aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Probabilistic simulation of quantum circuits using a deep-
learning architecture
Juan Carrasquilla, Di Luo, Felipe Pérez, Ashley Milsted, Bryan K. Clark, Maksims Volkovs,
and Leandro Aolita
Phys. Rev. A 104, 032610 — Published 20 September 2021
DOI: 10.1103/PhysRevA.104.032610


https://dx.doi.org/10.1103/PhysRevA.104.032610

Probabilistic Simulation of Quantum Circuits using the Transformer Deep Learning

Architecture

Juan Carrasquilla,! Di Luo,? Felipe Pérez,® Ashley Milsted,* Bryan K. Clark,?> Maksims Volkovs,? and Leandro Aolita®

YWector Institute, MaRS Centre, Toronto, Ontario, M5G 1M1, Canada
2 Institute for Condensed Matter Theory and IQUIST and Department of Physics,
University of Illinois at Urbana-Champaign, IL 61801, USA
3Layer6 AI, MaRS Centre, Toronto, Ontario, M5G 1M1, Canada

4 Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada

5 Instituto de Fisica, Universidade Federal do Rio de Janeiro,
Caiza Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil
(Dated: August 25, 2021)

The fundamental question of how to best simulate quantum systems using conventional compu-
tational resources lies at the forefront of condensed matter and quantum computation. It impacts
both our understanding of quantum materials and our ability to emulate quantum circuits. Here we
present an exact formulation of quantum dynamics via factorized generalized measurements which
maps quantum states to probability distributions with the advantage that local unitary dynamics
and quantum channels map to local quasi-stochastic matrices. This representation provides a gen-
eral framework for using state-of-the-art probabilistic models in machine learning for the simulation
of quantum many-body dynamics. Using this framework, we have developed a practical algorithm to
simulate quantum circuits using an attention network based on the Transformer, a powerful neural
network ansatz responsible for the most recent breakthroughs in natural language processing. We
demonstrate our approach by simulating circuits that build GHZ and linear graph states of up to
60 qubits, as well as a variational quantum eigensolver circuit for preparing the ground state of the
transverse field Ising model on several system sizes. Our methodology constitutes a modern machine
learning approach to the simulation of quantum physics with applicability both to quantum circuits

as well as other quantum many-body systems.

I. INTRODUCTION

In his celebrated keynote address at the California In-
stitute of Technology in May 1981, Feynman introduced
the idea of a computer that could act as a quantum me-
chanical simulator [1], which has inspired the field of
quantum computing since its inception. In his keynote,
Feynman also intriguingly asked “can quantum systems
be probabilistically simulated by classical computer?”,
which he answered negatively observing that a probabilis-
tic simulation is unfeasible since the description of both
the quantum state and its evolution necessarily involves
non-positive quasi-probabilities. In fact, quantum com-
puters will display potential speed-ups over their classical
counterparts at the onset of negative values in the quasi-
probabilities associated with the description and evolu-
tion of their quantum states. This observation about
non-negative probabilities eventually stimulated the field
of quantum computation.

Given the difficulty of simulating quantum computers
probabilistically, it is interesting to instead ask what al-
ternatives exist for classical simulations of quantum cir-
cuits. One promising approach is to compress the quan-
tum state into a compact representation and then update
this compact representation upon the application of each
quantum gate. The non-positive quasi-probabilities con-
tribute to making even this approach difficult as the signs
induce rapid oscillations that are naively more difficult to
compress.

One area where there has been significant work in com-

pressing large vectors is in machine learning where ex-
ponentially large probability distributions are commonly
compressed into generative models. The most mature
of these is in the area of language modeling and transla-
tion where neural probabilistic models such as transform-
ers [2] encode the probability that a given strings of char-
acters results in a sensible conversation. Recently, such
models have been used in the context of quantum state
reconstruction [3]. Such a strategy resulted in an accu-
rate quantum state representation of families of proto-
typical states in quantum information as well as complex
ground states of one- and two-dimensional local Hamil-
tonians describing large many-body systems relevant to
condensed matter, cold atomic systems, and quantum
simulators [3].

To use this technology, it is important to be able to
map a quantum state to a probability distribution. One
might naively expect to simply consider the state’s am-
plitude but this loses critical phase information. Al-
though the presence of negative quasi-probabilities is of-
ten linked to intrinsically quantum phenomena with no
classical counterpart like entanglement and quantum in-
terference, a purely probabilistic representation of the
quantum state is possible [8H7]. While in the standard
formulation of quantum mechanics a quantum state is
represented by a density operator, a quantum state can
also be completely specified by the outcome probabil-
ity of a physical measurement, provided that the mea-
surement probes enough information about the quan-
tum state. This notion is made precise through two



fundamental concepts in quantum theory: the so-called
Born rule, which is the theoretical principle of quantum
physics linking quantum theory and experiment, and the
concept of informationally complete (IC) measurements,
which are described by positive-operator valued measures
(POVMs). Whereas POVMSs describe the most general
type of measurements allowed by quantum theory going
beyond the notion of projective measurements [8], infor-
mational completeness means that the outcome statistics
of such a measurement specifies the quantum state un-
ambiguously.

To compactly represent these probability distributions,
we will use an autoregressive model to store the instan-
taneous state in its probabilistic representation. We
then develop powerful stochastic algorithm to update the
probabilistic model representing the quantum state un-
der the application of unitary dynamics. We note that
other approaches [9HI5] to compactly represent and up-
date states of a quantum circuit exist.

