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In this work we extend a multi-qubit benchmarking technique known as the Binned Output
Generation (BOG) in order to discriminate between coherent and incoherent noise sources in the
multi-qubit regime. While methods exist to discriminate coherent from incoherent noise at the single
and few-qubit level, these methods scale poorly beyond a few qubits or must make assumptions about
the form of the noise. On the other end of the spectrum, system-level benchmarking techniques
exist, but fail to discriminate between coherent and incoherent noise sources. We experimentally
verify the BOG against Randomized Benchmarking (RB) (the industry standard benchmarking
technique) in the two-qubit regime, then apply this technique to a six qubit linear chain, a regime
currently inaccessible to RB. In this experiment we inject an instantaneous coherent Z-type noise on
each qubit and demonstrate that the measured coherent noise scales correctly with the magnitude
of the injected noise, while the measured incoherent noise remains unchanged as expected. This
demonstrates a robust technique to measure coherent errors in a variety of hardware.

A fundamental barrier in achieving quantum advan-
tage in quantum computers is the presence of noise,
which reduces the length and complexity of computa-
tions achievable by current quantum processors [1, 2].
Noise can be broadly categorized as incoherent noise,
e.g. stochastic noise originating in relaxation (T1) and
dephasing (T2) events [3, 4], or coherent (unitary) noise,
e.g. repeatable over/under rotations caused by miscal-
ibrations or cross-talk [5, 6]. In superconducting qubit
systems, incoherent noise is often attributed to micro-
scopic materials defects [7, 8], quasi-particles [3, 9, 10],
and coupling to environmental noise [10, 11] whereas co-
herent noise is often due to unwanted qubit-qubit interac-
tions and microwave cross-talk from control lines [6, 12].
As such, the level of incoherent noise present in a de-
vice can generally not be improved once the device is
fabricated and cooled down but coherent noise can often
be mitigated by control techniques [13, 14], echo pulses
[15–17], and noise tailoring [18, 19].

Importantly, the resulting algorithmic error scales dif-
ferently depending on the type of noise present in the
system. Coherent noise results in a worst-case quadratic
error scaling in the circuit size (both in the length of
the circuit and number of qubits), whereas incoherent
noise results in a linear error increase [5, 19, 20]. There-
fore, for near-term applications, the presence of coherent
noise within a given system is more detrimental to the al-
gorithmic fidelity, at least before fault-tolerant quantum
computing is achieved [20]. Once coherence times allow-
ing for fault-tolerant quantum computing are achieved,
though, it will be paramount to ensure coherent errors
are minimal and uncorrelated enough to maintain gate
error rates below the fault-tolerance threshold.

While a mature suite of hardware benchmarks exists
to characterize qubits and gates, these methods tend to
scale poorly beyond roughly three qubits [21], at least
at current coherence and control limits. For example,
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variants of tomography can be used to fully characterize
the quantum process and state but are susceptible to
state preparation and measurement errors (SPAM) and
the number of experiments required to characterize the
system scales exponentially with the number of qubits.
Randomized benchmarking [22] is currently the industry
standard for measuring single and two-qubit gate errors
and is robust to SPAM errors.

While standard RB gives only a single noise parame-
ter, it can be modified to detect coherent errors [5, 23],
characterize the error of a specific gate [23], as well as
measure leakage out of the computational space [24]. In
addition, recent work on RB allows for characterization
of gates outside of the Clifford group [25–28]. Multi-
qubit RB is an active area of research with recent results
demonstrating that rigorous confidence intervals may be
realized with a significantly smaller number of random
sequences required than previously believed [29]. In the
same work, the bounds were found to be asymptotically
independent of the system size and an explicit relation-
ship relating the variance of RB to the unitarity of the
noise was derived [29], though it remains to be seen
whether this relationship is useful as a practical charac-
terization technique to measure coherent noise.

However, in practice implementing RB beyond a few
qubits is difficult because the depth of a n-qubit Clifford
is a quadratic function of n which limits the application
of multi-qubit Cliffords in current technologies, and with
typical gate errors, to at most three or four qubits [21].
Characterizations on larger numbers of qubits are of im-
mediate practical interest in order to gauge the efficacy
of near-term quantum computations. Additional noise
sources may also be revealed in multi-qubit scenarios that
may go undetected simply looking at the isolated one-
and two-qubit error rates present in the system [21, 30].

