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The Uhlmann process is built on the density matrix of a mixed quantum state and offers a way
to characterize topological properties at finite temperatures. We analyze an ideal spin-j quantum
paramagnet in a magnetic field undergoing an Uhlmann process and derive general formulae of the
Uhlmann phase and Loschmidt amplitude for arbitrary j as the system traverses a great circle in the
parameter space. A quantized jump of the Uhlmann phase signifies a topological quantum phase
transition (TQPT) of the underlying process, which is accompanied by a zero of the Loschmidt
amplitude. The exact results of j = 1

2
and j = 1 systems show topological regimes that only survive

at finite temperatures but not at zero temperature, and the number of TQPTs is associated with
the winding number in the parameter space. Our results pave the way for future studies on finite-
temperature topological properties, and possible experimental protocols and implications for atomic
simulators and digital simulations are discussed.

I. INTRODUCTION

Topological quantum systems, including topological in-
sulators and topological superconductors [1–12], have be-
come a major topic in condensed matter and atomic,
molecular, and optical physics during the past few
decades. The pioneer studies [13–16] have been focused
on the ground state, where the Berry phase and its cur-
vature play an important role in characterizing the un-
derlying topological properties. However, mixed quan-
tum states are common in finite-temperature or out-of-
equilibrium systems. Thus, it is natural to extent the
study of the Berry phase (or other geometrical quanti-
ties) from pure states to mixed states. Several attempts
to reconcile the description of topological properties of
mixed states have been proposed [17–26]. Among these
candidates, the Uhlmann phase originally developed in
Refs. [17, 27–29] is a promising generalization of the
Berry phase to finite-temperature systems. Similar to
the Berry phase, the Uhlmann phase is a geometrical
phase produced when a mixed quantum state is ‘parallel-
transported’ during a cyclic process, which will be re-
ferred to as the Uhlmann process in the following discus-
sion. The original framework was built from a mathe-
matical point of view [17], causing some difficulties for
a deep understanding of the physical implications of the
Uhlmann phase in the physics community after its debut.
Recently, the Uhlmann phase has drawn attention

as the research of topological systems moves beyond
the ground-state formalism. Early applications of the
Uhlmann phase to topological systems have showed
promising topological phase transitions at finite temper-
atures [20–22]. Despite its resemblance of the formalism
of the Berry phase, the Uhlmann phase has some dis-
tinct behavior. For example, the fiber bundle behind the
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Uhlmann phase is topologically trivial [30] with vanish-
ing topological characteristics. Therefore, the classifica-
tion of different topological phases in the ground state
according to the Chern number or other characteristics
cannot be generalized to finite temperatures based on
the Uhlmann bundle. Moreover, it is found that the
Uhlmann process is incompatible with the dynamical
process while the Berry process is compatible with the
dynamical process [31]. The incompatibility seems com-
mon in defining a geometric phase of mixed quantum
states. For example, in the introduction of the interfer-
ometric geometric phase inspired by the Mach-Zehnder
interferometry [19], the dynamical evolutionary condition
is also excluded.

Despite the drawback from the fiber bundle, the
Uhlmann phase remains useful in identifying the topolog-
ical quantum phase transitions (TQPTs) of mixed quan-
tum states because a jump of the Uhlmann phase at a
point with vanishing overlap of the purified states in-
dicates a change of topological properties [32]. Inter-
estingly, the studies of dynamical quantum phase tran-
sitions (DQPTs) of mixed quantum states in a quench
process may also be described by the overlap of purified
states [33–36]. It was found [32] that the TQPTs and
DQPTs of mixed quantum states can be identified by the
zeros of the Loschmidt amplitude from the overlap of the
corresponding states. In this context, the argument of
the Loschmidt amplitude respectively gives the Uhlmann
phase and dynamical phase in the corresponding process.
However, the dynamical phase does not carry topological
information [31], so we will solely focus on the Uhlmann
process here.

So far, our knowledge of the Uhlmann phase is less
than that of the Berry phase, as only a handful of explicit
expressions of the Uhlmann phase of certain systems
are found. However, the Uhlmann phase has become
a measurable quantity for simple two-level systems due
to a protocol and its simulation on IBM’s quantum com-
puter [37]. A recent study derived the Uhlmann phase
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of a spin-j paramagnet when an external magnetic field
traverses the equator of the parameter space [38], show-
ing quantized jumps of the Uhlmann phase. Here we will
derive the general expressions of the Uhlmann connection
and Uhlmann fidelity, equivalent to the Loschmidt am-
plitude [36], using a different framework and formalism.
An analytic expression of the Uhlmann phase of the spin-
j system when the system traverses a circle of longitude
or the equator of the parameter space multiple times will
be shown. We present concrete examples of j = 1/2
and j = 1 systems, showing finite-temperature topo-
logical quantum phase transitions (TQPTs) with van-
ishing Loschmidt amplitude and quantized jumps of the
Uhlmann phase. Moreover, the examples show that the
number of TQPT points is related to the winding num-
ber in the parameter space. An interesting phenomenon
of the spin-j system is the emergence of an intermediate-
temperature topological phase sandwiched by topologi-
cally trivial phases at both high and low temperatures.
Such a phenomenon offers an example that temperature
may not always destroy topological properties. Since the
spin-j system may be realized in quantum simulators or
tested on quantum computers, we will present feasible
experimental protocols and discuss implications of the
TQPTs from an Uhlmann process.
The rest of this paper is organized as follows. In

Sec.II, we briefly review the theoretical foundation of the
Uhlmann phase and the spin-j systems. In Sec.III, we
derive the general expression of the Uhlmann connection
for spin-j systems. In Sec.III B, we further derive the for-
mulae of the Uhlmann fidelity/Loschmidt amplitude for
Uhlmann processes along the circles of longitude and the
equator. In Sec.IV, we apply our result to explicit exam-
ples with j = 1

2 and 1 systems and present the numerical
analysis. Finally, in Sec.V, we briefly discuss possible
experimental measurement protocols for measuring the
Uhlmann phase using quantum simulators or quantum
computers. Some details and derivations are summarized
in the Appendix.

II. THEORETICAL BACKGROUND

A. Uhlmann process

In the following, we set ~ = 1 and kB = 1 and briefly
review the purification of a density matrix. Following
Uhlmann’s approach [17, 27], a full-rank density matrix
ρ can be factorized as

ρ =WW †, (1)

where W is called the purification or amplitude of ρ.
Conversely, a given full-rank matrix W can be uniquely
decomposed as W =

√
ρU where the unitary matrix U

is analogous to the phase factor of a wavefunction. The
amplitudes form a Hilbert space HW endowed with an
inner product known as the Hilbert-Schmidt product:

(W1,W2) ≡ Tr(W †
1W2). In general, the inner product

applies to any two purifications of the same dimension.
However, we will mainly consider W1 and W2 as purifi-
cations of the same density matrix in the following. The
purification W can be constructed by the eigenvectors
|i〉 of ρ from the Hilbert space H, where the collection
{|i〉} serves as a basis. However, it can be cast into the
form of a pure state |W 〉 by introducing a tensor-product
space. Explicitly, there is a one-to-one mapping between
the outer-product expression and the tensor-product ex-
pression:

W =
∑

i

√

λi|i〉〈i|U ↔ |W 〉 =
∑

i

√

λi|i〉 ⊗ UT|i〉, (2)

where λi is the i-th eigenvalue of ρ, and the superscript
“T” denotes the transpose with respect to the eigenba-
sis of ρ. |W 〉 is called a purified state of ρ and spans
the Hilbert space H ⊗H, where the second H is a copy
of the first one and is referred to as the ancillary sys-
tem. According to Eq. (2), it can be shown that the
conventional inner product between two purified states
in H ⊗ H reproduces the the Hilbert-Schmidt product
between two purifications in HW : 〈W1|W2〉 = (W1,W2).
Moreover, the density matrix can be recovered by trac-
ing out the ancilla degrees of freedom: ρ = Tr2(|W 〉〈W |).
In such a way, a mixed state is equivalently represented
by a pure state that is an entangled state from two sub-
spaces consisting of the original system and the ancilla.
While the amplitude makes the theoretical derivations
more straightforward, the purified state allows experi-
mental simulations and probes of mixed states with the
help of an ancilla. Both advantages will be demonstrated
in this work.
When a system is controlled by some external param-

eters R ≡ (R1, R2, · · · , Rk) spanning a parameter space
M , the Hamiltonian and density matrix depend on those
parameters. As the parameters traverse a curve γ in
the parameter space, the system varies accordingly. We
assume the curve γ is parameterized by t, which is not
necessary the time. According to Refs. [17], an amplitude
W is said to be parallel-transported if it satisfies

