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By inverting the time-dependent Kohn-Sham equation for a numerically exact dynamics of the
helium atom, we show that the dynamical step and peak features of the exact correlation potential
found previously in one-dimensional models persist for real three-dimensional systems. We demon-
strate that the Kohn-Sham and true current-densities differ by a rotational component. The results
have direct implications for approximate TDDFT calculations of atoms and molecules in strong fields,
emphasizing the need to go beyond the adiabatic approximation, and highlighting caution in quanti-
tative use of the Kohn-Sham current.

I. INTRODUCTION

For simulating dynamics of electrons in non-
perturbative fields, time-dependent density functional
theory [1–4] (TDDFT) has emerged as a key approach,
due to its favorable system-size scaling. In theory,
TDDFT is an exact formulation of quantum mechanics
which provides a computationally tractable approach
for tackling calculations involving many-body prob-
lems in external time-dependent fields. Mapping to
a non-interacting system, the Kohn-Sham (KS) system,
that exactly reproduces the one-body density allows the
computation of much larger systems than with tradi-
tional wavefunction methods, with no restriction on the
strength of the applied fields nor on how far the system
is driven from equilibrium, see Refs. [5–10] for examples
in a range of recent applications.

TDDFT does not, however, come without its own dif-
ficulties; in particular, the exchange-correlation (xc) po-
tential in which the many-body effects are “hidden”
needs to be approximated as a functional of density,
and the exact xc potential depends on the density in
a spatially- and time- non-local way. This dependence
is neglected in adiabatic approximations used in cal-
culations today, where the instantaneous density is in-
serted into a ground-state xc approximation. A cru-
cial question is how well these approximations accu-
rately capture the true dynamics. The lack of memory-
dependence is believed to be responsible for errors in
its predictions e.g. Refs. [11–22], including sometimes
qualitative failures. Still, the approximations are often
accurate enough to be useful, and some characterization
of when to expect the adiabatic approximation to work
well has also been done [23]. Studies of the exact xc
potential have been made, to compare against approx-
imate potentials, and also to study the impact of its fea-
tures on the resulting dynamics. Such studies require
two ingredients: first, an exact calculation of dynam-
ics of interacting electrons, and second, an inversion of
the TDKS equations to find the exact potential. Because
of challenges in obtaining these ingredients, the stud-

ies have so far been limited to model systems [23–39]
involving either one-dimension (1D) and/or two elec-
trons, or involving only small perturbations away from
the ground-state.

In this work, the exact time-dependent KS (TDKS)
potential is found for the first time, for a real three-
dimensional (3D) multi-electron atom in the non-
perturbative regime. We find dynamical step and peak
features that have a non-local-in-space and -in-time de-
pendence on the density. The results have direct impli-
cations for TDDFT calculations of atoms and molecules
driven far from their ground-state, as these features are
missing in adiabatic approximations. They justify the
relevance of the previous 1D studies, where similar dy-
namical step and peak features are found in the correla-
tion potential. Moreover, the example explicitly demon-
strates that the KS current-density differs from the true
current-density by a rotational component. Although
this has been recognized before to be theoretically pos-
sible [35, 40–43], not only is this difference neglected
in applications today where typically the current calcu-
lated from the KS orbitals is assumed to represent the
true current [44, 45], but the difference has not been
demonstrated for systems beyond the linear response
regime.

