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I. INTRODUCTION

The impressive recent advances of topological photon-
ics [1] are suggesting photonic systems as a most promis-
ing platform to study fractional quantum Hall (FQH)
liquids [2, 3] in a new context that takes full advantage
of the peculiar manipulation and diagnostic tools offered
by optical techniques to investigate the many-body state
of the photon fluid [4]. Among the many specific sys-
tems that are being investigated to this purpose, most
advanced results have been so far obtained using photonic
lattices in the microwave domain of circuit QED and Ry-
dberg polaritons in twisted cavities in the visible domain.
On the former platform, chiral motion of strongly inter-
acting photons under the effect of a synthetic magnetic
field has been observed in a three-site geometry [5] and
the autonomous stabilization of a mesoscopic Mott insu-
lator state was highlighted in a one-dimensional lattice
[6]. On the latter platform, a two-photon Laughlin state
was coherently generated and then studied in its correla-
tion functions [7].

In order to be able to explore the peculiar topological
properties of FQH liquids, one of the most challenging
steps that needs to be taken is to achieve a sufficiently
large size for the photon fluid. Capitalizing on the re-
cent advances, a most exciting perspective is to merge
the autonomous stabilization techniques first proposed
in [8, 9], and later experimentally developed in the mi-
crowave domain in [6], with the synthetic magnetic field
platform for the strongly interacting Rydberg polaritons
as realized in [7]. Such a merger is then expected to yield
macroscopic system sizes with a large number of parti-
cles, where topological properties such as the quantiza-
tion of transverse conductivity and the fractionalization
of excitation charge and statistics [2] become clearly ap-

parent.
In a recent work [10], two of us proposed the

autonomous stabilization of Laughlin states via a
frequency-selective incoherent pumping scheme suitable
for the experimental set-up of [7]. That study be-
ing based on a numerical simulation of the full driven-
dissipative master equation, it was strongly limited in the
number of particles accessible to the calculations and fur-
ther complications were introduced by the use of a real-
space hard-wall potential to spatially confine the FQH
fluid. In particular, no analytical insight could be offered
for the actual scaling of the preparation efficiency in the
interesting regime of large photon numbers.

In the present work we make a further step in this en-
terprise by proposing a new confinement strategy based
on a step-like potential in the angular momentum ba-
sis. In addition to the simplicity of its experimental re-
alization, this form of confinement potential allows for
a full theoretical characterization of the competing pro-
cesses due, e.g., to the generation and the subsequent
refilling of quasiholes during photon loss and repumping
cycles. The results of numerical simulations for small
system sizes can thus be complemented with accurate
analytical estimates of the preparation efficiency under a
realistic driven-dissipative protocol. The conclusions of
our joint numerical and analytical studies appear to be
promising in view of stabilizing macroscopic samples of
quantum Hall liquid of light.

II. SHAPING THE ENERGY LEVELS OF THE
ISOLATED SYSTEM

We describe the fluid of interacting photons confined in
a two-dimensional plane under a uniform and perpendic-
ular synthetic magnetic field with the following second-
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quantized Hamiltonian written in terms of the bosonic
field operator Ψ(r) [4, 10]:

H =

∫
d2r

{
Ψ†(r)

[
(−i~∇−A(r))2

2mph
+ ~ωcav

]
Ψ(r)

+
~gnl

2
Ψ†(r)Ψ†(r)Ψ(r)Ψ(r)

}
. (1)

The single-particle Hamiltonian is given by terms inside
the square brackets, where the synthetic magnetic field
B = Bẑ for photons of unit synthetic charge is defined
through the magnetic vector potential A(r), which we
take to be in the symmetric-gauge form A = Bẑ × r/2.
The shift ωcav to single-particle energies is the natural
cavity frequency of the longitudinal mode that we focus
on and mph = ~ωcav/c2 is the effective photon mass that
results from confinement along the perpendicular direc-
tion ẑ. The last term of the Hamiltonian H given in the
second line of Eq. (1) describes effective repulsive contact
interactions between photons with strength gnl, which is
determined by the optical nonlinearity of the medium.