For system-level characterization, the Quantum Vol-
ume (QV) [1, 2] remains the gold standard for hardware-
agnostic performance benchmarking and incrementing
QV signifies meaningful system improvements. We can
ask, however, within a single step of QV, can we im-
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plement less demanding random circuits to extract fine-
grained information which discriminates between coher-
ent and incoherent noise? Here we introduce “hardware-
efficient random circuits,” a family of circuits that ex-
ploits the native interactions available in the hardware,
and implement a binning method introduced by Bouland
et al. called “Binned Output Generation” (BOG) [31]
which allows us to characterize the output of these cir-
cuits. We extend this method and show that by binning
the same experimental results in two separate ways we
can discriminate between coherent noise and incoherent
noise in a multi-qubit system, thus extending noise clas-
sification beyond just the few qubits practically available
hitherto.

In the following, we describe the hardware-efficient
random circuits we implement as well as the binning
process. We experimentally verify this technique in the
two-qubit regime and compare the CNOT rate extracted
from the BOG to the CNOT rate from simultaneous two-
qubit RB. We then perform a six-qubit BOG experiment
and extract an average CNOT error rate which is slightly
higher than the average CNOT error rate extracted from
the two-qubit experiment, indicating additional sources
of error not detected by the two-qubit measurement. In
this regime we re-bin the experimental results in order to
extract only the incoherent error. The average incoher-
ent error per CNOT agrees well with measurements of
the purity error measured by purity RB [32]. Purity RB
is a method of measuring how coherent the state is by ap-
plying state tomography to the end of a RB sequence and
measuring the magnitude of the Bloch vector. Finally, we
inject a purely coherent Z noise source [33] into the six-
qubit circuits and extract average CNOT error rates con-
sistent with the injected Z noise with an additional static
ZZ component of the same order as the independently-
measured ZZ interaction. Importantly, the measured in-
coherent noise remains constant during this experiment,
demonstrating that our re-binning technique only detects
the incoherent error and is robust to changes in coherent
error.

Hardware-efficient random circuits are a family of cir-
cuits which respect the native connectivity and native
entangling gate of the hardware. They consist of alter-
nating layers of Haar-random single qubit rotations and
two-qubit entangling gates between coupled qubits. For
our architecture, the CNOT is the native entangling gate.
Entangling gates are applied to alternating adjacent pairs
of qubits, i.e. on one cycle qubit i would be entangled
with its neighbor i+ 1, and on the next cycle with i− 1.
In this way, these circuits are agnostic to the details of
the hardware architecture and thus can be applied to a
variety of different systems.

In a perfect, noiseless system, with sufficiently many
cycles of the aforementioned operations, the resulting
quantum state will land at a random point within the
Hilbert space. Projecting this state onto a measurement
basis results in series of bitstrings whose probability dis-
tribution will tend towards a Porter-Thomas distribution

[34, 35]. For Hilbert spaces with dimension much larger
than order unity, the Porter-Thomas distribution is well
approximated by an exponential decay function.

The premise of the BOG, and other similar metrics like
the cross-entropy [35] and the heavy output generation
(HOG) [1, 2], is to pre-compute (with a classical com-
puter) the ideal (i.e. noiseless) probability distribution
that results from executing the circuit and compare this
ideal distribution to the noisy distribution produced by
the quantum hardware. The main benefit these meth-
ods provide is that these quantities can be estimated
efficiently, in terms of quantum resources, with a non-
exponential number of experiments [31, 35], though the
classical pre-computation still requires exponential re-
sources.

We compute a fidelity score for the BOG based on how
far the noisy distribution is from the ideal (noiseless) dis-
tribution and normalize said fidelity taking into account
the other limiting case of an incoherent mixture. This is
fidelity is computed in the following way. Given a target
circuit described by the unitary matrix Û , we define the
outcomes for the ideal probability distribution as

pi = |〈xi|Û |0〉|2, (1)

where xi ∈ Zn denote the possible output bitstrings from
the circuit for n qubits. In the presence of noise, the ex-
perimentally measured probabilities qi will deviate from
the ideal probabilities.