II. DYNAMICS IN THE HELIUM ATOM

The system we study is the field-free evolution of a
superposition state of the Helium atom, as might be
reached, for example, by applying a field that is turned
off after some time. The lowest few eigenstates of
this atom were found using the time-dependent close-
coupling method, making a partial wave expansion in
coupled spherical harmonics, and using the finite ele-
ment discrete variable representation to discretize the
radial degrees of freedom [46, 47]. We consider here
linear superpositions of the singlet ground state 11S0,
denoted Ψ0, and singlet first excited state 21P1 that has
angular quantum numbers L = 1 and M = 0, denoted



here Ψ1, so the exact time-evolution of the two-electron
state is

|Ψ(t)〉 =
1√

1 + |a|2
(
|Ψ0〉+ ae−iωt|Ψ1〉

)
(1)

where ω = E21P −E11S = 0.77980 in atomic units (a.u.),
is the frequency with which the system oscillates.The
parameter a gives the relative fraction of the excited
state,for example a = 1 in the case of a 50:50 superposi-
tion. We aim then to find the time-dependent KS poten-
tial which reproduces the exact density of the interacting
state Eq. (1):

n(r, t) =
1

1 + |a|2
(
n0(r) + |a|2n1(r) + 2an01(r) cos(ωt)

)
(2)

where nq(r) = 2
∫
|Ψq(r, r2)|2d3r2, q = 0, 1 and n01(r) =

2
∫

Ψ0(r, r2)Ψ1(r, r2)d3r2 .
We note here that the results we find for the xc poten-

tial apply to far more general dynamical situations than
the field-free superposition state dynamics: due to an
exact condition [48], the xc potential applies to any situ-
ation where the instantaneous interacting state is given
by Eq. (1) at some time t, and the KS state is a Slater
determinant (see Appendix A).

Now, the TDDFT xc potential depends on the choice
of the initial KS state [1, 37, 49]; the 1-1 density-potential
mapping holds only for a given initial state, which en-
dows vXC(r, t) with a functional dependence on both the
true and KS states, vXC[n; Ψ(0),Φ(0)](r, t). In principle,
one can begin in any initial KS state that reproduces the
density of the initial interacting state and its first time-
derivative; the structure of the exact xc potential has a
strong dependence on this choice [25, 28, 31, 32, 37]. The
choice we make here is a Slater determinant: this is the
natural choice if the state Eq. (1) is reached from apply-
ing an external field to a ground-state and then turning
the field off. The Slater determinant is the natural choice
in most physical situations, because they begin in the
ground-state (see also discussion in Supplementary Ma-
terial). One would use ground-state DFT to find the ini-
tial KS orbitals, and by the ground-state theorems, this is
a Slater determinant. Since the KS evolution involves a
one-body Hamiltonian, the state remains a single Slater
determinant. For our two-electron spin-singlet system,
this means that we always have a single spatial KS or-
bital that is doubly-occupied, and must have the form:

ϕ(r, t) =
√
n(r, t)/2eiα(r,t) (3)

to reproduce the exact interacting density of Eq. 2 with
the phase α related to the current j through the equation
of continuity,

∇ · j = ∇ · (n(r, t)∇α(r, t)) = − ∂

∂t
n(r, t) (4)

Inverting the TDKS equation yields the exact KS poten-

tial:

vs(r, t) =
∇2
√
n(r, t)

2
√
n(r, t)

− |∇α(r, t)|2

2
− ∂α(r, t)

∂t
(5)

The exact xc potential is then obtained from

vXC(r, t) = vS(r, t)− vH(r, t)− vext(r, t) (6)

with the Hartree potential vH(r, t) =
∫ n(r′,t)
|r−r′| d

3r′ and
external potential vext(r, t) = −2/|r|. Further, one can
isolate the correlation component by noting that for our
choice of KS state, vX(r, t) = −vH(r, t)/2.

Thus, finding the exact xc potential reduces to solving
Eq. (4) for α(r, t). We note here that for a different choice
of initial KS state, e.g. using a two-configuration state
that is more similar to that of the actual interacting state,
the inversion to find vXC involves an iterative numerical
procedure [50–52]; some examples for the 1D analog of
the dynamics here can be found in Refs. [28, 31, 32]. This
could be a more natural state to begin the KS calculation
in some situations, e.g. if the state was prepared in such
a superposition at the initial time, however it is inacces-
sible in a KS evolution that begins in the ground state, as
discussed earlier. The importance of judiciously choos-
ing the KS initial state when using an adiabatic approx-
imation has been realized and exploited in strong-field
charge-migration simulations [9, 53, 54].