The choice of autoregressive models is motivated in
various ways. To begin with, such models are known
to be able to capture long-range correlations and vol-
ume law states [16, [I7]. This would in principle allow
them to capture states efficiently beyond the capabilities
of matrix product states. In addition, our algorithms
to update the compressed state after the application of a
quantum gate require the use of Monte Carlo approaches.
Typically, this would be done through a Markov Chain
Monte Carlo (MCMC) technique, but we emphasize that
such MCMC methods are potentially affected by issues
such as long autocorrelation times and lack of ergodicity,
which effectively decrease in speed of the simulations as
well as affects the quality of the estimators used to update
the models. Autoregressive models, and in particular the
Transformer, avoid all these problems by allowing for ex-
act sampling, making the entire algorithm significantly
more efficient.

We test our ideas by considering quantum circuits
which prepare prototypical states in quantum informa-
tion. In particular we consider the GHZ state, linear
graph state, and the variational ground state of the trans-
verse field Ising model (TFIM). Through numerical ex-
periments, we show that our strategy produces accurate
results for the target states of up to 60 qubits, which
opens up a new probabilistic avenue for simulation of
quantum circuits, as well as quantum channels and quan-
tum dynamics more broadly.

II. FORMALISM

We focus on physical systems composed of N qubits
whose quantum state, traditionally represented by a den-
sity matrix p, will be uniquely specified by the measure-
ment statistics of an informationally complete POVM
(IC-POVM). To build an IC-POVM for N qubits, we
first consider an m-outcome single-qubit IC-POVM de-
fined by a collection {M(“)}ae{l_m}, of positive semi-

definite operators M(®) > 0, each one labeled by a
measurement outcome a = 0,1,..,m — 1 [see Figa)
where we describe our representation through the lens
of tensor networks and its graphical notation [18]]. Fol-
lowing Ref. [3], we construct N-qubit measurements as
tensor products of the single-qubit IC-POVM elements
M = {M®) @ M) g . M} x> 8BS
ay,...an€{l..m}

graphically depicted in Figa). We choose for our
numerical simulations the 4-Pauli IC-POVM measure-
ment described in Ref.[3], {M©® = 1|0)(0],MD) =
L) (H, M@ = L) (r], MO = T MO — MO
M®@}. Here |0),|+),|r) are the 41 eigenvector with
respect to o”,0Y, 0% respectively. Note that this is a
natural choice for quantum circuits since the probabil-
ity distribution over these operators can easily be mea-
sured on currently available gate-based quantum comput-
ers. Born’s rule predicts that the probability distribution
P = {P(a)}a=(ay,as,...,an) OVEr measurement outcomes a
on a quantum state p is given by the following

P(a) = Tr [M(") g} (1)

which is graphically explained in Figd). Note that
a quantum state is specified by m probabilities. Due
to the factorized nature of the IC-POVM, a product
state @), |¥;) takes the form of a product distribution
over statistically independent sets of variables P(a) =
P(a1)P(az)--- P(ay) where P(a;) = Tr[M @) |0, (T,]].
Provided that the measurement is informationally com-
plete, the density matrix can be inferred from the statis-
tics of the measurement outcome as

0= Pla)Tyq M, 2)

a,a’

where T' represents the overlap matrix given by Ty o0 =
Tr {M (@) pp (“l)} . See Figd) for a graphical representa-
tion of these elements in Eq[2]

To study quantum circuits, we first have to translate
the action of a quantum gate on the density matrix in
the IC-POVM representation. The former corresponds
to a unitary transformation, i.e. oy = UpUT. If the ini-
tial quantum state is prescribed in terms of the outcome
statistics of an IC-POVM P, we can track its evolution
directly in the probabilistic representation:

Py (a") = T [UUTM @] = 3" Ograr P(a),  (3)

where

Oarar =Y Tr [UMWUT M<a”>} ;L @)

a

is a somewhat stochastic matrix since the values in each
column add up to 1 but its entries can be positive or
negative [5 [6] 19, 20]. Somewhat stochastic matrices
are also known as pseudo-stochastic or quasi-stochastic
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FIG. 1. Tensor-network representation of the mapping between quantum states (gates) and probability distributions (quasi-
stochastic matrices) used in this work. (a) N-qubit measurement M = {M "V @M ") ... M(“N)}a1 =3)

single qubit measurements {M(®}, (red). Vertical indices in the red tensors act on the physical degrees of freedom (qubits)
while the horizontal index labels the measurement outcome a. (b) The overlap matrix T and its inverse 7' (light blue) (c)
multi-qubit version of b. (d) The Born rule relates the probability P(a) (green; indices encode the different measurement
outcomes on each qubit) to the quantum state o (blue). (e) Unitary gates (purple) map to quasi-stochastic matrices (yellow).

made from (N
an

(f) Application of a unitary matrix to a density matrix corresponds to the contraction of a quasi-stochastic matrix with P.

matrices [0 [6]. We note that the evolution described in
Eq.[3|leads to a formulation of quantum mechanics equiv-
alent to, e.g. Heisenberg’s matrix mechanics, including
the description of open quantum systems, quantum chan-
nels, and measurements of other POVMs (See Appendix
A B,C and D).

Here we emphasize that Eq. [3] resembles the standard
rule for stochastic evolution commonly used to describe
the transitions in a Markov chain, where the traditional
stochastic (or Markov) matrix has been replaced with
a quasi-stochastic matrix. Despite the resemblance, a
generic classical MCMC simulation of quantum evolution
in the probabilistic factorized POVM language remains
unfeasible due to the numerical sign problem arising from
the negative entries of the quasi-stochastic matrix de-
scribing the process.

Due to the factorized nature of the IC-POVM, if a
unitary matrix or a quantum channel acts nontrivially on
only k qubits of the quantum system, the quasi-stochastic
matrix Oguq acts only on the measurement outcomes of
those k qubits too. For example, a two-qubit unitary gate

acting on qubits 7 and 7 is represented by a m? xm? quasi-
stochastic matrix acting on outcomes a; and a;. The
relation between the local quasi-stochastic matrices and
the local unitary gates, as well as their action on a quan-
tum state are graphically depicted in Fig[I|(e-f) using ten-
sor diagrams. Furthermore, the locality of Og4/ g/ implies
that traditional quantum circuit diagrams [8] translate
into probabilistic circuits that look exactly the same as
their traditional counterparts.

