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We study the properties of a single impurity in a dilute Bose gas, a Bose polaron, using the
functional renormalization group. We use an ansatz for the effective action motivated by a derivative
expansion, and we compute the energies of the attractive and repulsive branches of excitations in
both two and three spatial dimensions. Three-body correlations play an important role in the
attractive branch, and we account for those by including three-body couplings between two bath
bosons and the impurity. Our calculations compare very favorably with state-of-the-art experimental
measurements and numerical simulations.

I. INTRODUCTION

The study of an impurity immersed in a quantum
medium has a long history, dating back to the work of
Landau and Pekar on electrons coupled to an ionic crys-
tal [1]. Such impurity is understood as a dressed quasi-
particle referred to as a polaron. Impurities in bosonic
baths have been studied in a variety of configurations and
played a key role in elucidating the physics of helium liq-
uids [2, 3]. The polaron problem has been extensively
studied also in fermionic mediums, particularly in con-
densed matter physics [4] and ultracold atoms [5–16].

The interest in an impurity immersed in a weakly inter-
acting Bose gas, the Bose polaron, has greatly increased
in the past decade. Indeed, the experimental progress
in cold atom gases [17] has recently allowed the experi-
mental realization of Bose polarons, including the regime
of resonant boson-impurity interactions [18–21]. Theo-
retically, early perturbative works were restricted to the
regime of weak boson-impurity interactions [22–24]. Im-
proved descriptions emerged in recent years with a vari-
ety of techniques, including field theory approaches [25–
29], variational methods [30–41], the Fröhlich model [42–
44], and Monte Carlo (MC) simulations [45–49].

In the case of Bose polarons, the bosonic nature of the
medium means that three- and more-body interactions
can be important [32], and that the mixture is generally
highly unstable against three-body losses. In contrast,
in the case of Fermi polarons, interactions beyond the
two-body level are suppressed by Pauli blocking, and the
mixture is relatively long-lived. These differences make
the theoretical description and experimental investiga-
tion of Bose polarons much more challenging. Further-
more, in a bosonic bath the dressed impurity has the
same quantum statistics in the two asymptotic limits of
zero and infinite attraction, so that the problem features
a smooth polaron-to-molecule crossover [25]. In contrast,
in a fermionic medium, a bare impurity and the molecule
it forms by binding to a bath fermion have opposite quan-
tum statistics, and therefore the spectrum of a Fermi
polaron generally features a sharp polaron-to-molecule
transition.

In this work we study Bose polarons using the func-
tional renormalization group (FRG) based on the ef-
fective average action [50, 51] (for a complete review
see Ref. [52]). The FRG is a non-perturbative field
theory approach which proved to be a powerful tool
to study strongly correlated systems, including Efimov
physics in three-body [53–55] and four-body [56–59] sys-
tems, the BCS-BEC crossover [60–68], and the Fermi po-
laron [69–71] (for applications in other areas of physics
see Refs. [51, 52]). The FRG permits to include systemat-
ically the effect of fluctuations, such as those arising from
three- and more-body correlations, and to add their effect
non-perturbatively over a wide range of scales. In addi-
tion, the FRG already provided accurate descriptions of
Bose gases in two and three dimensions [72–78], includ-
ing critical phenomena at the superfluid phase transi-
tions [79]. Therefore, the FRG appears as a good tech-
nique to study novel physics in Bose polarons. Further-
more, because the FRG provides a unified description
of few- and many-body physics within the same theory,
studying polaron physics with FRG can provide impor-
tant insight into Bose-Bose and Bose-Fermi mixtures.

In this article, we focus on Bose polarons at zero tem-
perature in two and three spatial dimensions. We approx-
imate the coarse-grained effective action under a deriva-
tive expansion, and we consider up to three-body cor-
relations. Our approximation enables us to give a good
description of the ground state energies and to quantify
the importance of three-body forces. The article is or-
ganized as follows. In Sec. II we present our model and
introduce the FRG flow equation. In Sec. III we study
the repulsive branch of the Bose polaron, presenting the
main aspects of our FRG calculations, as well as results
for the polaron energy. In Sec. IV we study the attractive
branch, stressing the specific considerations for the study
of attractive interactions, and presenting results for the
polaron energy with and without three-body correlations.
In Sec. V we present the conclusions and outlook of our
work. Finally, in Appendixes A and B we provide specific
details of the RG equations, and in Appendix C we pro-
vide an estimation for the effective mass in the repulsive
branch.
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II. MODEL AND FRG EQUATION

We consider an impurity of massmI and energy µI im-
mersed in a gas of weakly repulsive bosons of mass mB

and chemical potential µB . We approximate the boson-
boson and boson-impurity interactions with contact po-
tentials of strength gBB and gBI , respectively. In a field
theory formulation, such system is described by the mi-
croscopic action [25]

S[ϕ] =

∫
x

[
ψ†B

(
∂τ −

∇2

2mB
− µB

)
ψB

+ ψ†I

(
∂τ −

∇2

2mI
− µI

)
ψI

+
gBB

2
(ψ†BψB)2 + gBIψ

†
Bψ
†
IψBψI

]
, (1)

where we use natural units h̄ = 1, and
∫
x

=
∫∞

0
dτ
∫
dx,

with τ = it the imaginary time. The microscopic action
defines the grand-canonical partition function [51], and
is a functional of the complex fields ψB and ψI , which
represent the bath bosons and the impurity, respectively.
Since we consider a single impurity, the quantum statis-
tics of ψI is irrelevant.

The boson-boson interaction needs to be repulsive, in
order to prevent the collapse of the bosonic medium. In
contrast, the boson-impurity interaction can either be re-
pulsive or attractive, leading to the repulsive and attrac-
tive branches of the Bose polaron. The repulsive branch
is generally well described by perturbative approaches. In
contrast, the attractive branch is more challenging to de-
scribe and shows richer physics. In particular, for strong
attractive coupling the scattering length diverges in three
dimensions, so that usual perturbative approaches may
not be employed. Furthermore, three- and more-body
physics can become important in the regime of strong
coupling [32]. Therefore, more robust approaches have
to be employed in this regime [34]. An analytic solution
for the case of heavy polarons at unitarity was recently
put forward in Ref. [38].

In this work, we extract the ground state properties
of the Bose polaron from the Green’s functions [25].
These can be obtained from S by taking into account
all the quantum paths using the path integral formalism.
However, it is more convenient to work in terms of the
Legendre-transformed effective action Γ. The effective
action is defined in terms of classical fields, and thus it
already contains the effect of fluctuations. The Green’s
functions are then naturally obtained from the vertex
functions Γ(n) (for details see Ref. [51]).

The effective action can be calculated perturbatively
from a loop expansion. However, this is impractical in the
regime of strong coupling, where one needs to take into
account fluctuations over a wide range of scales. Within
the functional renormalization group (FRG), the calcu-
lation of Γ is instead performed non-perturbatively. In
this framework, a regulator function Rk is added to the

theory to suppress fluctuations at momenta q <∼ k, so one
works in terms of a k-dependent effective action Γk. At a
high scale in the ultraviolet (UV) k = Λ, all fluctuations
are suppressed and the effective action is simply the mi-
croscopic action ΓΛ = S. On the other hand, for k → 0
all fluctuations are considered, and Γ0 is the full effective
action.

