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Squeezing of quantum states is of great interest due to its application in high-precision measure-
ment that can exceed standard quantum noise-limit described by Heisenberg uncertainty relations.
Here, we study the squeezing of quantum systems with SU(3) symmetry via one-axis twisting
Hamiltonian and examine the intriguing connections between the squeezing of spin-1/2 and spin-1
systems. There are seven subalgebras of su(3) Lie algebra. All these subalgebras are identical with
su(2) Lie algebra but not all of them have the same anti-commutation relations as su(2). Inter-
estingly, squeezing parameters corresponding to spin-1 subalgebras depend not only on structure
constants but also on anti-commutation relations of the subalgebras. New results are reported for
the subalgebras with vanishing anti-commutators and nematic squeezing, while in other cases our
first principle calculation recovers known results.

I. INTRODUCTION

Squeezed states are the states with reduced quantum
fluctuations below the standard quantum limit of fluc-
tuations characterized by the coherent state. Generally,
the squeezed states are achieved by applying a second-
order nonlinear Hamiltonian on the coherent state with
minimum uncertainty fluctuations, as a consequence re-
distribution of equal shared quantum fluctuations within
two quadratures develops reduced quantum noise lower
than the standard quantum limit. The importance of the
squeezed states can be justified by their wide range of ap-
plications; for example high-precision spectroscopic [1–6]
and interferometric measurements [7–10] (e.g. gravita-
tional waves), atomic clocks [11–13], and quantum infor-
mation processing [14].

The first experimental demonstration of squeezed
states is carried out in an electromagnetic field in an op-
tical cavity by non-degenerate four-wave mixing [15] and
later squeezed quantum states are demonstrated also in
cold atomic ensembles that resemble spin-1/2 system by
various methods such as quantum state transfer, direct
interaction of pseudo-spins, multiple passes of light and
so forth [16–21]. Since then spin squeezing was used ex-
tensively in other contexts like Bose-Einstein condensates
[22] and polarization optics [23]. So far all these applica-
tions required only the squeezed states with SU(2) sym-
metry. The spin-1 squeezed states [24–30] are needed in
the context of the three-component Bose-Einstein con-
densates [31–36] and quantum description of the focused
electromagnetic fields [23, 37–40] which are described
by SU(3) Lie group. In the context of atomic vapors,
the SU(3) symmetry has been realized in the experi-
ment done by E. J. Davis et al. [41] which produces
ferromagnetic-like interactions between spin-1 atoms. It
is clear from these recent developments that SU(3) sym-
metry is starting to become important in optical physics

starting from multicomponent Bose-Einstein condensates
to the quantum states of focused electromagnetic fields.
It is expected that it would become more and more rele-
vant in future investigations.

For spin-1, there are eight Hermitian, traceless and
orthonormal operators analogous to Pauli matrices for
spin-1/2. Three of them are just spin operators whereas
the last five operators are quadrupole operators. They
form su(3) Lie algebra. Then the convenient way to
study of squeezing of spin-1 turns out to be the inves-
tigation of su(2) subalgebras of su(3) Lie algebra. Great
progress in this research has been made by Yukawa and
et al. [26, 29]. They classify subalgebras into two types,
namely type-1 and type-2 according to the absolute value
of the structure constants of the subalgebras, and predict
squeezing parameters for type-1 and type-2 subalgebras
based on the formal structure of subalgebras especially
on the commutation relations i.e., structure constants.

In this paper, we study squeezed collective states of iso-
latedN spin-1 systems produced by the action of one-axis
twisting Hamiltonian on a coherent state. The idea of
squeezed states is based on constructing states for which
uncertainties in certain physical variables are lower than
those for coherent states where the Heisenberg uncer-
tainty relation is crucial. This involves a set of opera-
tors which are closed under commutation relations. Thus
among the elements of the su(3) algebra, we look for sets
of operators which satisfy this property. Our procedure
is similar to what is the standard in the field of squeezed
states.

We investigate the su(2) subalgebras of the su(3)
Lie algebra and identify two types of the subalgebras:
type-1 and type-2. This classification is based on anti-
commutation relations that make difference between spin
squeezed states of the identified types of subalgebras.
Accidentally, our identified types of subalgebras ex-
actly coincide with the types of subalgebras obtained by
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E. Yukawa, M. Ueda, and K. Nemoto in Ref. [26]. How-
ever, we concentrate here on the anti-commutation rela-
tions of the subalgebras rather than structure constants,
and our primary concern here is to obtain the squeezing
parameters by first-principle calculations, namely rigor-
ous calculation of the squeezing parameters using individ-
ual spin operators instead of the collective operators. As
a result of the first-principle calculations, in some cases,
we prove that misleading results about the squeezing pa-
rameters can be obtained when the similarities between
the algebra of spin-1/2 and subalgebra of spin-1 are taken
into consideration without rigorous calculations.

This paper is organized as follows: In Sec. II, we ex-
amine the su(2) subalgebras of the su(3) Lie algebra. In
the subsequent Sec. III and IV, we consider the squeezed
states produced by applying one-axis twisting Hamilto-
nian on the coherent and nematic states, respectively.
Then, in Sec. V, we examine the squeezed states in a
specific case, namely for two spin-1 particles. In the final
section VI, we summarize our work. At the end of this
paper, Appendix A is briefly reviewed the squeezing of
spin-1/2 to compare it with spin-1.