A quantum circuit is a generalization of the cir-
cuit model of classical computation where a prod-
uct state is evolved through a series of unitary gates,
UM U@ ... UM each of which acts nontrivially on a
constant number k qubits. Note that for each gate U(?)
there is a corresponding somewhat stochastic matrix O
as in Eq. [d In the IC-POVM representation, an initial
probability distribution P(a)g = P(a;)P(as)--- P(an)
of statistically independent sets of variables a is evolved
through a series of local quasi-stochastic matrices of the
form depicted in Flgl(e The measurement statistics af-
ter unitary evolution through the first gate U is given
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FIG. 2. Schematics of the different distributions involved
in the training procedure for a circuit with 3 gates. Black
arrows indicate the exact trajectory while green arrows rep-
resent the trajectory of the optimized models Py,. The red
dotted arrows point to the exactly evolved distributions P(e)
after the application of each gate O” on the trained model
Py,. Note that if the resulting KL divergence after training
KL (P(@lHPgIH) = 0 for every gate in the circuit, then the

black trajectory coincides with the green one and the proce-
dure becomes exact.

by P, = OWP,, and the application of each subse-
quent gate U() defines a series of intermediate proba-
bility distributions P; = O@WO(-D...02 00 Py with
i =1,---,7. The main goal of our approach is to accu-
rately represent the distribution P, since it contains all
the information of the final quantum state which specifies
the outcome of the quantum computation.

III. OPTIMIZATION ALGORITHMS

The strategy to approximate the output distri-
bution P, consists in constructing models Py, =
{P(a;9;)}a=(ay,a0,....,an) based on a rich family of proba-
bility distributions P(a;#). These are expressed in terms
of a neural network with parameters 6 so that Py, ~ P;.
At each time step i, we assume that an accurate neu-
ral approximation has been reached Py, ~ P;, and con-
sider the exactly evolved distribution Pl(f_)l =0t P, .
While the representation of the quantum state at step
1 isn’t exact, if Py, is sufficiently accurate the expecta-
tion is that the distribution Py, , ~ P,y ;. See Fig.
for a depiction of the distributions involved during the
simulation.

To train the model Py, given a gate ¢ + 1, we adopt a
variational approach and select the parameters 6; 1 such

that the Kullback-Liebler (KL) divergence between P(e)

and Py, ,
Py
ILEOR <<> “”) )
Pz+1(a)

KL ( i+1 |P9L+1)

4

is minimized. Recall KL (P(€)1||P91+1) > 0, with the

equality being satisfied only when Py, , = Pz(ﬂ To
minimize the KL divergence, we will apply a variant of
gradient descent (i.e. Adam [2I]) where we repeatedly
update the parameters of 6;,1 by taking steps in the di-
rection of the gradient of Eq. [5] This gradient, assuming

that the model is normalized, can be written as

Vo, K u&i{HPaM) (62)
ZPJQ o1 log (Po,., (@) (6b)
P (a)

=-E Vo, log (P91+1( )) (6¢)

a~Py, ,, (a)

P9i+1 (a')

P (a)
= -FEq,o L k| Ve, log (P, .
a~Py, ,, (a) (Peiﬂ(a) 0it1 Og( 91+1( ))
(6d)
Pi(i)l(a)
Here, k = anp9,+1(a) Pory 1 (@) Note that
Eanpy,, (a)Voiy, log (Py.y,(a)) = 0, which justifies the

equality in Eq. 6d. To estimate the gradient in Eq. we
generate a mini-batch of Ny samples of a sampled from
Py, ., (a) and average over these samples both to com-
pute the value of k as well as Eq. 6d. While computing
Eq. 6d or Eq. 6¢ both evaluate the gradient, Eq. 5d has a
significantly lower variance. In the limit where Py, (a)

approaches Pi(j)l(a) (i.e. ideally towards the end of the
optimization of step i + 1), the variance of the gradi-
ent estimator Eq. 6d goes to zero. This is known as the
zero-variance principle [22]. For a fixed a we evaluate
Pt (a) = Yo O Poy(af
the sub-string of outcomes in @’ on which OUtY acts
(with the other outcomes in the string fixed).

By construction, the unitary matrices and their cor-
responding quasi-stochastic matrices considered here are
k-local, which means that the calculation of the gradient
estimator in Eq. [6a is efficient. More precisely, using N
samples the gradient can be computed in O(Nsk?) which
is a significant improvement over the full multiplication
P;;, = OUFY P; which takes O(22N).

Another algorithm we adopt in this paper is the
forward-backward gate algorithm. Consider a unitary
gate U and decompose it as U = UjU;. Under the
POVM transformation, U; is transformed into O; and
in the exact evolution Oy Py, should match O Py, . Uy
(01 under POVM transformation) and U] (OT under
POVM transformation) can be considered as the forward
and backward evolution gate separately. We define a cost
function by optimizing the following

) by explicitly summing over

C= HOlPei - O{P9i+1||1 (73‘)
=3 1> O1aaPo(a’) = Of 4o Py, (a')] (7b)
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FIG. 3. Schematic representation of the Transformer model.
Lines with arrowheads denote incoming arrays from the out-
put of one node to the inputs of others. The Transformer ar-
chitecture starts with an input measurement a. First, a high-
dimensional linear embedding A of the input measurement is
computed. This is followed by addition of positional encoding
vectors to the input embeddings A. The multi-head attention
mechanism is applied to the modified embedding, followed by
a residual connection [23] and layer normalization [24]. A
position-wise feed-forward is then applied the outcome of the
previous layer again followed by a residual connection and
layer normalization. The output of the last layer is processed
through a linear layer followed by a softmax which returns
the conditional probabilities Py(akx+1lai,...,ax).