Eq. (4) has the form of a Sturm-Liouville equation,
which has a unique solution for α(r, t) for a given
boundary condition. Thanks to the azimuthal symme-
try of our density ( M = 0 at all times), we need solve
this in effectively two dimensions. We construct an ex-
plicit matrix representation of the operator ∇ · n(r, t)∇
in spherical coordinates using the fourth order finite dif-
ference scheme subject to the following boundary condi-
tions:

α(r→∞, t) = 0 and
∂

∂θ
α(r, t)|θ=π,0 = 0 . (7)

Choosing this boundary condition at t = 0 yields
α(r, 0) = 0 since initially the current is zero, and
fixes our initial state as φ(r, 0) =

√
n(r, 0)/2. The

Runge-Gross theorem then ensures that there is a unique
vXC(r, t) that reproduces the exact n(r, t) and yields a
unique α(r, t) at later times [55].

Subject to the boundary conditions Eq. 7, the numeri-
cal inversion of the matrix operator∇·n(r, t)∇ results in
the solution of Eq. (4) for α(r, t) which in turn when in-
serted into Eq. (5) yields the KS potential, vS(r, t) (some
details in Appendix B).

III. RESULTS

Several symmetry features of the dynamics of our sys-
tem simplify the analysis. The azimuthal symmetry
mentioned earlier together with the fact that the chosen

2



superposition is one of an L = 0 and L = 1 state, mean
that the density, current, and potentials in the lower
half-plane (π/2 < θ < π) exactly follow those in the up-
per half-plane (0 < θ < π/2) a half-cycle out of phase,
O(r, π − θ, t) = O(r, θ, t + T/2). (See also movies of
the density, current-density, and correlation potentials
in Supplementary Material). Further the simple form of
the superposition means that O(r, T − t) = O(r, t). Thus
we show time-snapshots only over a half cycle in the
lower octant.

FIG. 1. Correlation potential, vC(r, t) at t = 0 for the 50:50
superposition case (α = 1) in the range π/2 < θ < π at times
t = 0, T/8, 3T/4, and T/2.

Figure 1 shows snapshots of the correlation poten-
tial indicated by fractions of the period of oscillation,
T = 2π/ω = 8.057 a.u. One immediately notices the
unmistakable presence of the step and peak features
in the exact correlation potential that have been shown
to arise in many 1D model systems [23–34]. The step
and peak feature is initially most prominent in the re-
gion swept by π/2 < θ < π, and then decreases in
magnitude, gliding out of this region and appearing
on the other side of θ = π/2 at t = T/2. As in the
1D case, this time-dependent step has a spatially non-
local and non-adiabatic dependence on the density and
is completely unaccounted for in the adiabatic approx-
imations: They are missing even in the exact adiabatic
approximation, i.e. evaluating the exact ground-state xc
potential on the instantaneous density [24–27, 29]. These
features often dominate the KS potential (see Fig. 2)
and have been shown to be responsible for various er-
rors in simulations using adiabatic approximations in
1D e.g. [25, 29]. Here we find they persist just as vig-
orously, with the same order of magnitude, in real 3D
atoms driven far from their ground-state. This justifies
the relevance for real systems of the conclusions drawn
from the 1D studies, and shows that such strong corre-
lation effects are not a consequence of reduced dimen-

sionality, as might have been assumed from ground-
state systems [56]. These dynamical steps are distinct
to those arising from fractional charges [38, 57, 58], or
in response situations [59], as in the 1D case, and we ex-
pect they generically appear when a system is driven far
from its ground-state.

