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Driven-dissipative many-body systems are difficult to analyze analytically due to their non-
equilibrium dynamics, dissipation and many-body interactions. In this paper, we consider a driven-
dissipative infinite-range Ising model with local spontaneous emission, which naturally emerges from
the open Dicke model in the large-detuning limit. Utilizing an adaptation of the Suzuki-Trotter
quantum-to-classical mapping, we develop an exact field-theoretical analysis and a diagrammatic
representation of the spin model that can be understood from a simple scattering picture. With
this representation, we are able to analyze critical behavior, finite-size scaling and the effective
temperature near the respective phase transition. Our formalism further allows a detailed study
of the ordered phase where we find a “heating” region within which the effective temperature be-
comes negative, thereby exhibiting a truly non-equilibrium behavior. At the phase transition, we
find two distinct critical behaviors with overdamped and underdamped critical dynamics at generic
and weakly-dissipative critical points, respectively. We further show that the underdamped critical
behavior is robust against short-range perturbations and is not an artifact of the mean-field nature
of the model. To treat such perturbations, we extend our diagrammatic representation to include
the coupling to spin waves due to the short-range interactions. The field-theoretical approach and
the diagrammatics developed in this work should prove useful in applications to generic short-range
driven-dissipative spin systems.

I. INTRODUCTION

Open quantum systems that are coherently driven,
widely known as driven-dissipative systems, have received
a great deal of attention in recent years. The interplay
between drive, dissipation, and many-body interactions
gives rise to rich physics of both fundamental interest and
practical importance. Various driven-dissipative systems
have been experimentally realized in numerous platforms
such as cavity QED and cold atoms [1–3], circuit QED
[4], and trapped ions [5, 6], thanks to the rapid advance-
ment of experimental techniques in the past twenty years.
In addition, they are prominent platforms for quantum
simulation and quantum computation [7], especially rele-
vant to quantum computing systems in the NISQ era [8].
However, driven-dissipative systems remain difficult to
treat numerically due to their exponentially large Hilbert
space, and analytically due to the presence of many-
body interactions and non-equilibrium dynamics. Any
physically relevant model that is amenable to theoretical
treatment is therefore of vital importance to better un-
derstand the physics behind driven-dissipative systems.

We present here a thorough investigation of a min-
imal many-body driven-dissipative system, the driven-
dissipative Ising model (DDIM) with infinite-range in-
teractions [9], a many-body model that admits analyt-
ical solutions and is numerically tractable. This model
describes a system of coherently driven atoms interact-
ing via an infinite-ranged Ising-type interaction and in
the presence of a transverse magnetic field. Each atom
is also weakly coupled to a zero-temperature Marko-
vian bath giving rise to individual atomic spontaneous
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emission. The DDIM can be directly realized in experi-
ments [10] and is closely related to the open Dicke model
[1, 3, 11, 12] that itself is one of the most well-studied
driven-dissipative systems. In fact, in the limit of large
laser-cavity detuning, the infinite-range DDIM can be
derived from the open Dicke model through adiabatic
elimination of the cavity mode [3, 13]. In this paper, we
present a comprehensive study of the DDIM in various
regimes: deep in the ordered phase as well as the phase
transition; at weak or strong dissipation; and, with or
without short-range perturbations that spoil the mean-
field character of the model.

The model being infinite-ranged means a mean-field
analysis is exact in the thermodynamic limit, providing
access to the exact phase diagram. To investigate fluctu-
ations, however, we must go beyond mean field. To this
end, we introduce a non-equilibrium quantum-to-classical
mapping formalism which allows for an exact mapping
of the driven-dissipative model to a Keldysh field theory
[12, 14], a non-trivial task due to the local nature of the
dissipation. Representing the model as a field theory al-
lows for the study of fluctuations, as well as the ability
to go beyond the quadratic level and study the finite-size
scaling near the phase transition. From this analysis,
the static and dynamical critical exponents characteriz-
ing the phase transition are extracted. Interestingly, the
phase transition in the limit of weak dissipation yields a
different set of exponents from anywhere else along the
phase boundary, representing the fundamentally distinct
underdamped critical dynamics in contrast with the re-
laxational dynamics at a generic critical point.

The distinct critical behavior at the weakly dissipa-
tive point might be viewed as an artifact of the infinite-
range interactions, hence the mean-field nature of the
model. To analytically test the robustness of the weakly-
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dissipative critical behavior, we set out on a detailed
study of the DDIM model perturbed by short-range in-
teractions. We develop a powerful diagrammatic repre-
sentation that captures the interactions with spin waves
due to the short-range perturbation. This diagrammatic
technique allows us to incorporate the effects of the spin-
waves beyond the quadratic level. With this technology,
we show that the underdamped critical behavior persists
even in the presence of short-range interactions. We be-
lieve that our field-theoretical techniques will prove useful
in the analytical study of more generic driven-dissipative
spin systems with local dissipation.

This paper is structured as follows: In Sec. II,
we briefly review the DDIM, derive it from the
open Dicke model and provide mean-field solutions.
Next, we provide an introduction to a general non-
equilibrium quantum-to-classical mapping and derive the
non-equilibrium Keldysh field theory in Sec. III. Section
IV covers the field-theoretical analysis of the DDIM in-
cluding its critical properties, exponents, finite-size scal-
ing, effective temperature, and the emergence of distinct
stochastic Langevin equations at generic and weakly-
dissipative critical points. In Sec. VI, we introduce per-
turbative short-range interactions and study its effect on
the critical behavior using the diagrammatic techniques.
Finally, we summarize our main results and discuss fu-
ture extensions and applications in Sec. VII.

II. MODEL

The infinite-range DDIM is recovered from a natu-
ral limit of the open Dicke model. The latter model
is one of the quintessential many-body non-equilibrium
models, having been experimentally realized in multiple
contexts [1–3, 15–18] and extensively studied theoreti-
cally [12, 13, 19–25]. The Hamiltonian describes a col-
lection of atoms interacting with a single cavity mode.
In this driven-dissipative variant, the interaction is me-
diated by an external drive to boost the achievable inter-
action strength compared to the single-atom detuning. A
balanced Raman driving scheme can be utilized to gen-
erate the atom-cavity interaction in the rotating frame
of the drive, see [11] for more details. Besides the coher-
ent dynamics due to the Hamiltonian, the cavity itself
is lossy, leading to dissipative dynamics. Furthermore,
atomic spontaneous emission may not be neglected as
it can change the onset of the phase transition [2]. The
ensuing dynamics is governed by a quantum master equa-
tion that incorporates the effects of loss alongside the co-
herent dynamics. For the open Dicke model with cavity
loss and atomic spontaneous emission, the Liouvillian, in
the rotating frame of the drive [11, 12], takes the form

ρ̇ = L[ρ] = −i[HDicke, ρ] + κDa[ρ] + Γ
∑
i

Dσ−i [ρ] . (1)

Here, the operator L denotes the Liouvillian and the
(curly) brackets denote the (anti-)commutator. On top of

cavity loss typically considered in the open Dicke model,
we have also included individual atomic loss which is
comparatively less investigated [19, 26, 27], while it can-
not be neglected in experimental settings [2] which calls
for a systematic analysis. We also emphasize that the
dynamics in the above equation is given in the rotat-
ing frame of the drive within the rotating-wave approx-
imation, hence there is no explicit time-dependent drive
term. Nevertheless, detailed balance is explicitly broken
and thus the dynamics gives rise to a non-equilibrium
steady state. The derivation of Eq. (1) from the micro-
scopic time-dependent model—in the lab frame—is be-
yond the scope of this work, and can be found, for exam-
ple, in Ref. [11]. The Dicke model’s Hamiltonian HDicke

in this effective driven-dissipative Liouvillian is given by

HDicke = ω0a
†a+ ∆Sz +

2g√
N

(a+ a†)Sx . (2)

The quantity a denotes the cavity mode operator, and
the atoms are represented by Pauli operators. Given the
collective nature of the model, we have introduced the
total spin Sα =

∑
i σ

α
i with α = x, y, z. The parameter

ω0 is the cavity detuning, ∆ is the transverse field, and g
is the effective (drive-mediated) spin-cavity interaction.
Finally, the dissipative dynamics is described by

DL[ρ] = LρL† − 1

2
{L†L, ρ} , (3)

with the Lindblad operator L. Dissipation is comprised
of photon loss of the leaky cavity at the rate κ, corre-
sponding to the Lindblad operator L = a, and sponta-
neous emission of individual atoms via L = σ−i at the
rate Γ.

Since Eq. (1) is quadratic in the photon field, one can
naively “integrate out” the photon field, which in turn
generates an Ising-type interaction. More rigorously, the
cavity mode can be adiabatically eliminated in the large-
detuning limit and with large κ (ω0, κ � g), giving rise
to a driven-dissipative infinite-ranged Ising model with
spontaneous emission as well as dephasing [13]:

ρ̇S = LS [ρS ] = −i[HS , ρS ]+Γ
∑
i

Dσ−i [ρS ]+
Γx
N
DSx [ρS ] ,

(4)
with the system Hamiltonian

HS = − J
N
S2
x + ∆Sz . (5)

The subscript S denotes the system of atoms upon inte-
grating out photons, and the parameters in the above
equations are related to those in the Dicke model as
J = 16g2ω0/(κ

2 + 4ω2
0), and Γx = Jκ/ω0. Note that

the factor 1/N in front of the Ising term makes the
Hamiltonian extensive in the system size. This Hamilto-
nian is also known as the Lipkin-Meshkov-Gorkov model,
and has been studied extensively in a variety of contexts
[3, 28–32]. An important consequence of integrating out
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the cavity mode is the introduction of x-dephasing via
L = Sx due to the microscopic photon loss. If one takes
the additional limit where ω0 � κ� g, we have Γx � J
and the contribution from the dephasing becomes negli-
gible. The transverse field ∆ and the decay rate Γ are
microscopic parameters and are unaffected by this limit,
and can be chosen to be of the same order as J . The
resulting model is the driven-dissipative infinite-ranged
Ising model with spontaneous emission:

LS [ρ] = −i[HS , ρS ] + Γ
∑
i

(σ−i ρSσ
+
i −

1

2
{σ+

i σ
−
i , ρS}) .

(6)
For a rigorous derivation, see Appendix A. For notational
convenience, we shall drop the subscript S in the rest of
the paper.

Equation (6) defines a minimal model of driven-
dissipative spin systems, also directly relevant to experi-
ments realizing the Dicke model. The infinite-range inter-
action makes a myriad of analytical and numerical tech-
niques available, and makes this model an ideal setting to
explore questions which are otherwise difficult or rather
intractable in more complex models. This model has a
Z2 symmetry upon changing σx,y → −σx,y and exhibits
a phase transition from a normal phase (〈Sx〉 = 0) to
an ordered phase (〈Sx〉 6= 0) where the symmetry is bro-
ken. The presence of drive and dissipation means that
the long-time state is not a thermal state, but is instead
a non-equilibrium steady state.

Before introducing an exact treatment of the DDIM,
we begin with a simple mean-field analysis of Eq. (6).
The standard mean-field equations of motion are ob-
tained by calculating the expectation values 〈σαi 〉 and
assuming that the density matrix is factorized in space
and is uniform:

ρ =
⊗
i

ρi = ρ⊗NMF , (7)

where ρMF is the mean-field density matrix, uniform
across all sites. Using this approximation, we find the
mean-field Heisenberg equations of motion (in the N →
∞ limit)

∂t〈σx〉 = −2∆〈σy〉 − Γ

2
〈σx〉 , (8a)

∂t〈σy〉 = (4J〈σz〉+ 2∆)〈σx〉 − Γ

2
〈σy〉 , (8b)

∂t〈σz〉 = −4J〈σy〉〈σx〉 − Γ(1 + 〈σz〉) , (8c)

where we have dropped the spatial index due to the uni-
form ansatz. By setting the LHS to zero, we can solve
for the non-equilibrium steady-state values of the three
observables. In the normal phase, the only solution is
the trivial one: 〈σx〉ss = 0, 〈σy〉ss = 0, 〈σz〉ss = −1 with
the subscript indicating the steady state. In the ordered

phase, we identify two stable solutions as

〈σx〉ss = ±
√

32J∆− 16∆2 − Γ2

4
√

2J
, (9a)

〈σy〉ss = ∓Γ
√

32J∆− 16∆2 − Γ2

16
√

2J∆
, (9b)

〈σz〉ss = −Γ2 + 16∆2

32J∆
, (9c)

from which the phase boundary follows as

Γ2 + 16∆2 − 32J∆ = 0 . (10)

The phase diagram of this model is given in Fig. 13(a)
and is contrasted against that of equilibrium. The mean-
field solution is exact in the thermodynamic limit due
to the collective interactions; however, to characterize
fluctuations and to identify the critical behavior of the
model, we need to go beyond mean field. Using a
quantum-to-classical mapping, we shall provide an ex-
act field-theoretical description, allowing us to make a
systematic study of fluctuations beyond mean field.