The single-particle states of this system are the Landau
levels with equally-spaced energies, the separation being
~B/mph ≡ 2~ωcycl. These states are angular momentum
eigenstates in our chosen symmetric gauge and the wave
function in the lowest Landau level (LLL) with angular

momentum m~ is given by ϕm(z) = zme−|z|
2/2/
√
πm!,

where z = (x+ iy)/` is the complex-valued coordinate of

the particle and ` =
√

~/mphωcycl is the magnetic length.
In order to simplify our theoretical description, we work
in the LLL approximation, which is valid when the typ-
ical interaction energy v0 = ~gnl/2π`2 corresponding to
the lowest Haldane pseudo-potential for the contact in-
teraction is much smaller than the separation between
Landau levels: v0 � 2~ωcycl. We incorporate the LLL
approximation into our calculations by expanding in Eq.
(1) the field operator Ψ(r) =

∑
m ϕm(z)am in the LLL

basis, where the operator am annihilates a particle with
wave function ϕm(z). The Hamiltonian becomes

HLLL = ~ω0

∑
i

a†iai +
~gnl
2`2

∑
ijkl

Vijkla
†
ia
†
jakal, (2)

where the energy of a photon in the LLL, taking
the natural frequency shift into account, is given by
~ω0 ≡ ~(ωcycl + ωcav) and the overlap integral Vijkl =∫
ϕ∗i (z)ϕ

∗
j (z)ϕk(z)ϕl(z)dzdz

∗ quantifies the strength of
interactions in the different LLL states.

It is well-known in the FQH context that for a to-
tal angular momentum of Lz = N(N − 1)~ the exact
N -particle ground state of the Hamiltonian HLLL is the
bosonic ν = 1/2 Laughlin state [11, 12]

ΨFQH(z1, . . . , zN ) ∝
∏
j<k

(zj − zk)2e−
∑N

i=1 |zi|
2/2, (3)

where zj is the coordinate of the jth particle. Together
with the Laughlin state, its edge and quasihole excita-
tions with larger total angular momenta form a massively

degenerate manifold of states at energy N~ω0 as these
excited states have zero interaction energy. This lowest-
energy manifold is separated from other excited states by
a gap of the order of ∆ = v0, which is the exact gap for
two particles in the LLL approximation. In the follow-
ing, besides the Laughlin state, we will be interested in
quasihole states Ψ(n)QH containing one quasihole (n = 1)
and two quasiholes (n = 2) centered at the origin, whose
wave functions are obtained by multiplying the Laughlin

one (3) by suitable monomials
∏N
i=1 z

n
i .

The main idea of our proposal to create photonic
Laughlin and quasihole states is outlined in Fig. 1. In
order to create these states starting from vacuum, we
employ a frequency-dependent incoherent driving scheme
introduced in [9, 10] and summarized in Appendix B.
This driving scheme favors upward transitions from an
N -particle state to an (N+1)-particle state compared to
the downward ones to an (N − 1)-particle state as long
as the transitions are resonant. As a result, the num-
ber of particles in the system keeps increasing until the
transition is no longer resonant. As shown in Fig. 1(a),
we take advantage of the equal energy separation ~ω0

between degenerate Laughlin manifolds with successive
number of particles to populate a target state with NT
particles by supplying photons with energy ~ωat close
enough to ~ω0. What we need to achieve in order to ac-
cumulate almost all the population into this target state
is to block any further excitation to other states in the
same manifold or to the next manifold with NT + 1 par-
ticles by sufficiently raising the energies of these states
so as to make transitions off-resonant.

As the Laughlin and quasihole states are composed of
single-particle states with angular momenta in specific
intervals, which are unique to these states, it is possible
to raise the energies of the other states in the same de-
generate energy manifold and of the ones in the lowest
degenerate manifold with one more particle by properly
blocking the occupation of single-particle angular mo-
mentum modes which lie outside the relevant intervals.
For instance, when the target is the NT -particle Laughlin
state, which has the smallest total angular momentum
in the degenerate manifold, blocking the single-particle
states with angular momentum greater than the largest
possible angular momentum lmax = 2(NT −1) of a single
particle in the Laughlin state [see Fig. 1(b)] performs the
required task as also confirmed numerically.