The flow of Γk as a function of k is dictated by the
Wetterich equation [50]

∂kΓk =
1

2
tr
[
(Γ

(2)
k + Rk)−1∂kRk

]
, (2)

where Γ
(2)
k is the matrix with the second functional

derivatives of Γk,

Γ
(2)
k =

δ2Γk

δϕ†−qδϕq
, (3)

and tr denotes both a matrix trace and an integral over
internal momentum q = (ω,q). The Wetterich equation
has a one loop structure with a propagator Gk = (Γ

(2)
k +

Rk)−1, and insertion ∂kRk [50].
In most applications, one solves the RG flow by propos-

ing an ansatz for Γk, which respects the symmetries of
the microscopic theory. In this work we employ an ansatz
based on a derivative expansion (DE) truncated to a
small number of k-dependent couplings [52]. Within the
DE, we expand the effective action up to a chosen number
of fields and derivatives, and so the Wetterich equation
becomes a set of coupled differential equations for the k-
dependent couplings in the expansion. These equations
can then be solved numerically using standard methods.

It has been shown that the DE gives an accurate de-
scription of various properties of the Fermi polaron in
both two [71] and three [69] dimensions, including the
onset of the polaron and molecule phases and their re-
spective energies. Similarly, in this work we show that
the DE provides a precise description of the ground state
energy of the Bose polaron and also enables us to quan-
tify the importance of three-body correlations.

In the following, we present the study of the repulsive
and attractive branches separately. We start in Sec. III
with the simpler repulsive branch to easily introduce our
formalism. We then generalize our formalism to the at-
tractive branch in Sec. IV.

III. REPULSIVE BOSE POLARONS

We start from action (1), and we neglect the feedback
of the impurity on the medium. To solve the RG flow of
the effective action in presence of repulsive impurity-bath
interactions, we propose the following ansatz

Γk[ϕ] =

∫
x

[
ψ†B

(
SB∂τ −

ZB
2mB

∇2 − VB∂2
τ

)
ψB

+ ψ†I

(
SI∂τ −

ZI
2mI
∇2

)
ψI + U(ρB , ρI)

]
, (4)
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where SB , ZB , VB , SI , and ZI are renormalization fac-
tors which we assume as field-independent, and

U = −P +uIρI +
λBB

2
(ρB−ρ0)2 +λBI(ρB−ρ0)ρI , (5)

is the effective potential expanded up to fourth-order in
the fields, where ρa = ψ†aψa (a = B, I), P is the pres-
sure of the bath, uI is a one-body coupling for the im-
purity, and λBB and λBI are the couplings associated
to the boson-boson and boson-impurity interactions, re-
spectively. All the couplings in the expansion, SB , ZB ,
VB , SI , ZI , P , uI , λBB , λBI , as well as the order pa-
rameter ρ0 = 〈ρB〉, flow with k. We note that three- and
more-body correlations are not important in the repul-
sive branch, and thus ansatz (4) only contains two-body
couplings.

Our ansatz is based on the one used to study repulsive
Bose-Bose mixtures [78], adapted to the limit of extreme
population imbalance. The term VB∂

2
τ is necessary to

correctly describe the bosonic medium in the infrared
where the effective action develops phonons with linear
dispersion, taking the form of a relativistic model [73].
An analogous term is not needed for the impurity, as the
latter is not condensed.

We stress that our ansatz is only accurate for two- and
three-dimensional gases. In one dimension, our level of
truncation is not able to accurately capture the quasicon-
densate nature of the bath [72], where we have to care-
fully treat the stronger impact of phase fluctuations [77].

The minimum ρ0 of the effective potential corresponds
to the condensate density of the medium, giving its phys-
ical value at k = 0. If ρ0 > 0, the U(1)-symmetry of the
bosonic bath is broken, and the gas is condensed. Here
we study the two- and three-dimensional polaron at zero
temperature, so that ρ0 is always non-zero. In contrast,
for the impurity 〈ρI〉 = 0. Furthermore, the superfluid
density is given by the value at k = 0 of the superfluid
stiffness ρs = ZBρ0 [76]. Because at zero temperature
all bosons are superfluid, we can extract the density of
the medium n from n = ρs [74]. We note that interac-
tions deplete the condensate, ρ0 ≤ ρs = n, and therefore
the mass renormalization coefficient ZB flows to a value
larger than unity for k → 0 [74].

To solve the RG flow we need an equation for each
running coupling. We obtain the flow equations from the
Wetterich equation (2). These can be found in App. A.
In addition, we need to choose a regulator. In this work,
we use the optimized Litim regulator [80]

Rk,a =
Za

2ma
(k2 − q2)Θ(k2 − q2) , a = B, I (6)

where Θ is the Heaviside step function. This choice en-
ables us to perform the momentum integrals analytically
before solving the RG flow. Finally, we need to specify
the initial conditions of the RG flow. We do so in the
following subsection.

A. Initial conditions of the RG flow

The RG flow is started at a scale k = Λ much larger
than the relevant scale of the bath, which in this case is
given by the healing scale kh = (2mBµB)1/2 [74, 77]. At
this high scale, we can impose that ΓΛ = S. We obtain

SB(Λ) = ZB(Λ) = SI(Λ) = ZI(Λ) = 1 , VB(Λ) = 0 ,

ρ0(Λ) =
µB

λBB(Λ)
, uI(Λ) = −µI + µB

λBI(Λ)

λBB(Λ)
, (7)

where µB > 0, and µI/µB < λBI(Λ)/λBB(Λ).
To connect the flow to known physical observables,

we impose that the couplings λBB and λBI in vacuum
(µB = µI = 0) correspond to the known two-body
T -matrices at the physical limit k = 0 (see details in
Ref. [74]). With this, the initial conditions for λBB and
λBI depend on the boson-boson and boson-impurity scat-
tering lenths aBB and aBI , respectively. For the opti-
mized regulator (6), we have the same initial conditions
as those for the repulsive Bose-Bose mixtures studied in
Ref. [78]. These are

λα(Λ) =


2π/mα

1− 2γE − ln(a2
αΛ2/4)

: d = 2(
mα

2πaα
− mα

3π2
Λ

)−1

: d = 3

, (8)

where α = BB,BI, and γE ≈ 0.577 is the Euler-
Mascheroni constant. The reduced masses are mBB =
mB/2 and mBI = mr = mBmI/(mB + mI). For
purely repulsive potentials, the scattering lengths provide
a lower bound to the potential ranges. Thus, a contact
potential approximation becomes invalid for momenta
larger than the inverse scattering length [77, 78]. The
flow must therefore be restricted to Λ < min(a−1

BI , a
−1
BB).

Nevertheless, we stress that because the interactions are
renormalized by Eq. (8), as long as Λ � kh the results
are independent of the choice of Λ. For more details see
Refs. [74, 77].

The initial conditions completely define the RG flow in
terms of the physical inputs µB , aBB and aBI , and the
self-consistently determined µI . We then follow the RG
flow by solving the flow equations of all the couplings.
Note that we choose values of aBB and µB which give
the desired physical density of the bath for k → 0 [74].
Examples of flows are given in App. A.