The gradient can be computed as follows

1

C=Barrr, ey
+1

Vo Z Ol aa'v91+1P91+1( )

(8)
Sigl’l{z O1,0a' Py, (a ) Ol aa’P9L+1( )} (9)

a’

i+1

The details for optimization can be found in the Ap-
pendix G.

IV. TRANSFORMER ARCHITECTURE

For simplicity, in order to model P;, we restrict to
models Py, (a) with a tractable density and exact sam-
pling. While other models such as the variational au-
toencoder [25] can represent the quantum state proba-
bilistically, having both a tractable density and exact

sampling significantly simplifies the calculation of the
quantities involved in the gradient estimation. The ex-
act sampling avoids expensive MCMC simulation which
would otherwise be required to obtain the samples for
the gradient estimator. Specifically, we consider proto-
typical autoregressive models commonly used in neural
machine translation and language modelling based on
Transformer encoder blocks [2]. This neural architec-
ture models a probability distribution Py, (a) through
its conditionals Py(agy1lal,...,ax). Note that we can
recover P via the chain rule

Pg(al,...7 ak|a<k

u::z

which we heavily use in our simulations.

The Transformer architecture is constructed using the
elements depicted in Fig. The first and most im-
portant element is the self-attention mechanism. Self-
attention takes an embedding of the measurement out-
come a, and computes an auto-correlation matrix where
the different measurement outcomes across the different
qubits form the columns and rows. The embedding is
a linear transformation on the original input a, i.e. a
trainable matrix multiplying a one-hot encoding of the
input. The self-attention and its correlation matrix are
useful to introduce correlations between qubits separated
at any distance in the quantum system. This is analogous
to a two-body Jastrow factor [26] which induces pair-
wise long-distance correlations between the bare degrees
of freedom (i.e. spins, qubits, electrons) in a wavefunc-
tion. In contrast to traditional sequence models based on
recurrent neural networks, which tend to suppress corre-
lations beyond a certain length £, the self-attention net-
works are suitable to model systems exhibiting power-
law correlations present in natural sequences as well as
physical systems exhibiting (classical or quantum) criti-
cal behaviour [16].

More precisely, the attention mechanism can be de-
scribed as a map between a “query” array ), a “key”
array K and “value” V, to an output vector. The the
query, keys, values, are linear transformations of the in-
put vectors, e.g. K = AWE) where A € RY*dmodel
is a dmodel- dlmensmnal embedding of the measurements
outcome at the different qubits j = 1,..., N, and W)
€ Rmoderxdr is a parameter of the model. Analogously,
the values and queries are calculated as a parametrized
linear transformation on the embedding A.

The specific type of attention mechanism the Trans-
former uses is the so-called scaled dot-product attention.
The input consists of queries and keys of dimension dy,
and values of dimension d,,, and the output is computed
as

QK"
en

where the softmax function acting on a vector results in

softmax(z;) = Zezez . The argument, of the softmax is
J

Attention (Q, K, V') = softmax ( ) V, (10)

J



AW @w (K )TAT, which induces pairwise, all-to-all cor-
relations between the qubits in the system, thus resem-
bling a Jastrow factor with parameters W (@ (K )"

As in Ref. [2], we use a multi-head attention mecha-
nism where instead of computing a single attention func-
tion, we linearly project the queries, keys and values h
times with different, learned linear projections to dy, di
and d, dimensions. Each of these projections are then
followed by the attention function in parallel, producing
d,-dimensional output values. These are concatenated
and projected. The output of the multi-head attention is

Multi-Head (Q, K, V) =

11
Concat (heady, ..., head,) W, (11)

where head; = Attention (Q;, K;,V;), K; = AWi(K),
Qi = AW and V; = AW Here, W) €
Rdmodelek, Wi(Q) c Rdmodelek’ and Wi(V) € Rdmode1 X du
In our work we use h = 8 attention heads, and d, = d,, =
dmodel/h With dmeder = 16 or 32. Since the conditional
probability requires that the later input information can
not be known to the prior input, a mask is added in the
multi-head attention.

Additionally, the Transformer features a position-wise
feed-forward network, which is a fully connected feed-
forward network applied to each position separately and
identically. This layer consists of two linear transforma-
tions with a ReLU [27] activation in between.

Each sub-layer (i.e. the self-attention and the position-
wise feed-forward network) has a residual connection
around it, and is followed by a layer-normalization
step. That is, the output of each sub-layer is
LayerNorm (x + Sublayer(x)), where Sublayer(z) is the
function implemented by either the self-attention or the
position-wise feed-forward network. The residual connec-
tion [23] makes it simple for the architecture to perform
the identity operation on the input x since Sublayer(z)
can easily be trained to output zeros. The layer normal-
ization [24] is a technique to normalize the of intermedi-
ate outcome of the sub-layers to have zero mean and unit
variance, which enables a more stable calculation of the
gradients in Eql6a] and faster training. An encoder block
is defined as the composition of one self-attention layer
and one position wise feed-forward layer with residual
connection and layer normalization as the orange part in
Fig. [3] shows. A number of encoder blocks can be fur-
ther composed to the enhanced the expressiveness of the
model and the number of encoder blocks is denoted as
Ned-

The embedding mentioned earlier convert the values of
measurements a to vectors of dimension dyoqe; through
a parametrized linear transformation. Since the Trans-
former model contains no recurrence or convolutions, the
model can’t naturally use the information of the the spa-
tial ordering of the qubits. To fix this, we include in-
formation about the relative or absolute position of the
measurements in the system by adding positional encod-
ings to the input embeddings. The positional encodings

have the same dimension dp,0de1 as the embeddings and
are added to the original embedding [2]. The last element
of the Transformer is a linear layer followed by a softmax
activation that outputs the conditional distribution.