In our numerical calculations, this blocking is im-
plemented by adding to HLLL an effective angular-
momentum potential term which has a simple step-like
behaviour:

V (NT , NQH) =
∑
i

[δΘ(i− lmax(NT , NQH)− 1)

+ δ′Θ(NQH − 1− i)]a†iai, (4)

where the Heaviside Θ(x) function is 0 (1) for x < 0
(x ≥ 0), and the number NQH = 0, 1, 2 of quasi-
holes corresponds to Laughlin, one- and two-quasihole
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FIG. 1: (a) Sketch of the general idea of populating a target state with NT particles through a sequence of intermediate states
with equal energy separation ~ω0. Photons with frequency ~ωat ' ~ω0 are supplied through a frequency-selective incoherent
drive. Excitations above the target state are blocked as they are off-resonant. (b) Sketch of the blocking mechanism via the
angular momentum potential with a step-like behavior for different target states.

states respectively. The total Hamiltonian is then
H(NT , NQH) = HLLL + V (NT , NQH). As shown in Fig.
1(b), the effective potential simply increases by δ the
single-particle energies with angular momenta greater
than lmax(NT , NQH) = 2(NT − 1) + NQH, that is the
largest possible single-particle angular momenta found in
the states ΨFQH, Ψ(1)QH, and Ψ(2)QH. Differently from
the real-space hard-wall confinement used in [10] whose
effect typically spreads over many angular momentum
modes, we consider here a sharp onset of the blocking
potential with no disturbance to the Laughlin and the
lower states. Analogously, as the quasihole Ψ(1)QH and
Ψ(2)QH states do not contain single-particle modes with
m = 0 and m = 0, 1 respectively, they can be selected by
raising the energies of the unwanted single-particle modes
by δ′.

As a concrete example of the above idea of singling
out the target state as the topmost available state in the
rung, we show in Fig. 2 the many-particle energy lev-
els for the case where we aim at the NT = 3-particle
Laughlin state. It is seen that the energy of the two-
particle manifold is not shifted, up to and including the
two-particle two-quasihole state with total angular mo-
mentum Lz/~ = 6, which serves as a leverage for the
resonant excitation of the three-particle Laughlin state.
For the chosen strength δ = 5∆ of the angular momen-
tum potential, the target state is seen to be separated
from the next states with larger total angular momenta
by a gap ∼ 0.25∆ and all the lowest-energy four-particle
states are lifted by ∼ 0.80∆ with respect to the value in
the absence of the effective potential.

III. LOSSES AND INCOHERENT PUMPING

Here, we briefly discuss how we incorporate the in-
evitable photon losses and the specific photon replenish-
ing mechanism to our model (cf. Appendix B for details).
As discussed in detail elsewhere [9], the main merit of
the specific incoherent driving protocol under consider-
ation is its frequency selectivity, which can be achieved
by placing many population-inverted two-level emitters
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FIG. 2: N -particle energy levels E′N ≡ EN − N~ω0 versus
total angular momenta Lz when the target state (encircled
by a red circle) is the NT = 3-particle Laughlin state, for
which we take lmax = 2(NT − 1) and NQH = 0 in Eq. (4).
The angular momentum potential strength is δ = 5∆. Dashed
lines show the non-interacting energy levels in the absence of
the potential.

of transition frequency ωat inside the cavity to obtain
a Lorentzian emission spectrum centred around this fre-
quency. If the pumping rate Γp for the emitters is much
larger than the Rabi frequency of the cavity field-emitter
coupling and the spontaneous decay rate, the emitters
will most of the time be found in their excited state allow-
ing one to write a master equation only for the photonic
density matrix ρ after tracing out the emitter degrees
of freedom. This master equation is composed of three
parts

∂ρ

∂t
= − i

~
[H(NT , NQH), ρ] + Ll + Le, (5)

where the commutator corresponds to the unitary evo-
lution of the photonic Hamiltonian H(NT , NQH) and
the photon losses with rate Γl are described by a stan-
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dard Lindblad superoperator Ll. The frequency-selective
emission processes are accounted for in terms of a gen-
eralized superoperator Le, which includes appropriately
modified field operators. When the emitter transition
frequency ωat matches the frequency difference between
two many-particle states with successive number of par-
ticles, the emission rate attains a maximum value Γe.
Otherwise, the emission rate is suppressed following a
Lorentzian lineshape of linewidth Γp. This frequency-
selectivity of the emission process is very well suited for
our purpose of populating a specific N -particle Laughlin
or quasihole state as there are intermediate states start-
ing from the vacuum with successive number of particles
whose energies are equally separated by ~ω0, while tran-
sitions to undesired states are off-resonant and therefore
these states cannot be reached.