B. Propagator and polaron energy

As explained in Sec. II, the propagator of the FRG
equation is given by Gk = (Γ

(2)
k + Rk)−1. In momentum

space q = (ω,q), the inverse propagator for ansatz (4)
reads

G−1
k (q) =

(
G−1
k,B(q) 0

0 G−1
k,I(q)

)
, (9)
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where

G−1
k,B(q) =

(
E1,k(q; ρB) + VBω

2 SBω
−SBω E2,k(q; ρB) + VBω

2

)
,

(10)
is the inverse propagator of the Bose gas, with

E1,k(q; ρB) =E2,k(q; ρB) + 2ρBU
′′
B(ρB) , (11)

E2,k(q; ρB) =ZB
q2

2mB
+ U ′B(ρB) +Rk,B(q) , (12)

where the primes in U ′ and U ′′ indicate derivatives with
respect to ρB , whereas

G−1
k,I(q) =

(
EI,k(q; ρB) + iSIω 0

0 EI,k(q; ρB)− iSIω

)
,

(13)
is the inverse propagator of the impurity, with

EI,k(q; ρB) = ZI
q2

2mI
+ ∂ρIU(ρB , ρI) +Rk,I(q) . (14)

Note that we introduced real orthogonal fields ψB =
(ψB,1(x) + iψB,2(x))/

√
2, and evaluated all the fields at

their background values ψB,1 =
√

2ρBδ(q) and ψB,2 =
ψI = φ = 0 [74].

The polaron energy µI corresponds to the energy
needed to add an impurity to the medium. In the ground
state, the Green’s function of the impurity GI (or anal-
ogously, the spectral function) has a pole at µI [25]. In
our FRG formalism, we find the ground state energy by
determining the energy µI that gives det(G−1

k,I(0)) = 0

for k → 0 [69].
From Eq. (13), by taking det(G−1

k,I) = 0 at the mini-
mum ρB = ρ0, we find the pole

q∗0(q) = EI,k(q)/SI , (15)

where EI,k is defined in Eq. (14). At zero momentum,
q∗0(0) = uI/SI . Therefore, the physical polaron energy
µ∗I corresponds to the choice of µI which gives q∗0(0)→ 0
for k → 0. Values of µI that do not fulfill this condition
are not physical. An analogous condition is imposed to
find the ground state of the Fermi polaron [69], and bind-
ing energies in few bosons problems [55]. We note that
because in the DE we follow the flow at zero momentum
q = 0 (see App. A), we can not study the poles at finite
momenta in the current work.

C. Results

Following the approach sketched above, here we
present results for the polaron energy for a range of
boson-impurity scattering lengths aBI . This scattering
length can be tuned experimentally through Feshbach
resonances [19]. We present results in both two and
three dimensions and compare them with known results
to check the robustness of our approach.

d=3

mI=mB

n1/3aBB=3.5x10
-3

FIG. 1. Polaron energy E of the repulsive branch in three
dimensions as a function of (n1/3aBI)

−1. The solid red line
corresponds to FRG calculations. The dash-dotted brown
line corresponds to ladder calculations from Ref. [26]. The
thin orange lines correspond to the perturbative solution (16)
at the MF level (dotted) and with the LHY-type correction
(dashed). The light blue open circles are experimental data
from Ref. [47], and the blue squares are MC simulations from
Ref. [47]. In all cases, mB = mI and n1/3aBB = 3.5× 10−3.

First, we show results in three dimensions in Fig. 1. We
employ parameters that simulate the conditions of the
Aarhus experiment [19], and scattering lengths aBI >
aBB so the effect of the boson-impurity interaction is
important. We compare with MC simulations and ex-
perimental data from Ref. [47], ladder calculations from
Ref. [26], and with the perturbative solution [81, 82]

E =
2πaBIn

mR

[
1 +

24

3
√
π

mR

mI

√
na3

BB

aBI
aBB

I(γ)

]
, (16)

where n is the density of the bosonic bath, γ = mB/mI ,
and

I(γ) =
1 + γ

γ

∫ ∞
0

dk

[
1− (1 + γ)k2

√
1 + k2(

√
1 + k2 + γk)

]
,

which for equal masses takes the value I(1) = 8/3. The
first term in Eq. (16) corresponds to the mean field (MF)
solution, whereas the second term is a Lee-Huang-Yang
(LHY) type correction.

We obtain a good agreement between our results and
both the MC simulations and perturbative solutions.
This is in line with previous FRG results for repulsive
Bose-Bose mixtures [78]. We stress that the MC simula-
tions include fluctuations at all orders, and thus they are
a good benchmark for our calculations. We restrict our
calculations to (n1/3aBI)

−1 >∼ 4, as for stronger boson-
impurity interactions we have that kh >∼ a−1

BI , and thus
we can not choose a sufficiently large value for the initial
scale Λ [see discussion after Eq. (8)].

We show an analogous calculation in two dimen-
sions in Fig. 2. We employ conditions that have been
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d=2

mI=mB

n1/2aBB=10
-20

FIG. 2. Polaron energy E of the repulsive branch in two
dimensions as a function of − log(n1/2aBI). The solid red line
corresponds to FRG calculations. The thin dotted orange line
corresponds to the MF solution (17). The blue squares are
MC simulations from Ref. [48]. In all cases, mB = mI and
n1/2aBB = 10−20.

achieved experimentally in two-dimensional traps with
87Rb atoms [83, 84]. We compare with MC simulations
from Ref. [48], and with the MF solution [48]

E =
πn/mR

| ln(n1/2aBI)|
. (17)

As in three dimensions, we obtain an excellent agree-
ment with MC simulations for − ln(n1/2aBI) >∼ 4. Fur-
thermore, the FRG results show an important improve-
ment over the perturbative solution. This is expected,
as the FRG has proved to give a good description of
two-dimensional gases [75, 85]. In contrast, perturbative
results are less reliable in two dimensions because of the
enhanced effect of fluctuations. For stronger interactions
(− ln(n1/2aBI) <∼ 4) the FRG calculations become unre-
liable due to the breakdown of the initial conditions.

We have checked that we obtain similarly good descrip-
tions of the polaron energy also for other choices of gas
parameters and masses mB ≈ mI in both two and three
dimensions. We also provide an estimate of the effective
mass in App. C.

IV. ATTRACTIVE BRANCH

We switch now to the description of the quasiparticle
excitation which is present at negative energies, the so-
called attractive polaron.

Because we now deal with attractive interactions, we
have to consider the formation of bound states. In par-
ticular, the Bose polaron shows a polaron-to-molecule
crossover [25]. Two-body bound states appear as poles
in the four-point vertices Γ(4). However, in a straight-
forward application of the DE [see Eq. (4)], all the terms

FIG. 3. Tree-level diagram for the scattering between a boson
and an impurity before (left) and after (right) the introduction
of the auxiliary dimer fields. Solid, dashed, and dotted lines
denote bosons, impurities, and dimers, respectively.

in the expansion are regular, and thus they do not ac-
count for bound states [55]. We can circumvent this by
introducing dimer fields φ ∼ ψBψI to mediate the boson-
impurity interaction via a Hubbard-Stratonovich trans-
formation [69]. Analogous transformations are used in
FRG studies of Fermi gases [61, 62] and few atoms [55].
In the context of Feshbach resonances, the fields ψB and
ψI represent atoms in the open channel, whereas the field
φ represents dimers in the closed channel [61]. The re-
sulting action takes the form a two-channel model [25]

S[ϕ] =

∫
x

[
ψ†B

(
∂τ −

∇2

2mB
− µB

)
ψB

+ ψ†I

(
∂τ −

∇2

2mI
− µI

)
ψI

+ φ†
(
∂τ −

∇2

2mφ
+ νφ

)
φ+

gBB
2

(ψ†BψB)2

+ h
(
φ†ψBψI + φψ†Bψ

†
I

)]
, (18)

where mφ = mB + mI is the mass of a closed-channel
dimer, νφ is the dimer detuning, and h is the Feshbach
coupling. The Hubbard-Stratonovich transformation is
illustrated in Fig. 3.