III. MAPPING TO KELDYSH FIELD THEORY

A natural framework to describe the critical behav-
ior is through a field-theoretical analysis. An immediate
challenge, however, is to describe the driven-dissipative
spin model in a terms of a field theory. Previous works
[12, 30, 33, 34] utilized the Holstein-Primakoff transfor-
mation to bosons to much success; however, local spon-
taneous emission in Eq. (6) breaks the total-spin con-
servation, in which case this transformation is no longer
applicable. More recently, a mapping of spins to com-
posite fermions [19] was used to tackle local spontaneous
emission, however, the fermionic model becomes rather
complex. Here, we seek a alternative route to tackle
the dynamics in the presence of local spontaneous emis-
sion. We develop a novel non-equilibrium quantum-to-
classical mapping that takes inspiration from the equi-
librium quantum-to-classical mapping, also known as the
Suzuki-Trotter mapping [35]. The Suzuki-Trotter de-
composition involves mapping the partition function of
a quantum system in d dimensions to that of a classical
model in one higher dimension. To set up a similar map-
ping, our starting point is the non-equilibrium partition
function

Z = Tr(ρ(t)) = 1 . (11)

It is important to note that Z = 1 at all times, represent-
ing the conservation of probability from the Liouvillian
dynamics governed by Eq. (6). The first step will be a
non-equilibrium extension of the Suzuki-Trotter decom-
position. In equilibrium, the decomposition is performed
by decomposing the thermal state into many “imaginary-
time” slices and inserting a resolution of the identity
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at each time slice. In our non-equilibrium setting, the
evolution operator exp(tL) is a superoperator, as can be
seen from the fact that the Liouvillian takes the form
L[•] =

∑
iAi • Bi for some matrices Ai, Bi. To adapt

the Suzuki-Trotter decomposition to Liouvillian dynam-
ics, we must first “vectorize” the density matrix ρ→ |ρ〉〉,
such that the Liouvillian superoperator L is transformed
into a non-Hermitian matrix L. More explicitly, we vec-
torize the density matrix by performing the transforma-
tion

A|i〉〈j|B → A |i〉 ⊗BT |j〉 , (12)

where the element |i〉〈j| of the density matrix is mapped
to the superket |i〉 ⊗ |j〉 = |i〉 |j〉 ≡ |i, j〉〉. Inner prod-
ucts in this vectorized form are equivalent to the Hilbert-
Schmidt norm in the original operator space,

〈〈A|B〉〉 = Tr(A†B) . (13)

The non-equilibrium partition function upon vectoriza-
tion take the form

Z = Tr(etLρ0)→ 〈〈I| etL |ρ0〉〉 , (14)

where the matrix L is given by

L =− i (H ⊗ I − I ⊗H) (15)

+ Γ
∑
i

[
σ−i ⊗ σ

−
i −

1

2

(
σ+
i σ
−
i ⊗ I + I ⊗ σ+

i σ
−
i

)]
.

The process of vectorization can be interpreted as the
purification of the density matrix, which is achieved by
doubling the system of spins. In this picture, the Li-
ouvillian is a non-Hermitian Hamiltonian governing the
dynamics of the doubled spin system. As an example,
consider a chain of quantum spins evolving under Liou-
villian dynamics. In the process of vectorization, this
chain is mapped to a one-dimensional ladder of quan-
tum spins governed by the non-Hermitian Hamiltonian
L where dissipation couples the two legs of the ladder.

The vectorized partition function is now in a form
amenable to the Suzuki-Trotter decomposition. We
first apply the decomposition to the evolution operator,
choosing to split the exponential into two parts:

etL = lim
M→∞

(
eδtL0eδtL1

)M
. (16)

Here the time step is δt = t/M , the matrix L0 contains
the Ising interaction, and the matrix L1 contains all the
other terms in Eq. (15). This will be a convenient choice
for the next step, where we insert a resolution of the iden-
tity in the basis that diagonalizes the Ising interaction,

In =
∑
{σ}

⊗
i

|σ(u)
i,n , σ

(l)
i,n〉〈σ

(u)
i,n , σ

(l)
i,n| , (17)

at each time step n, with σx|σ〉 = σ|σ〉, σ ∈ {1,−1}
and {σ} a shorthand for a spin configuration. We have

introduced the upper/lower notation to denote spins on
the upper and lower legs of the ladder, i.e. σx(u) = σx⊗I.
For a single time step, the corresponding matrix element
is

〈{σ(u)
n }| 〈{σ(l)

n }| eδtL0eδtL1 |{σ(u)
n−1}〉 |{σ

(l)
n−1}〉 , (18)

where the collection {σ(u/l)
n } denotes the set of all “clas-

sical spins” at time step n. Now, L0 is diagonal in our
basis resulting in an action S0 in terms of the classical
spins:

S0 =
δtJ

N

∑
n

(
(S(u)
n )2 − (S(l)

n )2
)

=
∑
n

S0,n , (19)

with S
(u/l)
n =

∑
i σ

(u/l)
i,n the collective classical spin. On

the other hand, L1 is not diagonal and acts nontrivially
in this basis; however, it will not be necessary to calculate
the matrix elements of exp(δtL1), as we shall see shortly.

A. The DDIM Action

With the Ising interaction becoming a c-number, we
can utilize the standard techniques to obtain a field-
theoretical description of the DDIM. First, we perform
a Hubbard-Stratonovich transformation to decouple the

Ising interaction and introduce real scalar fields m
(u/l)
n ,

one for each leg of the ladder. This is given by (up to a
normalization constant)

eiS0,n ∼
∫
D(M)[m] exp

[
− iJδtN

(
(m(u)

n )2 − (m(l)
n )2

)
+ i2Jδt

(
m(u)
n S(u)

n −m(l)
n S

(l)
n

)]
. (20)

For compactness, we have defined the measure (up to a

normalization constant) D(M) ∼
∏M
n dm

(u)
n dm

(l)
n . Since

the spins are decoupled, they can be traced out. This
procedure gives the partition function in terms of the

scalar fields m
(u/l)
n ,

Z = lim
M→∞

∫
D(M)[m] e−i2JδtN((m(u)

n )2−(m(l)
n )2)

×

(
〈〈I|

M∏
n′=0

eδtTn′ |ρ0〉〉

)N
.

(21)

The matrix T(m
(u/l)
n ) ≡ Tn results from tracing out a

single spin, and will be defined shortly. For convenience,
we have assumed that all spins are in the same initial
state; this will not affect the properties of the unique
non-equilibrium steady state. Notice that the contribu-
tion from all sites gives rise to the power of N in the first
exponential. Finally, the matrix Tn captures the effects
of dissipation, transverse field, as well as the order pa-
rameter via m, and it is obtained by taking advantage
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of the M →∞ limit to combine all single-site operators.
In terms of the (single-site) spin operators, this matrix
takes the form

Tn = i2J
(
m(u)
n σx(u) −m(l)

n σ
x(l)
)
− i∆(σz(u) − σz(l))

+ Γσ−(u)σ−(l) − Γ

2

(
σ+(u)σ−(u) + σ+(l)σ−(l)

)
. (22)

The object exp(δtTn) is akin to a transfer matrix for a
single rung of the spin ladder. More explicitly, the matrix
T(mu/l(t)) ≡ T(t) in the |σ(u)〉 |σ(l)〉 basis is given by

T =


−Γ

4 + i2
√

2Jmq i∆ −i∆ Γ
4

i∆− Γ
2 − 3Γ

4 + i2
√

2Jmc −Γ
4 −i∆− Γ

2

−i∆− Γ
2 −Γ

4 − 3Γ
4 − i2

√
2Jmc i∆− Γ

2

Γ
4 −i∆ i∆ −Γ

4 − i2
√

2Jmq

 .

Finally, we take the continuum limit (δt → 0) with
the initial state given at t → −∞. This leads to a
path-integral formulation of the non-equilibrium parti-
tion function:

Z =

∫
D[mc(t),mq(t)]e

iS[mc/q(t)] , (23)

with the Keldysh action

S = −2JN

∫
t

mc(t)mq(t)− iN ln Tr
[
T e

∫
t
T(mc/q(t))

]
.

(24)
In obtaining Eq. (24), we have performed the Keldysh

rotation mc/q = (m(u)±m(l))/
√

2 to bring the action into
the conventional Keldysh form, and have absorbed all
prefactors into the measure D[m]. The trace in the last
term is chosen for convenience as we are only interested
in the non-equilibrium steady state at late times with no
memory of the initial state. The time-ordering operator
T also makes its appearance in the continuum limit to
properly treat the time-dependence of the fields.

B. Field-Spin Relationship

The quantum-to-classical mapping utilizes the
Hubbard-Stratonovich transformation to introduce
a real field m in place of the classical total spin S.
Therefore, expectation values of m should be naturally
related to those of the original spin operator Sx. To
derive this relationship, we introduce time-dependent
source fields α(u/l)(t) coupled to Sx on both the upper

and lower legs, i(α(u)S
(u)
x − α(l)S

(l)
x ), where we can

have α(u) 6= α(l) so that the non-equilibrium partition
function Z 6= 1 [14]. The source fields do not alter the
quantum-to-classical mapping derivation; they simply
introduce new elements to the matrix T as

T
′
(t) = T(mc/q(t)) + i

√
2

αq 0 0 0
0 αc 0 0
0 0 −αc 0
0 0 0 −αq

 , (25)

where we have performed the Keldysh rotation αc/q =

(α(u)±α(l))/
√

2 on the source fields. The fields mc/q are
dummy variables under the path integral. Making the
change of variables mc/q(t) → mc/q(t) + αc/q(t)/2J , we
can move the source terms out into the quadratic portion
of the action to find (using the same field variables)

S =N

∫
t

(
mc(t)αq(t) +mq(t)αc(t)−

αq(t)αc(t)

2J

)
+ S0[mc/q], (26)

where S0 is the original action without the source fields in
Eq. (24). Taking derivatives of the generating functional
Z[α(t)] with respect to the source fields generates cor-
relation functions [14]. Specifically, taking a derivative
with respect to αq yields

√
2

N
〈Sx(t)〉 = −i ∂Z

∂αq(t)

∣∣∣∣
αc/q=0

= 〈mc(t)〉 , (27)

which provides a clear translation between the two de-
scriptions (the factor of

√
2 arises due to the Keldysh

rotation). Next, we consider the two-point correlation
function and response function, respectively:

1

N2
〈{Sx(t), Sx(t′)}〉 = − δZ

δαq(t)δαq(t′)

∣∣∣∣
αc/q=0

= 〈mc(t)mc(t
′)〉,

(28)

and

1

N2
〈[Sx(t), Sx(t′)]〉

= −
(

δZ

δαq(t)δαc(t′)
− δZ

δαc(t)δαq(t′)

) ∣∣∣∣
αc/q=0

= 〈mc(t)mq(t
′)〉 − 〈mq(t)mc(t

′)〉 .
(29)

This establishes the relationships between the spin op-
erator and the fields. It is straightforward to find the
analogs of these relations at higher orders by taking ap-
propriate derivatives with respect to the source fields.

IV. FIELD-THEORETICAL ANALYSIS

Having mapped a driven-dissipative spin model to a
non-equilibrium Keldysh action, we can now take advan-
tage of the field-theoretical toolbox available to us. Equa-
tion (24) appears formidable due to the log-trace term;
however, the overall factor of N in the action (residual
of the collective nature of the DDIM) means that the
saddle-point approximation becomes exact in the ther-
modynamic limit. Using this approximation, we find
the steady-state expectation value of the order parameter
and expand the action in powers of fluctuations around
the order parameter, both in the ordered and normal
phases.
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A. Saddle-Point Solution

The natural first step in a field theory is to solve the
classical equations of motion. In other words, we seek
the solutions to the saddle-point equations

δS
δmc(t)

= 0,
δS

δmq(t)
= 0 , (30)

with mc(t) = m ≡ const and mq(t) = 0. Equations
(30) are essentially a semi-classical approximation to the
problem, neglecting statistical and quantum fluctuations,
but they constitute a first step before considering critical
properties. Carrying out the explicit calculations for the

order parameter m, we find

δS
δmq(t)

∣∣∣∣mc=m
mq=0

= −2JNm− iN
Tr
(
e(tf−t)T0Tqe(t−ti)T0

)
Tr
(
e(tf−ti)T0

)
= −2JNm− iN〈〈I|Tq |ρss〉〉 = 0 , (31)

where ti/f denote the initial and final times, respectively.
Here, we introduce the notation

T0 = T(mc = m,mq = 0) (32a)

Tc =
∂T

∂mc(t)

∣∣∣mc=m
mq=0

= i2
√

2J diag{0, 1,−1, 0} , (32b)

Tq =
∂T

∂mq(t)

∣∣∣mc=m
mq=0

= i2
√

2J diag{1, 0, 0,−1} , (32c)

with all the matrices evaluated at the saddle-point sta-
tionary values. To obtain the second line of Eq. (31),
we have conveniently taken ti → −∞, and used the fact
that the only non-negative eigenvalue of T0 is zero (cor-
responding to the non-equilibrium steady state), leav-
ing us with an inner product of the corresponding left
and right eigenvectors 〈〈I| (representing the identity) and
|ρss〉〉 (denoting the steady state). The identity vector is
simply 〈〈I| = (1, 0, 0, 1), while the steady-state vector is
given by

|ρss〉〉 =

(
8
√

2∆Jm

Γ2 + 16∆2 + 16J2m2
+

1

2
,−Γ2 + 16∆2 + 4i

√
2ΓJm

2Γ2 + 32∆2 + 32J2m2
,− Γ2 + 16∆2 − 4i

√
2ΓJm

2 (Γ2 + 16∆2 + 16J2m2)
,

1

2
− 8

√
2∆Jm

Γ2 + 16∆2 + 16J2m2

)T
. (33)

These two vectors are normalized such that 〈〈I|ρss〉〉 =
1. Evaluating the second line of Eq. (31), we find that
m = 0 in the normal phase and

m = ±
√
−Γ2 − 16∆2 + 32∆J/4J (34)

in the ordered phase. The phase boundary is located
where the latter solutions are trivial (i.e., zero), and co-
incides with that of mean field. In a sense, our analy-
sis here is the mean-field treatment at the level of the
field theory. As we show explicitly later, these solutions
and the phase boundary are exact in the thermodynamic
limit, as expected due to the infinite-ranged nature of the
model.