IV. RESULTS

A. Master equation solution and the analytical
estimate for the Laughlin state

The master equation (5) can be numerically solved for
the steady-state density matrix ρSS . When the target
is an NT -particle Laughlin state, all the (degenerate)
lowest-energy non-interacting states with the same num-
ber of particles N < NT turn out to be equally populated
provided that Γp is sufficiently small and ωat = ω0. This
was anticipated in [8, 9] and is the starting point for an-
alytical considerations in this limit.

Using the detailed balance condition for the popula-

tions of states in the degenerate manifolds P
(0)
N+1Γl =

P
(0)
N Γe with N = 0, 1, . . . , NT − 1, and assuming that

only these lowest-energy non-interacting states are oc-
cupied appreciably, the target population can be found

to be PNT
≡ P

(0)
NT

= 1/[1 +
∑NT

q=1 d(NT , q)(Γl/Γe)
q],

where d(NT , q) is the multiplicity of degenerate states
with NT − q particles.

The multiplicity d(NT , q) obtained from the diagonal-
ization of the isolated system Hamiltonian can be ac-
counted for by using a heuristic generalized Pauli prin-
ciple [13] as follows. This principle asserts for the case
of ν = 1/2 that the NT -particle Laughlin state is a su-
perposition of certain states which can be derived from
the root state |R〉 = |101010 . . .〉 in the LLL occupation-
number representation with a total of NT occupied or-
bitals, through an operation called squeezing. Similarly a
one- (two-) quasihole state can be created starting from
a state containing one (two) extra empty orbital(s) in-
serted anywhere in |R〉. Since the loss of a particle from
the target state can be thought of being equivalent to
creating two quasiholes, the number of possible states
reachable from the target state through the loss of q par-
ticles can be calculated by counting the number of unique
ways of reordering NT − q times the (10) sequence and
2q empty orbitals in a string, yielding the multiplicity

d(NT , q) =
(
NT +q

2q

)
as a binomial coefficient. Quite re-

markably, the sum in the expression for PNT
is explicitly

calculable yielding the final result

PNT
=

√
4 + Γl/Γe

2cosh[(1 + 2NT )asinh(
√

Γl/Γe/2)]
. (6)

which is validated in Fig. 3(b) by comparing its predic-
tion to the numerical results that can be obtained from
the master equation (5) for small values of NT . An excel-
lent agreement is found. Since the only approximations
leading to Eq. (6) are the small Γp condition and the
equal occupation of the degenerate non-interacting lev-
els, which in principle should not depend on the particle
number, we conjecture that the formula will remain a
good description of the numerical solution also for larger
number of particles. In a practical configuration, how-
ever, we expect that technical complications related to
the realization of the large angular momentum cutoff that
is needed to host a macroscopic number of particles may
arise and this might lead to a deviation of the trend from
the prediction of our formula.

The analytical prediction (6) is plotted in Fig. 3(a) as
a function of the particle number NT for different loss
to emission ratios Γl/Γe. For a relatively large Γl/Γe
(∼ 0.1) the decay of PNT

is seen to be fast. Indeed
in this case the large NT behaviour is exponential with√

4 + Γl/Γe exp(−2ANT ), where A = asinh(
√

Γl/Γe/2).
However, for small enough Γl/Γe, there is a wide range
of photon numbers where PNT

displays a slower decay as

2/[2 + (Γl/Γe)N
2
T ] as long as NT

√
Γl/Γe remains small.

Such a slower scaling is greatly conducive to a possible
experimental realization of a macroscopically occupied
Laughlin state with a large number of particles.
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FIG. 3: (a) Analytical Laughlin state populations (6); lines
are guide for the eye. (b) Comparison of analytical and nu-
merical Laughlin state populations for NT = 2, 3, 4, 5 with
~Γp/∆ = 5× 10−4 and Γl/Γe = 10−2.