We work in the broad resonance limit where h, νφ →
∞, but h2/νφ is kept constant [61]. In this limit, by
integrating out the dimer fields in Eq. (18) we recover
the original one-channel model Eq. (1), and thus both
equations are equivalent. Therefore, we stress that in this
work Eq. (18) physically describes a one-channel model
where φ simply acts as an auxiliary field.

Based on action (18), we propose the following ansatz
for the effective action in the attractive branch

Γk[φ] =

∫
x

[
ψ†B

(
SB∂τ −

ZB
2mB

∇2 − VB∂2
τ

)
ψB

+ ψ†I

(
SI∂τ −

ZI
2mI
∇2 + UI(ρB)

)
ψI

+ φ†
(
Sφ∂τ −

Zφ
2mφ

∇2 + Uφ(ρB)

)
φ

+Hφ(ρB)
(
φ†ψBψI + φψ†Bψ

†
I

)
+ UB(ρB)

]
,

(19)
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FIG. 4. Two- (upper row) and three-body (bottom row) ver-
tices associated to the interaction between the bosons and the
impurity. Solid lines represent the bosons, dashed lines the
impurity, and the dotted line the dimer field.

where ρB = ψ†BψB . Our ansatz is similar to those
used for the Fermi polaron [69, 71], and, as the repul-
sive branch, is only valid in two and three dimensions.
Note that the dimer fields become dynamical, with flow-
ing renormalization factors Sφ and Zφ. We expand the
boson effective potential as

UB = −P +
λBB

2
(ρB − ρ0)2 , (20)

analogously to Eq. (5). As in the repulsive branch, ρ0

and ρs = ZBρ0 at k = 0 correspond to the physical con-
densate and superfluid densities of the bosonic medium,
respectively. The rest of the functions contain the in-
teractions between the bosonic medium and the impu-
rity. Because three-body correlations are important in
the attractive branch, we expand these up to three-body
couplings

UI = uI + λBI(ρ− ρ0) +
λBBI

2
(ρ− ρ0)2 , (21)

Uφ = uφ + λBφ(ρ− ρ0) , (22)
Hφ = hφ + hBφ(ρ− ρ0) . (23)

Here, hφ and λBI correspond to two-body boson-
impurity vertices, whereas λBφ, λBBI and hBφ to three-
body vertices. These vertices are illustrated in Fig. 4.

The FRG framework enables us to include the effect of
three-body correlations by allowing the three-body cou-
plings to flow. In the following, we will want to test the
relevance of three-body effects. To switch those off, it is
enough to fix the corresponding couplings at zero for all
k.

Similarly to the repulsive branch, all the renormaliza-
tion factors (Za, Sa, VB) and the couplings in UB , UI , Uφ
and Hφ, as well as ρ0, flow with k. We also employ the
optimized regulator (6) for all the fields a = B, I, φ. We

provide the flow equations in App. B, and we examine
the initial conditions here below.

A. Initial conditions of the RG flow

Similarly to the repulsive branch, the RG flow is
started at a high scale k = Λ much larger than the heal-
ing scale of the bath kh = (2mBµB)1/2. By imposing
that ΓΛ = S, we obtain

SB(Λ) = ZB(Λ) = SI(Λ) = ZI(Λ) = 1

VB(Λ) = 0 , ρ0(Λ) =
µB

λBB(Λ)
, uI = −µI , (24)

where µB > 0 and µI < 0. Note that, in contrast to the
repulsive branch, the impurity energy µI is negative by
construction.

The couplings λBB , uφ, Zφ and Sφ are renormalized
in vacuum so they can be connected to physical scat-
tering [62, 74]. The initial condition for λBB is given
by Eq. (8). For the boson-impurity interaction, we con-
sider the boson-impurity scattering length aBI and effec-
tive range r0 as physical inputs. The effective range is
necessary to have a well defined three-body sector with
attractive interactions in three dimensions. Otherwise,
the UV is not well defined since the infinite tower of Efi-
mov trimers which appears in this case lacks a reference
scale [34]. At low collision energies, the boson-impurity
T matrix takes the form [86, 87]

TBI =


2π/mr

ln(−4/p2
Ra

2
BI)− 2γE − πr20

4 p2
R + iπ

: d = 2

2π/mr

a−1
BI −

r0
2 p

2
R + ipR

: d = 3

,

(25)
where

pR = −

√
2mr

(
p0 −

p2

2mφ
+ µφ

)
, (26)

is the relative momentum, with µφ = µB + µI and p0 =
iωp. At the physical limit k = 0 in vacuum, we impose
that (see Ref. [88] for details)

h2
φ

Πφ(p0,p)

∣∣∣∣
k=0

= −TBI , (27)

where Πφ is the full dimer self energy. Πφ is related to
the couplings in ansatz (19) through uφ = Πφ(0,0), and

Zφ =2mφ
∂

∂p2
Πφ

∣∣∣
p0=0,p=0

, (28)

Sφ =− ∂

∂p0
Πφ

∣∣∣
p0=0,p=0

. (29)

We obtain the following initial conditions [88]

uφ
h2
φ

∣∣∣∣
Λ

=


mr

2π

(
ln(a2

BIΛ
2/4) + 2γE − 1

)
: d = 2

2mr

3π2
Λ− mr

2πaBB
: d = 3

, (30)
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and

Zφ
h2
φ

∣∣∣∣
Λ

=
Sφ
h2
φ

∣∣∣∣
Λ

=


m2
r

π

(
2

Λ2
− π

4
r2
0

)
: d = 2

m2
r

π2

(
8

3Λ
− π

2
r0

)
: d = 3

. (31)

Note that uφ and hφ are chosen freely as long as they
satisfy Eq. (30).

Since we work in the broad resonance limit, we have
naturally r0 > 0 [89, 90]. In three dimensions, a positive
effective range ensures that the dimer fields become non-
dynamical in the UV with Zφ, Sφ → 0, and so our ansatz
describes a one-channel model. For details on the FRG
for narrow resonances, see Ref. [61].

The scattering length aBB sets a lower bound for the
range of the boson-boson interaction, whereas r0 sets the
range of the attractive boson-impurity interaction. Anal-
ogously to the repulsive branch, we must restrict the flow
to momenta smaller than a−1

BB and r−1
0 in order for our

approximation of contact potentials to be valid. There-
fore, the initial scale has to satisfy Λ < min(a−1

BB , r
−1
0 ).

We stress again that because of the renormalizations (30)
and (31), the results are independent of the choice of Λ
as long as Λ� kh.

In contrast to purely repulsive potentials, for attractive
potentials the scattering length can be tuned indepen-
dently of the range. Therefore, in the attractive branch
we can choose aBI freely. This enables us to study the
regime of strong boson-impurity coupling, including the
unitary limit aBI →∞ in three dimensions [62]. In con-
trast, in the repulsive branch the initial scale Λ is heavily
restricted by aBI [see discussion after Eq. (8)].

The couplings not mentioned so far are not present in
the microscopic theory (18), and so their values at k = Λ
are zero. In particular, the three-body couplings are zero
in the UV, and they are only generated as k is lowered.
To capture the effect of three-body correlations at high
scales, we must start the RG flow at a high scale nearby
the range of the interactions: Λ ≈ min(a−1

BB , r
−1
0 ).