II. SUBALGEBRAS OF su(3) LIE ALGEBRA

Spin-1 system is three-level quantum system deter-
mined by spin quantum number s = 1. Spin operator
ŝz along z-direction has three distinct eigenvalues +1,
0, and −1 and the corresponding eigenstates are denoted
by |1〉, |0〉, and |-1〉 forming three-dimensional spin space.
The dynamics of the spin-1 system is rotation in the spin
space and represented by the unitary operators in the
form of e−iφg where g is the group algebra element of
the su(3), and φ is rotation angle. The group algebra
element g can be uniquely determined by linear super-
position of eight independent, Hermitian and traceless
generators; more physical choice of these generators are
three spin-1 operators ŝx, ŝy, ŝz that obey commutation
relation [ŝi, ŝj ] = iεijkŝk where εijk is Levi-Civita tensor,
and five quadrupole operators q̂3z2−r2 , q̂x2−y2 , q̂xy, q̂xz
and q̂yz given by

q̂x2−y2 = ŝ2x − ŝ2y, q̂3z2−r2 = 3ŝ2z − 2Î ,

q̂xy = {ŝx, ŝy}, q̂xz = {ŝx, ŝz},
q̂yz = {ŝy, ŝz}, (1)

where the curly brackets denote anti-commutator and Î
is the unit operator.

There are seven subalgebras of the su(3) as listed below

[26, 34]

1. ŝx, ŝy, ŝz;

2. ŝx, q̂xy, q̂xz;

3. ŝy, q̂yz, q̂xy;

4. ŝz, q̂xz, q̂yz;

5. ŝx, q̂yz, q̂+;

6. ŝy, q̂xz, q̂−;

7. ŝz, q̂x2−y2 , q̂xy, (2)

where q̂± = (q̂x2−y2 ± q̂3z2−r2)/2. These 7 subalgebras
are all three-dimensional and satisfy three properties of
a Lie algebra, namely (i) operators form a linear vector
space (ii) operators are closed under the commutation
relations (iii) operators satisfy the Jacobi identity. The
explicit form of commutation relations are in the form of

[Âi, Âj ] = iεijkÂk (3)

for the first four subalgebras and

[Âi, Âj ] = 2iεijkÂk (4)

for the last three subalgebras [26], and here the opera-

tors Âi stand for a triad of operators of the subalgebras.
It should be noted that the seven algebras are not in-
dependent, however, the independence is not necessary
to construct the squeezed states. The construction of
squeezed states is guided by the Heisenberg uncertainty
relations and thus Eqs. (3,4) are important. Further our
construction of SU(3) squeezed states does not exhaust
all possible squeezed states for such systems.

Anti-commutators are given in Table I. Notice that
there are two types of the subalgebras namely type-
1: the first four subalgebras that have non-zero anti-
commutators and type-2: last three subalgebras that
have vanishing anti-commutators. For the type-1, anti-
commutators shown in Table I can be compactly written
as

{ŝi, ŝj} = q̂ij , {ŝi, q̂ij} = ŝj ,

{q̂ij , q̂jk} = −q̂ik, (5)

where i, j take values x, y, and z.
For the system composed of many spin-1 particles,

collective spin and quadrupole operators are defined as
the sum of all individual spin and quadrupole operators.
They are given as follow

Ŝi =

N∑
α=1

ŝiα, Q̂ij =

N∑
α=1

q̂ijα, Q̂± =

N∑
α=1

q̂±α,

Q̂x2−y2 =

N∑
α=1

q̂x2−y2,α, and Q̂3z2−r2 =

N∑
α=1

q̂3z2−r2,α

(6)

where N stands for the number of the spin-1 particles.
For notation, the uppercase operators stand for collective
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TABLE I. Anti-commutation relations of spin-1 operators for
the su(2) subalgebras given by Eq. (2)

Sub-
algebras

Anti-commutation relations

Type-1

1 {ŝx, ŝy} = q̂xy, {ŝx, ŝz} = q̂xz, {ŝy, ŝz} = q̂yz

2 {ŝx, q̂xy} = ŝy, {ŝx, q̂xz} = ŝz, {q̂xy, q̂xz} = −q̂yz

3 {ŝy, q̂xy} = ŝx, {ŝy, q̂yz} = ŝz, {q̂xy, q̂yz} = −q̂xz

4 {ŝz, q̂xz} = ŝx, {ŝz, q̂yz} = ŝy, {q̂xz, q̂yz} = −q̂xy

Type-2

5 {ŝx, q̂yz} = 0, {ŝx, q̂+} = 0, {q̂yz, q̂+} = 0

6 {ŝy, q̂xz} = 0, {ŝy, q̂−} = 0, {q̂xz, q̂−} = 0

7 {ŝz, q̂x2−y2} = 0, {ŝz, q̂xy} = 0, {q̂x2−y2 , q̂xy} = 0

spin operators whereas the lowercase operators stand for
single spin operators, for example ŝxα denotes x com-
ponent of the αth spin operator. This notation is used
throughout this paper.

Finally, it is worth mentioning that our classification
of su(3) Lie algebra based on anti-commutation relations
accidentally coincide with the classification provided in
Ref. [26].

In next two sections, we discuss the spin as well as ne-
matic squeezing of the specifically chosen initial states via
one-axis twisting Hamiltonian where we find very inter-
esting results; see Fig. 1 especially the black curve. For
the general initial states, the question is very much open
even in the context of spin-half systems. Some answers
are known for states obtained by rotation of say lowest
state. The spin-1 space is much richer and rotations form
only a small subgroup.