Besides the loss to lower degenerate manifolds which
is the main reason of the fidelity decrease that is visible
in Fig. 3, another source of decrease is the loss to states
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lying outside of the degenerate manifolds as the pump
linewidth Γp is increased. Based on a semi-quantitative
detailed balance condition between the manifold of non-
interacting states and the lowest interacting states (corre-
sponding, e.g., to an extra quasiparticle), we can expect
a behaviour PNT +1 ∝ PNT

Γe/{Γl[1 + (2∆′/~Γp)
2]} ≈

PNT
(Γe/Γl)(~Γp/2∆′)2 (cf. Appendix C). Here, ∆′ is

the energy shift of the interacting states, as estimated
from the interaction energy of the lowest (NT+1)-particle
states. For the numerically accessible NT = 3 value, this
behaviour is well confirmed by the full numerics, as shown
in Fig. 4(b).

B. Quasihole states

We now demonstrate that if a Laughlin state can
be created with high fidelity, creating one- and two-
quasihole states is almost as effective. In Fig. 4(a), we
show the three-particle populations in the presence of an
additional potential of the form (4) pinning the quasi-
holes at the center of the FQH fluid. When the pump
linewidth Γp is sufficiently small, the population of the
target state turns out to be very similar independently
of the number NQH = 0, 1, 2 of quasiholes. This basi-
cally originates from a very similar structure of the low-
energy levels (including their multiplicities) that emerge
when these different states are targeted (cf. Appendix
A). As Γp increases, however, differences in the energy-
level structure become more pronounced and the smaller
energy gap of quasihole states leads to somewhat lower
populations for these states compared to the Laughlin
one.
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FIG. 4: (a) Laughlin state (NQH = 0), one-quasihole state
(NQH = 1) and two-quasihole state (NQH = 2) populations for
NT = 3 as a function of ~Γp/∆. (b) Comparison between the
numerical result for the average population in the NT +1 = 4
particle states with ∆′ = 0.89∆ as extracted from Fig. 2 for
the NQH = 0 case and the analytical trend with ∝ Γ2

p. For
both panels, ~Γe/∆ = 5 × 10−5, Γl/Γe = 2 × 10−3 and the
confinement has δ = δ′ = 5∆.

V. EXPERIMENTAL REMARKS

As a final point, we comment on the actual experi-
mental realization of the step-like potential in the angu-
lar momentum basis. In [14], it was pointed out that
a hard-wall real-space potential had to be very strong
and be located very far away from the cloud to provide
a step-like dependence guaranteeing the effective upward
travel through all the N < NT states and blocking of the
undesired states. While this strategy may be not viable
in concrete experimental realizations, an alternative way
of designing arbitrary angular-momentum-dependent fre-
quency shifts (4) is based on coupling our main cavity to
an additional cavity with the same cylindrical symmetry,
whose resonant mode pattern can be widely tailored via
the length and/or the twist and/or the time-modulation
of the cavity, as discussed in Appendix D. This provides
a way to restrict the quasi-resonant coupling of the two
cavities to specific angular momentum values only, so to
engineer the angular-momentum-dependence of the re-
sulting frequency shift of the main cavity’s modes. In this
way, the desired step-like potential can be constructed by
suitably tailoring a sufficient number of additional cavity
modes. Interestingly, efficient stabilization of the Laugh-
lin states only requires blocking the single-particle states
around lmax and this will automatically prevent popula-
tion transfer to higher states as well, which is a further
experimental advantage.

VI. CONCLUSION

We have reported a theoretical study of driven-
dissipative fractional quantum Hall fluids of light con-
fined by a step-like potential in the angular momentum
basis. This potential allows for an analytical treatment
of the steady-state solution of the master equation de-
scribing the interplay of a frequency-selective incoherent
pump with the photon losses. This provides analytical
insight on the efficiency of the autonomous preparation
scheme and on the main sources of error. The results of
the proof-of-principle analysis reported in this work lead
to promising conclusions in view of the experimental re-
alization of quantum Hall fluids containing a macroscopic
number of particles and will serve as a starting point for
detailed investigations of specific experimental configu-
rations.