B. Quadratic Expansion

Equipped with the saddle-point solutions, we can now
investigate Gaussian fluctuations; i.e. the quadratic
terms in the expansion of the action around the saddle-
point solution. Expanding Eq. (24) to second order
around the saddle-point solutions in the normal phase

(m = 0), we have

S(2) =
1

2

∫
t,t′

(
mc, mq

)
t

(
0 PA

PR PK

)
t−t′

(
mc

mq

)
t′
, (35)

where a factor of
√
N has been absorbed into the fields

for convenience. Note that the kernel is a function of the
time difference only, reflecting the fact that time transla-
tion symmetry is restored in the non-equilibrium steady
state. The kernel also exhibits the Keldysh structure
[12, 14, 36], therefore the elements PR/A can be inter-
preted as the retarded/advanced inverse Green’s func-
tions and PK as the Keldysh component. These terms
are given by

PR(t) = PA(−t) =
δS

δmq(t)δmc(0)

∣∣∣∣mc=0
mq=0

= −2Jδ(t)− iΘ(t)〈〈I|TqetT0Tc |ρss〉〉

= −2Jδ(t) + Θ(t)8J2e−
Γ
2 t sin (2∆t) , (36a)
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and

PK(t) =
δS

δmq(t)δmq(0)

∣∣∣∣mc=0
mq=0

= −i〈〈I|Tqe|t|T0Tq |ρss〉〉

= i8J2e−
Γ
2 |t| cos (2∆t) . (36b)

The above elements take a relatively simple form, with
the dissipation leading to the exponential decay and the
transverse field to oscillations. In addition, a delta func-
tion emerges in Eq. (36a) as a remnant of the Hubbard-
Stratonovich transformation and ensures the proper nor-
malization of the partition function. The step function in
the latter equation stems from 〈〈I|Tc exp(tT0)Tq |ρss〉〉 =
0, and enforces the proper time ordering of the matri-
ces. Because we absorbed a factor of

√
N into the fields,

higher-order terms in the expansion are at least of the
order O(1/N), rendering Eq. (35) exact in the thermo-
dynamic limit.

It will be convenient to recast these expressions in fre-
quency space. With the Fourier transform mc/q(t) =∫
dω
2πmc/q(ω)e−iωt, the kernel elements are

PR(ω) = −2J − 4iJ2

(
1

−Γ/2− i(2∆− ω)

− 1

−Γ/2 + i(2∆ + ω)

)
,

(37a)

and

PK(ω) = 4iJ2Γ

(
1

Γ2/4 + (ω − 2∆)2

+
1

Γ2/4 + (ω + 2∆)2

)
.

(37b)

These analytic expressions follow from the simple form
of the steady-state vector in the normal phase, |ρss〉〉 =
(1,−1,−1, 1)T /2.

An advantage of our quantum-to-classical mapping
and resultant exact action, is that we are not limited
to the normal phase, we can instead explore the entire
phase diagram. In the ordered phase, evaluating ex-
pressions like the second line in Eqs. (36a) and (36b)
become difficult as they require the nontrivial form of
|ρss〉〉 shown in Eq. (33), as well as the fact that the T
matrix is now evaluated at finite m. We nevertheless de-
rive formal expressions for the above functions as follows.
We first decompose the exponential matrix etTm , where
Tm = T (mc(t) = m,mq(t) = 0), into its spectral form

etTm =

3∑
i=0

e|δt|λi |λRi 〉〉〈〈λLi |

= |ρss〉〉〈〈I|+
3∑
i=1

e|δt|λi |λRi 〉〉〈〈λLi | .

(38)

The vectors 〈〈λLi | and |λRi 〉〉 denote the i’th left and
right eigenvectors of Tm with eigenvalue λi, respectively,

and are normalized as 〈〈λLi |λRj 〉〉 = δij ; the biorthogonal
structure is due to Tm being non-Hermitian. The expres-
sions for the inverse response and Keldysh components
in the frequency domain are then

PR(ω) = −2J − i
3∑
i=1

Ci

∫
δt

eiωδtΘ(δt)e|δt|λi

= −2J + i

3∑
i=1

Ci
1

λi + iω
, (39a)

and

PK(ω) = −i
3∑
i=1

C̃i

∫
δt

eiωδte|δt|λi = 2i

3∑
i=1

C̃i
λi

λ2
i + ω2

.

(39b)

The accompanying coefficients are given by

Ci = 〈〈I|Tq |λRi 〉〉〈〈λLi |Tc |ρss〉〉, (40a)

C̃i = 〈〈I|Tq |λRi 〉〉〈〈λLi |Tq |ρss〉〉. (40b)

PR(ω) and PK(ω) can be obtained by numerically solv-
ing for the eigenvalues and the eigenvectors of Tm.

C. Correlation and Response Functions

The physical observables of interest in terms of the ker-
nel elements describing the field m are the symmetrized
correlation function

C(ω) =
1

N
Fω〈{Sx(t), Sx(0)}〉 = 〈mc(ω)mc(−ω)〉

=
−iPK(ω)

PR(ω)PA(ω)
, (41a)

and the response function

χ(ω) =
1

iN
Fω〈[Sx(t), Sx(0)]〉

=
1

i
〈mq(ω)mc(−ω)−mc(ω)mq(−ω)〉

=
1

PR(ω)
− 1

PA(ω)
. (41b)

Their explicit forms can be obtained from Eqs. (37a)
and (37b) as

C(ω) =
Γ(Γ2 + 4(4∆2 + ω2))

2(ω − ω1)(ω − ω2)(ω − ω∗1)(ω − ω∗2)
, (42a)

and

χ(ω) = 4∆

(
(ω − ω∗1)(ω − ω∗2)− (ω − ω1)(ω − ω2)

(ω − ω1)(ω − ω2)(ω − ω∗1)(ω − ω∗2)

)
.

(42b)
The poles in these equations are given by

ω1 = − i
2

(Γ− Γc) , ω2 = − i
2

(Γ + Γc) , (43)
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Figure 1. The response function (a) and correlation function
(b) in the ordered phase (J = 1,∆ = 1) for different values of
Γ. (a) As we move away from the phase boundary, χ(ω) at low
frequencies plateaus before changing sign, indicating a gainy
rather than lossy behavior. (b) The peak at ω = 0, signifying
the dominant soft mode near the phase boundary, splits into
two as Γ is decreased. For sufficiently small Γ (. 2.3), another
peak appears at ω = 0.

where Γc = 4
√

(2J −∆)∆. We thus observe that ω1 is
the “soft mode” which vanishes at the phase transition,
while we can identify ω2 as the “fast mode” that remains
finite. The soft mode is responsible for critical dynamics
and signifies the critical slowdown as we approach the
phase transition. The limit Γc → 0, where both poles
become soft, gives rise to qualitatively different behavior
as we shall discuss later.

In the time domain, the correlation and response func-
tion are given by

C(t) =
e−Γ|t|/2

Γc

(
ΓΓc + 16(J −∆)∆

Γ + Γc
e−Γc|t|/2

+
ΓΓc − 16(J −∆)∆

Γ− Γc
eΓc|t|/2

)
,

(44a)

and

χ(t) = sgn(t)
4∆

Γc
e−Γ|t|/2

(
e−Γc|t|/2 − eΓc|t|/2

)
. (44b)

We can identify two distinct regimes in the disordered
phase. For ∆ < 2J , we see that Γc is real, and that both
C(t) and χ(t) are purely relaxational. On the other hand,
Γc becomes imaginary for ∆ > 2J , hence complex-valued
poles, and the dynamics becomes underdamped. In this
regime, the overall decay rate is controlled by Γ, and the
oscillation time scale is set by Γc. This behavior arises
due to the competition between the interaction J and the
transverse field ∆. For sufficiently large ∆, the transverse
field is dominant and causes the large spin to precess
about the z-axis; while on average the longitudinal spin
components are zero, their temporal correlations expose
the oscillations.

In the ordered phase, the correlation and response
function can be evaluated numerically starting with the
inverse response and Keldysh elements in Eqs. (39a)
and (39b). In Fig. 1, we plot χ(ω) and C(ω) within

Figure 2. Diagrammatic representation. (a) The solid and
dashed legs in (a) represent classical (mc) and quantum (mq)
fields, respectively. (b) The wavy line represents the time
evolution where time ordering is understood from right to
left. (c) Connected legs correspond to Green’s functions with
GR the response function and GK the Keldysh correlation
function.

the ordered phase and for different values of Γ. As Γ is
decreased, the low-frequency region of χ(ω) changes sign,
indicating that the system is no longer lossy and is rather
“gainy” at low frequencies. This behavior is of course re-
lated to the driven nature of the system. Similarly, the
correlation function shows a single peak at ω = 0 for
larger Γ close to the phase boundary (within the ordered
phase); this behavior can be attributed to the soft mode.
As we move away from the phase boundary, this peak
splits into two and eventually gives rise to a smaller peak
at ω = 0. Indeed, this appears at the same point where
the low-frequency behavior of χ changes qualitatively. In
Sec. IV E, we show that this behavior can be interpreted
as the emergence of a negative effective temperature.

D. Diagrammatics

To go beyond the quadratic action, we introduce here
a novel diagrammatic representation of the interaction
terms in the expansion of the action. These terms can be
found by first expanding the argument of the logarithm
in Eq. (85) in powers of the fields as

S = −2J

∫
t

mc(t)mq(t)− iN ln

1 +
∑
i,α

Di,α

 , (45)

where, as stated before, a factor of
√
N has been ab-

sorbed into mc/q, and Di,α is the i’th-order connected
diagram:

Di,α =
1

N
i
2

∫
t

uα(t)mα1(t1) · · ·mαi−1(ti−1)mαi(ti).

(46)
Here, we have used t as a shorthand for {t1, · · · , ti−1, ti}
and similarly for α. The latter indices take the values c/q
representing classical/quantum fields, respectively, and
the sum over α in Eq. (45) is only over distinct or-
derings of c/q to avoid overcounting. The rules for con-
structing these diagrams can be found Fig. 2. Connected
diagrams are time ordered from right to left, therefore
the interaction coefficient uαj

is time ordered too with
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Figure 3. A representative (classical) vertex. The interaction
coefficient uqccc(t) is time ordered such that t1 ≥ t2 ≥ t3 ≥ t4,
and is given explicitly by Eq. (47).

t1 ≥ · · · ≥ ti−1 ≥ ti. These coefficients are given by

uα = Tr (Tα1U(t1, t2)Tα2 · · ·U(ti−1, ti)Tαi) , (47)

where we have defined the “trace” operation Tr(•) =
〈〈I| • |ρss〉〉, have utilized the matrices Tc/q defined ear-
lier, and have introduced the propagators U(t − t′) =
exp((t − t′)T0) with T0 = T(m = 0). The latter prop-
agators are depicted as wavy lines in our diagrammatic
notation; see Fig. 2. This time-ordered representation
of the interaction coefficients (and diagrams) is best un-
derstood in a scattering picture. The superket |ρss〉〉
describes the non-equilibrium steady state of a pair of
spins on the upper and lower leg of the spin ladder, and
is taken as the “in” state. This state propagates freely
(via U) while scattering off the mean-field (mc/q) inter-
mittently. In other words, the interaction coefficients
follow from the time-dependent perturbation theory in
the expansion of the evolution operator T e

∫
t
T(t), with

T(t) = T0 +mc(t)Tc +mq(t)Tq, in powers of the scatter-
ing potentials mc/qTc/q.

The scattering interpretation becomes manifest in
Fourier space. Let’s first consider the free propagator
in Fourier space:

U(ω) =

∫
t>0

e−iωtetT0 = − 1

T0 − iω
. (48)

Here, we have used the fact that the matrix T0 is diag-
onalizable, and that the real part of its eigenvalues λ is
non-positive. For an eigenvalue with a zero real part, we
substitute ω → ω − iε due to causality with the under-
standing that the limit ε → 0 is taken at the end of the
calculation. The above expression is reminiscent of the
Lippmann-Schwinger equation with T0 taking the role of
the Hamiltonian, though we must recall that T0 is non-
Hermitian and acts on two copies of a spin. It is often
convenient to compute the interaction coefficient in the
Fourier space. Some algebra yields

u(ω) = Tr (Tα1
U(ω̃1)Tα2

· · ·U(ω̃i)Tαi
) , (49)

where ω̃j = ω1 + ...+ ωj − ωj+1 − ...− ωi.
So far, we have considered the connected diagrams that

arise inside the logarithm in Eq. (45). However, the full
diagrammatic expansion of the action requires an ex-
pansion of the logarithm too. Expanding Eq. (45) in
powers of the connected diagrams, we obtain all inter-
action vertices comprising connected as well as discon-
nected diagrams. Formally, a multi-legged diagram with

M =
∑p
i=1 li disconnected parts is given by

i
(M − 1)!(−1)M

N−1
∏p
j lj !

(Di1,α1
)l1(Di2,α2

)l2 · · · (Dip,αp
)lp (50)

where each Di,α, integrated over the corresponding time
coordinates, represents one of the p unique connected di-
agrams with multiplicity lj . The combinatorial factor
1
M

M !∏p
j lj !

