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Benchmark variational calculations of the lowest ten Rydberg 2S states of two stable isotopes of
the boron atom (10B and 11B) are reported. The nonrelativistic wave functions of this five-electron
system are expanded in terms of 16000 all-particle explicitly correlated Gaussians (ECGs). The
ECG nonlinear exponential parameters are extensively optimized using a procedure that employs
the analytic gradient of the energy with respect to these parameters. A finite nuclear mass value is
used in the calculations and the motion of the nucleus is explicitly represented in the nonrelativistic
Hamiltonian. The leading relativistic corrections to the energy levels are computed in the framework
of the perturbation theory. The lowest-order quantum electrodynamics (QED) corrections are also
estimated. The results obtained for the energy levels enable determination of interstate transition
frequencies with accuracy that approaches the available experimental spectroscopic data.

I. INTRODUCTION

Expanding an atomic wave function in terms of explic-
itly correlated basis functions that depend on the inter-
electron distances can yield a highly accurate representa-
tion of the atomic system provided the basis functions are
thoroughly optimized. For example, employing explicitly
correlated basis functions, the nonrelativistic energies of
the He atom were determined with the accuracy that
exceeds twenty and, in some studies, even fourty digits
[1–6]. For the lithium atom, the accuracy of up to fifteen
digits has been achieved [7–10].

The He and Li calculations were done with the use of
Hylleraas basis functions that properly describe the be-
havior of the wave function at the atomic nucleus, as well
as an finite distance from the nucleus [10–12]. The ap-
plication of the Hylleraas basis functions in calculations
of energy levels of atoms with more electrons has been
difficult due to complications with calculating the Hamil-
tonian matrix elements with these functions. Thus, only
limited cases of four electron systems have been consid-
ered [13, 14].

An alternative to using Hylleraas basis function in
atomic calculations is to use all-electron explicitly cor-
related Gaussian functions (ECGs) [15–23]. The ECGs
depend exponentially on the squares of the inter-electron
distances and, thus, they do not strictly satisfy the Kato
cusp conditions. This deficiency can be effectively re-
mediated by using a large number of basis functions and
by performing extensive optimization of their non-linear
exponential parameters [24, 25] as it is done in the present
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work. Employing ECGs in the calculations enables accu-
rate description of the electron correlation effects, which
is key in high precision calculations of atomic spectra.
These effects are related to the electrostatic repulsion
between the electrons and their avoiding each other in
their motion around the nucleus. Effective atomic basis
functions should be capable to accurately describe the
decrease of the probability of two or more electrons be
found close to each other (see the section on the basis
functions used in the present work for more discussion
on this matter).

The variational optimization of the ECG exponential
parameters is carried out with the use of analitically cal-
culated first derivatives of the energy determined with
respect to the parameters. These derivatives form the
energy gradient vector, which is supplied to the subrou-
tine that runs the variational energy minimization. The
use of the gradient significantly accelerates the energy
convergence of the calculation. As shown in this work on
the boron excited 2S spectrum, it also allows to consider
a relatively large set of the Rydberg states of an atom.
The use of the energy gradient in the present calculations,
which is unique to our approach, resembles the used of
the energy gradient in the calculation of an equilibrium
molecular geometry performed using orbital Gaussians
with centers placed at the nuclei of the atoms forming
the molecule. Also there, the analytically calculated en-
ergy derivatives determined with respect to the coordi-
nates of the nuclei of the atoms forming the molecule are
used to find the molecular geometry that corresponds to
an energy minimum. As the Gaussian centers in the cal-
culation coincide with the atomic centers, the analytical
derivatives of the energy expression with respect to the
molecular geometrical parameters are expressed in terms
of the derivatives of the Hamiltonian and overlap matrix
elements determined with respect to these parameters.
This is similar to the approach used in this work where
the derivatives are also calculated with respect to the pa-
rameters of the Gaussians. However, in the present work
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these parameters are not the coordinates of the Gaussian
centers but the exponential parameters (e.g. parameters
α1, α2, and β in (4)).

With increasing capabilities of present-day computers,
the frontier of very accurate calculations of atomic spec-
tra is shifting from four-electron systems to systems with
five electrons. The boron atom and five-electron atomic
ions become targets of the investigation. In the present
work, ten lowest 2S states of 10B and 11B, as well as of
∞B, are calculated using extended sets of the ECG basis
functions. The calculations include the leading relativis-
tic and quantum-electrodynamics (QED) energy correc-
tions. The algorithms for calculating these corrections
include integrals that are more intricate than the inte-
grals involved in the overlap and Hamiltonian matrix el-
ements and the matrix elements of the analytical energy
gradient. Also, the relativistic and QED matrix elements
are more sensitive to imperfections of the Gaussian used
for expanding the wave function. These imperfections
include improper asymptotic behavior of the ECGs de-
caying too fast at long distances and their inadequate
short-range behavior of not correctly describing the Kato
cusp conditions. These drawbacks can, however, be par-
tially overcome by applying the so-called ”regularization”
techniques and using large well-optimized basis sets (see
the next section).

One of the motivating factors for carrying out the
present calculations is the realization that a much higher
accuracy can now be achieve in boron calculations with
the use of the gradient-aided optimization of the ECG
exponential parameters. For example, the best pre-
vious calculations of the lowest 2S state of ∞B per-
formed by Puchalski et al. in 2015 [26] using 8192
ECGs resulted in the nonrelativistic variational en-
ergy of −24.471393366 hartree. As one will see in
the result section, the present ∞B energy value of
−24.471393641 hartree obtained with 16000 ECGs is no-
ticeably lower. Also, our energy is close to the asymp-
totic estimate of a complete-basis-set energy value of
−24.47139368(32) hartree given by Puchalski et al. [26].

Finally, it should be mentioned that an atomic calcu-
lations performed with all-electron ECGs are very time
consuming. The bottleneck is the very steep dependency
of the calculation time on the number of electrons in the
system which, is n!. This number is equal to the number
of operators representing the electron-label permutations
that needs to be applied to each ECG to implement the
proper permutational symmetry of the wave function. n!
is also equal to the number of elemental integrals that
need to be calculated to determine the value of a sin-
gle Hamiltonian matrix element or a matrix element of
any other operator used in the present calculations, e.g.
the operators representing the leading relativistic effects.
So, even though, the calculations of the matrix elements
can be very efficiently parallelized in the calculation, the
large number of the integrals calculated in each step of
the basis set optimization makes the calculation very ex-
pensive. At present, very accurate ECG atomic calcula-

tions are practically limited to systems with five or less
electrons. The present work is an example of such calcu-
lations. Even though we have written codes to perform
ECG calculations for carbon and nitrogen atoms [27, 28],
more powerful computers will be needed to take full ad-
vantage of these codes.