V. APPLICATIONS
A. GHZ State and Linear Graph State Preparation

We first demonstrate our approach on quantum cir-
cuits that produce GHZ state and one-dimensional graph
states. We use a variety of quality metrics to quantify
the efficacy of our method: The KL divergence of Eq.
the classical fidelity F.(P,Q) = >,/ P(a)Q(a), and
the L; norm of the probability distributions are all de-
signed to measure the difference between the probability
distribution of the neural probabilistic model and the ex-
act probability distribution (either P;4; or Pl(_i)l) of the
POVM. Note that these measures directly bound how
far off the POVM measurement statistics of the actual
quantum state differ from our simulation. These mea-
sures depend on the POVM basis; we can also directly
compare basis-independent quantities such as the quan-
tum fidelity of the state,

Flowe) =T |\ Voo v (12)

and

Fyor0) =1 llon —e2llh/2. (13)

Here we would like to make a few remarks on the dif-
ferent measures are used in the paper. F and F, are
equal to the overlap [(¥;|¥s5)| when o, and g2 represent
pure states. The quantum fidelity F in Eq.[12]is standard
for comparing density matrices in quantum information
science [2§]. In addition, 1-F and +/1 — F? provide a
lower bound and an upper bound for the trace distance
between quantum states. For Fy, it is a general norm for
matrices and it is well defined even if the ‘density ma-
trices’ generated from the POVM probability don’t cor-
respond to physical density matrices. In terms of mea-
sures on POVM representation of the quantum states,
the KL divergence used in Eq. [5|is the objective function
used in optimization and hence indicates its importance.
The classical fidelity F. is also widely used in the lit-
erature [3, 29H32] and provides an upper bound of the
quantum fidelity F. In addition, since the POVMs are
physical observables, F. also encodes the quality of the
measurements statistics with respect to the measuring of
the 4-Pauli POVMs. Besides the KL divergence and Fp,
we will also compute the L, distance between two states
in the POVM representation. It is worth noticing that
the L, distance of the classical distribution is twice of the
total variance distance, which has a quantum generaliza-
tion as the trace distance. Note that of these observables,



the ones that are computable on large systems (in poly-
nomial time) are KL divergence, F. and the L; distance
making them suitable choices for comparisons on larger
number of qubits.

Figa—d) shows these measures for two quantum
gates (see Fig[d|(a)[inset]) which generate the GHZ state

with N = 2 qubits, namely the Bell state |¥) =
% (|00) + |11)). For the application of each of the two

gates, the KL divergence, the L classical error, the clas-
sical fidelity error, and the quantum fidelity error all ini-
tially approach zero exponentially in the number of steps.
The quantum fidelity oscillates around one until finally
settling at 1 by the end of the optimization. The KL di-
vergence and the classical fidelity error both eventually
saturate, but, interestingly, the L, classical error and the
quantum fidelity error both continue to improve for the
application of the first gate in the circuit. This suggests
that further improvements due to better training of the
ansatz and a better choice of objective function are pos-
sible. The observed saturation at ~ 1072 also suggests
some quantities are limited by the 32-bit floating-point
precision used in computations. Increasing the precision
could also lead to improved convergence. In Fig. e—h),
we present analogous results for a circuit generating a 2-
qubit graph state, i.e. [¥) = 1 (]00) + [10) + |01) — [11)),
where we observe similar behaviour. Note that for these
examples, we are primarily probing the quality of our
optimization given that the Transformer with hidden di-
mension 16 should be powerful enough to exactly repre-
sent the exact probability distribution.

The small oscillations of the fidelity above 1.0 evident
in the inset of Fig. h) exists because the Transformer
model can represent probability distributions without
a corresponding physical density matrix. This is be-
cause only a subset of the probability simplex, which
is the space where the distributions expressed by the
Transformer live, corresponds to physical density matri-
ces upon inversion in Eq2l The subset of probability
distributions with a valid quantum states in our setting
forms a convex set similar to the so-called @plex in quan-
tum Bayesian theory [33]. Here we emphasize that the
fidelity values in Fig[[d) and (h) eventually converge to
one and the oscillations above and below 1 are suppressed
exponentially with the training steps, suggesting that the
model converges to the target quantum state. We pro-
vide more details about the Qplex and the presence of
unphysical states in our representation in the Appendix
E.

We now turn our attention to the quality of the cir-
cuit simulation as a function of the number of qubits
in the circuit, letting both the depth and gate number
grow linearly with the number of qubits. We find in con-
structing GHZ and linear graph states (see Fig. inset))
in the range from 10-60 qubits that the classical fidelity
falls approximately linearly with number of qubits (see
Fig. [5) reaching a classical fidelity of approximately 0.9
at 60 qubits. In addition, we have considered two dif-
ferent hidden dimensions, 16 and 32, and find that there

is an improvement of the classical fidelity over all qubit
sizes as we increase the hidden dimension. We attribute
this to an improved representability power of the larger
Transformers suggesting that one of the bottlenecks of
our simulation is the ability of our neural probabilistic
model to represent the probability distribution that cor-
responds to the output of the quantum circuit.