III. SPIN SQUEEZING OF |0, 0, N〉 STATE VIA
ONE-AXIS TWISTING HAMILTONIAN

In this section, we focus on squeezing parameters of the
various types of the spin-1 squeezed states produced by
applying one-axis twisting Hamiltonian on the coherent
spin state |0, 0, N〉. Note that any state in which all spins
are aligned in the same direction would be referred to as
a coherent state. Here the notation |N1, N0, N-1〉 means
N1, N0 and N-1 spin-1 particles are in the levels |1〉, |0〉,
and |-1〉, respectively. We use the squeezing parameter
defined in Ref. [42] throughout this paper. Details of the
squeezing parameter is given in Appendix A (also see our
Eqs. (10), (20) and (23)).

A. Type-2 spin squeezing

First, we consider the squeezed state with respect to
the type-2 subalgebras since it has not been considered
as yet in literature. There are strong similarities be-
tween spin-1/2 algebra and type-2 subalgebras, specif-
ically, they have not only the similar commutation re-
lations of quadrature operators but also the same anti-
commutation relations. Based on this similarities, one
can easily conclude the same squeezing parameters for
both cases. However, we will reveal here that the squeez-
ing parameter for type-2 spin squeezing is not identical to
that of spin-1/2 regardless of their algebraic similarities.

It is sufficient to analyze any of the three subalgebras
of type-2 since all squeezing features of the three subal-
gebras of this type are identical to each other. Therefore,
as an example we examine subalgebra 5 (see Table. II)

in which Ŝx and Q̂yz are quadrature operators orthogo-
nal to mean spin direction. The well-known Heisenberg
uncertainty relation 〈∆Ŝ2

x〉〈∆Q̂2
yz〉 ≥ 4〈Q̂+〉2/4 = N2/4

leads to the standard quantum limit N/2.

The one-axis twisting Hamiltonian is given by Ĥ2 =
χŜ2

x, where χ stands for coupling constant and the label
2 means the type-2 subalgebras. Time dynamics is gov-
erned by unitary operator Û2(θ) = exp(−iθŜ2

x/2) with
θ = 2χt. To obtain the time dynamics of the individ-
ual spin operator q̂yz1, we calculate the following nested
commutation relations

[Ŝ2
x, q̂yz1] =2i{ŝx1, q̂+1}+ 4iK̂2q̂+1

=4iK̂2q̂+1,

[Ŝ2
x, [Ŝ

2
x, q̂yz1]] =8K̂2{ŝx1, q̂yz1}+ 16K̂2

2 q̂yz1

=16K̂2
2 q̂yz1,

[Ŝ2
x, [Ŝ

2
x, [Ŝ

2
x, q̂yz1]]] =32iK̂2

2{ŝx1, q̂+1}+ 64iK̂3
2 q̂+1

=64iK̂3
2 q̂+1,

[Ŝ2
x, [Ŝ

2
x, [Ŝ

2
x, [Ŝ

2
x, q̂yz1]]]] =128K̂3

2{ŝx1, q̂yz1}+ 256K̂4
2 q̂yz1

=256K̂4
2 q̂yz1, (7)

and so on. Here, K̂2 =
∑N
α=2 ŝxα. The nested commuta-

tion relations Eqs. (7) are simple as Eqs. (A4) since the
anti-commutators vanish {ŝx1, q̂+1} = {ŝx1, q̂yz1} = 0 as
spin-1/2. Furthermore, the time dynamics is obtained as

Û†2 q̂yz1Û2 = q̂yz1 cos(2θK̂2)− q̂+1 sin(2θK̂2). (8)

This expression looks similar to Eq. (A5) for spin-1/2
given in Appendix A, and the only difference is the double
scaling of variable θ. However, the expectation values

〈Q̂2
yz〉 =

N

2
+
N(N − 1)

8
(1− cos2N−4 2θ),

〈Q̂yzŜx〉 =〈ŜxQ̂yz〉∗ = −iN
2

cos2N−2 θ

+
N(N − 1)

4
sin(2θ) cos2N−4 θ

(9)
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looks different from that for spin-1/2 given by Eq. (A6).

Using Eq. (A2) along with the Eqs. (9) and 〈Ŝ2
x〉 = N/2

we obtain the following squeezing parameter (details of
the squeezing parameter is given in Appendix A)

ξ22(N, θ) =
var(Ŝx, Q̂yz)

N/2

= 1− 1

8
(N − 1)

×
[√

(1− cos2N−4(2θ))2 + 16 sin2(2θ) cos4N−8(θ)

− (1− cos2N−4(2θ))
]
. (10)

This squeezing parameter is a result of our first-principle
calculations, and it is exact expression. Furthermore,
it is interesting to study the asymptotic behavior of the
minimum attainable squeezing parameter and compare it
to other cases. For small θ and large N , we approximate
the squeezing parameter ξ22(N, θ) as

ξ22(N, θ) ' 1

16α2
+

128

3
β2, (11)

where α = Nθ/4 and β = Nθ2/8 as introduced in
Ref. [42]. This approximate squeezing parameter has a
minimum value given by

ξ22,min(N) '
(

9

2

)1/3

N−2/3 (12)

at θ0 = (3/4)1/6N−2/3. To compare the minimum
squeezing parameter to other cases, see Fig. 1.

Finally, according to the squeezing parameter Eq. (10),
there are no clear relationships between ξ2su(2) defined in

Appendix A and ξ22 which implies that the similarities
of su(2) and type-2 subalgebras of su(3) are deceptive in
terms of quantum squeezing. Accordingly, it is inappro-
priate to analyze the squeezing features just based on the
algebraic similarities.