II. THE METHOD

A. Non-relativistic nuclear-mass-dependent
Hamiltonian

Very accurate atomic calculations have to account for
the effects associated with the finite mass of nucleus.
This can be done using the perturbation-theory approach
(most common way) or more explicitly by including these
effects in the Hamiltonian that represents the nonrela-
tivistic energy of the system. In the present work, the
latter approach is used. The finite-nuclear-mass (FNM)
effects are revealed when the internal motion of the atom
is considered as a coupled motion of the nucleus and
the electrons around the center of mass of the system.
Thus, to calculate the energies and the corresponding
wave functions of bound states associated with this mo-
tion, an internal atomic nonrelativistic Hamiltonian has
to be derived. In the approach used here, the starting
point in the derivation of such a Hamiltonian is the stan-
dard non-relativistic laboratory-frame Hamiltonian com-
prising operators representing the kinetic and potential
energies of the nucleus and the electrons. The lab-frame
Hamiltonian is expressed in terms of the Cartesian lab-
frame coordinates. Next, a new coordinate system is in-
troduced consisting of the three coordinates, XCM , YCM ,
and ZCM , that represent the position of the center of
mass of the atom in the lab-frame and 3N − 3 = 3n in-
ternal coordinates, where N is the total number of par-
ticles in the atom, i.e. the number of electrons, n, plus
one. There are a number of ways the internal coordinates
can be chosen. In the present approach we use a gener-
alization of the textbook approach employed in solving
the Schrödinger equation for the hydrogen atom, where
the internal coordinates are the coordinates of the vector
with the origin at the proton and the end at the elec-
tron. Thus, in the generalized approach used here, the
internal coordinates are the coordinates of the vectors,
ri, i = 1, . . . , n, originating at the nucleus and ending
at the individual electrons. Now, when the lab-frame
Hamiltonian is expressed in terms of the new coordinates,
it rigorously splits into an operator representing the ki-
netic energy of the motion of the center of mass and an
operator dependent only on the internal coordinates that
represents the internal state of the system [29]. The in-
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ternal Hamiltonian has the following form:

H int
nr =− 1

2

 n∑
i=1

1

µi
∇2

ri +

n∑
i=1

n∑
j 6=i

1

m0
∇′ri∇rj


+

n∑
i=1

q0qi
ri

+

n∑
i=1

n∑
j<i

qiqj
rij

. (1)

where q0 is the charge of the nucleus, qi = −1 (i =
1, . . . , n) are the electron charges, m0 is the nuclear
mass, µi = m0mi/(m0 + mi) is the reduced mass of
electron i (mi = me = 1), and rij = |rj − ri| is
the distance between electrons i and j. In this work
we adopted the following values of the nuclear masses:
m0(10B)=18247.46879me and m0(11B)=20063.73729me,
where me is the mass of the electron. These nuclear
masses can be obtained from the experimentally derived
atomic masses, 10.012936862(16) u and 11.009305167(13)
u respectively [30], by subtracting the masses of five
bound electrons and adding the total electron binding
energy. The infinite-nuclear-mass (INM) Hamiltonian
is obtained by setting m0 to ∞ in H int

nr . Such Hamil-
tonian is used in standard atomic nonrelativistic calcu-
lations based on the Born-Oppenheimer approximation.
We used both FNM and INM Hamiltonians in the present
calculations to obtain the energies of 10B and 11B, as well
as of ∞B. If the FNM Hamiltonian is used, the energy
and the corresponding wave function depend on the mass
of the nucleus. Thus the results are specific to a partic-
ular isotope.

Hamiltonian (1) can also be written in a compact ma-
trix form [17] as:

H int
nr = −∇′rM∇r +

n∑
i=1

q0qi
ri

+

n∑
i=1

n∑
j<i

qiqj
rij

, (2)

where

∇r =


∇r1

∇r2
...
∇rn


is a 3n-component gradient vector and M = M ⊗ I3 is
the Kronecker product of a n × n matrix M and 3×3
identity matrix I3. The diagonal elements of matrix M
are 1/(2µ1), 1/(2µ2), . . . , 1/(2µn) and all off-diagonal
elements are equal to 1/(2m0).

B. Basis functions

All-electron explicitly correlated Gaussian basis func-
tions are used to expand the spacial part of the wave
function for each of the considered 2S states of boron.
The ECGs have the following form (this form is equiva-
lent to (4)):

φk = exp [−r′ (Ak ⊗ I3) r] , (3)

where r is a 3n vector of the internal electron coordinates:

r =


r1

r2

...
rn

 ,

Ak is an n×n real symmetric matrix, ⊗ is the Kronecker
product, and I3 is a 3 × 3 identity matrix. The prime
symbol denotes the matrix/vector transpose. The square
integribility of functions (3) is required, as they are used
expand wave functions of bound stationary states. It
means Ak has to be positive definite. To achieve this, Ak
is represented in a Cholesky-factored form as Ak = LkLk,
where Lk is a lower triangular matrix with all matrix
elements being real numbers that can be varied in the
range from −∞ to ∞. Thus, there is no need to impose
any constrains on the lower-triangle Lk matrix elements
to make Ak positive definite. The matrix elements of
Lk’s are the variational parameters that are optimized in
the variational energy minimizations performed in this
work.

As stated in the introduction, effective atomic
explicitly-correlated basis functions should be capable of
describing the decrease of the probability of any two elec-
trons be found close to each other. To analyze whether
ECGs have this property let us consider, for example, the
ground state of the helium atom. An ECG for this case
can be written as:

ψ(1, 2) = exp(−α1r
2
1 − α2r

2
2 − βr2

12), (4)

where α1, α2, and β are parameters, r1 and r2 are the
distances of electron 1 and electron 2 from the nucleus,
respectively, and r12 is the distance between the elec-
trons. One notices, that the Gaussian has a maximum
at r12 = 0, but the wave function should have a mini-
mum at this distance. One way of achieving that is by
multiplying (4) by a r12 dependent function that makes
ψ(1, 2) go to zero when r12 → 0. A possible multiplier
can be r2

12. We considered such a multiplier in one of
our previous works [31]. One way of introducing such
a multiplier to function (4) is by differentiating ψ(1, 2)
with respect to −β. As it was indeed shown in Ref. [31]
by including functions (4) in the basis set used in the cal-
culation of the ground state of the He atom along with
functions r2

12ψ(1, 2) one can accelerate the energy con-
vergence in terms of the number of basis functions. If
ECGs with the r2

12 pre-exponential multiplier are not in-
cluded in the basis set, as it is done in the present calcula-
tions, there is a tendency of the variational optimization
to make some basis functions linearly dependent. This
happens because an approximate way to generate basis
functions with the r2

12 pre-exponential multipliers is by
the following ”numerical” differentiation, which the vari-
ational optimization exploits to lower the energy of the
system:

r2
12ψ(1, 2) ≈ limδ→0(exp(−α1r

2
1 − α2r

2
2 − (β + δ)r2

12 −
exp(−α1r

2
1 − α2r

2
2 − βr2

12)/(−δ). (5)
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Note that, at δ → 0, the two functions in (5) become
linearly dependent.

In this work we use the spin-free formalism to imple-
ment the appropriate permutational symmetry of the
wave function and to properly evaluate all necessary
matrix elements. In this formalism, the desired sym-
metry properties of the wave function are implemented
by applying an appropriate symmetry projector to each
ECG basis function. The projector is constructed us-
ing the standard procedure employing Young operators
(see Ref. [32]). In the calculation of 2S states of the
boron atom, the projector can be chosen as: P =
(1−P13)(1−P15−P35)(1−P24)(1+P12)(1+P34), where
Pij permutes the spatial coordinated of electrons i and
j. In the calculation of an expectation value of an oper-
ator, which is fully symmetric with respect to permuting
electron labels (all operators used in the present work are
like that), the P operator can be moved from the bra side
of the integral to the ket side. Thus, the symmetry pro-
jection appears only on the ket side in the form of P †P .
As this projection contains 5! = 120 terms, each matrix
element calculated in this work consists of 120 different
elemental spatial integrals.