Ẇ †W =W †Ẇ , (3)

where Ẇ = dW
dt . The condition preserves locally the

parallelity between W and its adjacent amplitude W +
dW . Here the parallel condition between two amplitudes
W1,2 is given by

W †
1W2 =W †

2W1 > 0, (4)

where ‘> 0’ means all the eigenvalues of the correspond-
ing matrix are positive. Note Eq. (3) is the differential
form of the condition (4). The condition further leads
to (W1,W2) = (W2,W1) > 0, and the inner product is
called the fidelity, which measures the similarity between
W1 and W2. Under the parallel-transport condition, the
Hilbert-Schmidt distance between W1 and W2 is mini-
mized [17, 27].
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The Uhlmann process is a cyclic process, where an am-
plitude is parallel-transported along a closed path in the
parameter space. Here ‘cyclic’ means the initial and final
density matrices are the same. Although the parallelity is
maintained during an Uhlmann process, the final ampli-
tude Wf may not be the same as the initial amplitude Wi

since the parallel condition lacks transitivity, even though
Wi and Wf are two purifications of the same density ma-
trix. For a cyclic Uhlmann process, the overlap (Wi,Wf)
is called the Uhlmann fidelity and may be a complex
number. Let Wi =W (0) and Wf =W (τ), where τ is the
length of curve in the parameter space parametrized by
t. The Uhlmann process may also be described by using
the concept of fiber bundle, and Sec. IVC1 gives a brief
overview.

B. Uhlmann fidelity and Uhlmann phase

The Uhlmann process requires the density matrix of a
system to remain in equilibrium through out the process.
It has been shown that an Uhlmann process is not com-
patible with the dynamic process solely determined by
the system Hamiltonian [31], implying the open-system
nature of the Uhlmann process. When describing the
evolution of the amplitude of the density matrix in an
Uhlmann process, the system should be kept in equilib-
rium. This can be achieved by considering a system in
contact with a reservoir and following quasi-stationary
processes. The temperature T is determined by the reser-
voir. The Uhlmann fidelity is then given by [32]

GU (T, τ) = (W (0),W (τ)) = Tr[ρ(0)U(τ)U †(0)]. (5)

The phase factor U(τ) is obtained by the parallel-
transport condition

U(τ) = Pe−
∮
τ
AUU(0) (6)

where AU = −dUU † is the Uhlmann connection, and P
denotes the path-order. Thus, the Uhlmann fidelity is

GU (T, τ) = Tr
[

ρ(0)Pe−
∮
τ
AU

]

, (7)

where ρ(0) = 1
Z
e−βH with β = 1

kBT
and Z = Tr(e−βH)

being the partition function. Although W (0) and W (τ)
give the same density matrix ρ(0), they differ by an

Uhlmann holonomy element Pe−
∮
τ
AU . The Uhlmann

connection can be cast in the form given by [27, 28]

AU = −
∑

m,n

|ψm〉 〈ψm|[d√ρ,√ρ]|ψn〉
λm + λn

〈ψn|. (8)

Here λm and |ψm〉 are the m-th eigenvalue and eigen-
vector of ρ, respectively. The expression of the Uhlmann
connection in the fiber-bundle language will be given in
Sec. IVC1.
In Ref. [32], the similarity and difference between the

dynamical and Uhlmann processes have been discussed in

details. Since GU is the overlap between the initial and
final purified states, it is also known as the Loschmidt
amplitude. The Uhlmann phase is given by the argument
of GU :

θU = argGU = argTr
[

ρ(0)Pe−
∮
τ
AU

]

. (9)

Since the phase θU is dimensionless, one can parametrize
the loop in the parameter space by its length so that
τ = 1. Physically, this is equivalent to adjusting the
evolution rate of the Uhlmann process.
The Uhlmann phase is a generalization of the Berry

phase to finite-temperature systems [21, 39]. As T → 0,
the weight factor of the ground state is infinitely larger
than that of any excited state since β → ∞. The
Uhlmann process is then dominated by the cyclic process
experienced by the ground state, a pure state. Thus, the
Uhlmann phase approaches the Berry phase as T → 0.
If the initial and final amplitudes lead to GU

ρ = 0, the
value of Uhlmann phase jumps, indicating the occurrence
of a TQPT. Similar to the emergence of nonanalytic be-
havior in the dynamical free-energy across a DQPT in-
duced by a quantum quench [36], a TQPT can also be
identified by the divergence of the geometrical generating
function [32]

g = − lim
L→∞

1

L
ln |GU |2, (10)

where L is the degrees of freedom of the system. Ref. [32]
offers a unified view of DQPTs and TQPTs through the
vanishing of the Loschmidt amplitude. As explained in
Refs. [30, 39], the Uhlmann bundle may be viewed as
a principle bundle with a global section, rendering it a
trivial bundle with zero characteristics. A discussion of
the Uhlmann curvature can be found in Appendix A2.

C. Spin-j systems

The Uhlmann process will be applied to a quantum
spin-j paramagnet in the presence of a magnetic field.
Here we briefly review the system by considering an en-
semble of spin-j paramagnets influenced by an external
magnetic field B with constant magnitude B = |B|. The
Hamiltonian is given by

H = ω0B̂ · J, (11)

where ω0 is the Larmor frequency, B̂ = B/B, and J is the
spin angular momentum. The controlled magnetic field
B has a varying orientation characterized by the angles θ
and φ via B = B(sin θ cosφ, sin θ sinφ, cos θ)T. Thus, the
parameter space M in this case is the 2D sphere S2. A
straightforward calculation shows that the Hamiltonian
(11) can be expressed in a parameter-dependent form,

H(θ, φ) = ω0e
−iφJze−iθJyJze

iθJyeiφJz

= R(θ, φ)ω0JzR
†(θ, φ)
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= V (θ, φ)ω0JzV
†(θ, φ), (12)

where R(θ, φ) = e−iφJze−iθJy and V (θ, φ) = R(θ, φ)eiφJz .
The energy eigenstates can be constructed by the spin
eigenstates |jm〉 of Jz:

|ψm(θ, φ)〉 = V (θ, φ)|jm〉 = eimφR(θ, φ)|jm〉. (13)

where m = −j,−j + 1, · · · , j − 1, j. The details can
be found in Appendix A. When the ensemble of spin-j
particles is in thermal equilibrium with temperature T ,
the canonical-ensemble density matrix is given by ρ =
1
Z
e−βH .

III. UHLMANN PROCESS OF SPIN-j SYSTEMS

A. General expressions

Here we derive the general expression of the Uhlmann
connection of generic spin-j systems with the Hamilto-
nian given by Eq. (12). We emphasize that the system
needs to be in contact with a heat bath to stay in equi-
librium due to the complications of the Uhlmann process
with time evolution [31]. The commutator in Eq. (8) with
temperature T is

[d
√
ρ,
√
ρ] =

{dV V †, e−βH}
Z

+
2e−

βH
2 V dV †e−

βH
2

Z
. (14)

Here {·, ·} denotes the anti-commutator, and the relation
dV V † + V dV † = 0 has been applied. The details can be
found in the Appendix. Plugging λm = 1

Z
e−βmω0 and

Eq. (14) into Eq. (8), we obtain

AU =
∑

mn

χmn|ψm〉〈ψm|V dV †|ψn〉〈ψn|. (15)

Here

χmn =
e−βmω0 + e−βnω0 − 2e−

β(m+n)ω0
2

e−βmω0 + e−βnω0
. (16)

and |ψm〉 is the simplified notation of |ψm(θ, φ)〉. Note
that χmn = χnm and χnn = 0. It can be shown that

V dV † = −i(Jx sinφ− Jy cosφ)dθ + i(Jz − V JzV
†)dφ.
(17)

The proof can be found in the Appendix.
The Uhlmann connection of the spin-j system has two

components: AU = Aθ
Udθ + Aφ

Udφ, corresponding to the
first and second terms of Eq. (17), respectively. For con-
venience, we derive the expressions of them separately.
Since the first term on the right-hand-side of Eq. (17)
commutes with V (θ, φ), Eqs. (13) and (A3) indicate that
the corresponding matrix elements are given by

−〈ψm|i(Jx sinφ− Jy cosφ)|ψn〉 = ei(n−m)φ〈jm|iJy|jn〉.
(18)