To estimate the noisy probability distribution using
the BOG, the probability space spanned by [0, 1] is di-
vided into poly(n) number of bins [31]. The distribu-
tion is reconstructed by adding each experimentally mea-
sured probability qi to the bin which contains the bit-
string xi’s ideal probability pi (algorithm 1). For each
bin [a/N, b/N ], where N = 2n, the bin edges are con-

structed such that
∫ b
a
qe−Nq = Θ(1/poly(n)) [31]. This

ensures that for an ideal Porter-Thomas distribution, the
weights in each bin are equal. It is worth noting that
the cross-entropy and HOG can be viewed as two limit-
ing cases of the BOG [31]. For the HOG, outcomes are
sorted into just two bins (heavy or not heavy) and for
the cross-entropy, each outcome is placed into its own
bin. The BOG maximizes the amount of information ob-
tained from the pre-computed distribution and can rule
out “imposter” distributions [31].

To give an example of the binning procedure, suppose
the all 0 bitstring’s (x0) ideal probability p0=0.05 and the
first two bins (bin0 and bin1) span [0,0.1) and [0.1,0.2),
respectively. Since the ideal probability of x0 is con-
tained in bin0, the experimentally measured probability
q0 is added to bin0. In the noiseless case, the measured
experimental probability will equal the ideal probability
(q0=0.05). Suppose now in the presence of noise, the ex-
perimental probability q0=0.15. In this case, the value
of 0.15 is added to bin0. In this way the weights of the
bins now deviate away from the ideal case and the noise
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(both incoherent and coherent) is detected. This process
is repeated for each bitstring.

Algorithm 1 Binned Output Generation

1: for xi in xall do
2: pi = ideal probabilities [xi]
3: qi = experimental probabilities [xi]
4: bin index = assign bin(pi)
5: bins [bin index] += qi
6: end for

Algorithm 2 Binned Output Generation for Incoherent
Errors
1: for xi in xall do
2: qi = experimental probabilities [xi]
3: bin index = assign bin(qi)
4: bins [bin index] += qi
5: end for

To convert the measured frequencies to a fidelity we
define the following expression

Fidelity =

〈
1−
|bins(ψideal)− bins(ρexp)|1
|bins(ψideal)− bins(I/2n)|1

〉
Û

, (2)

that is the 1-norm distance of the binning of the exper-
imental data (ρexp) from the binning of the ideal output,
normalized by the difference of the ideal binning and the
maximally mixed state. In other words, it defines a nor-
malized distance between the ideal state’s distribution
and the maximally mixed distribution that the experi-
mental state achieves. By normalizing in this manner,
we enforce that a noiseless result achieves a score of 1
and a fully depolarized result decays to 0. The aver-
age is taken over typical circuits Û . bins is the array
of summed probabilities computed by algorithms 1 and
2. We compute the weights of bins(ψideal) with the pre-
computed ideal probabilities pi and bins(I/2n) with the
maximally mixed state I/2n. This method is sensitive to
both incoherent and coherent errors.

We now extend the binning procedure to only detect
incoherent errors. Instead of using the pre-computed
ideal outcome probability to assign a bin to each mea-
sured bitstring, we bin the experimental outputs accord-
ing to the experimentally measured probabilities (algo-
rithm 2). The same experimental data used for algorithm
1 is simply rebinned and a separate experiment need not
be performed. Using the aforementioned example proba-
bilities, supposing x0’s ideal probability p0=0.05 but the
experimental probability measured is q0=0.15, the exper-
imental probability measured would be added to bin1, the
bin containing the experimental probability q0, instead of
the bin0, the bin containing the ideal probability p0 as in
algorithm 1. The intuition behind this binning strategy
is that since the Haar measure is invariant under uni-
tary operations, the resulting measurement after a purely
unitary error is still described by a Porter-Thomas distri-
bution, just not the specific Porter-Thomas distribution

as derived from the pre-computed quantum state. In
contrast, incoherent errors in conjunction with random
single-qubit gates will drive each bitstring probability to
1/2n.