In the present work, we also estimate the non-
relativistic and total energies at a complete basis size.
An analysis of the procedure use to grow and optimize
the basis sets in the present calculations shows that the
differences between the consecutive non-relativistic ener-
gies obtained with the incrementally increased number of
the basis functions behaves approximately as a geometric
series. Based on this observation, the following formula
is used to estimate the energy value at an infinite number
of the basis functions:

E∞ = E4 + ∆E4,3
q4

1− q4
, (6)

where

qn =
∆En,n−1

∆En−1,n−2

∆En,n−1 = En − En−1.

Eq. (6) shows how the extrapolated energy value, E∞,
is obtained from energies E4, E3, and E2, where E4 is
the energy obtained with the largest basis set generated
for a given state, E3 is the energy obtained with the
next largest basis set (for example, the basis set with the
number of the basis functions by two thousands smaller
than the largest basis set), and E2 is the energy obtained
with next largest basis set (i.e. the basis set by four
thousands smaller than the largest). Table I shows an
example of the application of the extrapolation procedure
to estimate E∞ for the lowest 2S state (2s23s) of the 11B
isotope.

TABLE I. The extrapolated 11B non-relativistic energy to in-
finite basis set size of 2s23s state. The numbers in parentheses
represents the uncertainty in the extrapolated energy.

n basis size Enr ∆En,n−1 q

1 10000 -24.470143631

2 12000 -24.470143683 –5.13×10−8

3 14000 -24.470143716 –3.39×10−8 0.66

4 16000 -24.470143748 –2.39×10−8 0.70

∞ -24.470143779(16)

C. The leading relativistic and QED energy
corrections

Calculations performed at the nonrelativistic level of
the theory, even if they are very accurate, are insuffi-
cient to determine the total energies and the interstate
transition energies with an accuracy comparable with the
present-day spectroscopic results. To achieve the spec-
troscopic accuracy, at least the leading relativistic and
QED energy corrections need to be included in the cal-
culations. An approach to account for these corrections
that is practical and most frequently used in calculat-
ing bound states of light atoms is based on expanding
the total energy of the atom in terms of powers of the
fine-structure constant, α [33, 34]:

Etot = Enr + α2E
(2)
rel + α3E

(3)
QED + α4E

(4)
HQED + . . . , (7)

where Enr is the nonrelativistic energy of the considered

state, α2E
(2)
rel represents the leading relativistic correc-

tions, α3E
(3)
QED represents the leading QED corrections,

and α4E
(4)
HQED, represent higher-order QED corrections.

The relativistic and QED corrections are obtained as
expectation values of some effective operators repre-

senting them. In particular, E
(2)
rel is calculated as the

expectation value of the Dirac–Breit Hamiltonian in the
Pauli approximation, Hrel [35, 36]. In the present study
of the 2S states of boron, Hrel contains the following
terms:

Hrel = HMV +HD +HOO +HSS, (8)

where HMV, HD, HOO, and HSS are operators represent-
ing the mass-velocity, Darwin, orbit-orbit, and spin-spin
effects, respectively. In the internal Cartesian coordinate
system, the operators have the form given in our previous
works [37, 38]. Due to the use of the finite-nuclear-mass
approach is the present work, nuclear-mass dependency
appears in the above operators. The nonrelativistic wave
functions used in calculating the expectation values are
also nuclear-mass dependent. Thus, the values of the rel-
ativistic corrections are specific to a particular isotope
(10B or 11B), i.e., as mentioned, the so-called recoil ef-
fects are directly included in these corrections.
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The leading QED correction, E
(3)
QED in (7), represents

the two-photon exchange, vacuum polarization, and elec-
tron self-energy effects. The corresponding operator is
expressed as a combination of two sums:

HQED =

n∑
i,j=1
j>i

[(
164

15
+

14

3
lnα

)
δ (rij)−

7

6π
P
(

1

r3
ij

)]

+

n∑
i=1

(
19

30
− 2 lnα− ln k0

)
4q0

3
δ (ri) . (9)

The first sum is the so-called Araki-Sucher term [39–43],
where the principal value P

(
1/r3

ij

)
is defined as〈

P
(

1

r3
ij

)〉
= lim
a→0

〈 1

r3
ij

Θ (rij−a) + 4π (γ + ln a) δ (rij)
〉
.

(10)
In the last expression Θ(. . .) is the Heaviside step func-
tion and γ = 0.577215 . . . is the Euler–Mascheroni con-
stant.

The dominant part the self-energy term includes the
so-called Bethe logarithm, ln k0. This logarithm is noto-
riously difficult to calculate for a multi-electron atomic
system. The main contribution to ln k0 comes from the
inner-shell electrons. The ln k0 values used in the present
calculations are taken from our previous work on the low-
est four 2S states of boron [44]. For the fifth and higher
states, the value of ln k0 for the fourth excited state is
used. This is because ln k0 changes little for higher ex-
cited states. The second term in (9) is calculated directly
from the formula.

In the calculation of the E
(4)
HQED term in expansion (7),

the following approximate operator derived by Pachucki
et al. [45, 46] is used:

HHQED = πq2
0

(
427

96
− 2 ln 2

) 3∑
i=1

δ (ri) , (11)

whereHHQED represents the dominating electron-nucleus
one-loop radiative correction. The two-loop radiative,
electron-electron radiative, and the higher order relativis-
tic corrections are neglected. The approximate opera-
tor of Pachucki et al. only provides a rough estimate of

E
(4)
HQED = 〈ψ|HHQED|ψ〉.
It seems that the importance of the neglected terms

significantly increases with the increasing size of the sys-
tem. For instance, 10% and 20% errors were estimated
in the calculated values for the Li [47] and Be [48] atoms,
respectively. Unfortunately, there is no reliable way to
estimate the error of the computed HQED corrections
for such multi-electron atoms as beryllium and boron.
However, a prudent analysis allows to determine that the
overall error to likely be less than 50%.

The formalism for calculating the expectation values of
the HQED and HHQED Hamiltonians was developed un-
der the assumption of a clamped nucleus [45, 46]. Thus,
in the present work, the infinite-nuclear-mass wave func-
tions are used to calculate these terms. It means that the

relativistic corrections calculated in this work include the
recoil effects, these effects are absent in the QED correc-
tions.

Some of the relativistic and QED operators include
singular terms. ∇4

ri , δ(ri), and δ(rij) (note that δ(ri) ≡
δ(xi)δ(yi)δ(zi)) are such terms. The expectation values
of singular operators usually converge much slower with
the number of the basis functions used to expand the
wave function than the expectation values of non-singular
operators. The slow convergence is mainly due to the
local character of the singular operators, i.e. their expec-
tation values depend on the accuracy of small fragments
of the wave function rather than on the overall accuracy
of the wave function. For approximate wave functions,
local errors may be considerably more significant than
the global error. Thus, in the calculations of the expec-
tation values of local/singular operators with such wave
functions, the error can be larger than the error of the ex-
pectation values calculated for such global operators as,
for example, the Hamiltonian. This behavior, in general,
may occur regardless of the basis set employed in the cal-
culation. To reduce the accuracy loss in the calculations
of the expectation values of local/singular operators, it
was proposed to replace these operators by equivalent op-
erators but less singular and less local [49–54]. Drachman
proposed the so-called regularization approach, to con-
struct such replacement operators [54] based on the work
of Trivedi [53] that made use of an expectation value iden-
tity. In the limit of the exact wave function, the original
operators and the replacement operators give the same
expectation values, while for approximate wave functions
the expectation values of the replacement operators are
usually much closer to the exact values than expectation
values of the original operators. The regularization ap-
proach of Drachman is particularly useful and effective
in calculating expectation values of the operators repre-
senting the leading relativistic and QED corrections with
wave functions expanded in terms of ECGs [21, 38], as
well as other types of explicitly correlated basis functions
[55, 56]. For ECGs, the application of the regulariza-
tion method is particularly important, as these functions
to not satisfy the Kato conditions. The regularization
method is used in the present calculations.

