2 + P−1|ψ2|2ψ1 − µ1ψ1,

i
∂ψ2

∂t
= −1

2

∂2ψ2

∂z2
+Q(P−1 + GP)|ψ2|2ψ2 −Q(1− G)|ψ1|2ψ2

− 1

P
√
P−1|ψ2|2 + P|ψ1|2ψ2 − µ2ψ2,

(B1)

where the involved parameters stand for

P ≡
√
g1

g2
, Q =

g(1 + P)2

2Pδg
, G =

2P2δg

g(1 + P2)2

and δg = g12 + g.

(B2)

In the above expressions, g1 > 0 and g2 > 0 correspond
to the repulsive intra-component interaction strengths,
while g12 < 0 is the inter-component attractive inter-
action. Also, µ1 and µ2 are the chemical potentials
of the individual subsystems. The parameter P quan-
tifies the intra-component interaction imbalance and G
measures the deviation from the balance point of the
mean-field repulsion and attraction where δg = 0. In
the coupled system of Eqs. (B1) the units of length,
time and the wave function are expressed in terms of ξ,

~/(mξ2), and
(
√
g1+
√
g2)3/2

√
πξ(2|δg|)3/4 , with the healing length being

ξ = π~2

m

√
2|δg|

g(
√
g1+
√
g2) .

For the Eq. (B1), we arrive at the corresponding eigen-
value equation

[
− 1

2β2

( δ2

δψ2
1

+
δ2

δψ2
2

)
+ V2d(ψ1, ψ2)

]
φn(ψ1, ψ2)

= Enφn(ψ1, ψ2),

(B3)

As it can be seen, Eq. (B3) is a two-dimensional single-
particle Schrödinger equation. Also, φn refer to the
single-particle eigenfunctions, being functionals of the ψ
field, and En are the respective eigenvalues. The effective
TIO potential of Eq. (B3) reads

V2d(ψ1, ψ2) = QP + GP−1

2
|ψ1|4 +QP

−1 + GP
2

|ψ2|4

+Q(G − 1)|ψ1|2|ψ2|2 −
2

3

(
P|ψ1|2 +

|ψ2|2

P

)3/2

− µ(|ψ1|2 + |ψ2|2).

(B4)

Below, we consider the Langevin equations corresponding
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to Eqs. (B1), namely

∂ψ1

∂t
= −

[
− 1

2

∂2ψ1

∂z2
+Q(P + GP−1)|ψ1|2ψ1

−Q(1− G)|ψ2|2ψ1 − P
√
P|ψ1|2 + P−1|ψ2|2ψ1

− µ1ψ1

]
+ ξ1(z, t),

∂ψ2

∂t
= −

[
− 1

2

∂2ψ2

∂z2
+Q(P−1 + GP)|ψ2|2ψ2

−Q(1− G)|ψ1|2ψ2 −
1

P
√
P−1|ψ2|2 + P|ψ1|2ψ2

− µ2ψ2

]
+ ξ2(z, t).

(B5)

For the numerical simulation of Eq. (B5) we utilize 1000
trajectories with the domain size L = 8× 8. We first set
µ1 ≈ µ2 ≡ µ0 + 0.00001 and P = 1. Further, by consid-
ering two different noise distributions (ξ1 and ξ2) for the
two individual components, we break the symmetry be-
tween them. Figure 8 depicts the results of the Langevin
dynamics (left panels) and the TIO solutions (right pan-
els). Comparing the corresponding 2D probability dis-
tribution functions P [Re(ψ1)] = u1,Re[(ψ2)] = u2 be-
tween the Langevin dynamics and the TIO findings for
various inverse temperatures we deduce that they are in
a good agreement besides the region of small tempera-
tures. Particularly, as the temperature increases the dis-
tribution widens similarly to the single-component case.
However, at β = 95, we observe a mismatch among the
predicted distributions. Indeed, the center of the dis-
tribution within the TIO case is shifted from the origin
(0, 0) in contrast to the Langevin scenario where it is
strongly localized around the trap center. Furthermore,
in order to estimate the impact of an increasing popu-
lation asymmetry we change P = 1 to P = 1.25. The
corresponding PDAs for β = 2 are provided in Fig. 9
both within the Langevin method and the TIO solution.
Evidently, the predictions of these approaches are in ac-
cordance.

Figure 9: Two-dimensional probability distribution function
P [Re(ψ1) = u1, Re(ψ2) = u2] as predicted from the Langevin
dynamics (left panel) and the TIO method (right panel) for
β = 2, P = 1.25 as well as µ = µ0 + 0.00001. The considered
total evolution time corresponds to tF = 240.
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Figure 10: Time-evolution of |ψ(z, t)| in the presence of tem-
perature showcasing the spontaneous creation of droplets due
to the MI dynamics and their consequent coalescence. We use
µ = µ0 + 0.00001. The phenomenological factor accounting
for the presence of temperature corresponds here to γ = 0.03.

Appendix C: Phenomenological consideration of
finite temperature effects towards droplet formation

Next, we briefly discuss the role of finite (condensate)
temperature effects in the spontaneous generation of the
droplets, relying on certain approximations. It is impor-
tant to recall that so far, we have been referring to ef-
fective temperatures and chemical potentials, associated
with the (free) energy and atom number of the system
in the grand-canonical ensemble formulation herein. To
emulate the role of thermal processes [55], we introduce a
phenomenological damping factor γ in the modified GP
equation by replacing i → (i − γ) in Eq. (1). Recall
that this is a widely used approximation in the context
of the common GP framework, i.e. in the absence of Lee-
Huang-Yang contributions [56–59]. This factor accounts
for the inclusion of thermal components in the conden-
sate being usually present in cold atom experiments but it
ignores any possible temperature dependence stemming
from the Lee-Huang-Yang contribution. The tempera-
ture dependence of the latter term and its competition
with the thermal condensate fraction are still open prob-
lems and certainly worth to be pursued in future stud-
ies. Since the total number of atoms is not conserved in
the presence of γ, we treat the chemical potential as a
time-dependent parameter and adjust it at each evolu-
tion time [60].

Figure 10 shows the time-evolution of |ψ(z, t)| in the
case of γ = 0.03. Notice that in line with the discussion of
Ref. [61], values of γ within 0.00023−−0.0023 are relevant
for temperatures in the order of 10−−100nK. Neverthe-
less, we utilize a larger value here to render apparent the
fact that the nucleation of droplets takes place within
the same timescale as compared to the γ = 0 scenario
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[Fig. 6(a)] and also their original number is the same.
However, it should also be noted that the presence of tem-
perature enhances the formation of the ”large” droplets
by minimizing the background fluctuations, compare in
particular Fig. 10 and Fig. 6(a). As mentioned above, a

further systematic exploration of finite temperature con-
densates, including the role of such corrections to LHY
terms is certainly a topic of particular interest for further
study.
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