Substituting this into Eq. (15) and using Eq. (13), the
θ-component of the Uhlmann connection is

Aθ
Udθ = i

∑

mn

χmnR|jm〉〈jm|Jy|jn〉〈jn|R†dθ. (19)

Next, we use the relations Jy = J+−J−

2i and J±|jn〉 =
√

(j ∓ n)(j ± n+ 1)|jn± 1〉 to get

Aθ
U =

∑

mn

χmn

2
R|jm〉〈jn|R†√(j − n)(j + n+ 1)δm,n+1

−
∑

mn

χmn

2
R|jm〉〈jn|R†√(j + n)(j − n+ 1)δm,n−1.

(20)

Note that only the m = n± 1 terms give nonzero contri-
butions, and χn+1,n = χn−1,n = 1− sech(βω0

2 ) ≡ χ. This
means we can pull χ out of the summation in Eq. (20)
with the help of the delta functions. Explicitly,

Aθ
U =

χ

2

∑

mn

R|jm〉〈jn|R†
(

√

(j − n)(j + n+ 1)δm,n+1

+
√

(j + n)(j − n+ 1)δm,n−1

)

. (21)

Note the result in the bracket is just 〈jm|Jy|jn〉, so we
get

Aθ
U = iχR

∑

m

|jm〉〈jm|Jy
∑

n

|jn〉〈jn|R†

= iχRJyR
†

= −iχ(Jx sinφ− Jy cosφ). (22)

The key idea here is that Eq. (19) transforms to an ex-
pression with χ pulled out of the summation since the
matrix element 〈jm|Jy|jn〉 gives nonzero contribution
only when m = n± 1, where χmn = χ.

To evaluate Aφ
U , we need to calculate the matrix ele-

ments of i(Jz − V JzV
†) according to Eqs. (15) and (17).

By using 〈ψm|V JzV †|ψn〉 = mδmn and χmm = 0, one

can show that the term with iV JzV
† vanishes in Aφ

U .
Therefore, only the term with iJz contributes, giving rise
to

Aφ
U = i

∑

mn

χmnV |jm〉〈jm|V †JzV |jn〉〈jn|V †

= −i
∑

mn

χmnR|jm〉〈jm|Jx sin θ|jn〉〈jn|R†, (23)

where we have used Eq. (A1) in the second line and

χmnδmn = 0 in the last line. Since Jx = J++J−

2 , the ma-
trix element 〈jm|Jx|jn〉 gives nonzero contribution only
when m = n±1, where χmn = χ. By a derivation similar
to that of Aθ

U , we can replace χmn by χ in the last line
of Eq. (23). Thus,

Aφ
Udφ = −i

∑

mn

χR|jm〉〈jm|Jx sin θ|jn〉〈jn|R†dφ
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= −iχRJxR
† sin θdφ

= −iχ [(Jx cosφ+ Jy sinφ) cos θ − Jz sin θ] sin θdφ

= −i
χ

ω0
H(θ +

π

2
, φ) sin θdφ, (24)

where Eqs. (A3) and (A4) have been used. In conclusion,
the Uhlmann connection of the spin-j system is

AU = −iχ(Jx sinφ− Jy cosφ)dθ

− i
χ

ω0
H(θ +

π

2
, φ) sin θdφ. (25)

The Uhlmann curvature is given by

FU = dAU +AU ∧AU . (26)

The Chern number associated with the Uhlmann con-

nection is ChU = i
2π

∫

TrFU . As summarized in the Ap-

pendix, the Chern number associated with the Uhlmann
connection vanishes. This is consistent with the fact that
the Uhlmann bundle is a trivial one [30].
We remark that the previous discussions assumes j > 0

since Jx, Jy, and Jz only have nontrivial representations
if j > 0. However, the j = 0 system has only a single
state. Thus, the j = 0 system is in a pure state. As
shown in the Appendix, both AU = 0 and θU = 0 for
this particular case.

B. Evaluation of Loschmidt Amplitude

When evaluating the Loschmidt amplitude according
to Eq. (7), we need to evaluate the path-ordered integral
over a loop parameterized by t in the parameter space. If
AU is a diagonal matrix or a constant matrix, the path-
ordering operation is automatically satisfied since all the
AU (t) at different t commute with each other. Thus, an
explicit expression of GU

ρ can be obtained for some spe-
cial cases undergoing Uhlmann processes. Refs. [21, 31]
show the Uhlmann phase of a two-level system travers-
ing a great circle in the parameter space. For the spin-j
system, this can be achieved by choosing a suitable loop
on the parameter space S2. In the following, we show
the results following a circle of longitude and the circle
of latitude at θ = π

2 , i.e. the equator.

1. Circle of longitude

We first consider the system traversing a great circle of
fixed longitude φ in the parameter space. Hence, dφ = 0,
and Eq. (25) indicates

∮

AU = −iχ(Jx sinφ− Jy cosφ)

∮

dθ

= 2πiχe−iφJzJye
iφJzΩ, (27)

where Ω ≡ 1
2π

∮

dθ denotes the winding number along the

circle of longitude during the Uhlmann process. We fur-
ther assume the Uhlmann process starts from the north
pole with θ(0) = 0. Thus, the initial Hamiltonian is
H(0) = ω0Jz , and the corresponding density matrix is

ρ(0) =
1

Z(0)
e−βω0Jz . (28)

Substitute Eqs. (27) and (28) into Eq. (7), we have

GU
θ (T ) =

j
∑

m=−j

e−βω0m

Z(0)
〈jm|e−2πΩχie−iφJzJye

iφJz |jm〉

=

j
∑

m=−j

e−βω0m

Z(0)
〈jm|e−iφJze−2πΩχiJyeiφJz |jm〉

=

j
∑

m=−j

e−βω0m

Z(0)
djmm(2πΩχ). (29)

Here djmm′(Θ) = 〈jm|e−iΘJy |jm′〉 is the Wigner d-
function. Interestingly, the result is independent of the
longitude, which will be discussed later.

2. Equator

In this situation, the system traverses the equator in
the parameter space with the latitude fixed at θ = π

2 .
Thus, dθ = 0. According to Eqs. (24) and (25), AU

becomes

AU = iχJzdφ, (30)

which further implies

∮

AU = 2πiχJzΩ. Here Ω ≡

1
2π

∮

dφ is the winding number along the equator during

the Uhlmann process. We assume the Uhlmann process
starts from the point (θ = π

2 , φ = 0). Using Eq. (12), the
density matrix is given by

ρ(0) =
1

Z(0)
e−βω0e

−iπ
2

JyJze
iπ
2

Jy

=
1

Z(0)
e−iπ2 Jye−βω0Jzei

π
2 Jy . (31)

Substitute this into Eq. (7), the Loschmidt amplitude is

GU
φ (T ) =

1

Z(0)
Tr
(

e−iπ2 Jye−βω0Jzei
π
2 Jye−2πΩχiJz

)

=
1

Z(0)
Tr
[

e−βω0JzR†
(π

2
,−π

2

)

e−2πΩχiJzR
(π

2
,−π

2

)]

=

j
∑

m=−j

e−βω0m

Z(0)
djmm(2πΩχ), (32)
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where R is the unitary transformation shown in Eq. (12).
Therefore, GU

θ (T ) = GU
φ (T ). This is not surprising since

the circle of latitude and the equator are both great cir-
cles on S2. One may conjecture that the Loschmidt am-
plitude along any great circle on the parameter space S2

has the same expression, of which a mathematical proof
is not the focus of this paper. Based on the discussion, we
will use GU to denote the Loschmidt amplitude hereafter
since it represents the result from a great circle.

IV. EXAMPLES

A. j = 1

2

Figure 1. (Top panel) The geometrical generating function g

vs. T for the spin- 1
2
system with ω0 = 1.0. The red solid and

blue dotted lines correspond to Ω = 1, 2, respectively. The
TQPTs occur at the diverging peaks, corresponding to T ∗s.
The inset plots the Uhlmann phase vs. T , showing a jump at
each T ∗. (Bottom panel) The geometrical generating function
g vs. T and ω0 for Ω = 1, 2, respectively.

After deriving the generic formula of a spin-j system
in an Uhlmann process, we will use explicit examples to
analyze the topological properties of an Uhlmann pro-
cess. We first consider the j = 1

2 system, where the

angular momentum is Ji = 1
2σi with i = x, y, z and

σi being the Pauli matrices. The two energy levels are

| 12 ,± 1
2 〉 =

(

1
0

)

,

(

0
1

)

. From Eq. (25), the Uhlmann con-

nection is

AU =
χ

2

(

0 e−iφ

−eiφ 0

)

dθ − iχ

2

(

− sin θ cos θe−iφ

cos θeiφ sin θ

)

dφ.