III. RESULTS

The present calculations have been performed on sev-
eral multiprocessor computers and have lasted multiple
months. Most of the computer time is used to grow the
basis set and to optimize the nonlinear parameters of
the basis functions. The basis set is independently and
separately grown and optimized for each of the ten con-
sidered 2S states of boron to the size of 16000 functions.
The approach used in the optimization was described in
our previous works (see, for example, Ref. [44]). The cal-
culations are done using the extended computer precision
of 10 bytes per real number (an extension from the dou-
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TABLE II. Non-relativistic and total energies computed with the largest basis sets of 16000 ECGs along with their extrapolated
values. All energies are in atomic units.

Isotope Basis State Enr Etot State Enr Etot

10B 16000 2s23s −24.470019349 −24.475613348 2s27s −24.3602021 −24.3657287

∞ −24.470019371(12) −24.475613371(12) −24.3602055(12) −24.3657321(12)
11B 16000 −24.470143748 −24.475737735 −24.3603253 −24.3658518

∞ −24.470143771(12) −24.475737758(12) −24.3603286(12) −24.3658551(12)
∞B 16000 −24.471393641 −24.476987496 −24.3615625 −24.3670880

∞ −24.471393664(12) −24.476987519(12) −24.3615658(12) −24.3670914(12)
10B 16000 2s24s −24.401819489 −24.407402733 2s28s −24.3572446 −24.3628173

∞ −24.401819720(35) −24.407402962(35) −24.3572555(20) −24.3628284(20)
11B 16000 −24.401943485 −24.407526717 −24.3573682 −24.3629409

∞ −24.401943716(35) −24.407526946(35) −24.3573792(20) −24.3629520(20)
∞B 16000 −24.403189329 −24.408772432 −24.3586104 −24.3641829

∞ −24.403189560(35) −24.408772661(35) −24.3586214(20) −24.3641940(20)
10B 16000 2s25s −24.37842403 −24.38400019 2s29s −24.3550304 −24.3606108

∞ −24.37842476(15) −24.38400088(15) −24.3550646(53) −24.3606452(53)
11B 16000 −24.37854784 −24.38412400 −24.3551541 −24.3607345

∞ −24.37854858(15) −24.38412469(15) −24.3551883(53) −24.3607689(53)
∞B 16000 −24.37979190 −24.38536794 −24.3563971 −24.3619773

∞ −24.37979263(15) −24.38536864(15) −24.3564313(53) −24.3620117(53)
10B 16000 2s26s −24.36780237 −24.37335494 2s210s −24.353414 −24.358997

∞ −24.36780393(35) −24.37335642(35) −24.353489(11) −24.359072(11)
11B 16000 −24.36792589 −24.37347848 −24.353538 −24.359121

∞ −24.36792746(35) −24.37347996(35) −24.353613(11) −24.359196(11)
∞B 16000 −24.36916705 −24.37471972 −24.354781 −24.360364

∞ −24.36916862(35) −24.37472121(35) −24.354856(11) −24.360439(11)
10B 16000 2s2p2 −24.36297694 −24.36843959 2s211s −24.352204 −24.357787

∞ −24.36297943(70) −24.36844211(70) −24.352266(23) −24.357849(23)
11B 16000 −24.36309947 −24.36856212 −24.352327 −24.357911

∞ −24.36310196(70) −24.36856464(70) −24.352390(23) −24.357973(23)
∞B 16000 −24.36433059 −24.36979319 −24.353571 −24.359154

∞ −24.36433309(70) −24.36979580(70) −24.353633(23) −24.359216(23)

ble precision of 8 bytes per number). The increase of the
precision accelerates the convergence of the calculation.
This is likely due to more precise evaluation of the energy
gradient. The optimization of the basis sets is carried out
for the 11B isotope of boron. This basis set is then used
to perform calculations for the 10B isotope and for ∞B,
i.e., for the boron atom with an infinite nuclear mass.

In our previous paper [44]) we presented calculations
for the lowest four 2S states of boron. The largest basis-
set size used there was 15000. Increasing the basis-set size
to 16000, employing the extended precision in the calcu-
lations, and performing several additional optimization
cycles for the 16000-ECG basis set for each state resulted
in a noticeable decrease of the variational non-relativistic
energies of the four states (see the results presented in
Table II). For the lowest 2s23s state, the 11B energy
decreased from -24.470143729 to -24.470143748 a.u., for
the 2s24s state the energy decreased from -24.401943437

to -24.401943485 a.u., for the 2s25s state the energy de-
creased from -24.378547683 to -24.37854784 a.u., and for
the 2s26s state the energy decreased from -24.367925311
to -24.36792589 a.u. Also, in the present calculations, the
range of the calculated 2S states is extended to include
the next six higher states, i.e., the 2s2p2 states and the
2s2ns states with n = 7, . . . , 11.

The non-relativistic energies, Enr, for all ten states of
10B, 11B, and ∞B are shown in Table II). As one can see,
the number of the significant figures shown in the energy
values for each state decreases with the level of excitation.
This reflects the slowing of the energy convergence rate
with the number of basis functions as more radial nodes
appear in the wave function. For each state of each iso-
tope, the energy value extrapolated to an infinite number
of the basis functions is also shown in the table along with
the corresponding estimated uncertainty. In the table, we
also show the total energies of the states calculated as the
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TABLE III. Some key expectation values (all in atomic units) for the ten lowest 2S states of 10B, 11B and ∞B isotopes computed
with the largest basis sets of 16000 ECG functions used in this work. The tilde sign indicates that the regularization technique
was used to compute the expectation value. The numbers in parentheses are estimated uncertainties due to the basis truncation.

State Isotope 〈H̃MV〉 〈δ̃(ri)〉 〈δ̃(rij)〉 〈HOO〉 〈P
(
1/r3ij

)
〉

2s23s 10B −700.20717(1) 14.50655656(4) 0.358158660(6) −1.5600823(2)
11B −700.22129(1) 14.50677540(4) 0.358163425(6) −1.5544572(2)
∞B −700.36320(1) 14.50897429(4) 0.358211305(6) −1.4979332(2) −2.94366(3)

2s24s 10B −699.5466(1) 14.4955059(3) 0.357662320(14) −1.5575239(16)
11B −699.5607(1) 14.4957250(3) 0.357667096(14) −1.5519057(16)
∞B −699.7028(1) 14.4979274(3) 0.357715092(14) −1.4954514(16) −2.9498(3)

2s25s 10B −699.0559(5) 14.4865338(27) 0.357319393(63) −1.5427622(90)
11B −699.0702(5) 14.4867559(27) 0.357324270(63) −1.5371553(90)
∞B −699.2137(5) 14.4889867(27) 0.357373266(63) −1.4808133(90) −2.9565(16)

2s26s 10B −697.3229(24) 14.45369(2) 0.3561490(6) −1.47043(7)
11B −697.3384(24) 14.45393(2) 0.3561548(6) −1.46489(7)
∞B −697.4946(24) 14.45641(2) 0.3562123(6) −1.40928(7) −2.9313(33)