= (M−1)∏p
j lj !

is included, where the factor of 1
M is

due to the expansion of the logarithm, and M !∏p
j lj !

ac-

counts for each set of identical disconnected diagrams
with multiplicity lj . As an example, Fig. 3 depicts
the diagrammatic representation of the “classical vertex”
−i
N

∫
t
uqccc(t)mq(t1)mc(t2)mc(t3)mc(t4) with the time in-

tegral constrained as t1 ≥ t2 ≥ t3 ≥ t4. We remark
that the disconnected diagrams discussed here emerge at
the level of the action, before expanding the exponential
factor in the partition function. Expanding the latter
exponential factor will further generate disconnected di-
agrams whose coefficients should be properly determined
from the combinatorial factors reported above. In this
sense, we must keep the origin of various disconnected
diagrams (whether they appear in the action itself or re-
sult from the expansion of the exponential factor). This
pattern is in contrast with the standard diagrammatic
representation and is a unique feature of our nonequilib-
rium setting.

The diagrams discussed here have certain causal prop-
erties. First, each diagram must come with at least one
quantum leg (dashed line), reflecting the property of the
Keldysh action that S(mc,mq = 0) = 0. Furthermore,
the last leg of all connected diagrams is always a quan-
tum field which enforces causality and ensures that the
partition function retains its normalization (Z = 1). Cu-
riously, only certain orderings of classical and quantum
legs are allowed. The diagrammatic notation developed
here will prove very useful when calculating quantities
such as self-energy corrections as well as expanding the
action in the ordered phase. The former can be deter-
mined systematically by contracting quantum and clas-
sical fields in these diagrams.

E. Effective Thermalization

Driven-dissipative systems are inherently non-
equilibrium, and therefore there is no intrinsic notion
of temperature. However, a standard procedure is
to define an effective temperature by imposing a
fluctuation-dissipation relation (FDR)[12, 14, 37–40],

PK(ω) = F (ω)
(
PR(ω)− PA(ω)

)
, (51)

where F (ω) is a distribution function defined by this
equation. In equilibrium and at finite temperature, the
distribution function only depends on temperature and
takes the form F (ω) = coth(ω/2T ). Specifically, the
low-frequency limit of the distribution function yields the
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Figure 4. Numerical plot of the correlation and response
functions with a system size of N = 100 near a generic
critical point (J = 1,∆ = 1,Γ = 4). The classical FDR
χ(t) = ∂tC(t)/2Teff holds at long times (t & Γ−1) with
Teff = J .

Figure 5. Numerical plot of the correlation and response
functions with a system size of N = 100 near the weakly-
dissipative critical point (J = 1,∆ = 2,Γ = 0.1). The clas-
sical FDR χ(t) = ∂tC(t)/2Teff holds for exact numerics with
Teff = J holds almost perfectly at all times.

classical FDR with F (ω) = 2T/ω. While there is no in-
trinsic temperature in our driven-dissipative system, we
can still impose the classical form of the FDR (to be jus-
tified later) to identify the effective temperature; in the
normal phase, we find

Teff = lim
ω→0

ω

2

PK

PR − PA
=

Γ2 + 16∆2

32∆
. (52)

The effective temperature diverges as ∆→ 0 in harmony
with the observation in Ref. [41] that, in the absence
of a transverse field, the population (in the Sx basis) is
that of a fully mixed state, hence infinite temperature.
We must note however that an effective temperature de-
fined at low frequencies is only sensible near a critical
point where a slow mode dominates the dynamics. In
contrast, various modes contribute to the effective tem-
perature away from criticality, i.e., away from the phase
boundary, which further complicates the interpretation of

Figure 6. Density plot of |Teff| in the ordered phase as a func-
tion of ∆ and Γ; we have set J = 1. The thick curve indicates
the phase boundary and the highlighted region indicates the
region with negative effective temperature. (Inset) The effec-
tive temperature in the ordered phase (J = 1,∆ = 0.5) as a
function of Γ, taken along the dashed line in the main figure.
As Γ decreases, the effective temperature diverges and then
flips sign.

the low-frequency effective temperature. Exactly at the
phase transition [see Eq. (34)], we find that the effective
temperature is simply given by Teff = J everywhere along
the phase boundary. Equation (52) can also be expressed
in the time domain, χ(t) = ∂tC(t)/2Teff, which provides
another form of the classical FDR [42]. This relation-
ship holds analytically for the correlation and response
functions in Eqs. (44a) and (44b) with Teff = J . The lat-
ter analytical functions describe points close to, but away
from, the critical point. We can further inspect the classi-
cal FDR at criticality using exact numerics: in Fig. 4, we
show that, with the exception of short times differences,
this relation holds at criticality. We further inspect the
behavior at the weakly dissipative critical point Γ→ 0 in
Fig. 5 and find that the classical FDR holds remarkably
well at all times. The agreement between Teff in the time
and frequency domains at the phase boundary further
cements the applicability of the fluctuation-dissipation
relation near phase transitions.

In the ordered phase, we can numerically evaluate the
effective temperature by combining the expressions given
in Eqs. (39a) and (39b) together with the definition of
the effective temperature in Eq. (51). Interestingly, as
Γ is lowered, the effective temperature diverges deep in
the ordered phase and then flips sign; see the inset of
Fig. 6. This behavior occurs due to the change in sign
of the low-frequency behavior of χ(ω) as was pointed
out in Fig. 1(a). The curve corresponding to infinite
temperature ends at the weakly dissipative critical point
Γ → 0 and ∆ = 2J . We can thus employ our field-
theoretical toolbox to analytically investigate the origin
of this behavior. At a technical level, we want to charac-
terize the fluctuations around the ordered field, m, within
the ordered phase. To this end, we consider the action
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describing the fluctuations around the ordered field as
S =

∫
ω
mqP

R
ord(ω)δmc + · · · where δmc(t) = mc(t) −m

and PRord(ω) is given exactly by Eq. (39a). To probe
the effective temperature Teff, we must expand PRord(ω)
at low frequencies as PRord(ω) ∼ −r + iγordω + · · · . Now,
γord > 0 indicates dissipation, while γord < 0 implies
gain as this coefficient characterizes friction in the low-
frequency dynamics. Due to the definition of the low-
frequency effective temperature in Eq. (52), there is no
straightforward analogy with the equilibrium notion of
population inversion. While the full expression for PR

in the ordered phase is not analytically tractable, we can
utilize the diagrammatics developed in the previous sec-
tion: the diagrams that contribute to PRord in the ordered-
phase can be found in Fig. 7. The explicit forms of the
interaction coefficients are reported in Appendix B. It
turns out that to capture the negative temperature, we
must also include the sixth-order terms in the diagram-
matic expansion. We find

PRord(ω) = PR(ω) +m2PR1 (ω) +m4PR2 (ω) + · · · , (53)

wherem is given by Eq. (34), PR(ω) by Eq. (37a), PR1 (ω)
is given by

iPR1 (ω) =uqccc(−ω, ω, 0, 0) + uqccc(−ω, 0, ω, 0)

+ uqccc(−ω, 0, 0, ω) , (54)

and PR2 (ω) is given by

iPR2 (ω) = uqccccc(−ω, ω, 0, 0, 0, 0) (55)

+ uqccccc(−ω, 0, ω, 0, 0, 0) + uqccccc(−ω, 0, 0, ω, 0, 0)

+ uqccccc(−ω, 0, 0, 0, ω, 0) + uqccccc(−ω, 0, 0, 0, 0, ω) .

Expanding Eq. (53) to first order in ω, we find the fric-
tion coefficient

γord =
127J2∆

Γ(Γ2 + 16∆2)4

[
26Γ6 − 4096∆4(∆− 2J)2+

16Γ4∆(53∆− 84J) + 256Γ2∆2(68J2 − 80J∆ + 25∆2)

]
,

(56)

which indeed captures the negative effective temperature
in the ordered phase near the phase boundary at ∆ = 2J
and Γ→ 0; see Fig. 6. Indeed, we find that the infinite-
temperature curve near the weakly dissipative critical
point is given by the line Γ = 2

√
2(2J −∆), in harmony

with Fig. 6. We finally remark that, for ∆ < 2J , the
effective temperature Teff → 0− in the limit Γ→ 0.

Before closing this subsection, a remark about the ef-
fective temperature is in order. The latter temperature
characterizes fluctuations and dissipation of the system
at low frequencies. However, it does not imply that the
steady state is a thermal state, exp(−H/Teff). This can
be seen by comparing the equilibrium phase diagram ver-
sus the equilibrium phase diagram [30] in Fig. 13. Specif-
ically, the infinite-range Ising model in a transverse field

Figure 7. Diagrams contributing to (a) PR1 and (b) PR2 in
calculating γord. A cross (x) at the end of a leg corresponds
to evaluating the corresponding classical field at its saddle-
point value.

undergoes a phase transition at a critical value of the
transverse field that is ∆c(T ) < 2J at any finite tem-
perature, a behavior that should be contrasted with our
driven-dissipative model whose phase transition extends
all the way to ∆ = 2J .

V. CRITICAL BEHAVIOR

Just like their equilibrium counterparts, non-
equilibrium steady states may undergo phase transitions
and exhibit critical phenomena. A characteristic feature
of criticality is a diverging correlation length, the dynam-
ical analog of which is manifested as a diverging time
scale and the associated critical slowdown [42]. While
there is no intrinsic length scale in an infinite-ranged
model, we will identify the dynamical critical behavior of
the model considered here and investigate the finite-size
scaling with the system size N [31, 43] using standard
scaling techniques. Interestingly, we shall see that two
distinct dynamical critical behaviors emerge depending
on the strength of dissipation.

A. Criticality at Finite Γ

Before investigating the finite-size scaling, we first
determine the scaling dimensions of the fields at the
quadratic level of the action. A low-frequency expansion
of Eq. (35) yields the quadratic action

S ∼
∫
t

mq(−γ∂t − r)mc +
1

2
Dm2

q , (57)
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Figure 8. Exact numerics of the finite-size scaling behavior
of the correlation function at a generic critical point (J =
1,∆ = 1,Γ = 4). The critical dynamics is overdamped and is

governed by a characteristic time scale that scales as t ∼ N1/2,
typical of critical driven-dissipative systems.

with r the distance from the critical point, γ a damping
parameter, and D the strength of the noise:

r = −PR(ω = 0) =
2J [Γ2 − 16∆(2J −∆)]

Γ2 + 16∆2
, (58a)

γ = −i∂ωPR(ω)|ω=0 =
256J2Γ∆

(Γ2 + 16∆2)2
, (58b)

D = PK(ω = 0) =
32iJ2Γ

Γ2 + 16∆2
. (58c)

To find the scaling dimensions of the fields, we demand
that the action be scale invariant at the critical point
(r = 0). One can see that the action is invariant upon
rescaling [44]

t→ λt, mc →
√
λmc , mq →

1√
λ
mq , (59)

which determines the scaling dimensions of the fields as
[mc] = 1

2 , [mq] = − 1
2 . These scaling dimensions in turn

determine the scaling behavior of the correlation and
response functions, and are consistent with Eqs. (44a)
and (44b) in the limit Γ→ Γc; see also [9].

To determine the finite-size scaling behavior of the
model, we must include finite-size corrections to the
quadratic action in Eq. (35). To lowest order in O(N−1),
the finite-size corrections are given by the 4-legged dia-
grams derived in Sec. IV D. Furthermore, it follows from
the above scaling dimensions that the most relevant cor-
rection (in a renormalization-group sense) is the classical
vertex which has a low-frequency limit of [12]

Sint =
−u
2N

∫
t

m3
cmq + · · · , (60)
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Figure 9. Finite-size scaling behavior of the response func-
tion at a generic critical point (J = 1,∆ = 1,Γ = 4) from
exact numerics. The amplitude of the response function does
not scale with N , while the characteristic time scale of the
dynamics scales as t ∼ N1/2, identifying the dynamical expo-
nent ζ = 1/2.

with

u = 2iucccq(ω = 0) =
2048J4∆

(Γ2 + 16∆2)2
. (61)

We now demand that the full low-frequency expansion of
the action, with the inclusion of the classical vertex and
at a finite distance from the critical point (r 6= 0), remain
scale invariant. This is achieved upon rescaling

t→ λt, mc →
√
λmc , mq →

1√
λ
mq,

r → 1

λ
r , N → λ2N , (62)

where the first line, also given by Eq. (59), is included for
completeness. Equipped with these scaling dimensions,
the correlation function takes on the scaling form

C(t) = 〈mc(t)mc(0)〉 = λ−1Ĉ(λ|t|, λ−1r, λ−2N−1) ,
(63)

with Ĉ a scaling function and λ an arbitrary scaling
parameter which can be chosen freely. Setting λ = r
at equal times, t = 0, and in the thermodynamic limit
N →∞, we obtain the “photon-flux” exponent as

C(0) =
1

r
Ĉ(0, 1, 0) , (64)

which establishes the exponent ν = 1 [12]. Next we de-
termine the finite-size scaling at criticality (r = 0). Here,
we set λ = N−1/2 in Eq. (63), which leads to the scaling
form

C(t) =
√
NĈ(t/

√
N, 0, 1) . (65)
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This equation identifies both static and dynamic finite-
size critical exponents: the amplitude of correlations (i.e.,
fluctuations) scale as C ∼ Nα with the exponent α =
1/2, while a critical time scale emerges as t ∼ Nζ with the
dynamical exponent ζ = 1/2. A similar analysis yields
the scaling form of the response function:

χ(t) = χ̂(t/
√
N, 0, 1) . (66)

We thus see that the amplitude of the response function
does not scale with N . We confirm the (static as well
as dynamic) scaling behavior of both the correlation and
response functions in Figs. 8 and 9, respectively. Addi-
tionally, we see that the critical dynamics observed here
is purely relaxational. In the next section, we show that
a distinct dynamical critical behavior emerges at low dis-
sipation.