(33)

If the Uhlmann process corresponds to a circle of longi-
tude or the equator in the parameter space, AU is propor-
tional to a constant matrix. Using Z(0) = e−

1
2βω0+e

1
2βω0

and d
1
2

− 1
2−

1
2

(2πΩχ) = d
1
2
1
2

1
2

(2πΩχ) = cos(πΩχ), either

Eq. (29) or (32) leads to

GU (T ) = cos(πΩ) cos

(

πΩsech
βω0

2

)

. (34)

The expression is quite similar to that of the two-band
models [21, 31] since they are both two-level systems.
However, the energy spectrum of the j = 1/2 paramagnet
is independent of the parameters spanning the parame-
ter space while the band structure of a two-band model
explicitly depends on the crystal momentum. Moreover,
the spin 1/2 model allows the winding number in the pa-
rameter space to be any integer. In contrast, Ref. [21]
considered periodic two-band systems with the crystal
momentum in the Brillouin zone, and the winding num-
ber is at most 1. Similarly, Ref. [38] considers only the
case with Ω = 1. As we will show shortly, higher wind-
ing numbers will introduce interesting physics at finite
temperatures.
The low- and high- temperature limits can be ana-

lyzed by Eq. (34). In the zero-temperature limit, T → 0,

sech
(

βω0

2

)

→ 0 since β → ∞. Thus, GU (T → 0) =

cos(πΩ) = (−1)Ω, which implies θU = 0 (topologically
trivial) if Ω is even and θU = π (topologically non-
trivial) if Ω is odd. Here the topology refers to that
of the horizontal lift, whose pictorial description will be
given in Sec. IVC1. In the infinite-temperature limit,

T → ∞, sech
(

βω0

2

)

= 1 since β → 0, which implies

GU (T → ∞) = cos2(πΩ) = 1. Thus, θU = 0 and the
system is always topologically trivial at infinitely high
temperature.
A TQPT occurs at temperature T ∗ when the

Loschmidt amplitude vanishes, GU (T ∗) = 0, accompa-
nied by a jump of the Uhlmann phase [32]. For the
j = 1/2 system, Eq. (34) implies

πΩsech
( ω0

2T ∗

)

=

(

n+
1

2

)

π (35)

or equivalently

cosh
( ω0

2T ∗

)

=
Ω

n+ 1
2

. (36)

Here n is an integer. From the above expression, we get

T ∗ =
ω0

2 ln

(

Ω
n+ 1

2

+

√

(

Ω
n+ 1

2

)2

− 1

) . (37)
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We only consider the situation with Ω > 0, which requires
n > 0 to ensure T ∗ > 0. Another premise of Eq. (37) is
Ω

n+ 1
2

≥ 1, i.e., n = 0, 1, · · ·Ω − 1. This indicates that

the number of positive solutions of T ∗ is equivalent to Ω,
which is not addressed in Ref. [38] due to the limitation
of Ω = 1 there. Therefore, the winding number in the
parameter space decides how many TQPTs the j = 1/2
systems will go through as T increases.

To clearly see the topological features of the system,
we show the numerical results in Figure 1. If Ω = 0,
GU (T ) = 1 at any temperature, showing only a topolog-
ically trivial phase. In contrast, we plot the geometrical
generating function g as a function of both T and ω0

with Ω = 1 and 2 in the bottom panel. The diverging
peaks indeed appear at the phase transition temperatures
T ∗, indicating the locations of the TQPTs. In the top
panel, we show the cross-section of the bottom panel at
ω0 = 1.0. The inset shows the Uhlmann phase θU as a
function of T . If Ω = 1 (denoted by the red line), the
system is in a topological phase (θU = π) at low temper-
atures. As the temperature increases, the system transits
to the topologically trivial phase at T ∗ and θU jumps to
zero.

If Ω = 2 (denoted by the blue dotted line), the sys-
tem is in a topologically trivial phase (θU = 0) at low
temperatures. As the temperature increases, the sys-
tem undergoes two phase transitions at different values of
T ∗: It first transits to a topologically nontrivial phase at
the first T ∗ and then becomes topologically trivial when
crossing the second T ∗. θU jumps at these T ∗’s. Impor-
tantly, the topologically nontrivial phase is sandwiched
between two topologically trivial phases and only sur-
vive at finite temperatures. Although the Ω = 1 case
gives the impression that temperature destroys topolog-
ical properties, we see the Ω = 2 case gives an example
that a topological regime is only possible at finite temper-
atures. For the spin-1/2 system, the Uhlmann holonomy

group formed by Pe−
∮
AU is the Z2 group because the

phase is defined modulo 2π and the Loschmidt amplitude
given by Eq. (34) is real. In fact, the Uhlmann holonomy
group for the spin-j system with arbitrary j is always the
Z2 group since Eq. (29) implies the Loschmidt amplitude
is real because the partition function Z and the Wigner
d-function are both real-valued [40].

B. j = 1

We now turn to the more complicated spin-1 sys-
tem. The matrix representations of the three com-
ponents of the angular momentum in units of ~ are

Jx = 1√
2





0 1 0
1 0 1
0 1 0



, Jy = 1√
2i





0 1 0
−1 0 1
0 −1 0



 and Jz =

Figure 2. The geometrical generating function g for the spin-
1 system as a function of T with ω0 = 1.0 (top panel) and as
a function of both T and ω0 (bottom panel). The Uhlmann
phase θU as a function of T is shown in the inset of the top
panel. The red and blue curves/surfaces respectively corre-
spond to Ω = 1, 2.





1 0 0
0 0 0
0 0 −1



. Following Eq. (25), we obtain

AU =
χ√
2





0 e−iφ 0
−eiφ 0 e−iφ

0 −eiφ 0



 dθ

− iχ√
2





−
√
2 sin θ cos θe−iφ 0

cos θeiφ 0 cos θe−iφ

0 cos θeiφ
√
2 sin θ



dφ. (38)

Similarly, the analytical result of the Loschmidt ampli-
tude can be obtained by using the expressions of Wigner’s
d-functions if the Uhlmann process corresponds to a cir-
cle of longitude or the equator. Explicitly,

GU (T ) =
1

Z(0)

{

cosh(βω0)

[

1 + cos

(

2πΩsech
βω0

2

)]

+ cos

(

2πΩsech
βω0

2

)}

, (39)

where Z(0) = 1 + 2 cosh(βω0).
Again, Ω = 0 leads to GU (T ) = 1, so the system is

topologically trivial at any temperature. Hence, we only
consider the situations with Ω ≥ 1. Moreover, Eq. (39)
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has the following limits: GU (T → 0) = 1 = GU (T → ∞),
indicating the system is topologically trivial at low and
high temperatures, which is different from the j = 1/2
system allowing topologically non-trivial phase at low
temperatures. To check if the j = 1 system has finite-
temperature topological regimes, we numerically analyze
GU (T ) and locate its zeros. We visualize our numeri-
cal results in Figure. 2, where the geometrical generating
function g is plotted as a function of T and ω0 for Ω = 1
and 2 in the bottom panel. We follow the same conven-
tion as Fig. 1. One clearly sees that g diverges at several
values of T ∗. The divergence corresponds to a zero of GU ,
indicating the occurrence of a finite-temperature TQPT.
At each T ∗, the Uhlmann phase jumps, as shown in the
inset of Fig. 2
Whether a phase is topological or trivial can be in-

ferred from the quantized Uhlmann phase θU . The topo-
logically trivial regimes with vanishing Uhlmann phase
at low and high temperatures confirm our previous anal-
ysis. Different from the j = 1

2 case, all the topological
regimes of the j = 1 system are at finite temperatures.
There are 2Ω TQPT points in the j = 1 system when
T increase with a fixed value of ω0, as one can see on
Fig. 2. Those TQPTs indicate there are Ω-numbered
finite-temperature topological regimes. If Ω = 2, the sys-
tem goes through a sequence of trivial, nontrivial, triv-
ial, nontrivial and trivial phases, showing two topologi-
cal regimes as temperature increases from 0 to ∞ in an
Uhlmann process. The Uhlmann holonomy group is the
Z2 group, as one can check that the Loschmidt amplitude
given by Eq. (39) is real.