2s2p2 10B −690.658(9) 14.32680(17) 0.3516566(61) −1.18373(36)
11B −690.673(9) 14.32703(17) 0.3516617(61) −1.17823(36)
∞B −690.819(9) 14.32932(17) 0.3517127(61) −1.12291(36) −2.8384(14)

2s27s 10B −695.398(8) 14.41711(17) 0.3548454(64) −1.38832(28)
11B −695.407(8) 14.41722(17) 0.3548463(64) −1.38249(28)
∞B −695.491(8) 14.41832(17) 0.3548554(64) −1.32397(28) −2.9145(44)

2s28s 10B −698.831(7) 14.48252(13) 0.3571581(81) −1.53700(9)
11B −698.844(7) 14.48272(13) 0.3571621(81) −1.53133(9)
∞B −698.975(7) 14.48471(13) 0.3572027(81) −1.47445(9) −2.9698(82)

2s29s 10B −699.389(15) 14.49308(38) 0.3575290(174) −1.56135(6)
11B −699.403(15) 14.49329(38) 0.3575335(174) −1.55571(6)
∞B −699.541(15) 14.49543(38) 0.3575790(174) −1.49906(6) −3.0022(172)

2s210s 10B −699.538(38) 14.49581(76) 0.3576238(319) −1.56808(10)
11B −699.552(38) 14.49602(76) 0.3576284(319) −1.56244(10)
∞B −699.692(38) 14.49819(76) 0.3576749(319) −1.50582(10) −3.0416(204)

2s211s 10B −699.590(68) 14.49684(98) 0.3576609(269) −1.57089(53)
11B −699.604(68) 14.49706(98) 0.3576655(269) −1.56526(53)
∞B −699.745(68) 14.49923(98) 0.3577126(269) −1.50865(53) −3.0524(82)

sum of the non-relativistic energy and the relativistic and
QED corrections. The values of the quantities that are
used to calculate these corrections are shown in Table III.
These quantities, which are calculated with the largest
basis set of 16000 ECG, include the expectation value of
the mass-velocity operator, the expectation values of the
one- and two-electron Dirac delta functions, 〈δ̃(ri)〉 and

〈δ̃(rij)〉, the expectation value of the orbit-orbit magnetic
interaction operator, 〈HOO〉, and the expectation value
of the distribution used to calculate the first term of the
leading QED correction, 〈P

(
1/r3

ij

)
〉. In the table, the

expectation values are shown for all ten 2S states consid-
ered for 10B, 11B, and ∞B. For each expectation value, an
estimated uncertainty is given in parenthesis. Here again,
due to the decreasing accuracy with increasing level of
electronic excitation, the number of the significant fig-
ures in the expectation value decreases from eight for the

2s23S state to six for the 2s211s state.

The next set of results concerns transitions energies
corresponding to all pairs of the adjacent states. The en-
ergies are shown in Table IV. Each transition energy is
calculated at increasingly more accurate level of theory as
the difference between the total energies of the two states
involved in the excitation. At the lowest level, the ener-
gies are the non-relativistic variational energies obtained
assuming an infinite nuclear mass (nr(i)). At the next
level, the finite-nuclear-mass non-relativistic energies are
used (nr(f)). At the following level, the energies that are
sums of the FNM non-relativistic energies and the lead-
ing relativistic corrections (nr(f)+rel(f)) are used. At
the last two levels, we use the energies from the previous
step first augmented with the leading QED corrections
(nr(f)+rel(f)+QED(f)) and then with the higher-order
QED corrections (nr(f)+rel(f)+QED(f)+HQED(i)). Fi-
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TABLE IV. Transition energies, ∆E (in cm−1), for adjacent 2S states of the 10B and 11B isotopes of boron computed using
infinite-nuclear-mass (i) non-relativistic energies (nr) and then gradually increasing the accuracy of the calculations by including
the finite-nuclear-mass (f), relativistic (rel), and QED effects. As the QED and HQED operators used in the present work
are only valid for the infinite nuclear mass (INM) model, the corresponding energy corrections are computed using the wave
functions obtained in the INM calculations. The estimated uncertainties shown for the extrapolated transition energies are due
to the basis truncation.

Isotope Contributions included in ∆E Basis size 2s23s←2s24s 2s24s←2s25s 2s25s←2s26s 2s26s←2s2p2 2s2p2←2s27s
10B nr(i) 16000 14969.116 5135.143 2331.883 1061.481 607.528

nr(f) 16000 14968.139 5134.711 2331.185 1059.058 609.005

nr(f)+rel(f) 16000 14970.635 5136.375 2336.779 1080.418 593.830

nr(f)+rel(f)+QED(i) 16000 14970.508 5136.272 2336.387 1078.889 594.904

nr(f)+rel(f)+QED(i)+HQED(i) 16000 14970.500 5136.265 2336.362 1078.794 594.971

nr(f)+rel(f)+QED(i)+HQED(i) ∞ 14970.454(10) 5136.163(42) 2336.19(11) 1078.57(23) 594.8(4)

Experiment [57] 14970.47(9) 5136.16(10) 2335.74(15) 1078.47(21) 595.38(21)

2s27s←2s28s 2s28s←2s29s 2s29s←2s210s 2s210s←2s211s

nr(i) 16000 647.902 485.772 354.599 265.753

nr(f) 16000 649.108 485.961 354.645 265.766

nr(f)+rel(f) 16000 638.122 484.141 354.107 265.613

nr(f)+rel(f)+QED(i) 16000 638.923 484.278 354.152 265.628

nr(f)+rel(f)+QED(i)+HQED(i) 16000 638.973 484.286 354.154 265.629

nr(f)+rel(f)+QED(i)+HQED(i) ∞ 637.3(7) 479.2(16) 345(4) 268(8)

Isotope Contributions included in ∆E Basis size 2s23s←2s24s 2s24s←2s25s 2s25s←2s26s 2s26s←2s2p2 2s2p2←2s27s
11B nr(i) 16000 14969.116 5135.143 2331.883 1061.481 607.528

nr(f) 16000 14968.228 5134.750 2331.248 1059.277 608.871

nr(f)+rel(f) 16000 14970.724 5136.413 2336.838 1080.640 593.715

nr(f)+rel(f)+QED(i) 16000 14970.596 5136.310 2336.446 1079.111 594.789

nr(f)+rel(f)+QED(i)+HQED(i) 16000 14970.588 5136.303 2336.422 1079.016 594.856

nr(f)+rel(f)+QED(i)+HQED(i) ∞ 14970.543(10) 5136.202(42) 2336.25(11) 1078.78(23) 594.7(4)

Experiment [57] 14970.561(24) 5136.186(29) 2335.76(14) 1078.47(20) 595.38(21)

2s27s←2s28s 2s28s←2s29s 2s29s←2s210s 2s210s←2s211s

nr(i) 16000 647.902 485.772 354.599 265.753

nr(f) 16000 648.999 485.944 354.640 265.765

nr(f)+rel(f) 16000 637.999 484.121 354.102 265.611

nr(f)+rel(f)+QED(i) 16000 638.800 484.258 354.147 265.627

nr(f)+rel(f)+QED(i)+HQED(i) 16000 638.849 484.266 354.149 265.628

nr(f)+rel(f)+QED(i)+HQED(i) ∞ 637.2(7) 479.1(16) 345(4) 268(8)

Isotope Contributions included in ∆E Basis size 2s23s←2s24s 2s24s←2s25s 2s25s←2s26s 2s26s←2s2p2 2s2p2←2s27s

natural nr(f)+rel(f)+QED(i)+HQED(i) ∞ 14970.525(15) 5136.194(59) 2336.24(61) 1078.74(33) 594.69(58)

mixture Experiment [57] 14970.5431(33) 5136.180(10) 2335.75(14) 1078.47(20) 595.38(21)

2s27s←2s28s 2s28s←2s29s 2s29s←2s210s 2s210s←2s211s

nr(f)+rel(f)+QED(i)+HQED(i) ∞ 637.19(98) 479.1(23) 345(5) 268(10)

Experiment [57] 636.07(21) 478.10(21) 339.19(21)

nally each transition-energy value is extrapolated to an
infinite number of the basis functions. The transition en-
ergies obtained at all above-mentioned levels of theory
for all pairs of the adjacent states within the set of the
ten lowest 2 states considered in the present calculations
are shown in Table IV along with the experimental values
taken from Ref. [57].