B. Type-1 spin squeezing

In the preceding case, we show that the squeezing prop-
erties of the spin-1 subalgebras are not necessary to be-
have in accordance with their algebraic structures. For
this reason, it is worth to calculate the squeezing param-
eter explicitly for type-1 subalgebras, and we present this
calculations here.

The case of the interest is the type-1 spin squeez-
ing of |0, 0, N〉 coherent state of N spin-1 systems via
one-axis twisting Hamiltonian. As shown in Table. II,
the subalgebras 1 and 4 have non-zero expectation val-
ues for the state |0, 0, N〉. Therefore, we first consider

the subalgebra 1, namely (Ŝx, Ŝy, Ŝz). The Hamilto-

nian Ĥ1 = χŜ2
x, where the label 1 stands for type-1,

leads to time dynamics governed by the unitary opera-
tor Û1(θ) = exp(−iθŜ2

x/2), and squeezing quadratures

TABLE II. Expectation values of the collective operators in
the state |0, 0, N〉.

Subalgebras Expectation values

Type-1

Ŝx, Ŝy, Ŝz 〈Ŝx〉 = 〈Ŝy〉 = 0, 〈Ŝz〉 = −N

Ŝx, Q̂xy, Q̂xz 〈Ŝx〉 = 〈Q̂xy〉 = 〈Q̂xz〉 = 0

Ŝy, Q̂yz, Q̂xy 〈Ŝy〉 = 〈Q̂yz〉 = 〈Q̂xy〉 = 0

Ŝz, Q̂xz, Q̂yz 〈Ŝz〉 = −N , 〈Q̂xz〉 = 〈Q̂yz〉 = 0

Type-2

Ŝx, Q̂yz, Q̂+ 〈Ŝx〉 = 〈Q̂yz〉 = 0, 〈Q̂+〉 = N/2

Ŝy, Q̂xz, Q̂− 〈Ŝy〉 = 〈Q̂xz〉 = 0, 〈Q̂−〉 = −N/2

Ŝz, Q̂x2−y2 , Q̂xy 〈Ŝz〉 = −N , 〈Q̂x2−y2〉 = 〈Q̂xy〉 = 0

FIG. 1. For large N , there is a linear dependence between the
minimum attainable squeezing parameters and N−2/3. This
dependence is depicted by (i) solid yellow line for spin-1/2, (ii)
solid black line for type-1 squeezing of coherent state |0, 0, N〉,
(iii) red dashed line for type-2 squeezing of coherent state
|0, 0, N〉, and (iv) blue dash-dotted line for type-2 squeezing
of nematic state |0, N, 0〉. Numerically calculated exact values
are plotted by rectangles, circles, triangles, and dots.

are Sx and Sy. Since 〈Ŝz〉 = −N (see Table II) the
corresponding Heisenberg uncertainty relation is given
by 〈∆Ŝ2

x〉〈∆Ŝ2
y〉 ≥ N2/4, and as a result, the standard

quantum limit is obtained as N/2.

For the subalgebra 1, the physics of the squeezing can
be revealed by the clear connection between spin-1/2 and
spin-1 particles i.e. spin addition rule. In order to see
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this, we start with two spin-1/2 particles. Then, the
squeezed state is described as

|ψ〉 = e−iθ(ŝ
(1/2)
x1 ⊗ŝ(1/2)x2 )2/2|g〉1 ⊗ |g〉2 (13)

where |g〉 is the ground state of the spin-1/2. Here, the

operators ŝ
(1/2)
x1 and ŝ

(1/2)
x2 are x components of individ-

ual spin operators of two spin-1/2 and they described in

the Hilbert spaces H
(1/2)
1 and H

(1/2)
2 where H

(1/2)
i is

Hilbert space of ith spin-1/2. Now the total Hilbert space

H
(1/2)
1 ⊗H

(1/2)
2 can be decomposed as a direct sum of

irreducible subalgebras as follows

H
(1/2)
1 ⊗H

(1/2)
2 = H (1) ⊕H (0), (14)

where H (1) and H (0) are Hilbert spaces for spin-1 and
spin-0, respectively. This implies that the space of two
spin-1/2 particles is identical to the direct sum of spaces
for spin-1 and spin-0 particles. As long as, the state
|g〉1 ⊗ |g〉2 belongs to H (1), the squeezed state Eq. (13)
can be written as

|ψ〉 = e−iθŝ
2
x/2|-1〉, (15)

where ŝx = ŝ
(1/2)
x1 + ŝ

(1/2)
x2 is x component of a total spin-1

operator that belongs to H (1), and |-1〉 denotes |g〉1 ⊗
|g〉2. Furthermore, Eq. (15) implies that the degree of
squeezing of a spin-1 particle is equivalent to that of two
spin-1/2 particles when the type-1 subalgebra (ŝx, ŝy, ŝz)
is considered. In general, the squeezing parameter of N
spin-1 is the same as the squeezing parameter of 2N spin-
1/2 particles. This argument is first given in Ref. [26]
based on the same structure constants of su(2) algebra
for spin-1/2 and type-1 subalgebras for spin-1.