B. Propagator and polaron energy

In the attractive branch, the inverse propagator for
ansatz (19) reads

G−1
k (q) =

(
G−1
k,B(q) 0

0 G−1
k,Iφ(q)

)
, (32)

where G−1
k,B is given in Eq. (10), and

G−1
k,Iφ(q) =


EI,k(q; ρB) + iSIω 0 ρ

1/2
B Hφ(ρB) 0

0 EI,k(q; ρB)− iSIω 0 ρ
1/2
B Hφ(ρB)

ρ
1/2
B Hφ(ρB) 0 Eφ,k(q; ρB) + iSφω 0

0 ρ
1/2
B Hφ(ρB) 0 Eφ,k(q; ρB)− iSφω

 , (33)

is the impurity-dimer inverse propagator, with

EI,k(q; ρB) = ZI
q2

2mI
+ UI(ρB) +Rk,I(q) , (34)

Eφ,k(q; ρB) = Zφ
q2

2mφ
+ Uφ(ρB) +Rk,φ(q) . (35)

In contrast to the problem of an impurity in a Fermi bath,
whose ground state features a sharp transition between
a polaron and a dressed dimer, the Bose polaron prob-

lem shows a smooth polaron-to-molecule crossover. We
can understand this from Eq. (33), where if ρ0 > 0 we
can not separate G−1

k,Iφ into independent impurity and
dimer propagators. Therefore, the impurity and dimer
propagators are hybridized, and we can not identify a
polaron or a molecule phase (for more details, we refer
to Ref. [25]).

To find the ground state energy µI , we search for the
pole of the Green’s function GIφ, as we did for the re-
pulsive branch in Sec. III B. By taking det(G−1

k,Iφ) = 0 at
the minimum ρB = ρ0, we find two poles

q∗0,±(q) =
1

2

[
EI,k(q)

SI
+
Eφ,k(q)

Sφ
±

√(
EI,k(q)

SI
+
Eφ,k(q)

Sφ

)2

− 4

SISφ
(EI,k(q)Eφ,k(q)− h2

φρ0)

]
, (36)

where EI and Eφ are defined in Eqs. (34) and (35). As
with the repulsive branch, we identify the choice of µI

that gives q∗0,±(0) = 0 for k → 0 as the energy of the
polaron. Similarly, choices of µI that do not fulfill this
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condition are not physical.
We find that q∗0,+(0) and q∗0,−(0) go to zero at the same

impurity energy µI , and thus there is one ground state
energy for each combination of interaction strengths.
This can change at finite temperatures, where the spec-
trum can split into more than one quasiparticle [29, 91].
We provide details of the flows in App. B.

C. Results

In the following, we evaluate the polaron energy in
both two and three dimensions, and we compare it with
available analytical and experimental results. To quan-
tify the effect of three-body correlations, we present
curves which include only two-body correlations (2B) and
both two- and three-body correlations (2B+3B).

1. Three dimensions

The attractive branch of the three-dimensional polaron
at zero temperature has been previously investigated in
various works. To test the robustness of our FRG cal-
culations, we compare with MC simulations, solutions of
the Gross-Pitaevskii equation (GPe), ladder calculations
and experimental data.

Fig. 5 shows the polaron energy for three choices of
masses and gas parameters. The panels (a), (b) and (c)
simulate, respectively, the conditions of the Aarhus [19],
JILA [20], and MIT [21] experiments. We present calcu-
lations with only two-body interactions and r0 = 0 (be-
cause for the interactions we investigated the two-body
sector is only weakly sensitive to r0), and with two- and
three-body interactions with both r0 = 0 and r0 > 0. We
use the effective ranges r0 computed in Ref. [37].

In panels (a) and (b) we compare with experimental
data, GPe calculations [37], and MC simulations [47]. In
addition, we compare with the perturbative solution (16),
where I(2.2) ≈ 1.78 and I(1/1.72) ≈ 1.99. Additionally,
in panel (a) we compare with ladder calculations from
Ref. [26], which give an upper bound for the energy. We
observe a noticeable effect of three-body correlations in
panels (a) and (b), as well of the effective range. In
contrast, in panel (c) three-body effects are not as im-
portant. This is in agreement with previous studies that
showed that three-body effects are more important for
lighter impurities and at lower bath densities [34, 92].

In the weakly interacting regime (n1/3aBI)
−1 <∼ −4,

our FRG calculations recover the expected result from
perturbation theory (16). For stronger interactions,
(n1/3aBI)

−1 >∼ −4, our FRG is in very good agreee-
ment with both MC and GPe results. We obtain the
best agreement with MC by including three-body corre-
lations with r0 = 0. Nevertheless, also our calculations
with finite effective range are in reasonable agreement
with experiment.

(a)

(b)

(c)

d=3

mI=mB

n1/3aBB=3.5x10
-3

d=3

mI=1.72mB

n1/3aBB=4.0x10
-2

d=3

mI=mB/2.2

n1/3aBB=2.8x10
-2

FIG. 5. Polaron energy in three dimensions as a function
of (n1/3aBI)

−1. The red lines correspond to FRG calcu-
lations with only 2B interactions (dotted), 2B+3B interac-
tions with r0 = 0 (solid), and 2B+3B interactions with
r0 = 3, 1.5, 0.6aBB (dashed) for (a), (b), and (c), respec-
tively. The thin orange lines show the perturbative solu-
tion (16) at the MF level (dotted), and with the first cor-
rection (dashed). The green dashed lines are GPe calcu-
lations from Ref. [37] [in panel (b) the green line is un-
derneath the solid red line]. The dash-dotted brown line
shows ladder calculations from Ref. [26], the blue squares
are MC simulations from Ref. [47], and the light blue circles
are experimental data from Refs. [19, 47] (a) and [20] (b).
The dashed black lines show the binding energy in vacuum
εb = −(2mRa

2
BI)

−1Θ(aBI).
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d=3

mI=mB

FIG. 6. Polaron energy in three dimensions at unitarity
aBI → ∞ for mB = mI as a function of the gas pa-
rameter n1/3aBB . The red lines correspond to FRG cal-
culations with only 2B interactions (dotted), 2B+3B inter-
actions with r0 = 0 (solid), and 2B+3B interaction with
r0 = 2.2 × 10−3/(mBµB)1/2 > 0. The blue circles are MC
simulations from Ref. [45].

To examine the effect of the gas parameter, in Fig. 6 we
show the polaron energy as a function of n1/3aBB at uni-
tarity, where three-body correlations are important. We
find that the effect of three-body correlations depends
strongly on the gas parameter, in agreement with pre-
vious studies [34]. As we approach the vacuum limit
n1/3aBB → 0, three-body correlations become much
more important, significantly decreasing the polaron en-
ergy. In particular, we obtain a good agreement with
MC simulations from Ref. [45] by considering three-body
effects. This confirms both the importance of three-body
physics and also the robustness of our calculations.

At low gas parameters, the polaron energy is more sen-
sitive to the effective range. In particular, with three-
body interactions, the polaron energy goes to a finite
value with a finite effective range, whereas we are not
able to find a bound with r0 = 0. As explained in detail
in Ref. [34], with r0 = 0 there are infinite Efimov trimers
in vacuum, and so the energy diverges at the vacuum
limit. In contrast, for r0 > 0 there is a well defined deep-
est Efimov state, and therefore the energy saturates to a
finite value. Finally, let us mention that the limit of very
low gas parameters is extremely delicate [34, 37, 38, 40].
Indeed, in the limit aBB → 0 the bath becomes infinitely
compressible, and thus multi-body correlations play an
increasing importance. To study such regime with FRG,
one would need to include further higher order couplings
in the ansatz.

2. Two dimensions

The two-dimensional Bose polaron has been studied in
detail only recently, with MC simulations in Ref. [48].
Here, we provide results for various conditions achieved
in current experiments [83, 84].