Let us first examine the results for the lowest 2s23s←
2s24s transition for 11B. As one can see, including the
finite-nuclear-mass effects lowers the transition energy by
about a wave-number, but the addition of the relativistic
corrections raises the result by about 2.5 cm−1. The ad-
dition of the QED corrections lowers the result by about
0.13 cm−1. The final results for the 2s23s← 2s24s tran-
sition energy of 14970.588 cm−1 (before extrapolation)
and of 14970.543(10) cm−1 (after extrapolation) agrees

with the experimental value of 14970.561(24) cm−1 well
within the experimental uncertainty. The correspond-
ing 2s24s ← 2s25s transition energies also agrees very
well with the experimental value. The agreement is
also very good for the first two transitions of 10B. The
agreement for the 2s25s ← 2s26s, 2s26s ← 2s2p2, and
2s2p2 ← 2s27s transitions is somewhat worse, but still
the calculated values are within 0.5 cm−1 from the exper-
imental results. Note that the experimental uncertainty
progressively increases with the level of the electronic ex-
citation, as does the uncertainty of the calculated values.
There are no experimental values to make a comparison
for the next four transitions.

The total state energies obtained at the various lev-
els of the theory are also used to calculate the transition
energies for the second (2s24s) and higher states with
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TABLE V. Transition energies, ∆E (in cm−1), for the 2s23s and higher 2S states of the 10B and 11B isotopes of boron computed
using infinite-nuclear-mass (i) nonrelativistic energies (nr), and then gradually increasing the accuracy of the calculations by
including the finite nuclear mass (f), relativistic (rel), and QED effects. As the QED and HQED operators used in the present
work are only valid for the infinite-nuclear-mass (INM) model, the corresponding energy corrections are computed using the
wave functions obtained in the INM calculations. The estimated uncertainties shown for the extrapolated transition energies
are due to the basis truncation.

Isotope Contributions included in ∆E Basis size 2s23s←2s24s 2s23s←2s25s 2s23s←2s26s 2s23s←2s2p2 2s23s←2s27s
10B nr(i) 16000 14969.116 20104.259 22436.142 23497.624 24105.151

nr(f) 16000 14968.139 20102.850 22434.035 23493.093 24102.098

nr(f)+rel(f) 16000 14970.635 20107.010 22443.789 23524.207 24118.037

nr(f)+rel(f)+QED(i) 16000 14970.508 20106.779 22443.166 23522.055 24116.959

nr(f)+rel(f)+QED(i)+HQED(i) 16000 14970.500 20106.764 22443.127 23521.921 24116.891

nr(f)+rel(f)+QED(i)+HQED(i) ∞ 14970.454(10) 20106.618(36) 22442.807(80) 23521.37(15) 24116.15(26)

Experiment, [57] 14970.47(9) 20106.63(5) 22442.37(14) 23520.84(15) 24116.22(15)

2s23s←2s28s 2s23s←2s29s 2s23s←2s210s 2s23s←2s211s

nr(i) 16000 24753.053 25238.825 25593.425 25859.177

nr(f) 16000 24751.206 25237.168 25591.812 25857.579

nr(f)+rel(f) 16000 24756.159 25240.299 25594.406 25860.019

nr(f)+rel(f)+QED(i) 16000 24755.882 25240.160 25594.311 25859.940

nr(f)+rel(f)+QED(i)+HQED(i) 16000 24755.864 25240.150 25594.303 25859.933

nr(f)+rel(f)+QED(i)+HQED(i) ∞ 24753.44(44) 25232.6(12) 25577.8(25) 25846.2(50)

Isotope Contributions included in ∆E Basis size 2s23s←2s24s 2s23s←2s25s 2s23s←2s26s 2s23s←2s2p2 2s23s←2s27s
11B nr(i) 16000 14969.116 20104.259 22436.142 23497.624 24105.151

nr(f) 16000 14968.228 20102.977 22434.226 23493.503 24102.374

nr(f)+rel(f) 16000 14970.724 20107.137 22443.975 23524.615 24118.330

nr(f)+rel(f)+QED(i) 16000 14970.596 20106.906 22443.353 23522.463 24117.253

nr(f)+rel(f)+QED(i)+HQED(i) 16000 14970.588 20106.891 22443.313 23522.329 24117.185

nr(f)+rel(f)+QED(i)+HQED(i) ∞ 14970.543(10) 20106.745(36) 22442.993(80) 23521.78(16) 24116.45(26)

Experiment, [57] 14970.561(24) 20106.747(17) 22442.50(14) 23520.97(14) 24116.35(15)

2s23s←2s28s 2s23s←2s29s 2s23s←2s210s 2s23s←2s211s

nr(i) 16000 24753.053 25238.825 25593.425 25859.177

nr(f) 16000 24751.373 25237.318 25591.958 25857.723

nr(f)+rel(f) 16000 24756.329 25240.450 25594.553 25860.164

nr(f)+rel(f)+QED(i) 16000 24756.053 25240.311 25594.458 25860.085

nr(f)+rel(f)+QED(i)+HQED(i) 16000 24756.034 25240.301 25594.450 25860.078

nr(f)+rel(f)+QED(i)+HQED(i) ∞ 24753.61(44) 25232.8(12) 25578.0(25) 25846.4(50)

Isotope Contributions included in ∆E Basis size 2s23s←2s24s 2s24s←2s25s 2s25s←2s26s 2s26s←2s2p2 2s2p2←2s27s

natural nr(f)+rel(f)+QED(i)+HQED(i) ∞ 14970.525(15) 20106.72(52) 22442.96(11) 23521.70(22) 24116.39(36)

mixture Experiment [57] 14970.5431(33) 20106.723(10) 22442.48(14) 23520.95(14) 24116.33(15)

2s23s←2s28s 2s23s←2s29s 2s23s←2s210s 2s23s←2s211s

nr(f)+rel(f)+QED(i)+HQED(i) ∞ 24753.58(62) 25232.7(16) 25577.9(35) 25846.3(71)

Experiment [57] 24752.40(15) 25230.50(15) 25569.69(15)

respect to the lowest 2s2s state. The results are shown
in Table V. Unlike for the transitions between the adja-
cent states, the values of the transition energies are now
increasing with the level of the excitation. However, as
one can see, the agreement with experiment is still very
good and the discrepancies do not exceed 0.5 cm−1 for
either 10B or 11B.

Most of the experimental transition energies of the
boron atom have been reported for the natural mixture
(10B (20%) and 11B (80%)). Thus, in the present work,
we calculate the weighted averages of the transition ener-
gies for the naturally occurring mixture of the isotopes.
The averages are shown in the bottom parts of Tables
IV and V. The experimental and calculated values are
compared in the tables. Except for the last transition,
all of the calculated values are in a good agreement with

the experimental ones and the differences are less than
wave number.