With an appropriate design of the potential, our
scheme can be directly extended to the preparation of
single or multiple quasihole states. In this way, it can be
combined with recent proposals [15, 16] for extracting the
fractional statistics from the density profile of the fluid.
The fact that edge excitations are gapped by the angu-
lar momentum potential and are thus immune to spu-
rious excitations facilitates the assessment of the exclu-
sion statistics via the spectroscopic method proposed in
[10, 17]. Future work will address time-dependent prob-
lems related to the kinetics of preparation of the Laugh-
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lin state starting from vacuum and will explore concrete
implementations of our proposal in state-of-the-art ex-
perimental set-ups.
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Appendix A: Energy spectra for target quasihole
states

We carried out a sparse diagonalization of
H(NT , NQH) for each particle-number sector to obtain a
limited number of eigenstates with lowest eigenenergies
in order to maximize the number of particles we can
work with. Specifically, we chose this number as the
smaller of the total number of eigenstates in a given
particle-number sector and 100, a number which we
observed in our simulations to be sufficient to accurately
obtain populations. This approximation is justified by
the fact that our driving protocol is a frequency-selective
one which appreciably populates only the low-energy
states of each particle-number sector. By choosing the
angular momentum cutoff for the single-particle basis
states as m = 2NT + NQH, we aimed at including the
(NT + 1)-particle state containing NQH quasiholes into
our simulation as well, when the target state is the
NT -particle state containing NQH quasiholes.

Here we show in Figs. 5 and 6 the energy spectra ob-
tained through such a restricted diagonalization, when
the target states are the NT = 3-particle one-quasihole
state and the NT = 3-particle two-quasihole state, re-
spectively. Note that the two spectra are very similar al-
most up to a shift in Lz/~ by N in each particle-number
sector.

Appendix B: Losses and incoherent pumping

The master equation we use is composed of three parts

∂ρ

∂t
= − i

~
[H(NT , NQH), ρ] + Ll + Le, (B1)

where the commutator corresponds to the unitary evolu-
tion of the photonic Hamiltonian H(NT , NQH) and the
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FIG. 5: N -particle energy levels E′N ≡ EN −N~ω0 (in units
of the typical interaction energy ∆) versus total angular mo-
menta Lz (in units of ~), when the target state (encircled by
a red circle) is the NT = 3-particle one-quasihole state, for
which we take lmax = 2(NT − 1) + 1 and NQH = 1 in Eq. (4)
of the main text. Dashed line shows the unperturbed energy
level for the degenerate manifold of the Laughlin state and
its edge and quasihole excitations before the application of
the angular momentum potential which is given by E′1, with
strength δ = δ′ = 5∆.

photon losses with rate Γl are described by the Lindblad
superoperator

Ll =
Γl
2

∫
d2r

[
2Ψ(r)ρΨ†(r)

−Ψ†(r)Ψ(r)ρ− ρΨ†(r)Ψ(r)
]
. (B2)

The frequency-selective emission processes are ac-
counted for in terms of the generalized superoperator

Le =
ge
2

∫
d2rnat

[
Ψ̃†(r)ρΨ(r) + Ψ†(r)ρΨ̃(r)

−Ψ(r)Ψ̃†(r)ρ− ρΨ̃(r)Ψ†(r)
]
, (B3)

where we assume the two-dimensional density nat of the
population-inverted atomic emitters to be constant in
the region of interest and ge = 4ωcav |deg|2/(~ΓpL⊥) is
the coupling of each emitter to radiation in terms of the
dipole matrix element deg, the cavity length L⊥ and the
pumping rate Γp [9, 10].