C. Absence of TQPT in Uhlmann process at

infinite temperature

Starting with an initial state at infinite temperature, a
quench process may exhibit DQPTs as the system evolves
out of equilibrium [32, 41]. In contrast, here we show that
there is no infinite-temperature TQPT from an Uhlmann
process because the density matrix needs to be in equi-
librium at infinite temperature in the cyclic process. The
following proof applies to any Uhlmann process, not just
those of the spin-j systems. Since the proof is more
straightforward if the fiber-bundle language is used, we
will give a brief overview of the description first.

1. Fiber-bundle description

Following Refs. [27, 31], we consider a n-level
system and introduce an associated fiber bundle
(E, π,Q, F,U(n)). Here E is the total space and Q is
the base space spanned by the full-rank density matrix
ρ. π is the projection that acts as π : E → Q. Explicitly,

π(W ) =WW † = ρ. (40)

A smooth map σ: Q → E that satisfies π ◦ σ = 1Q
is called a section, where 1Q is the identity map on Q.
F is the fiber spanned by the amplitudes, i.e., it is iso-
morphic to HW described below Eq. (2). U(n) is the
structure group formed by the elements that act on the
fiber. To understand the local structure of the fiber
bundle, we consider a set of open coverings {Qi} of the
base space Q. For an arbitrary density matrix ρ ∈ Qi,
a local trivialization φi: Qi × F → π−1(Qi) satisfies
φ−1
i (π−1(ρ)) = (ρ,W ), where ρ = WW †. Hence, the

fiber Fρ above the base point ρ is spanned by all ampli-
tudes satisfying W =

√
ρU . It can be shown that the

fiber bundle is in fact a principle bundle since F is dif-
feomorphic to U(n) [39]. Moreover, it is also a trivial
bundle since it admits a global section [30] σ(ρ) =

√
ρ.

The parallel transport of the amplitude has been dis-
cussed previously, but it can also be described in the
fiber-bundle language. When a physical system varies
along a curve in the parameter space, γ(t): [0, τ ] → M ,
the density matrix ρ(t) ≡ ρ(γ(t)) varies along a corre-
sponding curve C in Q. By using the local trivializa-
tion φ−1

i (π−1(ρ(t))) = (ρ(t),W (t)), it can be shown that
the associated amplitudes must also change continuously
along a certain curve C̃ in E. If W (t) is parallel trans-

ported along C̃ satisfying Eq. (3), it is equivalent to say

that C̃ is a horizontal lift of C. This further requires
the tangent vector X̃ of the curve γ̃ to be a horizontal
vector, which belongs to the horizontal subspace of the
tangent bundle TE. Thus, an Ehresmann connection ω
on E is needed to separate TE into the horizontal and
vertical spaces as TE = HE⊕V E, and the horizontality
condition is

ω(X̃) = 0. (41)

Moreover, the section σ : Q → E induces a pullback
of ω as AU = σ∗ω, which is a connection on the base
space Q. If the horizontality condition is satisfied, AU is
the Uhlmann connection. If the Uhlmann connection is
defined, the fiber bundle is referred to as the Uhlmann
bundle. The horizontality condition (41) can be cast into
the form

AU (X) = −dU(X̃)U †. (42)

Here U is the phase factor in Eq. (2). X = π∗(X̃) is
the tangent vector of the curve C in Q, where π∗ is the
push-forward induced by the projection π. If the curve
C is closed, i.e. the related process is cyclic, then it cor-
responds to the Uhlmann process. More details can be
found in Ref. [31].

The Uhlmann phase reveals the Uhlmann holonomy
given by W (0) and W (1), as illustrated in Fig. 3. Since
the phase is defined modulo 2π, one can see that a π jump
of the Uhlmann phase signifies a change of the topology
of the horizontal-lift curve.
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2. Proof of no TQPT in Uhlmann process at infinite

temperature

At infinitely high temperature, the density matrix is
proportional to the identity operator, i.e., ρ = 1

dim ρ
1̂, no

matter how the system changes along any curve in the pa-
rameter space. Therefore, the curve C in Q along which ρ
varies becomes trivial, equivalent to a single point. Thus,
the horizontal lift C̃ also becomes trivial. This can be
proven by reductio ad absurdum. If C̃ is nontrivial, it
must be a curve solely belonging to a single fiber at the
point ρ = 1

dim ρ
1̂. Thus, its tangent vector X̃ must be ver-

tical, which contradicts the horizontal condition for par-
allel transport. Explicitly, the amplitude of ρ = 1

dim ρ
1̂

can be expressed asW (t) = 1√
dim ρ

etu, where u is an anti-

Hermitian matrix: u = −u†. Thus, Ẇ = Wu. Since W
is parallel-transported along C̃, it satisfies Eq. (3), which
then leads to

−uW †W =W †Wu. (43)

Since W †W =WW † = 1
dim ρ

1̂, Eq. (43) implies that u =

0. Thus, W (t) = 1√
dim ρ

1̂, which means C̃ is also trivial.

This further leads to the Uhlmann fidelity GU (T → ∞) =
Tr(W †(0)W (1)) = 1. As a consequence, no TQPT from
an Uhlmann process can occur at infinite temperature.
A pictorial description of the absence of any TQPT from
a Uhlmann process at infinite temperature is given in
Figure 3 (b).

Figure 3. (a) A pictorial illustration of parallel-transport of
an amplitude. The Uhlmann holonomy reflects the change
along the curve C̃, which is the horizontal lift of the closed
curve C along which the density matrix evolves. The tangent
vector X̃ must be horizontal. Here W (0) 6= W (1) are both
amplitudes of the same density matrix ρ(0) = ρ(1), meaning
they belong to the same fiber at ρ(0). The dashed lines denote
the projection. (b) Illustration of the infinite-temperature
limit. The curve C shrinks to a single point, so its horizontal
lift C̃ must also shrink to a single point. Otherwise, W (0) 6=

W (1), and the tangent vector X̃ of C̃ is vertical since C̃ lies
solely in a single fiber. This contradicts the horizontal-lift
condition of C̃.

Before discussing experimental implications, we ex-
plain the topological regimes at finite temperatures in

Figs. 1 and 2. Since the Loschmidt amplitude for the
spin j systems is real, the Uhlmann phase can only be
0 (trivial) or π (non-trivial) modulo 2π. Increasing the
temperature can lead to more twists of the horizontal lift
shown in Fig. 3, causing the Uhlmann phase to jump.
However, the Uhlmann phase is always trivial at infi-
nite temperature, as proven above. Therefore, if the low-
temperature regime is trivial with θU = 0 due to higher
winding number or spin, as shown in the spin 1/2 case
with Ω = 2 or the spin 1 case with Ω = 1, 2, there must
be an even number of jumps of θU between T = 0 and
T → ∞. Those jumps signify the TQPTs and enclose
topologically nontrivial regimes at finite temperatures.
The finite-temperature topological regimes of the spin-j
systems studied here thus represent consecutive jumps of
the Uhlmann holonomy shown in Fig. 3 above a trivial
ground state as temperature increases.

V. IMPLICATION FOR EXPERIMENT

A. Parallel transport of purified states

We have analyzed the topological property of a spin-j
system in an Uhlmann process. It is important to re-
alize the Uhlmann process and measure the Uhlmann
phase using natural or engineered systems. Here we dis-
cuss how the predictions may be verified in future exper-
iments. Before explicit experimental protocols are dis-
cussed, however, some fundamental problems need to be
addressed. The first problem is to suitably character-
ize the amplitude of a density matrix because there is
no one-to-one correspondence between a mixed quantum
state and an amplitude, given W =

√
ρU and the ar-

bitrariness of U . Moreover, a density matrix may not
uniquely corresponds to a mixed quantum state, either.
However, Eq. (2) indicates that a given amplitude can be
represented by a purified state, which is formally a pure
quantum state. Thus, one can employ an ancilla state
entangled with the system state to form and manipulate
a purified state. Recently, Ref. [37] has shed light on this
issue by using quantum-computer simulations to analyze
two-band systems.