Fig. 7 shows results for three different combination of
masses and the gas parameter n1/2aBI = 10−20. All the
calculations use r0 = 0. We find that our calculations are
insensitive to reasonably chosen effective ranges. This is
not unexpected. In two dimensions, there are no Efi-
mov trimers in vacuum, with only two three-body bound
states [93].

In panel (a) we compare with MC simulations from
Ref. [48]. Additionally, we compare with the perturbative
solution (17). In all cases, we obtain a noticeable effect
of three-body correlations. In particular, in panel (a)
we obtain a better agreement with the MC simulations
by considering three-body effects. However, we do not
obtain an agreement as good as in three dimensions. This
could either be an effect of the derivative expansion or
of not considering higher-order couplings. We stress that
because fluctuations are enhanced in low dimensions, it
is expected that our approximation is less robust than in
three dimensions.

To study the effect of the density of the medium, in
Fig. 8 we show the polaron energy in the strong coupling
regime as a function of the bath density. We show results
for ln(n1/2aBI) = 0, which can not be described by the
perturbative solution (17). We explore a wide range of
gas parameters. We note that recent experiments have
produced two-dimensional bosonic gases with gas param-
eters as high as n1/2aBB ≈ 10−9 − 10−4 without many
losses [94, 95].

As in three dimensions, we observe an important effect
of three-body correlations. However, the energy seems to
converge to a finite value for the vacuum gas limit with
and without three-body effects, even with zero effective
range. This is expected. As mentioned, in two dimen-
sions there are only two well defined tree-body bound
states in vacuum [93] instead of infinite Efimov trimers.
Nevertheless, we do not reach the value of the binding en-
ergy of the deepest trimer in vacuum E ≈ 16.5εb, where
εb = −2/(mre

2γEa2
BI). In Fig. 8, this corresponds to

EmB/n ≈ −21. This is probably due to our trunca-
tion of the derivative expansion, which does not describe
few-body physics accurately [55]. We expect that the in-
clusion of further couplings will improve the convergence.

V. CONCLUSIONS

In this work, we studied the Bose polaron at zero tem-
perature in two and three dimensions with the FRG. We
approximated the effective action by means of a deriva-
tive expansion, which enabled us to find the ground state
energies of the polaron by following the flow of the scale-
dependent poles of the impurity’s propagator.
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(a)

(b)

(c)

d=2

mI=mB

n1/2aBB=10
-20

d=2

mI=1.72mB

n1/2aBB=10
-20

d=2

mI=mB/2.2

n1/2aBB=10
-20

FIG. 7. Polaron energy in two dimensions as a function of
− log(n1/2aBI). Masses and gas parameters are given within
the figures. The red lines correspond to FRG calculations
with only 2B interactions (dotted), and 2B+3B interactions
with r0 = 0 (solid). The thin orange gray lines show the
MF solution (17). The blue squares are MC simulations from
Ref. [48]. The dashed black lines are the boson-impurity bind-
ing energy εb = −2/(mre

2γEa2BI).

We studied both the repulsive and attractive branches
of the Bose polaron. In the attractive branch, we intro-
duced dimer fields via a Hubbard-Stratonovich transfor-
mation to mediate the boson-impurity interaction. This
enabled us to access the regime of strong coupling easily.

d=2

mI=mB

FIG. 8. Polaron energy in two dimensions at ln(n1/2aBI) = 0

for mB = mI as a function of the gas parameter n1/2aBB .
The red lines show FRG calculations with 2B interactions
only (dotted), and 2B+3B interactions with r0 = 0 (solid).

In addition, in the attractive branch, we added the effect
of three-body correlations by considering up to three-
body couplings in the derivative expansion.

We obtained polaron energies in good agreement with
state-of-the-art theoretical and experimental results. In
particular, in the attractive branch, we obtained the best
agreement by adding three-body effects. Overall, we
showed that the FRG can successfully describe the regime
of strong coupling in both two and three dimensions.

Throughout this manuscript, we focused on cases
where 0.5 <∼ mI/mB

<∼ 2. The reason is twofold. On
one side, for heavy impurities, homogeneous fields might
not provide a good description of static particles. On
the other side, for light impurities, the attractive branch
is strongly influenced by Efimov trimers [92], which re-
quire a careful treatment, beyond the scope of the current
work.

Having demonstrated that the Bose polaron can be
successfully described with the FRG, there are several
extensions of this work that we plan to explore in the
future. First, we intend to consider the full momentum
dependence of the flowing couplings by employing a ver-
tex expansion [51] in order to give a more robust descrip-
tion of the Bose polaron. This will enable us to obtain
the full Green’s function, which is not accessible within
the derivative expansion, and to study dynamical proper-
ties, as well as decay rates. Furthermore, the account of
momentum dependent vertices is necessary to accurately
capture few-body physics, including the onset of Efimov
states, which are beautifully captured with the FRG as
periodic cycles in the RG flow [55]. We also plan to ex-
plore the effect of four- and more-body correlations by
adding higher-order couplings.

On top of the current works on Bose and Fermi po-
larons, the FRG could be used to study impurities in
other scenarios. A small finite number of impurities is
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a natural extension of this work, and systems with a
small population of impurities can be studied as quan-
tum mixtures with large population imbalances [67, 71].
Furthermore, polarons in optical lattices could be nat-
urally studied by employing the lattice implementation
of the FRG [96], which has proved very successful in de-
scribing strongly-correlated lattice gases [97]. Using im-
purities to probe topological excitations is, presently, a
topic of great interest [98–100], and the FRG may be a
good tool to address them at strong coupling. Finally,
polarons at finite temperatures can be easily studied by
using the Matsubara formalism. Particularly interesting
would be to examine the impact of the BKT transition
on the properties of two-dimensional Bose polarons.
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Appendix A: RG flow of the repulsive branch

1. Flow equations

In the DE all the couplings are momentum-
independent f(q) = f , and their flows are simply ob-
tained by differentiating the Wetterich equation (2).
Because there is no feedback of the impurity onto the
medium, the flow equations for the bosonic couplings
(ρ0, λBB , ZB , SB and VB) are identical to those of a
one-component Bose gas. Thus, we refer to Ref. [74] for
details. Also, note that it is not necessary to follow the
flow of the k-dependent pressure P , as it does not affect
the flow of the rest of the couplings.

The flows of the couplings associated to the impurity

are dictated by

∂kuI =∂kΓ
(2)

k,I†I

∣∣∣
ρ0,p=0

, (A1)

∂kλBI =
∂

∂ρB
(∂kΓ

(2)

k,I†I
)
∣∣∣
ρ0,p=0

, (A2)

∂kZI =2mI
∂

∂p2
(∂kΓ

(2)

k,I†I
)
∣∣∣
ρ0,p=0

, (A3)

∂kSI =i
∂

∂ωp
(∂kΓ

(2)

k,I†I
)
∣∣∣
ρ0,p=0

, (A4)

where ∂kΓk is obtained from the Wetterich equation (2),
p = (ωp,p) is an external momentum which is taken to
zero after differentiating, and the two-point function is
defined as

Γ
(2)

k,I†I
=

δ2Γ

δψ†IδψI
. (A5)

We note that we take p = 0 because in a DE all the
couplings are momentum-independent, and thus we fol-
low the flow at zero momentum [52]. Studies at finite
momenta can be implemented within a vertex expan-
sion, where the ansatz for Γ is proposed in terms of
momentum-dependent vertices instead of simple deriva-
tives [51]. However, to solve the RG flow in a vertex
expansion, we usually need to perform sophisticated cal-
culations, such as with the BMW approximation [79],
which are beyond the scope of this work.