The frequency-dependence is encoded in the modified
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FIG. 6: N -particle energy levels E′N ≡ EN −N~ω0 (in units
of the typical interaction energy ∆) versus total angular mo-
menta Lz (in units of ~), when the target state (encircled by
a red circle) is the NT = 3-particle two-quasihole state, for
which we take lmax = 2(NT − 1) + 2 and NQH = 2 in Eq. (4)
of the main text. Dashed line shows the unperturbed energy
level for the degenerate manifold of the Laughlin state and
its edge and quasihole excitations before the application of
the angular momentum potential given by Eq.(4) of the main
text, with strength δ = δ′ = 5∆.

field operator Ψ̃(r) which is defined as

Ψ̃(r) =
Γp
2

∫ ∞
0

dτ e(−iωat−Γp/2)τΨ(r,−τ), (B4)

where we have assumed that the loss rate Γl and the
effective emission rate Γe ≡ genat are much smaller than
the repumping rate Γp. These approximations lead to

Ψ(r, τ) ' eiHτ/~Ψ(r)e−iHτ/~, (B5)

which only depends on the Hamiltonian evolution.
The Hermitian conjugate of Eq. (B4) together with

Eq. (B5) yield the matrix elements of the modified field
operator in the eigenstate basis |N〉 of H(NT , NQH) as

〈N + 1|Ψ̃†(r)|N〉 =
Γp/2

−i(ωat − ωN+1,N ) + Γp/2

× 〈N + 1|Ψ†(r)|N〉, (B6)

where ωN+1,N ≡ (EN+1−EN )/~ is the frequency differ-
ence between two many-particle eigenstates with N and

N + 1 number of particles. The frequency-selectivity of
the emission is encoded in the resonant denominator of
Eq. (B6) and can be understood by inspecting the effec-
tive emission rate for a |N〉 → |N +1〉 transition, namely
the real part of the prefactor of Eq. (B6). When the
emitter transition frequency ωat matches the frequency
difference ωN+1,N , the emission rate attains its maxi-
mum value Γe = genat. Otherwise, the emission rate is
suppressed following a Lorentzian lineshape of linewidth
Γp.

In the numerical solution of the master equation we
made use of the block-diagonal form of the steady-state
density matrix ρSS in the N and Lz sectors to reduce the
computational effort.

Appendix C: Loss channels

There are two main sources of fidelity loss in our
scheme of Laughlin state preparation. The technically
more challenging one to overcome is related to the losses
to the lower degenerate manifolds, as discussed in the
main text. This mechanism is further illustrated in
Fig. 7, where we show our numerical results for the varia-
tion of the total population in each of these manifolds for
NT = 3 as Γl/Γe increases. The most detrimental con-
tribution comes of course from the N = 2 states which
brings about a decrease in the target Laughlin popula-
tion in the first order of Γl/Γe. As the particle number
increases this effect gets amplified as a result of increasing
multiplicity of degenerate states in the lower manifolds,
which is reflected in Fig. 3 of the main text. The rem-
edy to reduce this imperfection is to reduce the loss to
emission ratio Γl/Γe as much as possible.

The other mechanism limiting the fidelity is the in-
crease in the population of states lying outside of the de-
generate manifolds as the pump linewidth Γp increases.
This effect is shown in Fig. 8 which is obtained by numer-
ically solving the master equation for four particles when
the target is the NT = 3-particle Laughlin state. As can
be seen from the figure, the four-particle (N = NT + 1)
population dominates other non-degenerate state popu-
lations with N < NT . This can be understood by look-
ing at Eq. (B6), which implies that when the difference
(ωN+1,N − ωat) is non-vanishing, the emission rate will
be suppressed by a Lorentzian factor.

To make an order of magnitude estimate, we assume
that the populations are related through an approxi-
mate detailed balance condition between the N - and the
(N+1)-particle manifolds, the latter being shifted by the
inter-particle interactions:

PN+1Γl ∝ PNΓe
(Γp/2)2

(ωN+1,N − ωat)2 + (Γp/2)2
. (C1)

Taking ωat = ω0 and defining ∆′ ≡ ~(ωN+1,N − ω0) this
condition becomes PN+1Γl ∝ PNΓe/[1 + (2∆′/~Γp)

2] ≈
PNΓe(~Γp/2∆′)2 (the last relation is valid for the case
2∆′/~Γp � 1). Measuring the energies with respect to
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FIG. 7: (a)-(c) Total populations P
(0)
N in the Nth lowest-

energy manifold of non-interacting states for N = 1, 2, 3 and
(d) the vacuum population P0 as a function of Γl/Γe, where

P
(0)
3 corresponds to the target NT = 3-particle Laughlin state

population. The analytical results are shown by blue curves
and the numerical ones by red dots. Pump and emission pa-
rameters are ~Γp/∆ = 5 × 10−4 and ~Γe/∆ = 2.5 × 10−4.
Angular momentum potential strength is δ = 5∆.