B. Criticality at Γ→ 0

The effective classical behavior at a generic critical
point is due to the competition of drive and dissipation.
It is then interesting to consider the limit Γ → 0 where
dissipation is small compared to the energy scales in the
system. Interestingly, the phase transition persists in this
limit and occurs at ∆ = 2J as Γ → 0; see Fig. 13. One
must be careful when considering this point as setting Γ
to zero would make the problem unphysical since dissipa-
tion is required to find a unique non-equilibrium steady
state. Rather, we shall consider the asymptotic behav-
ior in the limit Γ → 0 at the level of the low-frequency
expansion of Eq. (35). The resulting action then becomes

S ∼
∫
t

mq(−a∂2
t − γ∂t − r)mc +

1

2
Dm2

q , (67)

where the parameters γ, r, andD are provided in Eq. (58)
upon taking the appropriate limit; the new parameter a
is given by

a = lim
Γ→0

∂2
ωP

K(ω)|ω=0 =
J2

∆3
. (68)

Indeed the inertial term in the action (proportional to
a) is required in the limit of vanishing dissipation. This
is because the damping parameter γ ∼ Γ and the noise
D ∼ Γ both vanish with Γ. To determine the new scaling
dimensions of the fields, we once again seek a scaling
transformation that keeps the action scale invariant, but
this time we also should include the scaling of Γ itself.
We find that the quadratic action at the critical point is
invariant under

t→ λt , Γ→ 1

λ
Γ , mc → λmc , mq → mq , (69)

establishing the new scaling dimensions [mc] = 1, [mq] =
0. The new scaling dimensions alter the original scal-
ing dimensions of the correlation and response functions,
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Figure 10. Finite-size scaling of the correlation function near
the weakly dissipative critical point (J = 1,∆ = 2,Γ = 0.1).
The dynamics is underdamped in contrast with the purely
relaxational behavior at a generic driven-dissipative phase
transition, and exhibits the critical scaling t ∼ N1/4 to be
contrasted with t ∼ N1/2 of relaxational dynamics; cf. Fig. 8.

again in harmony with their behavior in the limit Γ→ 0;
see also Ref. [9].

To obtain the finite-size scaling behavior, we once
again include the classical vertex, which remains the most
relevant interaction term. The full action (including the
mass term) remain invariant if we impose the rescaling

r → 1

λ2
r, N → λ4N, (70)

in addition to those in Eq. (69). From this, we find the
scaling form for the correlation function as

C(t) =
1

λ2
Ĉ0(λ|t|, λ−1Γ, λ−2r, λ−4N−1) , (71)

where the subscript 0 denotes the scaling function near
the weakly dissipative critical point. Also, notice the
dependence of the nontrivial scaling of Γ in contrast with
a generic critical point; cf. Eq. (63).

First, we consider the point ∆ = 2J at finite yet small
Γ. Setting λ = Γ and t = 0 in the thermodynamic limit,
we find

C(0) =
1

Γ2
Ĉ0(0, 1, const, 0) ∝ 1

r
, (72)

where the scaling behavior in the last step follows from
the fact that r ∼ Γ2, rendering the same photon-flux
exponent ν = 1.

Next, we shall focus on finite-size scaling. To this end,
we consider a weakly-dissipative critical point at finite
yet small Γ; we shall choose ∆ / 2J to ensure criticality.
Now, we set λ4 = N−1 together with r = 0 to find

C(t) =
√
NĈ0(|t|N− 1

4 ,ΓN
1
4 , 0, 1) . (73)

From this equation, we find that the weakly-dissipative
limit does not affect the static scaling exponent, α = 1

2 ,
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but it does change the dynamical exponent to ζ = 1
4 . We

thus conclude that a weakly dissipative point changes
the dynamical critical behavior. Repeating the above
analysis for the response function, we find the finite-size
scaling form

χ(t) = N
1
4 χ̂0(tN−

1
4 ,ΓN

1
4 , 0, 1) . (74)

In contrast with a generic critical point (Eq. (66)), the
amplitude of the response function in the above equa-
tion grows with the system size as χ ∼ N

1
4 . Figures 10

and 11 show the finite-size critical behavior of the correla-
tion and response function, respectively, and confirm the
prediction of the scaling analysis. In conclusion, while
the static exponent α and the flux exponent ν remain
the same everywhere on the phase boundary, the dy-
namical exponent ζ takes a different value in the weakly-
dissipative limit.

What further distinguishes the weakly dissipative crit-
ical point is the fact that the dynamics is underdamped
(see Figs. 10 and 11) in contrast with the typical relax-
ational/overdamped dynamics seen at a generic critical
point, and generally in driven-dissipative systems. As Γ
is further increased along the phase boundary, one should
expect a crossover to overdamped critical dynamics. This
is somewhat analogous to the quantum critical region and
the crossover to thermal critical behavior [45]. In the con-
text of the infinite-range model that we have considered
in this work, the crossover behavior becomes manifest
as a function of system size. Indeed, we can determine
the crossover behavior from Eq. (73): for Γt . 1 and

Γ . N−
1
4 , the critical dynamics is underdamped, while

for large times and/or large Γ the system experiences a
dynamical crossover where we recover the usual relax-
ational behavior (while remaining on the phase bound-
ary). To quantitatively investigate the crossover, we de-
fine the first zero of the correlation function, denoted by
τ , as a measure of the oscillatory behavior of the under-
damped dynamics. In Fig. 12, we plot τ as a function
of Γ and for different system sizes. Indeed, we find that
for sufficiently large values of Γ, this time scale diverges
where the dynamics becomes overdamped. Furthermore,
this figure shows that this time scales as τ ∼ N 1

4 τ̂(ΓN
1
4 )

with τ̂ a universal scaling function, hence it confirms the
scaling of the crossover value, Γcr ∼ N−1/4.

One can gain some intuition for the underdamped crit-
ical behavior near the weakly-dissipative critical point
from several different angles. First, the point ∆ = 2J
is exactly where Γc switches from real to imaginary, as
a result of which Eq. (44a) shows underdamped dynam-
ics even away from the phase boundary (when ∆ > 2J).
Second, one can imagine that the underlying coherent
dynamics generated by the first term in Eq. (6) could
have a stronger effect in the limit Γ → 0. Additionally,
the the infinite-range Ising model is integrable in the ab-
sence of dissipation; while dissipation generically spoils
integrability, the dynamics is approximately integrable in
the limit Γ → 0, which could lead to nontrivial dynam-
ics [46–49]. Nevertheless, in Sec. VI, we show that the
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Figure 11. Finite-size scaling of the response function near the
weakly dissipative critical point from exact numerics (J =
1,∆ = 2,Γ = 0.1). The dynamics is distinguished from a
generic critical point in that the dynamical critical exponent
is different, ζ = 1/4 and that it is underdamped; cf. Fig. 9.

Figure 12. The first zero of the correlation function, τ , as a
function of the dissipation rate Γ and at different system sizes
(J = 1). Transverse field values ∆ are chosen to lie along the

right side of the phase boundary, ∆c(Γ) = J +
√
J2 − Γ2/16.

Both τ and Γ are scaled with system size to make the scaling
behavior manifest. The time scale τ diverges at sufficiently
large Γ approximately when ΓN1/4 ≈ 6. The inset shows the
unscaled plots for comparison.

underdamped dynamics survives to the first nontrivial
order of integrability-breaking perturbations.

C. Comparison with Equilibrium

From the scaling dimensions and critical exponents,
we can place each phase transition in its respective uni-
versality class. Remarkably, both finite-Γ and Γ → 0
phase transitions are in equilibrium universality classes,
albeit with a classical and quantum flavor, respectively.
For a generic critical point at finite Γ, the scaling di-



15

mensions are [mc] = 1
2 , [mq] = − 1

2 with the critical
exponents α = 1/2, ζ = 1/2. These quantities place
this phase transition in the same universality class as
the classical infinite-ranged Ising model at finite temper-
ature with Glauber-type dynamics (i.e. non-conserving
dynamics) [50], which itself belongs to the “model A”
class of Hohenberg & Halperin [51]. Despite the mi-
croscopic quantum dynamics, the combination of drive
and dissipation render the critical behavior effectively
classical and equilibrium-like. This appears to be the
generic behavior in driven-dissipative phase transitions
[12, 14, 52–61]. However, there are exceptions such as
classical yet truly non-equilibrium critical behavior [62],
as well as the emergence of quantum criticality in the
limit of weak dissipation and drive [63, 64].

In the weakly-dissipative limit, we have found the scal-
ing dimensions [mc] = 1, [mq] = 0, which are distinct
from both classical ([mc] = 1

2 , [mq] = − 1
2 ) and quan-

tum ([mc] = 1
2 , [mq] = 1

2 ) cases [12, 40]. These scal-
ing dimensions lead to the new set of critical exponents
α = 1/2, ζ = 1/4, as opposed to the quantum critical
exponents α = 1/3, ζ = 1/3 [40]. The former exponents
place this phase transition in the same universality class
as the finite-temperature transverse-field infinite-range
Ising model, i.e. the Hamiltonian in Eq. (5). There-
fore, while the phase transition is equilibrium-like, it re-
sembles the quantum Ising model at finite temperature
rather than the classical stochastic Ising model. For com-
parison, see Fig. 18 in Appendix D. Various exponents
and the comparison against classical and quantum equi-
librium settings can be found in Table I.

The comparison between the driven-dissipative and
equilibrium behaviors can be taken one step further due
to the existence of a dynamical crossover in both cases.
As shown previously, the weakly-dissipative point is an
unstable fixed point with respect to dissipation, where
upon renormalization the critical dynamics undergoes
a crossover from underdamped to overdamped dynam-
ics; see Fig. 13(a). This crossover can be understood
due to Γ scaling inversely as time upon rescaling at
the weakly-dissipative critical point, which then sets a
crossover time scaling as ∼ N1/4. The equilibrium ana-
log of a dynamical crossover occurs at finite temperature;
see Fig. 13(b). Upon renormalization, the (perfectly os-
cillatory) coherent quantum critical dynamics undergoes
a crossover to underdamped dynamics. Similarly to our
driven-dissipative system, the temperature T scales in-
versely as that of time; one can see this from the equilib-
rium fluctuation-dissipation relation C = i coth(ω/2T )χ
where ω and T scale in the same way [12, 42]. A similar
line of reasoning indicates a crossover time ∼ N1/3. In
short, the dynamical crossover of the driven-dissipative
Ising model is distinguished from its equilibrium ana-
log not only by the critical exponents but also by the
nature of the crossover (underdamped-to-overdamped vs
coherent-to-underdamped crossover, respectively).

Figure 13. Schematic phase diagrams of the infinite-range (a)
driven-dissipative Ising model (DDIM), and (b) equilibrium
Ising model in a transverse field. The shaded regions denote
the ordered phase. The weakly dissipative critical point of
the DDIM, Γ → 0 in (a), exhibits underdamped dynamics
in contrast with the relaxational dynamics at a generic criti-
cal point. Analogously, the equilibrium model in (b) exhibits
distinct (quantum and thermal) dynamics at zero and finite
temperature. Both Γ → 0 and T → 0 define unstable fixed
points but with respect to dissipation and thermal fluctua-
tions, respectively. The weakly dissipative dynamics in (a)
exhibits identical critical scaling to a finite-temperature crit-
ical point in (b)

D. Langevin Description

An alternative, and established, way of understand-
ing the critical behavior of a driven-dissipative system is
through the lens of the Langevin equation, a stochastic
differential equation used to describe noisy systems [65].
Near a critical point, where we have shown the classi-
cal vertex is the most relevant finite-size correction, we
can map the low-frequency limit of the Keldysh action
to a Langevin equation [12, 14, 36]. Putting together the
quadratic action from Eq. (35) with the interaction in
Eq. (60), the action reads

S ∼
∫
t

[
− (γ∂t + r)mc(t)−

u

2N
m3
c(t) +

1

2
Dmq(t)

]
mq(t) ,

(75)
with the action parameters given by Eqs. (58), (61)
and (68). The first step in mapping to the Langevin
equation is a Hubbard-Stratonovich transformation of
the quantum field mq to introduce a noise field f(t) as

S =

∫
t

[
− (γ∂t + r)mc(t)−

u

2N
m3
c(t) +

√
2f(t)

]
mq(t)

−
∫
t

1

D
f(t)2 . (76)

Now, integrating over mq yields a delta function which

is nothing but the Langevin equation (m = mc/
√

2):

γ∂tm(t) = −rm(t)− 1

N
um3(t) + f(t) . (77)

The term f(t) characterizes a white noise with a Gaussian
distribution, mean 〈f(t)〉 = 0, and variance 〈f(t)f(t′)〉 =
−i 1

2Dδ(t − t′) = 2γTeffδ(t − t′). It is now clear that
Eq. (75) near criticality is equivalent to an overdamped
Langevin equation, with an effective temperature Teff and
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Driven-Diss. Class. Quantum