The non-relativistic wave functions for the ten consid-
ered 2S states of 10B, 11B, and ∞B are used to calculate
some expectation values of positive and negative pow-
ers (ranging from -2 to +2) of the nucleus-electron and
electron-electron distances. The results are shown in Ta-
ble VI. Let us focus on the 〈ri〉 and 〈rij〉 expectation
values, i.e. the average nucleus-electron and electron-
electron distance, respectively. As expected, both dis-
tances increase with the increasing excitation level and
the increase accelerates as one moves to higher states.
An interesting effect is revealed by comparing the results
obtained for the 〈ri〉 and 〈rij〉 expectation values of the
two boron isotopes. It appears that both 〈ri〉 and 〈rij〉
slightly shrink when the nuclear mass increases (i.e. in
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going from 10B to 11B). This effect results from the fact
that internal motion of the atom is the coupled motion of
the electrons and the nucleus around the center of mass
of the atom. As the nuclear mass increases, the radius
of the motion of the nucleus about the center of mass
decreases. When this happens, the average radius of the
motion of the electrons about the center of mass also de-
creases. This results in the atom slightly shrinking and,
thus, the nucleus-electron and the electron-electron radii
slightly decrease.

An interesting illustration of the coupled nucleus-
electron motion in the boron atom is provided by plots
of the electronic and nuclear densities. The density
of a particle i in the center-of-mass (COM) coordinate
frame is defined as ρi (r) = 〈δ (Ri −Rcm − r)〉, where
i = 1, . . . , N and Rcm is the position vector of the center
of mass in the laboratory coordinate frame. In this work,
the COM-frame density plots are generated for both the
nucleus and the electrons. When the atom is excited to
increasingly higher Rydberg state, the average radius of
the electronic density increases, as manifested by the in-
creasing value of the nucleus-electron average distance
and by increasing diffuseness of the COM-frame electron
density. Also, at the same time, the electronic density be-
comes more oscillatory. The oscillations of the electronic
density are mirrored by the oscillations of the COM-
frame density of the nucleus. The matching number of
the maxima in the electronic and nuclear densities for a
given state occurs, because, only then the center-of-mass
of the atom can remain immobile during the coupled mo-
tion of the nucleus and the electrons around the center
of mass of the atom. However, due to much larger mass
of the nucleus in comparison with the electron mass, the
average radius of the nuclear motion around the center
of mass is orders of magnitude smaller than the average
radius of the motion of the electrons. A pictorial com-
parison of the two motions using the electronic and nu-
clear COM-frame densities is presented in Figure 1. The
density values are shown for a cross-section plane that
includes the center of mass located in the center of the
coordinate system used in the plotting. The features to
notice in the plots is a visual similarity of the nuclear and
electronic densities for each of the three plotted states
and the difference in the scales of the two cross-section
Cartesian coordinates (X and Z) used in plotting the
electronic and nuclear densities.

IV. SUMMARY

Very accurate calculations of the lowest ten 2S states
of two boron stable isotopes, 10B and 11B, are carried
out and the inter-state transition energies are deter-
mined. The results agree well with the high-precision-
spectroscopy experimental values. Several months of con-
tinues multi-processor calculations have been involved in
the project. With confidence we can say that the results
represent the state-of-the-art of the atomic quantum me-

chanics. The results are the most accurate ever obtained
for a spectrum of a five-electron atomic system. The
high accuracy of the calculated results is accomplished
due to the use of large well-optimized basis sets of all-
electron explicitly correlated Gaussian functions. The
key feature of the optimization of the Gaussians is the
use of the analytical gradient of the energy determined
with respect to the Gaussian non-linear parameters in
the variational energy minimization for the considered
state. Augmentation of the nonrelativistic state energies
with the leading relativistic and QED corrections cal-
culated using the perturbation-theory approach and not
assuming the Born-Oppenheimer approximation in the
calculations (i.e., explicitly including the finite-nuclear-
mass effects in the nonrelativistic Hamiltonian) are key
in achieving the high accuracy of the results.
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TABLE VI. Expectation values of powers of the interparticle distances, 〈rpi 〉 and 〈rpij〉 (p = −2,−1, 1, 2), computed with the
largest basis sets of 16000 ECG functions used in this work. All values are in atomic units.

State Isotope 〈r−2
i 〉 〈r−2

ij 〉 〈r−1
i 〉 〈r−1

ij 〉 〈ri〉 〈rij〉 〈r2i 〉 〈r2ij〉
2s23s 10B 18.8049330(1) 1.67158086(3) 2.22598196(2) 0.67095104(2) 2.1038338(4) 3.6606569(8) 10.673722(8) 21.77194(2)

11B 18.8051227(1) 1.67159538(3) 2.22599313(2) 0.67095408(2) 2.1038230(4) 3.6606384(8) 10.673610(8) 21.77172(2)
∞B 18.8070285(1) 1.67174126(3) 2.22610533(2) 0.67098461(2) 2.1037148(4) 3.6604532(8) 10.672478(8) 21.76948(2)

2s24s 10B 18.7854587(3) 1.65806550(7) 2.20623543(9) 0.6352247(2) 3.598584(7) 6.611332(14) 44.8388(2) 89.9932(4)
11B 18.7856486(3) 1.65807979(7) 2.20624642(9) 0.6352274(2) 3.598570(7) 6.611306(14) 44.8384(2) 89.9925(4)
∞B 18.7875571(3) 1.65822345(7) 2.20635682(9) 0.6352542(2) 3.598424(7) 6.611045(14) 44.8345(2) 89.9848(4)

2s25s 10B 18.7748907(22) 1.65553014(11) 2.19953835(53) 0.6231611(12) 5.58004(9) 10.56238(19) 130.655(5) 261.575(9)
11B 18.7750832(22) 1.65554396(11) 2.19954888(53) 0.6231627(12) 5.58006(9) 10.56242(19) 130.656(5) 261.576(9)
∞B 18.7770176(22) 1.65568283(11) 2.19965475(53) 0.6231786(12) 5.58027(9) 10.56287(19) 130.660(5) 261.585(9)

2s26s 10B 18.74406(2) 1.658983(2) 2.200445(4) 0.627553(10) 7.465(1) 14.336(2) 273.34(6) 546.93(11)
11B 18.74427(2) 1.658994(2) 2.200452(4) 0.627546(10) 7.466(1) 14.337(2) 273.37(6) 546.98(11)
∞B 18.74643(2) 1.659096(2) 2.200523(4) 0.627475(10) 7.471(1) 14.347(2) 273.62(6) 547.49(11)

2s2p2 10B 18.62762(16) 1.677503(28) 2.217449(24) 0.671027(61) 6.318(4) 12.077(8) 283.17(20) 566.65(40)
11B 18.62781(16) 1.677515(28) 2.217458(24) 0.671026(61) 6.319(4) 12.078(8) 283.19(20) 566.69(40)
∞B 18.62981(16) 1.677640(28) 2.217553(24) 0.671012(61) 6.321(4) 12.083(8) 283.38(20) 567.09(40)

2s27s 10B 18.70974(7) 1.664058(16) 2.203869(8) 0.637631(21) 10.066(4) 19.548(7) 601.27(58) 1203(1)
11B 18.70983(7) 1.664089(16) 2.203896(8) 0.637675(21) 10.063(4) 19.541(7) 601.02(58) 1202(1)
∞B 18.71073(7) 1.664396(16) 2.204171(8) 0.638111(21) 10.027(4) 19.469(7) 598.52(58) 1197(1)