For the dynamics of this particular superposition
state, at any instant of time, the correlation potential
asymptotes to the same (time-dependent) value in ev-
ery direction in the lower half plane, while asymptot-
ing to a different value in the upper half plane (recall
O(r, T − t) = O(r, t)). At θ = π/2 there is a step and
peak in vC in the θ−direction which gives a force that
ensures KS currents, like the true currents, do not cross
the xy-plane. This complex structure makes the inver-
sion numerically unreliable right at θ = π/2. Along
the θ = π/2 plane, the density of the P state vanishes,
and the large change in the potential may be somewhat
reminiscent of the abnormal divergent behavior along
the HOMO nodal plane found in the ground-state po-
tential [60]. Unlike the ground-state case, however, our
density does decay differently along that plane than in
other directions, and moreover cannot be captured by
any adiabatic approximation.

Decomposing the terms in Eq. (5), we find that the
peak tends to arise from the second term while the third
term results in the step. Because the KS current jS =
n∇α, the second term and the peak are related to the
local velocity jS/n, while the step when a cut is taken
across a fixed θ is related to the radial integral of the
local acceleration, α̇(r, t) =

∫ r∇α̇(r′, t).r̂′dr′.
We note that the appearance of such dominating steps

in the correlation potential is fundamentally linked to
the difference in configurations of the interacting and
KS states: the interacting system is a superposition of
a ground and excited state, quite distinct from the KS
Slater determinant structure. Tuning down the electron-
interaction dampens the peak structure but the step re-
mains.

Fig. 2 shows the components of the exact KS potential.
We observe that in the central region where most of the
density is localized, the force from the correlation po-
tential is much smaller than that from the exchange and
Hartree terms. It is in fact of similar magnitude to that
in the ground-state [61]. Near the density-minimum,
where the excited state begins to dominate over the
ground-state, the correlation potential rises, and then
falls before leveling out. In this region, the slopes are
such that the step appears to be keeping different parts
of the density separate, while the peak corrects for dy-
namical Coulombic electron-interaction effects. The lack
of these features in the adiabatic approximations sug-
gests that the resulting densities will not be as struc-
tured, and will tend to underestimate oscillation ampli-
tudes in the dipole moment (as seen in the 1D case [32]).

Taking different superpositions of the ground and ex-
cited states shows that the step and peak features are
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FIG. 2. Snapshots of potentials vS, vHXC, vXC, vC and density
2πr2n at θ = 3π/4, t = 0, T/8, T/4, 3T/8.

universally present in real 3D systems. Figure 3 shows
the KS and correlation potentials at the initial time,
when a in Eq. 1 is changed through 0, 0.5, 1, 2,∞ . We
see that, for finite values of a, as the fraction of excited
state is increased the step and peak decrease in magni-
tude but extend over a larger region and move inward
where more of the density is. The very sharp peak and
large step seen when a = 0.5 (note it is scaled to fit on the
plot) occur at a sharp minimum of the density and has a
smaller impact on the ensuing dynamics than the softer
but still prominent structures at large a occurring in re-
gions of greater density. When the excited state is fully
occupied (a = ∞) the KS potential is such to maintain
the constant excited 1P density at all times with a non-
interacting doubly-occupied orbital, and the structure is
not unlike that seen in the corresponding 1D excited he-
lium atom of Ref. [37], in both magnitude and shape;
again, even the adiabatically-exact potential would have
a completely different structure.

IV. TRUE AND KOHN-SHAM CURRENT

Finally, we ask, how closely does the exact KS sys-
tem reproduce the exact interacting current in this case?
It was recognized in the early days of TDDFT, that
the exact KS current could differ from the true cur-
rent by a rotational component [35, 40–43], but how
large this difference could be for realistic systems in the
non-perturbative regime was unknown. The KS and
true currents are equal in their longitudinal component,
thanks to the equation of continuity, ∇ · j = −∂n∂t , but
they can differ in their rotational component. Indeed,
for the two-electron singlet case with the KS system rep-
resented by a Slater determinant, it follows from Eq. 3
that js(r, t) = n(r, t)∇α(r, t). This implies that the true
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FIG. 3. Top panels: Left, initial densities for superposition
states, 20:80 (a = 2), 50:50 (a = 1) and 80:20 (a = 1/2).
Right, ground state (a = 0) and excited state (a = ∞) den-
sities. Lower panels: The corresponding KS and correlation
potentials.