Now, we aim to give an explicit calculation of the
squeezing parameter of N spin-1 system and prove that
it is the same as the squeezing parameter of 2N spin-1/2
particles. For this purpose, we consider the 4th subal-
gebra (ŝz, q̂xz, q̂yz) and time evolution operator Û ′1(θ) =

exp(−iθQ̂2
xz/2) corresponding to the Hamiltonian Ĥ ′1 =

χQ̂2
xz. Here, it is worth mentioning that any subalgebra

which belongs to type-1 can represent spin-1 squeezing
on an equal footing. The first step of our calculation is
to determine the following commutators

[Q̂2
xz, q̂yz1] = i {q̂xz1, ŝz1}︸ ︷︷ ︸

6=0

+2iK̂ ′1ŝz1 = iŝx1 + 2iK̂ ′1ŝz1,

[Q̂2
xz, [Q̂

2
xz, q̂yz1]] = (1 + 4K̂ ′21 )q̂yz1 − 4K̂ ′1q̂xy1,

[Q̂2
xz, [Q̂

2
xz, [Q̂

2
xz, q̂yz1]]] = i(1 + 12K̂ ′21 )ŝx1 + i(6K̂ ′1 + 8K̂ ′31 )ŝz1,

[Q̂2
xz, [Q̂

2
xz, [Q̂

2
xz, [Q̂

2
xz, q̂yz1]]]] = (1 + 24K̂ ′21 + 16K̂ ′41 )q̂yz1 − (8K̂ ′1 + 32K̂ ′31 )q̂xy1, (16)

and so on. Here, K̂ ′1 =
∑N
α=2 q̂xzα. In Eqs. (16), due to non-vanishing anti-commutators between q̂xz and each of

operators ŝz1, ŝx1, q̂yz1, and q̂xy1, the number of terms on the right-hand side increases as the number of nested
commutators grows. In general, the nested commutators are given by

[Q̂2
xz, [Q̂

2
xz, [...[Q̂

2
xz, q̂yz1]]]]︸ ︷︷ ︸

n times

=


1

2

[
(1 + 2K̂ ′1)n + (1− 2K̂ ′1)n

]
q̂yz1 −

1

2

[
(1 + 2K̂ ′1)n − (1− 2K̂ ′1)n

]
q̂xy1, when n is even

i

2

[
(1 + 2K̂ ′1)n + (1− 2K̂ ′1)n

]
ŝx1 +

i

2

[
(1 + 2K̂ ′1)n − (1− 2K̂ ′1)n

]
ŝz1, when n is odd.

(17)

This is a complicated pattern as opposed to the Eq. (A4)
for spin-1/2, and fortunately, we obtain simple enough
equation for the time evolution of q̂yz1 as follows

Û ′†1 q̂yz1Û
′
1 =

q̂yz1 cos

(
θ

2

)
cos(θK̂ ′1) + q̂xy1 sin

(
θ

2

)
sin(θK̂ ′1)

− ŝx1 sin

(
θ

2

)
cos(θK̂ ′1)− ŝz1 cos

(
θ

2

)
sin(θK̂ ′1).

(18)

Using this time dynamics, the required expectation val-

ues can be calculated. The calculation is much cumber-
some but it is straightforward. The results are as follow

〈Q̂2
yz〉 =

N

2
+

2N(2N − 1)

8
(1− cos2N−2 θ),

〈Q̂yzQ̂xz〉 =〈Q̂xzQ̂yz〉∗ = i
N

2
cos2N−1

θ

2

+
2N(2N − 1)

4
sin

(
θ

2

)
cos2N−2

θ

2
. (19)

With the help of Eqs. (19) and 〈Q̂2
xz〉 = N/2, we obtain
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the squeezing parameter as follows

ξ21(N, θ) =
var(Q̂xz, Q̂yz)

N/2

= 1− 1

4
(2N − 1)

×

[√
(1− cos2N−2 θ)2 + 16 sin2

(
θ

2

)
cos4N−4

θ

2

− (1− cos2N−2 θ)

]
. (20)

This expression implies ξ21(N, θ) = ξ2su(2)(2N, θ) and it

verifies that the statement “squeezing parameters of N
spin-1 particles and 2N spin-1/2 particles are equal in
magnitude”.

In the case of large N , an asymptotic form of the min-
imum attainable squeezing parameter can be found by
simply replacing N in Eq. (A8) by 2N and it yields

ξ21,min(N) ' 1

2

(
9

4

)1/3

N−2/3. (21)

It implies that N spin-1 systems provide approximately
1.58 times stronger squeezing compared with the same
number of spin-1/2 particles. The asymptotic form, as
well as numerical exact value of the minimum squeezing
parameter, are illustrated in Fig. 1.

IV. NEMATIC SQUEEZING OF |0, N, 0〉 STATE
VIA ONE-AXIS TWISTING HAMILTONIAN

Nematic states of spin-1 with zero spin average 〈Ŝ〉 = 0
are of great interest and these states do not have spin-1/2
counterparts. For the nematic state |0, N, 0〉, only two
from seven subalgebras have non-zero expectation values
(see Table. III). These are the subalgebras 5 and 6 of
type-2 (see Eq. (2)). The squeezing of these subalgebras
is successfully realized in a Bose-Einstein condensate via
nonlinear collisions [34].

Here, we consider the subalgebra 5 as an example, and
the non-zero expectation value is 〈Q̂+〉 = −N . This

leads to the uncertainty relation 〈∆Ŝ2
x〉〈∆Q̂2

yz〉 ≥ N2

and standard quantum limit N . The corresponding one-
axis twisting Hamiltonian is given by Ĥn = χŜ2

x, and

time evolution unitary operator is written as Ûn(θ) =

e−iθŜ
2
x/2. Here, the label n stands for the nematic squeez-

ing. The time evolution of the operator q̂yz1 is already
given in the previous section by Eq. (8). The expectation
values required for calculation of the squeezing parameter

TABLE III. Expectation values of the collective operators in
the nematic state |0, N, 0〉.