2s28s 10B 18.76946(6) 1.653958(21) 2.193048(2) 0.611170(3) 15.538(21) 30.471(42) 1264(4) 2529(8)
11B 18.76963(6) 1.653976(21) 2.193062(2) 0.611180(3) 15.537(21) 30.469(42) 1264(4) 2529(8)
∞B 18.77135(6) 1.654151(21) 2.193204(2) 0.611287(3) 15.527(21) 30.449(42) 1263(4) 2527(8)

2s29s 10B 18.77903(18) 1.652200(40) 2.190590(5) 0.605465(6) 20.5(1) 40.4(2) 2196(30) 4392(60)
11B 18.77922(18) 1.652215(40) 2.190602(5) 0.605471(6) 20.5(1) 40.4(2) 2196(30) 4392(60)
∞B 18.78106(18) 1.652369(40) 2.190722(5) 0.605522(6) 20.5(1) 40.4(2) 2195(30) 4391(60)

2s210s 10B 18.78144(36) 1.651736(87) 2.189553(10) 0.603186(6) 26.2(5) 52(1) 3649(154) 7298(307)
11B 18.78163(36) 1.651751(87) 2.189565(10) 0.603190(6) 26.2(5) 52(1) 3649(154) 7298(307)
∞B 18.78350(36) 1.651900(87) 2.189680(10) 0.603229(6) 26.2(5) 52(1) 3648(154) 7297(307)

2s211s 10B 18.78231(50) 1.651529(80) 2.188913(74) 0.6018(1) 33.4(17) 66(3) 5996(663) 11993(1325)
11B 18.78250(50) 1.651543(80) 2.188924(74) 0.6018(1) 33.4(17) 66(3) 5996(663) 11993(1325)
∞B 18.78439(50) 1.651690(80) 2.189037(74) 0.6019(1) 33.4(17) 66(3) 5996(663) 11993(1325)
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FIG. 1. The density of the electrons (top row) and nucleus (bottom row) in the center-of-mass coordinate frame for the 2s23s,
2s2p2, and 2s211s states of the boron atom.
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[19] M. Stanke, D. Kȩdziera, S. Bubin, and L. Adamowicz,
Ionization potential of 9be calculated including nuclear
motion and relativistic corrections, Phys. Rev. A 75,
052510 (2007).

[20] S. Bubin and L. Adamowicz, Assessment of the accuracy
the experimental energies of the 1po 1s22s6p and 1s22s7p
states of 9be based on variational calculations with ex-
plicitly correlated gaussians, J. Chem. Phys. 137, 104315
(2012).

[21] K. Pachucki, W. Cencek, and J. Komasa, On the acceler-
ation of the convergence of singular operators in gaussian
basis sets, J. Chem. Phys. 122, 184101 (2005).

[22] S. Bubin, J. Komasa, M. Stanke, and L. Adamowicz,
Isotope shifts of the three lowest 1s states of the b+ ion
calculated with a finite-nuclear-mass approach and with
relativistic and quantum electrodynamics corrections, J.
Chem. Phys. 132, 114109 (2010).

[23] S. Bubin and L. Adamowicz, Correlated-gaussian calcu-
lations of the ground and low-lying excited states of the
boron atom, Phys. Rev. A 83, 022505 (2011).

[24] S. Bubin, J. Komasa, M. Stanke, and L. Adamowicz,
Isotope shifts of the 1s22s2(1s0)→ 1s22p2(1s0) transition
in the doubly ionized carbon ion c2+, Phys. Rev. A 81,
052504 (2010).

[25] S. Bubin, M. Stanke, and L. Adamowicz, Non-born–
oppenheimer calculations of the bh molecule, J. Chem.
Phys. 131, 044128 (2009).

[26] M. Puchalski, J. Komasa, and K. Pachucki, Explicitly
correlated wave function for a boron atom, Phys. Rev. A
92, 062501 (2015).

[27] K. L. Sharkey, M. Pavanello, S. Bubin, and L. Adamow-
icz, Algorithm for quantum-mechanical finite-nuclear-
mass variational calculations of atoms with two p elec-
trons using all-electron explicitly correlated gaussian ba-
sis functions, Phys. Rev. A 80, 062510 (2009).

[28] K. L. Sharkey and L. Adamowicz, An algorithm for non-
relativistic quantum-mechanical finite-nuclear-mass vari-
ational calculations of nitrogen atom in l = 0, m = 0
states using all-electrons explicitly correlated gaussian
basis functions, J. Chem. Phys. 140, 174112 (2014).

[29] R. D. Poshusta and D. B. Kinghorn, Algebrants in many-
electron quantum mechanics: Applications of general-
ized determinants or matrix functions, Int. J. Quantum
Chem. 41, 15 (1992).

[30] M. Wang, G. Audi, A. Wapstra, F. Kondev, M. Mac-
Cormick, X. Xu, and B. Pfeiffer, The ame2012 atomic
mass evaluation, Chin. Phys. C 36, 1603 (2012).

[31] K. L. Sharkey and L. Adamowicz, Exponentially and pre-
exponentially correlated gaussians for atomic quantum
calculations, J. Chem. Phys. 134, 094104 (2011).

[32] M. Hamermesh, Group Theory and Its Application
to Physical Problems (Addison-Wesley, Reading, MA,
1962).

[33] W. E. Caswell and G. P. Lepage, Effective lagrangians
for bound state problems in qed, qcd, and other field
theories, Phys. Lett. B 167, 437 (1986).

[34] K. Pachucki, Effective hamiltonian approach to the
bound state: Positronium hyperfine structure, Phys.
Rev. A 56, 297 (1997).

[35] H. A. Bethe and E. E. Salpeter, Quantum Mechanics
of One- and Two-Electron Atoms (Plenum, New York,



14

1977).
[36] A. I. Akhiezer and V. B. Berestetskii, Quantum Electro-

dynamics (John Wiley & Sons, New York, 1965).
[37] M. Stanke, S. Bubin, and L. Adamowicz, Lowest ten 1p

rydberg states of beryllium calculated with all-electron
explicitly correlated gaussian functions, J. Phys. B 52,
155002 (2019).

[38] I. Hornyák, L. Adamowicz, and S. Bubin, Ground and
excited 1s states of the beryllium atom, Phys. Rev. A
100, 032504 (2019).

[39] H. Araki, Quantum-electrodynamical corrections to
energy-levels of helium, Prog. Theor. Phys. 17, 619
(1957).

[40] J. Sucher, Energy levels of the two-electron atom to order
α3 ry; ionization energy of helium, Phys. Rev. 109, 1010
(1958).

[41] P. K. Kabir and E. E. Salpeter, Radiative corrections to
the ground-state energy of the helium atom, Phys. Rev.
108, 1256 (1957).

[42] Z.-C. Yan and G. W. F. Drake, Relativistic and qed en-
ergies in lithium, Phys. Rev. Lett. 81, 774 (1998).

[43] K. Pachucki, Simple derivation of helium lamb shift, J.
Phys. B 31, 5123 (1998).

[44] S. Bubin and L. Adamowicz, Lowest 2s electronic exci-
tations of the boron atom, Phys. Rev. Lett. 118, 043001
(2017).

[45] K. Pachucki and J. Komasa, Relativistic and qed correc-
tions for the beryllium atom, Phys. Rev. Lett. 92, 213001
(2004).

[46] K. Pachucki, α4r corrections to singlet states of helium,
Phys. Rev. A 74, 022512 (2006).
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