B. Simulation of VQE Circuits

We further apply our method to simulate variational
circuits for the ground state of the Transverse Ising Field
Model at the critical point [34]. We start with state
preparation of a 6-qubit TFIM ground state using a vari-
ational quantum eigensolver circuit [34] (see Appendix
F). The variational quantum eigensolver [35] (VQE) is
a quantum/classical hybrid algorithm that can be used
to approximate the lowest energy eigenvalues and eigen-
vectors of a qubit Hamiltonian H on a quantum pro-
cessor. Rather than performing an optimization of the
VQE ansatz, we focus on the probabilistic preparation of
an already optimized VQE circuit for the ground state
of the TFIM, as demonstrated below. The simulation
is performed by optimizing the KL divergence in Eq.
We note that the particular circuit we consider has more
gates per qubit than our previous examples. However,
we limit our simulation to a small number of qubits so
that the estimation of quantum fidelity, whose computa-
tional cost is exponential in the number of qubits in our
approach [3], remains possible. Thus we evaluate both
classical and quantum infidelity between the Transformer
model and the exact state at each step after the appli-
cation of each quasi-stochastic gate in the circuit (see
Appendix F for a precise specification of the quantum
circuit and details of its probabilistic preparation). Both
the classical and quantum infidelities shown in Fig. [6] in-
crease with the number of gates in the circuit; in fact, as
demonstrated in the Appendix F in Fig. there is a
correlation between the classical and quantum fidelity as
classical fidelity approaches to 1. It is natural to expect
that the increase of infidelity observed in our simulation
is brought on by an accumulation of errors building up
after successive gates in the circuit. We can give further
evidence of this by looking at the error made after a sin-
gle step, 1 — Fy(o;, QZ(»G)), which directly compares Pi(e)
and Py, (see Fig. @ We find that the single-step er-
ror is roughly constant and small throughout the circuit
suggesting each step of the simulation is fairly accurate.
This is consistent with the observations in Fig.

We further extend the simulation to the VQE circuits
for system size L = 8,10,12,14, 16,18 in Ref. [34]. The
simulation is performed by using the forward-backward
gate algorithm through optimizing Eq. The details of
architectures can be found in the Appendix F. It can be
seen that the classical fidelity drops roughly linearly and
the Ly difference increases roughly linearly as the gate
number increases.
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FIG. 4. Measures of training of two qubit circuits (shown in insets of (a) and (e)) between the exact state and the quantum
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(b and f), L1 norm (c and g) and the quantum fidelity (d and h). The main panels use a log-linear scale whereas the inset in

(h) displays the fidelity in linear scale.
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FIG. 5. Classical fidelity F. between the final probability
distribution of the Transformer versus the exact POVM mea-
surements of the post-circuit quantum states as a function of
the total number of qubits for circuits (see insets) generat-
ing the GHZ state and linear graph states. The Transformers
have dmoder = 16 and 32 and neq = 1.

VI. CONCLUSIONS

We have introduced an approach for the classical sim-
ulation of quantum circuits using probabilistic models
and validate it on a number of different circuits. This
is done by using a POVM formalism which maps states

15
gate number

25

FIG. 6. Different infidelity measurements of a VQE circuit
for the preparation of a 6-qubit ground state of the TFIM as
a function of the gate number.

to probability distributions and gates to quasi-stochastic
matrices. To represent the probability distribution over
this POVM basis, we use a Transformer, a powerful
machine learning architecture heavily used in natural
language processing. We develop an efficient sampling
scheme which updates the Transformer after each gate
application within the quantum circuit. This sampling
scheme works well out to a large number of qubits; in
this work we demonstrate simulations up to 60 qubits
and empirically see that the accuracy of the simulation
drops roughly linearly with the number of qubits at a
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FIG. 7. Classical fidelity and L; difference of VQE circuits for
the preparation of ground states of the TFIM as a function
of the gate number for system size L = 8,10,12, 14,16, 18.

fixed hidden dimension of the Transformer architecture.
We observe that increasing the hidden dimension of the
model improves our results for the circuits we considered.
Although this observation suggests that our approach is
scalable, a detailed study of the representational power
of the Transformer and its relation to optimization over
a wider class of circuits and Transformer hyperparame-
ters is required to properly establish the scalability and
applicability of our approach.

Optimizing the Transformer after each gate is a criti-
cal step in our algorithm. While already reasonably ef-
ficient, there are various ways this optimization might
be further improved. For example, our current simula-
tions allow probabilistic representations which don’t map
to physical quantum states (i.e. outside of the Qplex).
We anticipate that constraining the optimization to the
physically relevant subspace would improve the quality
of the simulations and their broad applicability. Addi-
tionally, further strategies from machine learning may be
applicable; a common training strategy in natural lan-
guage processing has been to simultaneously train mul-
tiple models selecting the best one at each step and this
technique may improve the accuracy in our quantum cir-
cuit simulations.

The choice of the POVM basis directly affects the
structure of the underlying probability distributions de-
scribing the quantum states as well as the efficiency of
their simulation. Here we chose a simple IC-POVM ba-
sis which is single-qubit factorable, which means that
all of the entanglement and complexity associated with
the quantum state can be traced back to P and not the
POVM basis. Practically, the factorized IC-POVM rep-
resentation ensures local unitaries and quantum channels
map to local quasi-stochastic matrices allowing for the
design of practical algorithms. A common alternative

POVM basis, the SIC-POVM [4H7, [36] has an elegant
formalism but is more difficult to work with algorithmi-
cally since SIC-POVM basis are not known to exist for
large systems [37] and do not map local unitaries to local
matrices. It is nonetheless an interesting research ques-
tion whether these more complicated basis can be useful
in the context of numerical simulations. Indeed, POVM
is related to the Wigner-function quasi-probability repre-
sentation and it will also be worth further investigating
their relation.

While in this work we have stored the probability dis-
tribution using a Transformer, there are other options
for storing this probability distribution including other
machine-learning architectures and tensor networks. In
fact, it is not even necessary to explicitly store the repre-
sentation at all; instead, in the spirit of quantum Monte
Carlo, it could be sampled stochastically. While such
a simulation will generically have a sign problem, there
may be preferred basis choices for the POVM which min-
imize that effect for a particular set of quantum circuits.