Because we follow the flow at the minimum ρ0, we
evaluate at ρB = ρ0 after taking the derivatives. The
diagrams that contribute to the flow of Γ

(2)

k,I†I
are shown

in Fig. 9. They give the following expression

∂kΓ
(2)

k,I†I
=∂̃k

∫
q

[
4ρBλ

2
BI

(E2,k(q) + VBω
2)EI,k(q + p)

detB(q) detI(q + p)

− λBI(E1,k(q) + E2,k(q) + 2VBω
2)

2 detB(q)

]
, (A6)

where ∂̃k is a k-derivative that only acts on the regulators,
E1, E2 and EI are given in Eqs. (11,12) and (14), and

detB(q) =S2
Bω

2 + (E1,k(q) + VBω
2)(E2,k(q) + VBω

2) ,
(A7)

detI(q) =S2
Iω

2 + EI,k(q)2 . (A8)

Note that E1, E2 and EI still depend on ρB , which is
only taken to ρB = ρ0 after taking all the derivatives.
Finally, the integral over internal momentum q = (ω,q)
is defined as ∫

q

=

∫ ∞
−∞

dω

2π

∫
ddq

(2π)d
. (A9)

2. Examples of flows

Fig. (10) shows the flow of uI for different µI for cho-
sen parameters for the bosonic medium and the boson-
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p

p

p+qq q

p

p

FIG. 9. Diagrams that contribute to the flow of Γ
(2)

k,I†I
. Solid

and dashed lines denote bosons and impurities, respectively.
The cross denotes a boson field evaluated at its background
value 〈ψB〉 =

√
ρB .

FIG. 10. Flow of uI in three dimensions in the repulsive
branch for n1/3aBB = 3.5 × 10−3 at (n1/3aBI)

−1 = 10. The
solid line corresponds to the flow obtained for the ground
state energy µ∗

I , the thin dashed line to a flow obtained with
µI < µ∗

I , and the thin dotted to a flow obtained with µI > µ∗
I .

impurity scattering length. At the physical polaron en-
ergy µ∗I , the couplings uI flows to zero (solid black line),
giving a vanishing q∗0(0). In contrast, for µI < µ∗I the
coupling uI saturates to finite values greater than zero,
whereas for µI < µ∗I it goes to negative values. Thus,
values of µI 6= µ∗I do not correspond to physical energies
of the impurity.

This behavior is found for any combinations of param-
eters in both two and three dimensions.

Appendix B: RG flow of the attractive branch

1. Flow equations and k-dependent dimer fields

The strategy is similar to that used for the repulsive
branch in App. A, where the flow of the momentum-
independent couplings is obtained by differentiating the
Wetterich equation. The flow of the bosonic couplings
(ρ0, λBB , ZB , SB and VB) is given by those of a one-
component Bose gas [74], whereas the flow of the cou-
plings in Eqs. (21-23) can be extracted from the flow of

p

p

p+qq

p

p

p+qq

p

p

p+qq

(a)

(b)

p

p

p+qq

p

p

p+qq

(c)

q

p

p

FIG. 11. Diagrams that contribute to the flow of Γ
(2)

k,I†I

(a), Γ
(2)

k,φ†φ
(b), and Γ

(2)

k,φ†I
(c). Solid, dashed and dotted

lines denote bosons, impurities and dimers, respectively. The
crosses denotes boson fields evaluated at their background
value 〈ψB〉 =

√
ρB .

the two point functions

∂kUI = ∂kΓ
(2)

I†I

∣∣∣
p=0

, (B1)

∂kUφ = ∂kΓ
(2)

φ†φ

∣∣∣
p=0

, (B2)

∂kHφ = ∂kΓ
(2)

I†φ

∣∣∣
p=0

, (B3)

where the derivatives in Γ(2) are defined in the same way
as in Eq. (A5). We provide their explicit expression in
the next subsection. The specific flow of the different
couplings within UI , Uφ, and Hφ are obtained by taking
ρB derivatives and then evaluating at ρB = ρ0. Also,
as with the repulsive branch, we follow the flow at zero
momentum, and thus we evaluate at p = 0.

To simplify the flow equations, we introduce k-
dependent dimer fields φk to eliminate the flow of some
of the couplings. If we introduce k-dependent fields, the
Wetterich equation becomes [51]

∂kΓk =
1

2
tr
[
(Γ

(2)
k + Rk)−1∂kRk

]
+
δΓk
δφ
· ∂kφk . (B4)

We choose the k-dependent fields so that these elimi-
nate the flow of the couplings λBI , λBBI and hBφ. Sim-
ilar eliminations have been used in FRG studies of few
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bosons [56–58] and Fermi gases [63]. This elimination
means that these couplings will not flow with k and
will remain at zero during the entire flow. We use k-
dependent dimer fields defined as

∂kφk =f2B(k)ψBψI + f3B(k)(ρB − ρ0)ψBψI

+ g3B(k)(ρ− ρ0)φk , (B5)

∂kφ
†
k =f2B(k)ψ†Bψ

†
I + f3B(k)(ρB − ρ0)ψ†Bψ

†
I

+ g3B(k)(ρ− ρ0)φ†k , (B6)

where the functions f2B , f3B and g3B are chosen to elimi-
nate the flows of λBI , λBBI and hBφ. Following Eq. (B4),
the flow of these couplings is dictated by

∂kλBI =∂kλBI

∣∣∣
φ

+ 2f2Bhφ + 2f3Bhφρ0 , (B7)

∂kλBBI =∂kλBBI

∣∣∣
φ

+ 4f3Bhφ , (B8)

∂khBφ =∂khBφ

∣∣∣
φ

+ f2BλBφ + f3Buφ + g3Bhφ , (B9)

where ∂kf
∣∣
φ
corresponds to the flow of these couplings

when the dimer fields are kept fixed. By imposing that
the flow of these couplings remain at zero (∂kf = 0), we

obtain

f2B =−
∂λBI

∣∣
φ

2hφ
+

ρ0

4hφ
∂kλBBI

∣∣∣
φ
, (B10)

f3B =−
∂kλBBI

∣∣
φ

4hφ
, (B11)

g3B =−
∂khBφ

∣∣
φ

hφ
+
λBφ
2h2

φ

∂kλBI

∣∣∣
φ

− λBφρ0 − uφ
4h2

φ

∂kλBBI

∣∣∣
φ
. (B12)

The flow of the rest of the couplings is then dictated by

∂kui =∂kui

∣∣∣
φ,ρ0

+ 2f2Bhφρ0 , (B13)

∂kuφ =∂kuφ

∣∣∣
φ,ρ0

+ λBφ∂kρ0 , (B14)

∂kλBφ =∂kλBφ

∣∣∣
φ,ρ0

+ 2g3Buφ , (B15)

∂khφ =∂khφ

∣∣∣
φ,ρ0

+ f2Buφ , (B16)

where we have evaluated at ρB = ρ0. Note that although
we eliminate the flow of some couplings, their effect is
taken into account by the functions in Eqs. (B10-B12).
We stress that now λBφ carries the entire three-body
physics.

Finally, the flow of the renormalization factors is sim-
ply given by

∂kZa =2ma
∂

∂p2
Γ̇

(2)

a†a

∣∣∣
p=0,ρ0

, (B17)

∂kSa =i
∂

∂ωp
Γ̇

(2)

a†a

∣∣∣
p=0,ρ0

, (B18)

where a = I, φ, and we evaluate at zero external momen-
tum after taking the momentum derivatives.