the non-interacting levels in the absence of the angular
momentum potential, that is E′N ≡ EN −N~ω0, we can
also write ∆′ = E′N+1−E′N . Since we expect most of the
total population will be accumulated in the NT -particle
Laughlin state, the most populated states outside the de-
generate manifolds would be the lowest-energy (NT + 1)-
particle states. A tentative interpretation of these states
may be in terms of a single quasiparticle excitation on
top of a Laughlin state. Taking ∆′ ∼ ∆ as in Fig. 2

of the main text and P
(0)
3 ∼ 1 gives the correct order of

magnitude for P4 in Fig. 8.

Appendix D: Details on the realization of the
step-like potential in the angular-momentum basis

In a recent work, it was shown that optical mode
conversion may be realized by coupling a pair of mul-
timode resonators together [18]. The idea is to har-
ness impedance matching: a lossless resonator transmits
all light through it on resonance when the in-coupling
through the input mirror is equal to the out-coupling
through the output mirror; by employing a secondary
cavity as the output mirror, it is possible to achieve a
situation where the transmission of the in-coupling mir-
ror of the primary cavity is equal to the out-coupling of
the TEM00 of the primary cavity through a higher-order
mode of the second cavity, resulting in mode conversion.

What if the secondary cavity is single-ended, with no
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FIG. 8: Total populations P ′N outside the unperturbed lowest-
energy manifold for N = 2, 3 and the total population P4 in
the four-particle sector as a function of ~Γp/∆ with ~Γe/∆ =
5× 10−5 and Γl/Γe = 2× 10−3, when the target state is the
NT = 3-particle Laughlin state. Angular momentum poten-
tial strength is δ = 5∆.

power leaking out of its other end (see Fig. 9)? In this
case, the secondary cavity does not induce extra losses
but rather can be exploited to induce a mode-dependent
phase-shift on the primary cavity, resulting in a mode-
dependent energy shift.

In the context of this work, the magnetic Hamiltonian
in Eq. (1) of the main text can be obtained using a pri-
mary cavity which is twisted to produce a flat lowest-
Landau level as done in [7, 19, 20].

As a secondary cavity, we propose to use a cavity that
is twisted, but not to degeneracy. In this way, it is possi-
ble to length-tune a specific LG- mode of the secondary
cavity to resonance with the corresponding mode of pri-
mary cavity, thus shifting it away from the lowest Landau
level. As it is shown in the upper panel of Fig. 9, this pro-
vides an efficient way of tuning the frequency of a specific
angular-momentum mode without affecting all other.

As mentioned in the main text, our proposal requires
blocking several angular momentum modes. Even though
the resonance condition between the primary and sec-
ondary cavity modes only holds for a specific angular
momentum value, the lower panel of Fig. 9 shows how an
electro-optical modulator (EOM) can be used to bridge
the detuning. In this way, an effective resonance can be
obtained for specific modes just by driving the EOM with
the appropriate modulation frequencies, which enables to
choose which modes of the secondary cavity to tune away
from resonance with the primary cavity.

The flexibility of this set-up allows to shape the step-
like potentials in the angular momentum basis that are
needed to confine fractional quantum Hall liquids and,
if needed, introduce quasiholes in the liquid. Note that
the efficiency of this method stems from the markedly
nonlocal character of the potential in real space, which
allows to overcome the limitations of the standard real-
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FIG. 9: Nonlocal potentials in coupled cavities. We
propose to employ a secondary resonator with an intracavity
electro optic modulator (EOM) to control the frequencies of
the modes of our LLL cavity. In panel (a), we show a sim-
plified approach, where the LLL cavity begins with all modes
degenerate, and is coupled to a non-degenerate twisted cavity,
one of whose modes is tuned to resonance with the LLL, there
inducing hybridization and shifting the mode energy away. In
panel (b), we extend this idea to multiple modes by introduc-
ing the EOM into the secondary cavity, and modulating at
appropriate frequencies to induce spectral weight of multiple
modes at the LLL energy, resulting in energy shifts for those
modes.
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