The second problem is how to physically perform the
parallel transport of an amplitude following Eq. (3). In-
tegrating both sides of Eq. (3) leads to the parallel con-
dition (4), which involves a matrix product of two am-
plitudes in HW . Unfortunately, there is no operation be-
tween two purified states in H⊗H corresponding to such
a matrix product in HW , although the inner product in
the former is isomorphic to the Hilbert-Schmidt product
in the latter. Thus, by using the purified-state repre-
sentation of the amplitude, we have to employ a weaker
condition for parallel transport. By taking the trace of
both sides of Eq. (4), we get

〈W1|W2〉 = 〈W2|W1〉, =⇒ Im〈W1|W2〉 = 0. (44)
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This condition minimizes the Fubini-Study distance be-
tween |W1〉 and |W2〉 just as the condition (W1,W2) =
(W2,W1) minimizes the Hilbert-Schmidt distance be-
tweenW1 andW2 [17]. If the purified state is transported
along a curve parametrized by t with |W1〉 = |W (t)〉 and
|W2〉 = |W (t + dt)〉, the differential form of Eq. (44) is
given by

Im〈W (t)| d
dt

|W (t)〉 = 0. (45)

This is the same condition as that for an adiabatic pro-
cess during which a pure quantum state obtains a Berry
phase [30, 31, 42]. This may not be surprising since the
Uhlmann phase is a generalization of the Berry phase.
Though the new condition (45) is weaker than the orig-
inal parallel-transport condition (4), it is experimen-
tally realizable because constructing a purified state may
sometimes be more practicable in experiments. Since
Eq. (45) only involves the purified states, the incompati-
bility between a dynamical process and an Uhlmann pro-
cess [31] does not apply here. Thus, t can be chosen as
the time, i.e., the Uhlmann process can be simulated by
a suitably chosen evolution of the purified state as long
as the condition (45) is respected.

B. Experimental procedures

We now turn to experimental setups and protocols for
spin-j systems. Experimentally, the spin-j state |jm〉
may be realized by the hyperfine states of atoms [43, 44],
which allows well-controlled preparation, manipulation,
and measurement. A two-level system is often referred
to as a qubit. Accordingly, the spin-j system might
be named a qujit, which has 2j + 1 components. The
Hamiltonian (11) may be realized by coupling the hyper-
fine states with external magnetic fields. By changing
the direction of the magnetic field continuously, a closed
Uhlmann trajectory in the parameter space can be real-
ized. We consider a loop of longitude with θ(t), 0 ≤ t ≤ 1.
θ(0) = 0 and θ(1) = 2πΩ at the latitude φ = 0, i.e. the
meridian. According to Eq. (25), AU = −iχJydθ with
χ = 1− sech(βω0/2). Hence, the final phase factor is

U(1) = e−
∮

AUU(0) = e−iχ
∮

θ̇dtJyU(0), (46)

where θ̇ = dθ(t)
dt and the path ordering has been fulfilled

since AU at different t commutes with each other.
At temperature T , the family of density matrices along

the loop is

ρ(t) ≡ ρθ(t) =
∑

m

λm|ψm(t)〉〈ψm(t)|, (47)

where λm = e−βmω0/Z, and |ψm(t)〉 ≡ |ψm(θ(t), 0)〉.
The corresponding amplitude is

W (t) ≡Wθ(t) =
∑

m

√

λm|ψm(t)〉〈ψm(t)|U(t). (48)

Here U(t) = e−iχ
∫

t

0
θ′dt′Jy with θ′ = dθ(t′)

dt′ . If t denotes
the time as the Uhlmann process is simulated by a time
evolution process, W (t) cannot satisfy the parallel con-
dition (4) due to the incompatibility between the dy-
namical and Uhlmann processes [31]. A workaround is
to introduce a suitable dynamical process to compensate
for the effect of t. Here we include an extra time evo-
lution governed by the Hamiltonian HS = Jy θ̇ with the
time-evolution operator

US(t) = e−i
∫

t

0
HS(t

′)dt′ = e−i
∫

t

0
θ′dt′Jy , (49)

inspired by Ref. [37]. Thus, the amplitude takes the form

W (t) =
∑

m

√

λmUS(t)|ψm(t)〉〈ψm(t)|U †
S(t)U(t). (50)

Experimentally, one may simulate the Uhlmann pro-
cess of a spin-j system by the purified state associated
with the amplitude as follows.

|W (t)〉 =
∑

m

√

λmUS(t)|ψm(t)〉 ⊗ UA(t)|ψm(t)〉, (51)

where the time-evolution operator of the ancilla is

UA(t) =
[

U †
S(t)U(t)

]T

= e−iη
∫

t

0
θ′dt′Jy . (52)

Here η = 1 − χ = sech(βω0/2) and J
T
y = −Jy has been

applied. The purified state may be thought of as one
living in an enlarged Hilbert space H = HS ⊗ HA with
S and A standing for the system and ancilla. US(t) and
UA(t) are the effective time evolution operators in HS

and HA, respectively. Correspondingly, η can be recog-
nized as the ancilla weight [37]. The density matrix can
be obtained by taking the partial trace over the ancilla:
ρ(t) = TrA (|W (t)〉〈W (t)|). We remark that the need for
a reservoir to keep the density matrix of the system the
same in an Uhlmann process has been achieved by the
entangled state (51) encoding the temperature effects in
its initial state, so the entangled system no longer needs
a reservoir and follows the dynamics governed by US,A.
Experimentally, the operators US, A may be realized in
atomic simulators by applying radio-frequency pulses to
the system and ancilla states to induce rotations along
the y-axis that mimic the corresponding time-evolution.
Next, we verify that |W (t)〉 indeed satisfies the

parallel-transport condition (45). A straightforward eval-
uation shows
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Im〈W (t)| d
dt

|W (t)〉 = Im

j
∑

m,n=−j

√

λmλn

(

〈ψn|U †
SU̇S|ψm〉〈ψm|UAU

†
A|ψn〉+ 〈ψn|U †

SUS|ψm〉〈ψm|U̇AU
†
A|ψn〉

+ 〈ψn|U †
SUS|ψ̇m〉〈ψm|UAU

†
A|ψn〉+ 〈ψn|U †

SUS|ψm〉〈ψ̇m|UAU
†
A|ψn〉

)

= −Im

j
∑

m=−j

λmiχθ̇〈ψm|Jy|ψm〉,

= 0. (53)

where we have applied

U̇S = −iθ̇JyUS, U̇A = −iηθ̇JyUA (54)

and [Jy, US] = [Jy, UA] = 0. Here |ψm〉 ≡ |ψm(θ, 0)〉 =
e−iθJy |jm〉. Therefore, |W (t)〉 is indeed parallel trans-
ported along the meridian. The evaluation of Eq. (53) in-
volves some subtleties of the inner product in HA, which
are summarized in Appendix A4.
When t reaches 1, the process completes a cycle as the

amplitude is parallel transported according to Eq. (53).
However, to confirm that an Uhlmann process has been
simulated, we need to show that the overlap between the
initial and final purified states reproduces the Uhlmann
fidelity. Given US(1) = e−i2πΩJy and UA(1) = e−i2ηπΩJy ,
we have

GU (T, 1) = 〈W (0)|W (1)〉

=

j
∑

m,n=−j

√

λmλn〈jm|US(1)|ψn(1)〉〈ψn(1)|UT
A (1)|jm〉.

(55)

By applying |ψn(1)〉 = e−i2πJy |jn〉, it can be shown that

〈jm|US(1)|ψn(1)〉 = djmn(2π(Ω + 1)) = (−1)2j(Ω+1)δmn,
(56)

which implies that only the m = n terms give non-zero
contributions to the sum. Thus, we can replace λn by
λm in the second line of Eq. (55) and get

GU (T, 1) =

j
∑

m=−j

e−βω0m

Z(0)
djmm(2πΩχ). (57)

The result agrees with Eq. (29) or (32). Therefore,
the Uhlmann process of a spin-j system may be simu-
lated by using the purified states with the help of the
ancilla. Finally, the argument of the Uhlmann fidelity
θU = arg

[

GU (T, 1)
]

gives the Uhlmann phase.