Subalgebras Expectation values

Type-1

Ŝx, Ŝy, Ŝz 〈Ŝx〉 = 〈Ŝy〉 = 〈Ŝz〉 = 0

Ŝx, Q̂xy, Q̂xz 〈Ŝx〉 = 〈Q̂xy〉 = 〈Q̂xz〉 = 0

Ŝy, Q̂yz, Q̂xy 〈Ŝy〉 = 〈Q̂yz〉 = 〈Q̂xy〉 = 0

Ŝz, Q̂xz, Q̂yz 〈Ŝz〉 = 〈Q̂xz〉 = 〈Q̂yz〉 = 0

Type-2

Ŝx, Q̂yz, Q̂+ 〈Ŝx〉 = 〈Q̂yz〉 = 0, 〈Q̂+〉 = −N

Ŝy, Q̂xz, Q̂− 〈Ŝy〉 = 〈Q̂xz〉 = 0, 〈Q̂−〉 = N

Ŝz, Q̂x2−y2 , Q̂xy 〈Ŝz〉 = 〈Q̂x2−y2〉 = 〈Q̂xy〉 = 0

are as follows

〈Ŝ2
x〉 =N,

〈Q̂2
yz〉 =N +

N(N − 1)

2
(1− cosN−2(4θ)),

〈Q̂yzŜx〉 =〈ŜxQ̂yz〉∗ = iN cosN−1(2θ)

+N(N − 1) sin(2θ) cosN−2(2θ), (22)

and the squeezing parameter is obtained as

ξ2n(N, θ) =
var(Ŝx, Q̂yz)

N

= 1− 1

4
(N − 1)

×
[√

(1− cosN−2 4θ)2 + 16 sin2 2θ cos2N−4 2θ

− (1− cosN−2 4θ)
]
. (23)

The fascinating outcome of Eqs. (23) is that the squeez-
ing parameters of squeezed nematic states of N spin-1
particles are identical to the squeezing parameter of the
same number of spin-1/2 except scaling factor 4 along the
time axis. The difference in the scaling of time axis t is
due to doubled absolute values of the structure constants
in Eq. (4). Since the difference is only in the scaling, the
minimum values of the squeezing parameters ξ2n(N, θ) are
the same as ξ2su(2),min for spin-1/2 given by Eq. (A8). The

numerically calculated minimum squeezing parameter is
plotted in Fig. 1 by black round dots.

V. EXPLICIT FORM OF SQUEEZED STATES
FOR N = 2

In general, an explicit form of the squeezed states are
much complicated and analytically impossible to obtain.
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FIG. 2. The squeezing parameters of two spin-1 particles as
a function of θ. The minimum attainable values are depicted
by rectangles.

But, it is simple enough for two spin-1 particles. In what
follows, we analyze the various types of the squeezed
states for N = 2.

A. Type-2 squeezing of the state |0, 0, 2〉

Using matrix representation we obtain the squeezed
state for N = 2 as follows

e−iθŜ
2
x/2|-1, -1〉 =α1(θ)|1, 1〉 − β(θ)|1, -1〉 − 2β(θ)|0, 0〉

− β(θ)|-1, 1〉+ α2(θ)|-1, -1〉, (24)

where we introduce the following functions of θ

α1(θ) =
(

e−iθ
3

4
cos θ − 1

4
e−2iθ − 1

2
e−iθ/2

)
,

α2(θ) =
(

e−iθ
3

4
cos θ − 1

4
e−2iθ +

1

2
e−iθ/2

)
,

β(θ) =
i

4
e−iθ sin θ. (25)

Here, the notation |0, 0, 2〉 = |-1〉 ⊗ |-1〉 = |-1, -1〉 is in-
troduced. For the current case, the squeezing parameter
Eq. (10) reads as

ξ22(2, θ) = 1− 1

2
sin 2θ (26)

This is a quite simple function (see Fig. 2), and it has the
minimum value ξ22,min(2) = 1/2 at the point θmin = π/4.
At the minimum point, the squeezed state takes the form
as

|ψ2〉 = e−iπŜ
2
x/8|-1, -1〉 =α1(π/4)|1, 1〉 − β(π/4)|1, -1〉

− 2β(π/4)|0, 0〉 − β(π/4)|-1, 1〉
+ α2(π/4)|-1, -1〉. (27)

This state is obviously entangled, and we quantify the
entanglement by Von Neumann entropy defined as S =
−Tr[ρ1 log(ρ1)], where ρ1 is density matrix of the first
spin-1 particle and Tr() stands for trace over the first
particle. We obtain the approximate value of S as 0.4135.
In comparison to other cases, the squeezed state |ψ2〉 is
less entangled and squeezed, and this is illustrated by red
rectangle in Fig. 2.

B. Type-1 squeezing of the state |0, 0, 2〉

In the case of type-1 squeezing of the coherent state
|0, 0, 2〉, we obtain the following squeezed state

e−iθQ̂
2
xz/2|-1, -1〉 =α1(θ)|1, 1〉+ β(θ)|1, -1〉 − 2β(θ)|0, 0〉

+ β(θ)|-1, 1〉+ α2(θ)|-1, -1〉 (28)

with α1(θ), α2(θ) and β(θ) functions given by Eqs. (25).
The corresponding squeezing parameter is derived from
Eq. (20) as follows

ξ21(2, θ) = 1− 3

4
(1− cos2 θ)

(√3− cos θ

1− cos θ
− 1
)
, (29)

and it has minimum value

ξ21,min(2) ' 0.302484 (30)

at θmin ' 0.98304 = 0.312911π. The Von Neumann
entropy of the squeezed state Eq. (29) at θmin is obtained
as S ' 0.537.