Γ > 0 Γ→ 0 T > 0 T > 0 T → 0

t ∼ Nζ 1
2

1
4

1
2

1
4

1
3

C ∼ Nα 1
2

1
2

1
2

1
2

1
3

Table I. Driven-dissipative vs. equilibrium classical/ quantum
Ising models. A generic (finite-Γ) critical point exhibits the
same critical behavior as the classical stochastic Ising model,
while the weakly dissipative (Γ → 0) critical point can be
identified with the quantum Ising model at finite temperature.

in an effective potential given by

H =
1

2
rm2 +

1

4N
um4 . (78)

Indeed, Eq. (77) reproduces the overdamped critical dy-
namics discussed in Sec.V A. The stochastic Langevin
equation can be turned to a Fokker-Planck equation that
describes the evolution of the probability distribution
[36, 42]; with the effective equilibrium dynamics, the
steady-state probability distribution of m takes the form

Peq(m) ∼ e−H/Teff . (79)

The nature of the dynamics changes in the limit Γ→ 0.
In this case, dissipation is vanishingly small, γ ∼ Γ→ 0,
therefore we should also include the term proportional to
ω2 in the low-frequency expansion of PR(ω). Following a
similar procedure in this limit, we arrive at the Langevin
equation

a∂2
tm(t) + γ∂tm(t) = −rm(t)− u

N
m3(t) + f(t) , (80)

with the parameters taken from Eq. (58) in the same
limit. Incidentally, we have identified underdamped dy-
namics and persistent oscillations in Sec. V B. Now, we
can see that these oscillations are due to the inertial
term that can be of the same order as dissipation (since
γ → 0). Again, one can identify the corresponding
Fokker-Planck equation, also known as the Kramers-
Chandrasekhar equation, whose steady-state solution is
just the Maxwell-Boltzmann distribution [66]:

P (m, ṁ) ∼ e−(H+ 1
2aṁ

2)/Teff . (81)

This distribution only differs from Eq. (79) in the multi-
plicative Gaussian distribution of ṁ. The probability dis-
tribution of m in Eq. (81) is identical to that of Eq. (79)
upon integrating out ṁ. In other words, the static prop-
erties are identical irrespective of dissipation. In con-
trast, the critical dynamics is markedly different as we
have seen in the previous subsections.

Before closing this section, We emphasize that the
Langevin equations derived here are only valid near the
phase boundary and outside the heated region, since they
are based on the dynamics of the slow mode.

VI. BEYOND THE INFINITE-RANGE MODEL

The infinite-range Ising model is rather special as the
dynamics of the order parameter is exactly determined
by mean field, although fluctuations at, or close to, criti-
cality require a separate treatment as discussed in previ-
ous sections. In this section, we utilize the diagrammat-
ical technology developed in this work to investigate the
effects of non-mean-field perturbations, and specifically
short-range interactions, on the dynamics. Most impor-
tantly, we show that the underdamped dynamical critical
behavior in the limit Γ→ 0 persists even in the presence
of the short-range interactions.

To investigate the role of integrability at the weakly-
dissipative critical point, we add a nearest-neighbour in-
teraction to the Hamiltonian in Eq. (5):

HNN = H − λ
∑
i

σxi σ
x
i+1. (82)

We shall consider the perturbative limit λ � J,∆
and assume periodic boundary conditions. The short-
term interaction alters the mean-field structure of the
infinite-range Ising model, breaks its integrability [33],
and could modify the phase boundary. A standard
way to study such perturbations is to view them as
spin-wave fluctuations, which have been investigated in
other non-equilibrium settings such as quantum quenches
[33, 67, 68]. While our model is distinct due to its driven-
dissipative dynamics, we can still resort to a similar pic-
ture in terms of spin waves

σ̃αk =

N∑
j=1

e−ikjσαj ,

where k = 2πn/N with n ∈ {0, 1, · · · , N − 1}. We shall
identify the collective spin as the k = 0 mode; without
short-range interactions, there is no coupling between
this and other modes with k 6= 0, however, the short-
range interaction couples them and thus spoils the mean-
field nature of the model. Naively, one might expect that
spin waves act as an effective bath for the “large spin”
corresponding to the k = 0 mode, which would lead to an
effective dissipation (even in the limit Γ→ 0). However,
we will show using the diagrammatic techniques that this
is not the case, and therefore the underdamped critical
dynamics at the weakly dissipative critical point is robust
agaiknst short-range interactions.

A. Short-Range Perturbation via Field Theory

The quantum-to-classical mapping process is not al-
tered much by the inclusion of short-range interactions.
The steps leading to the Hubbard-Stratonovich transfor-
mation in Eq. (20) are identical, except now we must
also perform a multi-dimensional Hubbard-Stratonovich
transformation on the short-range interaction terms in
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the vectorized Liouvillian. The short-range Ising pertur-
bation is diagonalized in the same basis as Eq. (17). The
Hubbard-Stratonovich transformation reads as

± i

2
λδt(σ(u/l))TD−1σ(u/l)

→ ∓ i

2λδt
(m(u/l))TDm(u/l) ± i (m(u/l))Tσ(u/l) ,

(83)

where σ = (σ1, ..., σN ) represents the spins, while

m(u/l) = (m
(u/l)
1 , ...,m

(u/l)
N ) denotes the scalar fields on

the upper/lower leg of the ladder, respectively. The ker-
nel D−1, representing the nearest-neighbour interaction,
is given by

D−1 =

0 1 1

1

1

1 1 0


 , (84)

with 1 next to the diagonal (note the periodic boundary
conditions) and 0 everywhere else. This kernel is invert-
ible for odd N or even N not divisible by 4; for simplicity,
we take N to be odd. After tracing out the spins, redefin-
ing the local fields m(u/l)/(2λδt) → m(u/l), rotating to

the Keldysh basis mc/q = (m(u)±m(l))/
√

2, and taking
the continuum limit, we find the exact Keldysh action
including the short-range interaction:

S = −2JN

∫
t

mcmq − 2λ

∫
t

mT P̃m

− i
∑
i

ln Tr
(
T e

∫
t
T+T′i

)
.

(85)

Here, m denotes a column vector with mc stacked on
top of mq. The kernel for the local fields is given by

P̃ =

(
0 D
D 0

)
. (86)

Furthermore, the short-range interaction leads to an ad-
ditional matrix added to the matrix T in the exponential:

T′i = i2
√

2λ diag(mi,q,mi,c,−mi,c,−mi,q) . (87)

Ideally, we must integrate out the local fields to obtain
an effective action in terms of only the original collective
field m. In order to switch to a picture in terms of spin
waves, we introduce the Fourier transform of the local
fields as

mj =
1

N

∑
k

eikjmk , (88)

where k = 2πn/N with n ∈ {0, 1, ..., N − 1}. The action
too can be recast in the Fourier space. In this basis, the
matrix D = diag{Dk} takes a diagonal form with the
matrix elements (recalling that N is odd)

Dk =

N−1∑
j=0

e−ikjDj =
1

2
sec k , (89)

where j = l −m with l and m the row and column la-
bels of the matrix D, respectively; here, we have used the
translational invariance due to periodic boundary condi-
tion.

Finally, we remark that mk=0 too represents the col-
lective field m that is originally introduced through
the Hubbard-Stratonovich transformation of the infinite-
rang Ising interaction. Indeed, it can be shown by intro-
ducing source fields that m and mk=0 are redundant (see
Sec. III B). Therefore, to simplify the subsequent treat-

ment, we introduce the new fields m =
√
Nm+ λ

J
√
N
m0,

m̃ =
√
Nm − 1√

N
m0, where m serves as the new order

parameter, while m̃ is entirely decoupled from all other
fields and appears quadratically, and can be simply inte-
grated out. Absorbing a factor of

√
λ/JN into mk, we

find the total action

S =
−2J2

J + λ

∫
t

mc(t)mq(t)− i
∑
j

ln Tr
(
T e

∫
t
T+T′j

)
− 2J

∑
k 6=0

(
m−k,c, m−k,q

)( 0 Dk

Dk 0

)(
mk,c

mk,q

)
,

(90)

where the matrices in the log-trace are given by

T = T0 + i2
√

2
J√
N

diag(mq,mc,−mc,−mq) , (91)

with T0 defined in Eq. (32a), and

T′j = i

√
8Jλ

N

∑
k 6=0

eikj diag(mq,k,mc,k,−mc,k,−mq,k) .

(92)
Notice that mk=0 does not appear in the action, and
the collective field is completely characterized through
mc/q(t).

B. Quadratic Action

We now follow a similar procedure as before and ex-
pand Eq. (90) to quadratic order in both m and mk:

S =
1

2

∫
t,t′

(
mc, mq

)
t

(
0 PA

PR PK

)
t−t′

(
mc

mq

)
t′

(93)

+
1

2

∑
k 6=0

∫
t,t′

(
m−k,c, m−k,q

)
t

(
0 PAk
PRk PKk

)
t−t′

(
mk,c

mk,q

)
t′
.

The quadratic action takes the Keldysh structure with
the elements (recalling that PR(t) = PA(−t))

PR(t) =
−2J2

J + λ
δ(t) + Θ(t)8J2e−

Γ
2 |t| sin (2∆t),

PK(t) = i8J2e−
Γ
2 |t| cos (2∆t),

(94)

and

PRk (t) = −4JDkδ(t) + Θ(t)8Jλe−
Γ
2 |t| sin (2∆t),

PKk (t) = i8Jλe−
Γ
2 |t| cos (2∆t).

(95)



18

One can immediately see that the collective field m is de-
coupled from spin waves mk at the level of Eq. (93). This
is because any (bi)linear coupling between m and mk is
forbidden by momentum conservation. To investigate the
effect of spin waves, we need to go to higher-order terms
that characterize the interaction between these fields. As
we shall see, the nonlinear coupling will dramatically
change the effect of spin waves on the collective mode:
while linear coupling of the two fields will mimic a ther-
mal bath (of spin waves) at finite temperature [69], the
nonlinear coupling will have no such effect. For another
setting where nonlinear coupling changes the nature of
dissipation, see Ref. [70].

Next, we take advantage of the perturbative nature of
spin waves and calculate their contribution to the self en-
ergy whose low-frequency behavior determines how spin
waves impact the dynamics of the order parameter m. To
this end, we first list the free Green’s functions describing
spin waves in the time domain:

GRk (t) = − 1

4JDk
δ(t)− 2λ∆

JD2
k∆k

Θ(t)e−Γt/2 sin

(
∆kt

2

)
,

(96)
and

GKk (t) =
−iλe−Γ|t|/2

4JD2
k∆k(Γ2 + ∆2

k)
× (97)[

∆k(2Γ2 + ∆2
k + 16∆2) cos

∆kt

2
− Γ(∆2

k − 16∆2) sin
∆k|t|

2

]
,

where ∆k = 4
√

∆(∆− λ/Dk). It is also useful to cast
the Green’s functions in frequency space:

GRk (ω) =
1

PRk (ω)
=
−1

4JDk

(ω + ω+)(ω + ω−)

(ω − ωa)(ω − ωb)
, (98)

and

GKk (ω) = −PKk (ω)|GRk,0(ω)|2 (99)

=
−iλΓ

4JD2
k

(ω + ω+)(ω + ω+∗) + (ω + ω−)(ω + ω−∗)

(ω − ωa)(ω − ωb)(ω − ω∗a)(ω − ω∗b )
,

with ω+/− = iΓ/2± 2∆ and ωa/b = (−iΓ±∆k)/2.
Finally, we identify the low-frequency effective temper-

ature of spin waves:

Teff,k = lim
ω→0

ω

2

GKk (ω)

GRk (ω)−GAk (ω)
=

Γ2 + 16∆2

32∆
. (100)

Interestingly, this effective temperature is k-independent
and is in fact equal to the effective temperature of the
collective mode; cf. Eq. (52). This provides an inter-
esting picture where the collective mode is in effective
equilibrium with a thermal bath of spin waves.

C. Self-Energy

In this section, we compute the correction to the self
energy due to spin waves and investigate their effect on

Figure 14. (a) A representative diagram involving spin waves,

mk,c/q. An additional prefactor of
√
λ/J arises for each ap-

pearance of spin wave compared to that of the collective field;
cf. Fig. 2. The Kronecker delta enforces momentum con-
servation. (b) Contracted arrowed legs represent spin-wave
Green’s functions.

the phase diagram and the dynamics, particularly at
the weakly dissipative point. Our starting point is the
Keldysh form of the familiar Dyson equation [36],

G−1 = G−1 −Σ , (101)

where G is the exact Green’s function for the collective
field, and G−1 is given by the kernel in the first term
in Eq. (93). The self-energy Σ has the typical Keldysh
structure and takes the form

Σ =

(
0 ΣA

ΣR ΣK

)
. (102)

The low-frequency expansion of the retarded and
Keldysh elements of the self energy will renormalize the
parameters describing the dynamics of the collective field
as ΣR(ω) ∼ −δr + iδγω and ΣK(ω = 0) = δD. At any
generic critical point, the spin waves will simply provide
a correction δγ and δD to the otherwise finite values of
dissipation and fluctuations, respectively. However, the
weakly-dissipative critical point where Γ→ 0 is particu-
larly susceptible to the coupling to the spin waves. This
is because spin waves provide an effective thermal bath
for the collective mode [see Eq. (100)], which could very
well generate dissipation (even when Γ→ 0).