current-density would need to satisfy ∇ × (j/n) = 0
in order for the KS current to possibly be equal to it.
For our chosen M = 0 superposition, the rotational
component of the current (which has only an azimuthal
component) is comparable to the longitudinal compo-
nent (a movie is given in the Supplementary Material),
and differs from the KS current. The fractional differ-
ence in the rotational component increases from about
10% to 20% as we increase the proportion of the ex-
cited state in Eq. (1) from a = 1 to 2. This is shown
in Fig. 4, where the fractional difference in the curl,
δ(∇ × j) = ∇×(jS−j))

∇×j , is contrasted with that in the di-

vergence δ(∇ · j) = ∇·(jS−j)
∂n/∂t = ∇·(jS+∂n/∂t)

∂n/∂t ; the latter
comes only from numerical error, and is negligible ex-
cept near the origin and at large r where the denomina-
tor is very small. We note that the curl of the current is
only non-zero in the azimuthal direction, and this is the
component of the curl that is plotted in the figure.

V. CONCLUSION

In summary, we have shown that the non-adiabatic
dynamical features of the exact correlation potential,
previously seen to arise in 1D model systems persist
with comparable magnitudes in real 3D systems, and
are not a consequence of reduced dimensionality. The
results inform the on-going development of more ac-
curate functionals in TDDFT that capture these fea-
tures [23, 28], pressing the case to go beyond adia-
batic functionals. Hybrid functionals, including range-
separated ones, where non-local density-dependence
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FIG. 4. Top panel: Divergence and the azimuthal component
of the curl of the true and KS currents for a = 1 and a = 2.
Lower panel: Fractional difference δ in the azimuthal compo-
nent of curls and divergences of the current-densities along
θ = 3π/4, t = T/8

arises from the orbital dependence in exact exchange,

do not capture these features; this is particularly evident
in the present two-electron case, where exact-exchange
simply cancels the self-interaction in the Hartree poten-
tial. Furthermore, we have demonstrated that the true
interacting current differs from its KS counterpart, with
the difference depending on the relative proportions of
ground and excited state composing the state. The re-
sults thus advise caution when computing the current-
density from the KS orbitals; this will be inherently ap-
proximate even if the exact xc functional was somehow
known and used.
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Appendix A: Generality of the results

Although the dynamics of the field-free superposi-
tion state may appear simplistic, the results obtained
for the xc potential apply to far more general dynamics
of the two-electron system. The results apply directly
to any situation where the state is in a superposition of
the ground and first-excited He atom states we consid-
ered (the singlet M = 0 states 11S and 21P ), whether
in the presence of a field or not. This can be seen from
considering the following exact property of the time-
dependent xc potential [48]:

vxc[nt′ ; Ψt′ ,Φt′ ](rt) = vxc[n; Ψ0,Φ0](rt); t ≥ t′ > 0
(A1)

where Ψt′ ,Φt′ are the interacting and KS wavefunctions
at time t′ that have evolved from initial wavefunctions
Ψ0,Φ0 at time 0, and nt′ is the density everywhere in
space but considered only on the time domain from time
t′ to t. A consequence of this exact condition is that the
xc potential at any time t can be viewed directly as a
functional of the interacting state at time t and the KS
state at time t (taking t′ = t on the left-hand-side above).

This means that if we wish to find the xc potential for
a state at time t1 that happens to be instantaneously in
the linear superposition(

|11S〉+ ae−iωt1 |21P 〉
)
/
√

1 + |a|2 , (A2)

then the xc potential we have found directly applies, no
matter how the system got there, nor what it will do subse-
quently.