C. Type-2 squeezing of the state |0, 2, 0〉

For the nematic state |0, 2, 0〉, the squeezed state is
given by

e−iθŜ
2
x/2|0, 0〉 =− 2β(θ)

(
|1, 1〉+ |1, -1〉+ 2i cot θ|0, 0〉

+ |-1, 1〉+ |-1, -1〉
)
, (31)

which is clearly entangled. Equation (23) yields the fol-
lowing simple expression for N = 2

ξ2n(2, θ) = 1− sin(2θ), (32)

and it has vanishing minimum value ξ2n,min(2) = 0 at
θmin = π/4 (see Fig. 2). The Von Neumann entropy of
the squeezed state

e−iπŜ
2
x/8|0, 0〉 = −1 + i

4

(
|1, 1〉+ |1, -1〉+ 2i|0, 0〉

+ |-1, 1〉+ |-1, -1〉
)

(33)

at θmin is calculated as S ' 0.6931 which implies the
state Eq. (33) is the most entangled state in comparison
to other considered cases. This argument is also justified
by the vanishing squeezing parameter depicted by blue
rectangle in Fig. 2.
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TABLE IV. Relationships between squeezing parameters of spin-1 and spin-1/2 states.

Types of the subalgebras spin state |0, 0, N〉 nematic state |0, N, 0〉

Type-1 ξ21(N, θ) = ξ2su(2)(2N, θ)

ξ21,min(N) ' (1/2)(9/4)1/3N−2/3

-

Type-2 ξ22(N, θ), no relationships with ξ2su(2)(N, θ)

ξ22,min(N) ' (9/2)1/3N−2/3

ξ2n(N, θ) = ξ2su(2)(N, 4θ)

ξ2n,min(N) ' (1/2)91/3N−2/3 This is ac-
tually the asymptotic value of minimum
squeezing parameter for spin-1/2.

VI. CONCLUSIONS

We identify seven subalgebras of su(3) algebra that are
identical with su(2) algebra in terms of the commutation
relations but four of them (type-1 subalgebras) are differ-
ent than su(2) spin operators due to their non-vanishing
anti-commutation relations. The other three subalgebras
called type-2 have vanishing anti-commutation relations
similar to su(2) algebra.

Furthermore, we consider three different instances of
squeezing of spin-1 states and do first-principle calcula-
tions of squeezing parameters in each instance. In what
follows, we present the results of our calculations (see
Table. IV).

1. Type-1 squeezed states generated by applying one-
axis twisting Hamiltonian on the coherent state
|0, 0, N〉. In this case, we demonstrated the equiva-
lence of squeezing parameters of N spin-1 and 2N
spin-1/2 particles with the use of first-principle cal-
culations. This result is previously predicted in
Ref. [26].

2. Type-2 squeezed states generated by applying one-
axis twisting Hamiltonian on the coherent state
|0, 0, N〉. Type-2 subalgebra of su(3) and su(2) al-
gebra share not only similar commutation relations
but also anti-commutation relations. But these
similarities are misleading because there are no re-
lationships between the squeezing parameters asso-
ciated with these two algebras. This result is also
proved by rigorous calculations.

3. Type-2 squeezed states generated by applying one-
axis twisting Hamiltonian on the nematic state
|0, N, 0〉. In this instance, the squeezing parameter
is obtained as ξ2n(N, θ) = ξ2su(2)(N, 4θ) which im-

plies that the same number of spin-1 and spin-1/2
particles exhibit the same squeezing properties.

Then, we consider the asymptotic behavior of the
squeezing parameters when N → ∞. The results are
summarized in Table. IV and plotted in Fig. 1. As shown
in Fig. 1, the asymptotic results are in agreement with
the numerical results, and type-1 spin squeezing of the co-
herent state |0, 0, N〉 can achieve stronger squeezing than

spin-1/2 when the same number of spin-1 and spin-1/2
particles are considered. However, for type-2 squeezing
of the state |0, 0, N〉 exhibits weaker squeezing compared
to spin-1/2. Another situation is the squeezing of the ne-
matic state |0, N, 0〉. In this case, the minimum attain-
able squeezing parameter is the same as that of spin-1/2.
It is worth mentioning that all results presented in this
work are the direct outcome of rigorous first-principle
calculations.

Finally, we also examine the specific case N = 2 and
calculate an explicit form of the squeezed states. The
numerical values of the obtained Von Neumann entropy
verify the close relation between squeezing and entangle-
ment.

We conclude by mentioning future investigations on
spin one squeezing – (a) to go beyond single twisted
squeezed states; (b) to study input states other than the
coherent states |0, 0, N〉; |0, N, 0〉; (c) the decoherence
of spin-1 squeezed states under environmental perturba-
tions, the techniques for the latter exist [43].