To calculate the self energy, we utilize the diagram-
matic representation developed in Sec. IV D; we also in-
clude lines with an arrow to denote spin waves with a
nonzero momentum in addition to those without an ar-
row which refer to the collective field. The connected
diagrams inside the logarithm in Eq. (46) are modi-
fied accordingly: we include an additional prefactor of√
λ/J for each appearance of the mk fields, and keep

track of momentum indices. The diagrams resultant from
expanding the logarithm in Eq. (50) should be summed
over all momenta, with an overall Kronecker delta enforc-
ing momentum conservation. An example of the classical
vertex for the spin waves can be found in Fig. 14.
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Figure 15. Diagrams contributing to the Keldysh component
of the self energy, ΣK , to the order ∼ λ2.

Figure 16. Diagrams contributing to the retarded component
of the self energy, ΣR, to the order ∼ λ2.

The lowest nontrivial correction to the self energy
arises at the order O(λ2) due to a combination of mo-
mentum conservation and the fact that D−1 is traceless.
The one-loop diagrams contributing to ΣK to the order
O(λ2) are depicted in Fig. 15, while those contributing
to ΣR are given in Fig. 16. All other diagrams are either
higher order in λ or are suppressed as O(1/N). Note that
only diagrams with two external quantum legs contribute
to ΣK , while those with one external quantum and an-
other classical leg contribute to ΣR, in harmony with the
Keldysh structure of the action at the quadratic level.
As an example calculation, the self-energy contribution
to ΣK due to the uqccq one-loop diagram is given by

ΣK(qccq)(ω) =
−λ
JN

∑
k 6=0

∫
ω′

[
uqccq(−ω, ω′,−ω′, ω)

+ uqccq(ω, ω
′,−ω′,−ω)

]
GKk,0(ω′) .

(103)

The overall minus follows from a factor of −i from the
perturbative expansion of the path integral multiplied by
another factor of −i from the connected four-legged dia-
grams in Eq. (50). The above expression must be sym-
metrized with respect to the external frequency due to

the same symmetry of the Keldysh component PK . The
interaction coefficient in frequency space is then given by

uqccq(ω) =
i256∆2J4

ω1 + ω2 − iΓ
f(ω1, ω4) , (104)

where f(x, y) = 1/[(x−ω+)(x−ω−)(y−ω+∗)(y−ω−∗)].
Setting ω1 = ω4 = 0 and expanding to lowest non-zero
order in λ, we find the correction

ΣK(qccq)(0) =
−i49152J2∆2Γλ2

(Γ2 + 16∆2)2(9Γ2 + 16∆2)
, (105)

where we have used the fact that
∑
k 6=0 1/D2

k = 2N−1/2

and neglected terms of O(1/N). Repeating this calcula-
tion for all of the diagrams in Fig. 15, we find that the
Keldysh component of the self-energy at low frequencies
is given by

ΣK(0) = δD =
i16384J2∆2Γ

(Γ2 + 16∆2)3
λ2 . (106)

Similarly, the retarded component of the self energy is
determined by considering the diagrams in Fig. 16; we
find

ΣR(ω) ∼ +δr + δγiω

=
1536λ2J2∆

(Γ2 + 16∆2)2
+

8192λ2J2∆Γ

(Γ2 + 16∆2)3
iω .

(107)

The above equations produce the first nontrivial correc-
tion to the self energy due to the coupling to spin waves.
At a generic critical point, these corrections remain fi-
nite and simply act as shifts to the noise and dissipa-
tion, as expected. Interestingly, we find from Eqs. (106)
and (107) that δγ and δD vanish in the limit Γ → 0.
In other words, while spin waves renormalize the low-
frequency parameters, they do not qualitatively change
the nature of the dynamics even in the limit Γ→ 0. We
thus conclude that the underdamped critical dynamics
at the weakly-dissipative point is robust against generic
perturbations exemplified by short-range interactions in
Eq. (5), at least to the lowest nontrivial order (∼ λ2).

Finally, we can inspect the effect of spin waves on the
phase boundary of the model. These effects can be seen
by setting the renormalized mass rren ≡ r + δr to zero,
where r is the bare mass defined in Eq. (58):

[Γ2 +16∆(∆−2J)](J−λ)2 +
768J

3
∆

(Γ2 + 16∆2)
λ2 = 0 , (108)

where we have defined J = J + λ and dropped terms of
O(λ3) or higher. We have redefined J to include the con-
tribution of the short-range interaction to the collective
mode, and to solely separate out the effect of spin waves.
In Fig. 17, one can see that ordered region shrinks due to
the coupling to spin waves. This is expected as spin waves
introduce more fluctuations and thus disfavor ordering.
Finally, we remark that Eq. (108) should not be trusted
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Figure 17. Phase boundary in the presence and absence of
short-range interactions; here, J = 1 and an exaggerated
value of λ = .1 is chosen for better visualization. The fea-
ture around ∆ ∼ λ could be an artifact of our perturbation
scheme, which requires λ� ∆.

near ∆→ 0 since it was implicitly assumed that ∆� λ
in our perturbative calculation (to expand ∆k in powers
of λ); however, it is possible that short-range interactions
dramatically alter the phase boundary near the origin, in
a fashion that could be related to the predicted first-order
phase transition in the DDIM in d dimensions [52, 59].

VII. CONCLUSION

In this work, we have performed a thorough field-
theoretical and numerical analysis of the driven-
dissipative Ising model with infinite-range interactions
using a non-equilibrium variant of the quantum-to-
classical mapping. This mapping has allowed a tractable
field-theoretical framework even in the presence of local
spontaneous emission. While other techniques for deal-
ing with local dissipation exist [19, 71], our formalism is a
powerful alternative which naturally reflects the underly-
ing Ising symmetry of the driven-dissipative spin model.
With this technology, we have shown that the DDIM
exhibits qualitatively different critical dynamics in the
weakly-dissipative limit. While one might naively expect
that weak dissipation could give rise to quantum critical-
ity, we have seen that the critical exponents character-
izing the phase transition remain classical; see however
Ref. [64] for quantum behavior in the weakly dissipative
limit of a short-range model. Using the diagrammatic
language, we have also shown that the underdamped crit-
ical behavior persists in the presence of short-range per-
turbations.

Our results can be observed in experimental platforms
where the open Dicke model is realized [1, 2]. Alter-
natively, this model can be realized directly using ion-
trap platforms with sufficiently long-range interactions
between atoms [10]. While weak dissipation may be
hard to access experimentally, we have shown that the

phenomena discussed in this paper emerge at a moder-
ate value of dissipation rate for experimentally accessible
system sizes.

In a sequel paper, we will extend this work to the full
open Dicke model with local spontaneous emission, and
perform a comprehensive analysis of the critical proper-
ties and effective temperature using similar techniques
to what we have developed here. In another future pa-
per, we will examine the entanglement properties of the
driven-dissipative Ising model to fully characterize its
many-body characteristics. Calculating entanglement in
non-equilibrium many-body systems is highly non-trivial,
but it is possible analytically in the context of the model
presented here. A possible future direction is using the
quantum-to-classical mapping and the diagrammatics de-
veloped in this work to study the short-ranged DDIM, a
model that has been previously treated using approxi-
mate schemes or small-size numerics [52, 59, 72–74] and,
if tweaked properly, also Rydberg systems where the Ising
interaction is along the z direction [75] in which case a
natural basis for the quantum-to-classical mapping would
be σz instead.

ACKNOWLEDGEMENTS

This material is based upon work supported by the
NSF under Grant No. DMR-1912799. M.M. also ac-
knowledges support from the Air Force Office of Scien-
tific Research (AFOSR) under award number FA9550-
20-1-0073 as well as the start-up funding from Michigan
State University. We are also indebted to Alireza Seif
and Paraj Titum for valuable discussions

Appendix A: Large-Detuning Limit of the Open
Dicke Model

Here, we show that the model in Eq. (6) exactly follows
from the open Dicke model in the limit of large cavity
detuning. We emphasize that this procedure is exact
and does not rely on any assumptions about the cavity
mode. Beginning with Eq. (1), the full quantum master
equation takes the form

dρ

dt
=− i[HDicke, ρ] + κ

(
aρa† − 1

2
{a†a, ρ}

)
+ Γ

∑
i

(
σ−i ρσ

+
i −

1

2
{σ+

i σ
−
i , ρ}

)
.

(A1)

Following the same steps as outlined in Sec. III (com-
bined with a coherent-state representation for the cavity
field), we obtain an action that consists of cavity, atomic
and interaction terms:

SD = Scav + Sint + Sspin . (A2)
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The cavity term in the action is given by

Scav =

∫
ω

(
ac
aq

)†(
0 ω − ω0 − iκ2

ω − ω0 + iκ2 iκ

)(
ac
aq

)
.

(A3)
Defining a = (x− ip)/2, we can integrate out the imagi-
nary component of the cavity field, p, exactly as Sint does
not depend on p. Tracing out the spins (see Sec. III), we

then find an exact expression for the action

SD =

∫
ω

xT (−ω)D(ω)x(ω)− iN ln Tr
(
T e

∫
t
TD(xc/q(t)

)
,

(A4)
where x(ω) = (xc(ω), xq(ω))T and the kernel D(ω) is
given by

D(ω) ≡
(

0 DA(ω)
DR(ω) DK(ω)

)

=

 0 1
4

(
− (κ+2iω)2

4ω0
− ω0

)
1
4

(
− (κ−2iω)2

4ω0
− ω0

)
iκ(κ2+4(ω2+ω2

0))

16ω2
0

 .

(A5)

The matrix TD is rather similar to that in Eq. (24):

TD(xc(t), xq(t)) =


−Γ

4 − i
2
√

2g√
N
xq(t) i∆ −i∆ Γ

4

i∆− Γ
2 − 3Γ

4 − i
2
√

2g√
N
xc(t) −Γ

4 −i∆− Γ
2

−i∆− Γ
2 −Γ

4 − 3Γ
4 + i 2

√
2g√
N
xc(t) i∆− Γ

2

Γ
4 −i∆ i∆ −Γ

4 + i 2
√

2g√
N
xq(t)

 . (A6)

We then make the transformation mc ≡ DR
0 xc/

√
Ng and

mq ≡ DR
0 xq/

√
Ng with D0 ≡ D(ω = 0), and further

define J ≡ −g2/DR
0 = 16g2ω0/(κ

2 + 4ω2
0) and Γx ≡

Jκ/ω0. The action is then cast as

SD =

∫
ω

mT (−ω)P(ω)m(ω)−iN ln Tr
(
T e

∫
t
T(mc/q(t))

)
,

(A7)
where m(ω) = (mc(ω),mq(ω))T , the kernel P is given by

P(ω) = N

 0 −J(1 + 4iκω−4ω2

κ2+ω2
0

)

−J(1− 4iκω+4ω2

κ2+ω2
0

) iΓx(1 + 4ω2

κ2+4ω2
0
)

 ,

(A8)
and the matrix T(mc(t),mq(t)) is identical to that in
Eq. (24).

Now we consider the limit of large ω0 and κ, in which
case we can ignore those terms in Eq. (A8) that are sup-
pressed by a factor of 1/(κ2 + ω2

0). This eliminates the
frequency-dependent terms and yields the kernel

P(ω) ≈ N

 0 −J

−J iΓx

 . (A9)

Using the quantum-to-classical mapping, one can show
that the diagonal term (∼ iΓx) can be identified with
dephasing in the form of the Lindblad operator Lx =√

Γx/NSx. Indeed, this agrees with the large-detuning
limit discussed in Ref. [13]. Our model is different, how-
ever, due to the atomic spontaneous emission, which al-
lows for a nontrivial non-equilibrium steady state. Fi-
nally, to obtain the DDIM, we consider the detuning ω0

to be the largest frequency frequency scale, even com-
pared to κ. In this limit, we can neglect the dephasing
term, since Γx = Jκ/ω0 � J , and recover the driven-
dissipative Ising model introduced in Eq. (85). The ad-
vantage of this process compared to the usual adiabatic
elimination procedure, is that we have not discarded any
information about the cavity. We are simply showing
that the action of the open Dicke model in the large de-
tuning limit is exactly identical to the DDIM action.

Appendix B: Interaction coefficients

There are many relevant interaction coefficients nec-
essary to compute the diagrams in Sec. IV D. They are
defined by Eq. (47) in the time domain and in Eq. (49)
in the frequency domain. Here, we list the relevant inter-
action coefficients for the four-legged one-loop diagrams
in Figs. 15 and 16 in the frequency domain:

uqccc(ω) =
−128∆J4(Γ/2− iω4)

ω1 + ω2 − iΓ
f(ω1, ω4) , (B1)

uqcqq(ω) =
i128∆J4(Γ/2− iω4)

(ω1 + ω2 − iε)(ω1 + ω2 − iΓ)
f(ω1, ω4) ,

(B2)

uqcqc(ω) =
256∆2J4Γ

(ω1 + ω2 − iε)(ω1 + ω2 − iΓ)
f(ω1, ω4) ,

(B3)
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uqccq(ω) =
i256∆2λJ3

ω1 + ω2 − iΓ
f(ω1, ω4) , (B4)

uqc(ω1, ω2)uqc(ω3, ω4)

= −256∆2J4 × 2πδ(ω1 + ω2)f(ω1, ω4) .
(B5)

uqq(ω1, ω2)uqc(ω3, ω4) (B6)

= −i128∆J4(iω1 + Γ/2)× 2πδ(ω1 + ω2)f(ω1, ω4) .