Thus, the xc potentials we have found cover a large
range of dynamics of the He atom and indicate a gen-
eral feature of the xc potential in non-perturbative He
dynamics. There is a limitation in that the configuration
of the interacting wavefunction must be a linear combi-
nation of the 11S and 21P states at the time of interest,
and that the KS wavefunction is chosen to be a Slater
determinant (which, if chosen at the initial time as such,
will always remain such), but this already covers a wide
range of situations.
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As a specific example, consider beginning the physi-
cal system at time 0 in the ground-state and driving it
to a superposition state at time t′ under some external
field. It follows from Eq. A1, that at time t = t′ the exact
xc potential may be viewed as either a functional of the
history of the density, or, equally, as a functional purely
of the states at time t = t′. Assuming we can reach the
superposition state described by Eq. A2 at any time t
starting in a ground-state (e.g. by a weak Rabi oscilla-
tion), then the xc potential at time t is precisely the one
we have found in our paper. As an explicit demonstra-
tion of this, it may be useful to note the similarities of
the xc potential found for the 1D superposition state and
that for Rabi dynamics studied in Ref. [24].

Appendix B: Numerical Details

In order to solve the equation,

∇ · (n(r, t)∇α(r, t)) = − ∂

∂t
n(r, t) (B1)

we construct the explicit matrix representation of the op-
erator ∇ · (n(r, t)∇α(r, t)) subject to the boundary con-
ditions,

α(r→∞, t) = 0 and
∂

∂θ
α(r, t)|θ=π,0 = 0 . (B2)

In the rectangular computational domain that we use
to solve the problem, the grid (r, θ) extends from 0 →
R = 30a.u. in r (the density is negligible this far from the
nucleus) and 0 → π in θ. Consequently the boundary
conditions, Eq. (B2) translate to

α(r = R, θ, ϕ, t) = 0

∂

∂θ
α(r, θ, ϕ, t)|θ=π = 0

∂

∂θ
α(r, θ, ϕ, t)|θ=0 = 0(B3)

The finite difference approximation of the derivative
operator has the nice property that the resulting matrix

is sparse, and consequently the operator, which by def-
inition is local in space, remains so in this representa-
tion as well, since only a few adjacent grid points are
coupled. The high sparsity of the matrix also allows for
efficient computation of matrix inversion. Despite the
computational efficiency it offers, caution is required to
avoid numerical inaccuracies especially where the den-
sity becomes small. We ensure that our conclusions are
robust with numerics, interpreting the results in regions
where the inversion is accurate, and checking that the
action of the matrix representing ∇ · n(r, t)∇ on the so-
lution vector α(r, t) agrees with the right-hand-side of
Eq. (B1) In a similar way, we calculate the exact Hartree
potential vH(r, t), by numerically inverting

∇2vH(r, t) = −4πn(r, t) (B4)

and then use vXC(r, t) = vS(r, t) − vH(r, t) − vext(r, t)
to obtain the xc potential, and we isolate the correla-
tion potential noting that, for our choice of KS state,
vX(r, t) = −vH(r, t)/2.

Appendix C: Supplementary Material

As part of supplementary material, we provide the
following two movies:

1. DenVc.mp4 depicts the dynamics of correlation
potential vC(r, t) along (φ = 0, θ = π

4 ) and (φ =

0, θ = 3π
4 ) in the lower left and right panels re-

spectively, the corresponding density along those
angles is displayed in the top panels.

2. CurrentVec.mp4 shows the current density vector
in the in the x-z half-plane.Note that the other half
of the plane is symmetric to the one displayed in
the movie.

7


	Exact time-dependent density functional theory for non-perturbative dynamics of helium atom
	Abstract
	Introduction
	Dynamics in the Helium Atom
	Results
	True and Kohn-Sham Current
	Conclusion
	Acknowledgments
	References
	Generality of the results
	Numerical Details 
	Supplementary Material 