Appendix A: Squeezing of spin-1/2 states

Squeezing parameters that quantify the spin squeezed
states have been studied much extensively in the case of
spin-1/2 particles due to its simplicity. There are several
squeezing parameters are introduced in literature, and
the most popular definition has been given by Kitagawa
and Ueda in 1993 [42]. They first define mean spin direc-

tion as n = 〈Ŝ〉/|〈Ŝ〉|, where Ŝ is a collective spin opera-
tor of spin-1/2, and then introduce squeezing parameter
as a ratio of the minimum variance of quadratures in the
plane perpendicular to the mean spin direction to the
standard quantum limit characterized by spin coherent
state. Then the squeezing parameter is given as

ξ2su(2) =
var(Ŝ⊥1, Ŝ⊥2)

N/4
, (A1)

where var(Ŝ⊥1, Ŝ⊥2) stands for the minimum variance of

two spin quadratures Ŝ⊥1 and Ŝ⊥2 in the plane perpen-
dicular to the mean spin direction. In literature, there
are two methods to calculate the squeezing parameter
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Eq. (A1). First, the method used in the seminal pa-
per by M. Kitagawa and M. Ueda [42] where two spin
quadratures are rotated around mean spin direction and
afterwards one of the variances is minimized by setting
proper rotation angle. This method is based on the col-
lective spin state |S,M〉 with S being total spin and M
being z component of total spin [42, 44]. Second, the
method where the minimum and maximum variances are
found by means of eigenvalues. This method is based on
the number state |N+, N−〉 where N+ and N− are pop-
ulations of excited and ground states of spin-1/2 [45].
The explicit form of the minimum variance found by the
second method is as follows

var(Ŝ⊥1, Ŝ⊥2) =
1

2

[〈
Ŝ2
⊥1 + Ŝ2

⊥2

〉
−
√〈

Ŝ2
⊥1 − Ŝ2

⊥2

〉2
+ 2
〈
Ŝ⊥1Ŝ⊥2 + Ŝ⊥2Ŝ⊥1

〉2]
. (A2)

By calculating the expectation values in Eq. (A2) for a
given initial state one can obtain the squeezing parameter
ξ2su(2) in explicit form.

As an example, we present here calculations of the
squeezing parameter of the squeezed state produced by
applying one-axis twisting Hamiltonian Ĥ = χŜ2

x on co-
herent spin state |0, N〉. In this example, spin quadra-

tures are Ŝ⊥1 = Ŝx and Ŝ⊥2 = Ŝy. We follow the sec-
ond method given in Ref. [45] since it enables us to un-
derstand how the squeezing parameter depends on the
corresponding Lie group structure and anticommutation
relations. The unitary time-evolution operator at time t
becomes Û(θ) = exp(−iθŜ2

x/2) where θ = 2χt. Since the

operator Ŝx commute with Û(θ), it does not depend on
time. Therefore, its expectation value is written as

〈Ŝ2
x〉 =

N

4
. (A3)

However, Ŝy depends on time. To calculate its time de-
pendence, the following commutation relations are calcu-
lated

[Ŝ2
x, ŝy1] = i{ŝx1, ŝz1}+ 2iK̂ŝz1 = 2iK̂ŝz1,

[Ŝ2
x, [Ŝ

2
x, ŝy1]] = 2K̂{ŝx1, ŝy1}+ 4K̂2ŝy1

= 4K̂2ŝy1,

[Ŝ2
x, [Ŝ

2
x, [Ŝ

2
x, ŝy1]]] = 4iK̂2{ŝx1, ŝz1}+ 8iK̂3ŝz1

= 8iK̂3ŝz1,

[Ŝ2
x, [Ŝ

2
x, [Ŝ

2
x, [Ŝ

2
x, ŝy1]]]] = 8K̂3{ŝx1, ŝy1}+ 16K̂4ŝy1

= 16K̂4ŝy1, (A4)

and so on. Here, K̂ =
∑N
α=2 ŝxα. Moreover, in Eq. A4

we exploit vanishing anti-commutation relations between

single spin-1/2 operators ŝx1, ŝy1 and ŝz1. This vanishing
anti-commutators much simplify Eqs. (A4) in contrast to
the analogous equation for spin-1 in Sec. III B. With the
help of the commutation relations, we obtain the follow-
ing time evolution for the operator ŝy1

Û†(θ)ŝy1Û(θ) = ŝy1 cos(θK̂)− ŝz1 sin(θK̂). (A5)

This time dependence of the operator ŝy1 gives the ex-

pectation values for the operators Ŝ2
y and ŜyŜx as follow

〈Ŝ2
y〉 =

N

4
+
N(N − 1)

8
(1− cosN−2 θ),

〈ŜyŜx〉 =〈ŜxŜy〉∗ = i
N

4
cosN−1

θ

2

+
N(N − 1)

4
sin

(
θ

2

)
cosN−2

θ

2
. (A6)

Plugging Eqs. (A3) and (A6) into Eq. (A2) we obtain
the squeezing parameter ξ2su(2) as

ξ2su(2)(N, θ) = 1− 1

4
(N − 1)

×

[√
(1− cosN−2 θ)2 + 16 sin2

(
θ

2

)
cos2N−4

θ

2

− (1− cosN−2 θ)

]
, (A7)

and it can be found in Ref. [45]. In the case of spin-1/2,
the minimum attainable value of the squeezing parameter
ξ2su(2) for large N is given in Ref. [42] as

ξ2su(2),min(N) ' 91/3

2
N−2/3. (A8)

This asymptotic behavior is depicted in Fig. 1 by yellow
solid line whereas exact values obtained from Eq. (A7)
are plotted by square boxes.
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Phys. Rev. Lett. 107, 240502 (2011).

[25] G. Colangelo, R. J. Sewell, N. Behbood, F. M. Ciurana,
G. Triginer, and M. W. Mitchell, New J. Phys. 15,
103007 (2013).

[26] E. Yukawa, M. Ueda, and K. Nemoto, Phys. Rev. A 88,
033629 (2013).

[27] G. Vitagliano, I. Apellaniz, I. L. Egusquiza, and G. Tóth,
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