C. Measuring TQPT using atomic simulator

In the augmented system with the ancilla, the
Uhlmann phase is the relative phase between the initial

and final purified states. A jump of the Uhlmann phase
indicates the occurrence of a TQPT. Experimentally, the
initial purified state of Eq. (51) may be prepared by en-
tangling two atoms, one as the system qujit and the other
as the ancilla qujit. The coefficients λm determines the
temperature of the system in the mixed state. Then,
the two atoms evolve according to the time evolution
operators US and UA that may be engineered from the
Hamiltonians of the system and ancilla, respectively. Af-
ter the time evolution produces a relative phase of the
composite system equivalent to the Uhlmann phase, an
interferometry of the evolved purified state |W (1)〉 with
another identically prepared initial purified state |W (0)〉
may reveal if a nontrivial value of the Uhlmann phase
has been accumulated. When the overlap between the
initial and final purifications changes signs due to the
Uhlmann phase acquired during the Uhlmann process, it
indicates a TQPT as the Loschmidt amplitude vanishes.
Since the initial entangled state |W (0)〉 already encodes
the temperature effect, there is no need to introduce an
external reservoir to the system plus ancilla because the
time-evolution operators US and UA are sufficient to gen-
erate the Uhlmann phase as if the system has been kept
in equilibrium.
It is also possible to experimentally investigate the geo-

metrical generating function g from the Loschmidt ampli-
tude/ Uhlmann fidelity shown in Eq. (10). Recently, the
DQPTs induced by a quantum quench have been exper-
imentally studied by observing the Fisher zeros (related
to dynamical vortices) of the Loschmidt amplitude [45]
or by measuring the non-analytic behaviors of the rate
function, which is the counterpart of the dynamical free
energy [46]. The TQPTs in the Uhlmann processes also
correspond to the zeros of the Loschmidt amplitude, anal-
ogous to the DQPTs after a quench. We expect those
experimental techniques may be applicable to the ex-
perimental investigations of the TQPTs in the Uhlmann
process. We briefly discuss the second method here. In
Ref. [46], the rate function is defined as

γ(t) = − 1

L
ln |G(t)|, (58)

where t is the time, and G(t) is the Loschmidt amplitude
in a quench process. In a real experiment, G(t) is replaced
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by the probability of returning to the initial manifold
after a duration of t. For the spin-j system simulated
by atomic states discussed above, the system and acilla
are formed by two atoms. The control parameter of the
Uhlmann process is the temperature T . After evolving
the system plus ancilla, the Loschmidt amplitude GU (T )
may be inferred from the probability of returning to the
initial purified state of the qujits at temperature T in an
Uhlmann process.

D. Measuring TQPT using digital quantum

simulation

Finally, we present an alternative experimental pro-
cedure for measuring the TQPTs of general spin-j sys-
tems via digital quantum simulations by using standard
qubits, or two-level systems. Previously, we mentioned
that qujits may be realized by the hyperfine states of
atoms. Here we consider a different scheme for simulat-
ing the mixed states of spin-j systems by purified states
constructed from qubits. In principle, a quantum com-
puter may be used to simulate the spin-j system and
reveal its TQPTs by the following protocol, which is dif-
ferent from the protocol of Ref. [37] because the latter
does not have a straightforward generalization to n-level
systems.
The first step is to initialize a given purified state of

the spin-j system in a quantum register made of qubits.
Suppose an integer n satisfies 2n−1 ≤ 2j + 1 < 2n, then
2n is the minimal number of qubits to store an initial
purified state

|W (0)〉 =
∑

m

√

λm|ψm(0)〉 ⊗ |ψm(0)〉. (59)

Here the first state on the right hand side is the system
and the second is the ancilla, and λm = e−βmω0/Z de-
pends on temperature. Note that US(0) = UA(0) = 1
in Eq. (51). Explicitly, we encode the states of the spin
components as follows.

|ψ−j(0)〉 → |00 · · · 0〉,
|ψ−j+1(0)〉 → |00 · · · 1〉,

...

|ψj(0)〉 → |j1j2 · · · jn〉, (60)

where j1j2 · · · jn is the binary representation of the num-
ber 2j+1 with j1, j2, · · · , jn = 0, 1. In the qubit system,
the initial purified state is mapped to

|W (0)〉 =
2n−1
∑

i=0

√
pi|i〉 ⊗ |i〉 (61)

where p0 = λ−j , p1 = λ−j+1, · · · , p2j+1 = λj , and
p2j+2 = · · · = p2n−1 = 0. The first (second) n qubits
carry a representation of the system (ancilla) state. How-
ever, since we are using purified states of the system plus

ancilla to simulate the behavior of the mixed states of the
system, temperature determines the initial purified state
but does not further enter into the experimental manip-
ulations. In other words, λm stands for a set of preas-
signed parameters, which characterize the mixed state
of the system. With fixed values of λm, the system is
effectively in equilibrium with temperature T .
Next, we need to prepare the state (61) by qubits.

This can be achieved by following the steps shown in
Ref. [47], which provides an efficient scheme to initial-
ize an arbitrary superposed state in a quantum register.
The scheme only involves the one-bit rotation and the
controlledk gate, which has k control qubits. The proto-
col is summarized in Appendix B. Once the input state
is initialized, one may follow the time evolution and mea-
sure the outcome. We outline the procedure as follows.
Step 1. Prepare the initial state |W (0)〉 by using qubits

based on the above discussion and Appendix B. For sim-
plicity, we choose θ(0) = 0 in the parameter space.
Step 2. Consider a time evolution as the system moves

along the meridian in the parameter space according

to θ′(t) = dθ(t)
dt = v. Apply the unitary evolution

US(t) ⊗ UA(t) on the system and ancillary states, where
the evolution is determined by Eqs. (49) and (52). The
purified state then evolves according to Eq. (51). Im-
portantly, Eq. (53) guarantees that the process follows
parallel transport.
Step 3. After a cyclic process is completed (θ(1) = 2πΩ

with v = 2πΩ), either the Uhlmann phase θU or the
geometrical generating function g can be obtained from
the Uhlmann fidelity 〈W (0)|W (1)〉. For example, the
Uhlmann phase appears as the relative phase between the
initial and final purified states, which may be determined
by interferometric techniques.
Step 4. Change the parameter λm, which tunes the

temperature T , and prepare another initial state |W (0)〉.
Repeat the above steps, and a curve of θU as a function
of T is obtained. A jump of the Uhlmann phase signals
the occurrence of a TQPT.

VI. CONCLUSION

The general expressions of the Loschmidt ampli-
tude and Uhlmann phase of a spin-j paramagnet in-
fluenced by a magnetic field in an Uhlmann process
have demonstrated the usefulness of characterizing finite-
temperature topological properties via the Uhlmann pro-
cess. To obtain compact expressions for a deeper under-
standing, we consider the system in thermal equilibrium
traversing a great circle in the parameter space, so the
path-ordered integration can be carried out. By analyz-
ing specific examples with j = 1

2 and 1, we visualize the
TQPTs at finite temperatures, indicated by quantized
jumps of the Uhlmann phase. The number of TQPTs
in the Uhlmann process is associated with the winding
number in the parameter space and reveals the topologi-
cal properties via the Uhlmann holonomy. In addition to
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topological regimes extended from the zero-temperature
point, we found finite-temperature topological regimes,
where nontrivial value of the Uhlmann phase is only pos-
sible at finite temperatures but not at zero temperature.
In contrast to the DQPT of a quench process dealing with
non-equilibrium systems, there is no infinite-temperature
TQPT in a Uhlmann process. With the rapid progress
in quantum simulations and sensing, the framework of
Uhlmann process will help advance our understanding of
the interplay between topological properties and finite-
temperature effects.
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Appendix A: Details of some derivations

1. Uhlmann connection of spin-j system

By using the The Campbell-Baker-Hausdorff formula

eÂB̂e−Â = B̂ + [Â, B̂] + 1
2! [Â, [Â, B̂]] + · · · , the following

results can be obtained

e−iθJyJze
iθJy = Jx sin θ + Jz cos θ, (A1)

e−iφJzJxe
iφJz = Jx cosφ+ Jy sinφ, (A2)

e−iφJzJye
iφJz = −Jx sinφ+ Jy cosφ, (A3)

e−iθJyJxe
iθJy = −Jz sin θ + Jx cos θ. (A4)

Thus, the first line of Eq.(12) can be proved as follows

e−iφJze−iθJyJze
iθJyeiφJz

= Jx sin θ cosφ+ Jy sin θ sinφ+ Jz cos θ. (A5)

The last line of Eq.(12) is quite straightforward since
[eiφJz , Jz] = 0.
To prove Eq.(14), applying the expression (12) of the

Hamiltonian and ρ = 1
Z
e−βH , we get

√
ρ =

e−
βH
2

√
Z

=
1√
Z
e−

1
2βV ω0JzV

†

=
1√
Z
V e−

1
2βω0JzV †.

(A6)

The differential of
√
ρ is

d
√
ρ =

dV e−
βω0Jz

2 V †
√
Z

+
V e−

βω0Jz
2 dV †

√
Z

− 1

2Z
3
2

dZe−
βH
2

=
dV V †e−

βH
2

√
Z

+
e−

βH
2 V dV †
√
Z

− 1

2Z
3
2

dZe−
βH
2 .