2. Expressions for the two-point function

As explained in the previous subsection, to follow the
flow of the couplings we need the two-point functions
Γ

(2)

I†I
, Γ

(2)

φ†φ
and Γ

(2)

I†φ
. The diagrams contributing to their

flow are shown in Fig. 11. Note that thanks to the elimi-
nation of some couplings, only a few diagrams contribute.

The explicit expressions are
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∂kΓ
(2)

k,I†I
=∂̃k

∫
q

h2
φ

2

[
DB,+(q)DI,−(q + p)

detB(q) detIφ,−(q + p)
+ (+↔ −)

]
, (B19)

∂kΓ
(2)

k,φ†φ
=∂̃k

∫
q

[
h2
φ

2

(
DB,−(q)Dφ,−(q + p)

detB(q) detIφ,−(q + p)
+ (+↔ −)

)
+

2ρBλ
2
BφC2(q)

detB(q)

(
DI,−(q + p)

detIφ,−(q + p)
+ (+↔ −)

)
− λBφ

2

C1(q) + C2(q)

detB(q)

]
, (B20)

∂kΓ
(2)

k,φ†I
=∂̃k

∫
q

[
hφρ

1/2
B λBφ

(
D2,+(q)DI,−(q + p)

detB(q) detIφ,−(q + p)
+ (+↔ −)

)
+
h3
φρ

1/2
B

2

∆EB(q)

detB(q)

(
1

detIφ,−(q + p)
− (+↔ −)

)]
,

(B21)

where ∂̃k is a k-derivative that only acts on the regulators,
(+↔ −) denotes changing the signs in the subscripts of
the previous expression,

Ci(q) = Ek,i(q) + VBω
2 , i = 1, 2 (B22)

D2,±(q) = Ek,2(q) + 2VBω
2 ± 2iSBω , (B23)

DB,±(q) = D2,±(q) + Ek,1(q) , (B24)
Da,±(q) = Ek,a(q) + iSaω , a = I, φ (B25)

detIφ,±(q) = DI,±(q)Dφ,±(q)− ρBh2
φ , (B26)

∆EB(q) = E1,k(q)− E2,k(q) (B27)

and detB is defined in Eq. (A7). The regulated energies
Ek,1 and Ek,2 are defined in Eqs. (11,12), and Ek,I and
Ek,φ in Eqs. (34,35). We again stress that the regulated
energies depend on ρB , which is only evaluated at ρB =
ρ0 after taking the derivatives.

3. RG flow examples

Here we show some examples of RG flows to illustrate
the behavior of the couplings as functions of k. Fig. 12
shows flows of the couplings ZI , SI , Zφ, Sφ and uI in
three dimensions and unitarity (aBI → ∞) for a chosen
gas parameter for the bosonic medium. The black lines
are flows at the physical polaron energy µ∗I which gives
q∗0,±(0) → 0 for k → 0 (see Sec. IVB), whereas the thin
gray lines correspond to flows obtained with an energy
µI < µ∗I .

The renormalization factors (panels (a) and (b)) di-
verge at µ∗I . At this energy µ∗I the rest of the couplings
in Eq. (36) vanish or saturate to finite values. For exam-
ple, uI vanishes as k goes to zero (panel (c)). All this
results in the vanishing of q∗0,±(0) at µ∗I . On the other
hand, for µI < µ∗I the renormalization factors sature to
finite values, and thus q∗0,±(0) 6= 0 for k → 0. This is
true for any µI 6= µ∗I .

Fig. 13 shows the flow of uφ in three dimensions for dif-
ferent values of (n1/3aBI)

−1 at the corresponding ground
state energies µ∗I . This coupling saturates to finite values.
However, we observe that uφ saturates to values closer to

(a)

(b)

(c)

FIG. 12. Renormalization group flows in three dimensions at
unitarity a−1

BI = 0 for n1/3aBB = 3.5× 10−3. The black lines
correspond to flows at the ground state energy µ∗

I < 0 such
that q∗0,± → 0 (36) for k → 0. The thin gray linse correspond
to an energy µI < µ∗

I .

zero as (n1/3aBI)
−1 increases. Our interpretation is that

this signals the polaron-to-molecule crossover. As we in-
crease the boson-impurity interaction, the molecule state
dominates, and so the dimer self-energy in vacuum uφ
decreases. Analogous flows are obtained in two dimen-
sions.

We stress that the coupling uI can not be identified
as the impurity self energy in vacuum because it con-
tains the effect of the higher order couplings λBI and
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FIG. 13. Renormalization group flow of uφ in three dimen-
sions for different boson-impurity scattering lengths aBI for
n1/3aBB = 3.5× 10−3. All the lines correspond to flow at the
corresponding ground state energy µ∗

I .

λBII (which have been eliminated from the flow). There-
fore, we do not observe a change in uI for different
(n1/3aBI)

−1.

Appendix C: Estimation of the effective mass in the
repulsive branch

Because in the DE we follow the flow at zero momen-
tum, we can not compute the complete Green’s function
G(q), and therefore we can not extract quantities such
as the effective mass and the residue [25]. However, here
we propose a way to estimate the effective mass in the
repulsive branch, which can give us an idea of how the
FRG could perform with a more robust calculation.

From the pole (15), we can naively impose at k = 0
that

q2

2m∗I
=

1

SI

(
ZI

q2

2mI
+ uI

)
, (C1)

where m∗I is the estimated effective mass, in analogy to
a rigorous definition [25]. At the physical ground state
energy µ∗I , we have that uI = 0. This gives the following
expression

m∗I
mI

=
SI
ZI

∣∣∣∣
k=0

, (C2)

which enables us to extract the effective mass in the re-
pulsive branch. An analogous condition was proposed in
Ref. [101] to extract effective masses with the FRG in a
Bose-Hubbard model.

Fig. 14 shows effective masses in three dimensions for
equal boson and impurity masses. We compare with the

perturbative solution for mB = mI [102]

m∗I
mI

= 1 +
64

45
√
π

√
na3

BB

a2
BI

a2
BB

, (C3)

which was shown to give a good description compared to
more sophisticated approaches [45]. Our estimate is in
good agreement with the perturbative solution, showing
the correct trend.

Fig. 15 shows effective masses in two dimensions for
equal boson and impurity masses. We compare with
MC simulations from Ref. [48], and with the perturbative
LHY-type solution for mB = mI [48]

m∗I
mI

= 1 +
1

2

ln(n1/2aBB)

ln2(n1/2aBI)
. (C4)

We obtain a reasonable agreement again with the pertur-
bative solution and the MC results, especially with the
latter. This suggests that, even within our approxima-
tion, the FRG is able to give a good description of the
effective mass.

We are not able to provide a similar expression in the
attractive branch where the poles have a much more com-
plicated structure. Furthermore, because the impurity
and dimer degrees of freedom are hybridized, the calcu-
lation of the effective mass is even less straightforward.
We expect that in future work, we will be able to pro-
vide an accurate description by including the momentum
dependence of the couplings.

d=3

mI=mB

n1/3aBB=3.5x10
-3

FIG. 14. Effective mass m∗
I/mI of the repulsive branch in

three dimensions as a function of (n1/3aBI)
−1 for mB = mI

and n1/3aBB = 3.5 × 10−3. The solid red line corresponds
to FRG calculations, whereas the dashed orange line to the
perturbative solution (C3).
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