We also list here the interaction coefficient for the six-
legged classical vertex used to calculate the damping pa-
rameter in the ordered phase in Sec. IV E,

uqcccccc(ω)

=
−256J6∆(Γ + 2i(ω1 + ω2 + ω3)(Γ− 2iω6)

(ω1 + ω2 + ω3 − ω+)(ω1 + ω2 + ω3 − ω−)

× f(ω1, ω6)

(ω1 + ω2 − iΓ)(ω5 + ω6 + iΓ)
,

(B7)

where ω = (ω1, ..., ωn) (for an n-legged diagram),
f(x, y) = 1/[(x − ω+)(x − ω−)(y − ω+∗)(y − ω−∗)], and

ω+/− = iΓ/2±2∆. For self-energy calculations, it is use-
ful to recall that

∑
k 6=0 1/Dk = −1/2 and

∑
k 6=0 1/D2

k =

2N − 1/2, where Dk is defined in Eq. (89).

Appendix C: Numerical Methods

Quantum many-body systems are difficult to simulate
numerically due to exponential growth of the Hilbert
space with the system size. This growth is even worse
when dissipation is considered, making an exact simula-
tion beyond a few spins almost impossible. However, Eq.
(6) exhibits a permutation symmetry which can be taken
advantage of to reduce the size of the relevant Hilbert
space to O(N3). This symmetry breaks the Liouvillian
matrix L into a block-diagonal structure, where each
block corresponds to a different symmetry sector. The
non-equilibrium steady state resides in the fully symmet-
ric sector, therefore we introduce a permutation symmet-
ric basis as [26, 76]

ρNx,Ny,Nz =
1

N
∑
P

PP(σx1 ⊗ ...⊗ σxNx
⊗ σyNx+1 ⊗ ...⊗ σ

y
Nx+Ny

⊗ σzNx+Ny+1 ⊗ ...⊗ σzNx+Ny+Nz
⊗ INx+Ny+Nz+1 ⊗ ...⊗ IN ) ,

(C1)

with the normalization factor N =
√
N !Nx!Ny!Nz!NI !.

The sum is over all permutations P of the indices, where
the operator PP permutes the indices according to P.
These basis elements are normalized as Tr(ρµρν)/2N =
δµ,ν where µ = (Nx, Ny, Nz), and the Liouvillian matrix
elements are given by

Lµ,ν =
1

2N
Tr (ρµL[ρν ]) . (C2)

In this basis, the dimensionality grows polynomially with
the system size as N(N + 1)(N + 2)/6 ∼ O(N3) in con-
trast with the exponential growth in a generic many-body
system. This scaling can also be contrasted with the
O(N4) growth of the usual Dicke (angular-momentum)
basis. Because the Liouvillian is permutation symmetric,
action of L on this basis will keep us in the fully sym-
metric subspace. To efficiently construct the matrix Lµν
from the permutation symmetric basis given by Eq. (C1),
we should identify how the basis itself is transformed by
L defined in Eq. (6). The action of the Liouvillian on a
state can be determined analytically by inspecting how

the total-spin operators act on one of our basis elements:

SxρNx,Ny,Nz =
√
Nx(NI + 1) ρNx−1,Ny,Nz

+ i
√
Ny(Nz + 1) ρNx,Ny−1,Nz+1

− i
√

(Ny + 1)Nz ρNx,Ny+1,Nz−1

+
√

(Nx + 1)NI ρNx+1,Ny,Nz
,

(C3)

SyρNx,Ny,Nz
=
√
Ny(NI + 1) ρNx,Ny−1,Nz

+ i
√
Nz(Nx + 1) ρNx+1,Ny,Nz−1

− i
√

(Nz + 1)Nx ρNx−1,Ny,Nz+1

+
√

(Ny + 1)NI ρNx,Ny+1,Nz
,

(C4)

SzρNx,Ny,Nz
=
√
Nz(NI + 1) ρNx,Ny,Nz−1

+ i
√
Nx(Ny + 1) ρNx−1,Ny+1,Nz

− i
√

(Nx + 1)Ny ρNx+1,Ny−1,Nz

+
√

(Nz + 1)NI ρNx,Ny,Nz+1 ,

(C5)
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where NI = N − Nx − Ny − Nz, and the action from
the right can be found by taking the adjoint of the RHS.
The only other non-trivial term is the dissipative term∑
i σ
−
i ρσ

+
i , whose action on the basis elements is given

by ∑
i

σ−i ρNx,Ny,Nz
σ+
i

=
1

2

[
(NI −Nz)ρNx,Ny,Nz

+
√
Nz(NI + 1)ρNx,Ny,Nz−1

−
√
NI(Nz + 1)ρNx,Ny,Nz+1

]
.

(C6)

Using the above relations, we find the action of the Li-
ouvillian on our basis as

L[ρNx,Ny,Nz
] =

4J

N

(√
(Nx + 1)(Ny + 1)NzNI ρNx+1,Ny+1,Nz−1 +

√
Nx(Ny + 1)Nz(NI + 1)ρNx−1,Ny+1,Nz−1

−
√
NxNy(Nz + 1)(NI + 1) ρNx−1,Ny−1,Nz+1 −

√
(Nx + 1)Ny(Nz + 1)NI ρNx+1,Ny−1,Nz+1

)
+ 2∆

(√
Nx(Ny + 1) ρNx−1,Ny+1,Nz −

√
Ny(Nx + 1) ρNx+1,Ny−1,Nz

)
+

Γ

2

(
(NI −Nz −N)ρNx,Ny,Nz

− 2
√

(Nz + 1)NIρNx,Ny,Nz+1

)
.

(C7)

From here, it is possible to construct the Liouvillian ma-
trix as defined in Eq. (C2).

Equipped with Eq. (C1), we can efficiently construct
the Liouvillian matrix, and the non-equilibrium steady
state can be then obtained through the shifted-inverse-
power method [77]. However, for larger system sizes
(N ' 90) finding the steady state by direct LU decom-
position becomes inefficient. At that point, it is more
efficient to use linear solvers such as BICGSTAB to ap-
proximate the steady state.

To characterize the dynamics, we investigate the corre-
lation function C(t) = 〈{Sx(t), Sx(0)}〉/N and response
function χ(t) = −i〈[Sx(t), Sx(0)]〉/N . The two-time ex-
pectation values can be calculated as [65]

〈{Sx(t), Sx(0)}〉 = Tr
(
Sxe

tL[Sxρss] + Sxe
tL[ρssSx]

)
= 2ReTr

(
Sxe

tL[Sxρss]
)
, (C8)

1

i
〈[Sx(t)Sx(0)]〉 =

1

i
Tr
(
Sxe

tL[Sxρss]− SxetL[ρssSx]
)

= 2ImTr
(
Sxe

tL[Sxρss]
)
, (C9)

with ρss being the steady state density matrix. We can
instead represent the above equations in a vectorized
form using our permutation symmetric basis:

C(t) =
2

N
ReTr

(
Sxe

tL[Sxρss]
)

=
2

N
Re
〈〈Sx| etL |Sxρss〉〉
〈〈I|ρss〉〉

,

(C10)

χ(t) =
2

N
ImTr

(
Sxe

tL[Sxρss]
)

=
2

N
Im
〈〈Sx| etL |Sxρss〉〉
〈〈I|ρss〉〉

,

(C11)

where we have defined the vectorized state

|ρ(t)〉〉 =
∑
µ

cµ(t) |ρµ〉〉 . (C12)

The denominator in Eq. (C10) is due to the normaliza-
tion of the steady state (this is equivalent to dividing the
state by c0,0,0). In the case of static correlations, one can
see that the auto-correlation function takes the simple
form

C(0) =
2

Nc0,0,0

(√
2N(N − 1)c2,0,0 +Nc0,0,0

)
. (C13)

Using these techniques, we are able to numerically in-
vestigate dynamical correlations with system sizes up to
N = 200.

Appendix D: Equilibrium Quantum Ising Model

In this section, we report the dynamics of the equilib-
rium infinite-range Ising model at finite temperature (in
the absence of dissipation). Specifically, we demonstrate
via exact numerical simulation that the thermal critical
point of this model belongs to the same (static and dy-
namic) universality class as the driven-dissipative Ising
model in the weakly dissipative regime. We start with
the same Hamiltonian

H = − J
N
S2
x + ∆Sz . (D1)

This Hamiltonian features a thermal phase transition to
an ordered phase where the Ising Z2 symmetry is broken
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Figure 18. Finite-size scaling behavior of the infinite-range
Ising model at a thermal critical point (J = 1,∆ = 1, T =

1.82048). At this critical point, fluctuations scale as N1/2,
while the critical dynamics is underdamped and is governed
by a characteristic time scale t ∼ N1/4. These exponents are
identical to those of the driven-dissipative Ising model in the
weakly dissipative regime (see Fig. 3 of the main text).

at the critical temperature [30]

Tc =
2∆

ln
(

1+∆/2J
1−∆/2J

) . (D2)

The Hamiltonian conserves the total spin (i.e., [H, ~S] =
0) which thus defines a good quantum number. In the
angular-momentum basis defined by |S,m〉, the Hamilto-
nian becomes block diagonal with each block correspond-
ing to a total spin S. However, each sector is highly de-
generate with a multiplicity of D(S). The multiplicity is
given by D(N/2) = 1, D(N/2−1) = N−1, D(N/2−2) =
N(N − 3)/2, and

D(N/2− p) =
N(N − 1)...(N − p+ 2)

p!
(N − 2p+ 1) ,

(D3)
for 3 ≤ p ≤ N/2 [30]. The thermal state is then given by

ρ(β) = e−βH =

N/2⊕
S=0

D(S)⊕
i=1

e−βHS

 , (D4)

which is to be understood as the direct sum over each
unique spin sector with the corresponding multiplicity
D(S). We then numerically calculate the correlation

function

C(t) =
1

N
〈{Sx(t), Sx(0)}〉 =

2

N
Re〈Sx(t)Sx(0)〉

=
2

N
ReTr

(
e−iHtSxe

iHtSxρ(β)
)
.

(D5)

A plot of the correlation function and its finite-size scal-
ing behavior can be found in Fig. 18. There, we see that
the dynamical exponent, defined via t ∼ Nζ , is given
by ζ = 1/4 and that the dynamics is underdamped just
like at the weakly-dissipative critical point of the driven-
dissipative Ising model discussed in Sec. V B.

Appendix E: Classical (Stochastic) Ising Model

For completeness, here we introduce the classical
stochastic Ising model [50]. The infinite-range (classical)
Ising Hamiltonian is given by

H = − J
N
S2 , (E1)

where S =
∑N
i si with the Ising spin variable si = ±1.

While the Hamiltonian (being a c number and commut-
ing with all observables) does not impose any intrinsic
dynamics, a stochastic, Glauber-type dynamics can be
imposed via the (classical) master equation

d

dt
P ({s}; t)

= −
N∑
i=1

W (si → −si, t)P (s1, ..., si, ..., sN ; t)

+

N∑
i=1

W (−si → si, t)P (s1, ...,−si, ..., sN ; t) .

(E2)

Here, P ({s}; t) denotes the probability that the system is
in a spin configuration {s} at time t, and W (si → −si, t)
represents the transition probability rate of a spin flip at
site i and at time t. Under equilibrium conditions, the
probability and transition rates satisfy detailed balance
[78],

W (si → −si)
W (−si → si)

=
P (s1, ...,−si, ..., sN )

P (s1, ..., si, ..., sN )
, (E3)

with the transition rate being of the Glauber type (char-
acterizing a non-conserved order parameter),

W (si → −si) =
1

2τ0
[1− si tanh (βE)] . (E4)

Here, τ0 defines the characteristic time scale of Glauber

dynamics, and E = −(2J/N)
∑N
i sj . From here, one

can simulate the relaxation of the system from a near-
equilibrium state using Monte Carlo methods combined
with the transition rate given above. Monte-Carlo simu-
lations of the this model at criticality are consistent with
a critical dynamical scaling where t ∼ N1/2 [50].
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A. Silva, Phys. Rev. Lett. 120, 130603 (2018).

[34] F. Persico and G. Vetri, Phys. Rev. A 12, 2083 (1975).
[35] M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976).
[36] A. Kamenev, Field Theory of Non-Equilibrium Systems

(Cambridge University Press, 2011).
[37] J. Gelhausen, M. Buchhold, and P. Strack, Phys. Rev. A

95, 063824 (2017).
[38] A. Chiocchetta, M. Tavora, A. Gambassi, and A. Mitra,

Phys. Rev. B 91, 220302 (2015).
[39] D. A. Smith, M. Gring, T. Langen, M. Kuhnert,

B. Rauer, R. Geiger, T. Kitagawa, I. Mazets, E. Demler,
and J. Schmiedmayer, New J. Phys. 15, 075011 (2013).

[40] P. Titum and M. F. Maghrebi, Phys. Rev. Lett. 125,
040602 (2020).

[41] M. Foss-Feig, J. T. Young, V. V. Albert, A. V. Gor-
shkov, and M. F. Maghrebi, Phys. Rev. Lett. 119, 190402
(2017).

[42] U. C. Tuber, Critical Dynamics: A Field Theory Ap-
proach to Equilibrium and Non-Equilibrium Scaling Be-
havior (Cambridge University Press, 2014).

[43] R. Botet and R. Jullien, Phys. Rev. B 28, 3955 (1983).
[44] R. Lundgren, A. V. Gorshkov, and M. F. Maghrebi, Phys.

Rev. A 102, 032218 (2020).
[45] S. Sachdev, Quantum Phase Transitions (Cambridge

University Press, 2011).
[46] F. Lange, Z. Lenarčič, and A. Rosch, Nat. Commun. 8,

15767 (2017).
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