In general, the classical simulation of quantum circuits
is known to be difficult [38]. Nonetheless, in the era of
noisy intermediate-scale quantum technology it is impor-
tant to be able to benchmark machines which have qubit
sizes that are outside the limits of what can be simulated
exactly on classical computers to validate and test quan-
tum computers and algorithms. Moreover, the ability to
simulate ever larger and more difficult circuits helps bet-
ter delineate the boundary between classical and quan-
tum computation. The number of approaches for simu-
lating quantum circuits is small and our approach intro-
duces an alternative to the standard approach of simu-
lating the quantum state either explicitly [9HI5] B9], or
stochastically [40, 41]. We anticipate advantages with
respect to established algorithms enabled by the ability
of Transformers to model long-range correlations [16],
the autoregressive nature of the model, as well as the
nature of the self-attention mechanism, which allows a
high degree of parallelization of most of the computa-
tions required in our approach. Additionally, extensions
of the model which encode information about the spatial
structure of the problem (e.g. two-dimensional Trans-
formers [42]) can be easily defined while retaining all the
computational and modelling advantages of the Trans-
formers used in this work.

Beyond the simulation of circuits, our POVM approach
can be naturally extended to various problems in quan-
tum many-body systems, such as the simulation of real-
time dynamics of closed and open quantum systems (see
Appendix A and B). Thus our work opens up new possi-
bilities for combining the POVM formalism with different
numerical methods, ranging from quantum Monte Carlo
to machine learning to tensor networks, in an effort to
better classically simulate quantum many-body systems.
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Appendix A: Quantum channels

A complete description of the evolution of closed and
open quantum systems is fundamental to the understand-
ing and manipulation of quantum information devices.
In contrast to closed quantum systems, the evolution of
open quantum systems is not unitary. Instead, the evolu-
tion of the density operator of an open quantum system is
described by the action of a quantum operation or quan-
tum channel, which is specified by a completely positive
trace-preserving (CPTP) maps between spaces of oper-
ators [8]. A commonly used representations of CPTP-
maps is the Kraus or operator-sum representation [43]
where a CPTP-map £ acts on a quantum state o as

D
E(o) = Z K@ (et

[e3

(A1)

where Zf K@K@t — 1.  The set of matrices
{K@ « = 1,...,D} act on the Hilbert space of the
qubits and can be thought of as an array with 3 indices.
The maximum value of D = 4%, and the minimum is
D =1, which corresponds to a unitary transformation.
Similar to the unitary evolution, if the initial quantum
state o is prescribed in terms of the outcome statistics
of an IC-POVM P, we can track its evolution under a
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FIG. Al. Tensor network representation of O,/ correspond-
ing to a quantum channel that acts on two qubits. The
green tensors represent the Kraus operators, which specify
the quantum channel and are understood as a rank-3 array.

CPTP-map directly in its probabilistic representation:

D
Pe (a//) _ ZTr {K(Q)QK(OC)TM(‘IH)} — ZOa”a’P(a’/)
a a’

(A2)

where

Owrar =3 Tt [Km) M@ ()t M(a”)] T,L,  (A3)

a,«

is a quasi-stochastic matrix since, as in the unitary case,
the values in each column add up to 1 but its entries can
be positive or negative [5] [0, 19, 20]. In Ref. [7], a simi-
lar formulation specific to SIC-POVM has also been pro-
posed to describe quantum channel evolution and master
equations in open system.

If a quantum channel acts nontrivially on only & qubits,
it implies that the quasi-stochastic matrix Ogrq/ acts
also only on k qubits. The relation between the quasi-
stochastic gates and the local quantum channel in Eq[A3]
is graphically depicted in Fig[AT] using tensor diagrams.

Appendix B: Liouville-Von Neumann Equation in
POVM Formulation

In Eq[3] we have discussed how unitary evolution on a
quantum state in the traditional density matrix formula-
tion translates into the factorized IC-POVM formulation
used in our study. Accordingly, the unitary dynamics
induced by Hamiltonian H acting on the system during
an infinitesimal time At, i.e., U(t) = e ***" implies an
equation of motion for the measurement statistics

aP (a/lvt) a a’ —
i = ([rt. @] M) 1L P @',

(B1)
This is equivalent to the Liouville-Von Neumann equa-
tion i% = [H,p)].



A solution to Egs.(B1)) for a time-independent Hamil-
tonian is given by P(t) = e~**P(0), where the matrix

elements Agrrg = Za aa/ [ ([H7M(a)] M(a//))}'

Appendix C: Lindblad Equation in POVM
Formulation

Applicable to open quantum systems, an infinitesimal
Markovian but non-unitary evolution leads to the equiv-
alent of the Linblad equation

8P Cl, t ZAG” a/P a t) (Cl)

where the matrix elements are augmented to
Arar =3 T (e ([p. 0] )
7 "
+ [—2Tr ({L;Lk,MW}M(“ >) (C2)
k

+ i (M@ rfme)])

Here, the operators Lj are called Lindblad operators
or quantum jump operators. Like the Liouville-Von
Neumann equation, Eq. . ) has a solution for a time-
independet Hamiltonians given by P(t) = e~*A*P(0).

Appendix D: Measurements

Although the probabilistic representation of the quan-
tum state in Eq[2 already provides the measurement
statistics of the factorized POVM M (@) the statistics
of other POVMs II(®)| e.g. a POVM descrlbing standard
measurements in the computational basis and other ex-
perimentally relevant operators, are related to M(® via
the Born rule:

Z P(a/) Ty g, T [T

= Z q(bla’) P(a’)

where ¢(bla’) = Za 1, L Tr [M@II®] can be char-
acterized as a quasi- conditional probability distribution
since its entries can either be positive or negative but its
trace over b is the identity 14/. Due to its evocative re-
semblance with the law of total probability, the relation
between measurement statistics P(b) and P(a) is often
called the quantum law of total probability in quantum
Bayesianism [44].