(A7)

The last term commutes with
√
ρ, thus it is straightfor-

ward to show

[d
√
ρ,
√
ρ] =

{dV V †, e−βH}
Z

+
2e−

βH
2 V dV †e−

βH
2

Z
.

(A8)

To prove Eq. (17), we note V † = e−iφJzeiθJyeiφJz and

dV † = ie−iφJzeiθJyJye
iφJzdθ − i[Jz , V

†]dφ. (A9)

To evaluate the first term on the right-hand-side, we con-
sider an arbitrary function f(Jy) which can be expressed
as the power series of Jy as

f(Jy) = a0 + a1Jy + a2J
2
y + · · · . (A10)

By applying Eq. (A3), we have

e−iφJzf(Jy)e
iφJz

= a0 + a1e
−iφJzJye

iφJz + a2(e
−iφJzJye

iφJz)2 + · · ·
= f(−Jx sinφ+ Jy cosφ). (A11)

By Eq. (A11), the first term on the right hand side of
Eq. (A9) becomes

ieiθ(−Jx sinφ+Jy cosφ)(−Jx sinφ+ Jy cosφ)dθ

= −iV †(Jx sinφ− Jy cosφ)dθ. (A12)

Hence, we get

V dV † = −i(Jx sinφ− Jy cosφ)dθ + i(Jz − V JzV
†)dφ.
(A13)

2. Uhlmann curvature and Chern number

Applying the relation J×J = iJ for the spin-j system,
the Uhlmann curvature becomes

FU = i(2χ− χ2)[(Jx cosφ+ Jy sinφ) sin θ

+ Jz cos θ] sin θdθ ∧ dφ

=
i(2χ− χ2)

ω0
H(θ, φ) sin θdθ ∧ dφ. (A14)

Since 2χ− χ2 = 1− (1− χ)2 = tanh2 βω0

2 , the Uhlmann
curvature has the expression

FU = i
H(θ, φ)

ω0
tanh2

(

βω0

2

)

sin θdθ ∧ dφ, (A15)

where 2χ − χ2 = 1 − (1 − χ)2 = tanh2 βω0

2 has been
applied. Since TrJx = TrJy = TrJz = 0, the Chern

number ChU = i
2π

∫

TrFU = 0.
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3. Uhlmann process of a pure state

When undergoing an Uhlmann process parameterized
by t, the density matrix of a pure state is ρ(t) =
|ψ(t)〉〈ψ(t)|. However, |ψ(t)〉 can not always be normal-
ized with 〈ψ(t)|ψ(t)〉 = 1 in an Uhlmann process because
the condition Trρ = 1 is not preserved by the Uhlmann
process [31]. If we let λ = 〈ψ|ψ〉, then ρ|ψ〉 = λ|ψ〉. We

normalize |ψ〉 as |ψ̃〉 = 1√
λ
|ψ〉. Thus,

ρ = λ|ψ̃〉〈ψ̃|, √
ρ =

√
λ|ψ̃〉〈ψ̃|. (A16)

Using 〈ψ̃|ψ̃〉 = 1, the commutator in Eq. (8) is given by

[d
√
ρ,
√
ρ] = λd|ψ̃〉〈ψ̃|+ λ|ψ̃〉(d〈ψ̃|)|ψ̃〉〈ψ̃|

− λ|ψ̃〉d〈ψ̃| − λ|ψ̃〉〈ψ̃|(d|ψ̃〉)〈ψ̃|. (A17)

Substitute this into Eq. (8), we get

AU = 0 (A18)

for a pure state in an Uhlmann process. According to
Eq. (9), we always have θU = 0.

4. Inner product in the ancillary space

In the main text, it is pointed out that the inner
product between two purified states is isomorphic to the
Hilbert-Schmidt product between two amplitudes:

〈W1|W2〉 = Tr(W †
1W2). (A19)

The verification of this identity involves a proper treat-
ment of the inner product in the ancillary space. To see
this, we consider a simple situation where W1 and W2

are two different amplitudes of the same density matrix
ρ: W1,2 =

√
ρU1,2, where ρ =

∑

n λn|n〉〈n|. Thus, it is
straightforward to show that

Tr(W †
1W2) = Tr(U †

1

√
ρ
√
ρU2) = Tr(ρU2U

†
1 ). (A20)

The corresponding purified states |W1,2〉 are given by

|W1〉 =
∑

n

√

λn|n〉 ⊗ UT
1 |n〉,

|W2〉 =
∑

m

√

λm|n〉 ⊗ UT
2 |m〉. (A21)

Here UT
1,2 is the transpose of U1,2, and |n〉 should be un-

derstood as the transpose of 〈n| with no complex conjuga-
tion imposed. Otherwise, the left-hand-side of Eq. (A19)
would be evaluated as follows.

〈W1|W2〉 =
∑

n,m

√

λnλm〈n|m〉〈n|U∗
1U

T
2 |m〉

=
∑

n

〈n|λnU∗
1U

T
2 |n〉

= Tr(ρU∗
1U

T
2 ), (A22)

where 〈n|m〉 = δmn has been used. This contradicts
Eq. (A22). In fact, the overlap under the transposition
operation must be evaluated as follows.

〈W1|W2〉 =
∑

n,m

√

λnλm〈n|m〉〈m|U2U
†
1 |n〉

=
∑

n

λn〈n|
∑

m

|m〉〈m|U2U
†
1 |n〉

= Tr(W †
1W2). (A23)

In the main text, Eqs. (53) and (55) are both evaluated
in this manner.

Appendix B: Preparation of arbitrary initial state

Here we present a protocol for initializing the state
(61) by 2n qubits based on the key idea of Ref. [47]. To
simplify the notation, we abbreviate |W (0)〉 as

|W (0)〉 =
2n−1
∑

i=0

√
pi|i〉〉, (B1)

where |i〉〉 ≡ |i〉 ⊗ |i〉. Since
∑2n−1

i=0 pi = 1, there are
2n−1 independent weights among pi’s. We parameterize
the pi’s as

√
p0 = cosα1 cosα2 · · · cosα2n−2 cosα2n−1,√
p1 = cosα1 sinα2 · · · cosα2n−2 cosα2n−1,

· · ·
√
p2n−2 = sinα1 sinα2 · · · sinα2n−2 cosα2n−1,√
p2n−1 = sinα1 sinα2 · · · sinα2n−2 sinα2n−1. (B2)

Some pi’s may be zero if 2j+1 < 2n. |W (0)〉 can be con-
structed from the state |0〉〉⊗· · ·⊗|0〉〉 = |0 · · · 0〉⊗|0 · · · 0〉
by single-bit rotations and k-bit controlled rotations,
which will be illustrated by explicit examples.
If n = 1, only one rotation is needed:

U(α1)|0〉〉 = cosα1|0〉〉+ sinα1|1〉〉 = |W (0)〉, (B3)

which is shown in the top panel of Fig. 4. Here U(α1)
actually acts on the product space of the system and
ancilla. For convenience, we still refer to it as a single-
bit rotation.
If n = 2, we have

|W (0)〉 = cosα1 cosα2|00〉〉+ cosα1 sinα2|01〉〉
+ sinα1 cosα3|10〉〉+ sinα1 sinα3|11〉〉
= cosα1|0〉〉 (cosα2|0〉〉+ sinα2|1〉〉)
+ sinα1|1〉〉 (cosα3|0〉〉+ sinα3|1〉〉) . (B4)

Thus, |W (0)〉 can be realized by the quantum circuit
shown in the bottom of Fig. 4, where one single-bit
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Figure 4. (Top) The rotation operator U(α1). (Bottom)
Quantum circuit for n = 2.

rotation U(α1) and two controlled gate operations are
needed. To achieve this, two qubits are initialized in the
state |0〉〉⊗|0〉〉. We then perform U(α1) to the first qubit,
which also acts as the control qubit. The second qubit
is the target qubit. If the control qubit is in state |0〉
or |1〉 (labelled as 0 or 1 in the box), we perform U(α2)

or U(α3) to the target qubit, respectively. Finally, the
procedure applies to the generic case of n qubits with
the quantum circuit visualized in Fig. 5. We have used
compact boxes with labels 0, 1 and U(αi∼j) to represent
the controlled rotations of Fig. 4.

Figure 5. Quantum circuit for preparing an state with n

qubits.
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