Appendix E: Qplex and positivity of quantum states

The traditional quantum theory can be viewed as
a noncommutative generalization of probability theory
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where quantum states are specified by Hermitian, posi-
tive semi-definite trace one matrices. However, quantum
states can also be specified through probability distribu-
tions corresponding to the statistics of the outcome of an
informationally complete physical measurement. From
this viewpoint, quantum theory is not necessarily a gen-
eralization of probability theory; instead, it can be seen
as augmenting probability theory with further rules for
dynamics and measurements on quantum systems [33].
When we represent the probabilities of a IC-POVM as
points in the corresponding probability simplex Ayw,
these probabilities are not arbitrary, since not any point
of the simplex A can represent a quantum state, only a
subset of the simplex. For a symmetric IC-POVM [45],
this subset is referred to as the Qplex. [33] Even though
the IC-POVM used in our work is not symmetric, we
will still refer to the subset of distributions with a corre-
sponding quantum state in Eq[2 as a Qplex. The space
of all possible states of a given quantum system and
the corresponding Qplex are schematically represented

in Fig[A2{a)-(b)

A small quantum computation in also depicted
schematically in Fig[A2)(a) and (b). This computation
starts with a simple pure product state g followed by
the application of three unitary matrices which take the
state from gy to p3. These computations occur at the
boundary separating valid quantum states from other
operators; such boundary includes all the pure states.
Correspondingly, since the relation between the space of
quantum states and the Qplex is linear, quantum com-
putations in the probabilistic language take place at the
interior of the Qplex, as illustrated in Fig[A2|(b).

While these observations do not have any major con-
ceptual implication for the physical realization of quan-
tum computations, this geometric interpretation can help
us clarify some aspects we observe in the results from our
simulation strategy. The most important aspect is the
fact that the probabilistic model in our study, in general,
lives in an standard simplex A,,~ and is not constrained
to the subset of valid “quantum” distributions. Even
though the update rule in Eq[3]should produce distribu-
tions that live on the Qplex, since we use an approximate
update, it is possible that the model may temporarily
leave the Qplex. This is observed in Fig[d) and (h)
where we observe values of quantum fidelity higher than
1, which means that during the training process, the
ransformer induces matrices in Eq[2] that are not valid
quantum states. Note that the fidelity in Fig(d) and
(h) eventually converges and stays at values very close
to one and that the oscillations above 1 disappear, sug-
gesting that the state is getting closer and closer to the
target, valid quantum state.



=

(1,0,0)

Y

x

Set of density matrices

FIG. A2. Geometry of quantum states. (a) Schematic rep-
resentation of the subset of density matrices (blue sphere).
For one qubit, this set corresponds to the Bloch sphere. (b)
Schematic representation of the probability simplex A, n~,
which represents the set of all possible categorical probability
distributions with m” outcomes. A subset of these distri-
butions termed Qplex (blue oval) is isomorphic to the usual
space of quantum states in (a).

Appendix F: Variational Circuit for TFIM

I I I | _
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|ZZ 71| ZZ,71| zZ, 71! | 77, 71,' gate s
|
| ZZ,m | | ZZ,m | |I ZZ,m | Type A
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FIG. A3. Variational circuit preparation for TFIM. Only the
first of the 4 layers in our calculation is shown. The gates
encircled in rounded blue squares are combined and subse-
quently transformed into quasi-stochastic gates for the prob-
abilistic simulation of the quantum circuit.

We use the variational circuit depicted in Fig[A3] for
the 6-qubit TFIM preparation [34]. The parameters
for gamma and beta are taken alternatively from the
following sequence describing a circuit with 4 layers,
(0.2496,0.6845, 0.4808, 0.6559, 0.5260, 0.6048, 0.4503,
0.3180). For L = 8,10,12,14,16,18, the circuit pa-
rameters are the same as Ref. [34]. Note that in our
simulations, we do not directly transform the original
gates into quasi-stochastic gates. To save computational
resources, we combine the quantum gates encircled in
rounded blue squares, after which we transform them
into quasi-stochastic matrices.

For Transformers used in the VQE circuits simulation,
the encoder block does not include LayerNorm. For L =
6,8,10,12, dyoder = 16 and neqg = 1. For L = 14,16, 18,
dmodel =32 and Ned = 1.

Using this circuit, we have also computed the o707

J
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FIG. A4. Comparison between oo} correlation from exact
quantum circuit state and the gate training state.

correlation of the exact variational circuit in Fig. and
the POVM trained circuit, which are compared in Fig.
[A4 Even though there is a nice polynomial bound be-
tween quantum fidelity and classical fidelity under the
SIC-POVM formulation [7], it is not known in general
the bound between a non SIC-POVM (like we use) and
the classical fidelity. We therefore numerically plot the
relation between quantum fidelity and classical fidelity of
the L = 6 VQE simulation in Fig.
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FIG. A5. Correlation between classical fidelity and quantum
fidelity. The darker color corresponds to gate that is applied
earlier.

Appendix G: Optimization details

The models are optimized using Adam Optimizer [21]
in Pytorch [46] with an initial learning rate of 0.01. The
weights and biases are initialized using PyTorch’s [46]
default initialization except for the last layer. We use
single-precision (32-bit) floating-point representation for



real numbers. The batch size of each training is around
10*. Most models converge in less than 200 steps. VQE
circuit simulations with can be completed within a few
hours for small system size L and up to one day for
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L = 18 with one V100 GPU. GHZ circuits and Graph
state circuits simulation up to 60 qubits can be com-
pleted between one or two days with 4 V100 GPUs in
parallel.
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