For this binning strategy, since the measured outcomes
are not pre-assigned a bin, the weights of bins(ψideal)
are computed by integrating the ideal Porter-Thomas
distribution and taking the integration bounds to be

the edges of each bin, i.e.
∫ b
a
qe−Nq. The weights of

bins(I/2n) are computed similarly with the exception of
integrating over a normalized Gaussian centered about
1/2n whose width is proportional to 1/

√
2n shots, i.e.∫ b

a
q exp[−1

2 ( q−1/2n

σ )2], where σ = 1/
√

2n shots. A Gaus-
sian is used here to account for shot noise, which is ubiq-
uitous given a finite number of shots.

A simple example to give intuition for this method is
to apply a bit flip error to each qubit at the end of the
quantum circuit. The overall shape of the distribution
is still a Porter-Thomas, but the labels of the bitstrings
have been permuted. Binning these measurements ac-
cording to the pre-computed quantum state, therefore,
would yield a low fidelity. Binning by the experimental
probabilities however, still yields a high fidelity as this
methodology is blind to coherent errors.

We execute all of our experiments on a six qubit linear
chain on ibmq dublin (Fig. 1 (a)), a 27 qubit heavy-
hex superconducting qubit processor. We first compare
the results of two-qubit pairwise BOG and compare the
CNOT error rate extracted in this way to the CNOT
error rates measured by simultaneous RB [36]. These
qubits are fixed frequency transmon with fixed nearest
neighbor coupling where the native entangling gate is a
CNOT mediated by an echoed cross-resonance microwave
(CR) interaction [6, 37]. We execute the circuit shown
in Fig. 1 (b) among adjacent pairs in the chain, exe-
cuting pair (Q2, Q3) and (Q5, Q8) simultaneously in one
experiment and (Q1,Q2), (Q3, Q5), and (Q8, Q11) simul-
taneously in another experiment. By measuring adjacent
qubit pairs simultaneously, cross-talk errors from apply-
ing simultaneous CR tones as well as spectator errors can
be detected [16, 36].

The experiments were repeated with 90 different seeds
to generate 90 distinct circuits with unique random
single-qubit rotations and each circuit was executed with
1000 shots. The shots from each experimental outcome
were binned into 10 bins and summed over all seeds. As
a rule of thumb, the number of seeds times the num-
ber of basis states in the Hilbert space should be much
larger than the number of bins to build good statistics.
The depths of the circuits were varied up to 270 cycles
and the resulting fidelity curves were each fit to a sin-
gle exponential decay of the form Ae−λx +B in order to
extract the error per cycle. We assume a two-qubit de-
polarizing noise channel such that the exponential decay
rate is equal to the depolarizing parameter λ and ex-
tract an error per gate equal to 3

4λ, where the prefactor
is due to the dimensionality of a two-qubit depolarizing
channel [22]. While a full proof that the resulting noise
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FIG. 1. (a) Connectivity diagram of the qubits used in this work. (b) One cycle of the two-qubit BOG circuit. Each u gate
denotes a unique Haar-random single-qubit rotation, randomized for each gate for a given circuit seed. (c)-(g) Plots of the
two-qubit BOG fidelity as a function of the circuit depth. The blue dotted lines denote exponential fits to the data. Error
bars are computed by bootstrapping 10 groups of nine seeds together and computing the standard deviation of these values.
Orange lines denote noisy simulations of the BOG circuits where the only noise parameters included are the readout error and
the CNOT error measured by RB. Single-qubit errors are omitted from the simulation as the single-qubit error rate is typically
one to two orders of magnitude lower than the CNOT error.

channel is a depolarizing channel is outside the scope of
this work, it is likely a safe assumption given the Haar-
random single-qubit gates and the averaging over differ-
ent random seeds. In addition, by extracting an error per
cycle in this way, the method is robust to SPAM errors,
similar to RB.

Fig. 1 (c)-(g) illustrates the CNOT error rates ex-
tracted by the BOG compared to the CNOT error rates
measured by simultaneous RB the same day. We measure
an average CNOT error rate of 1.292 (0.054)% per gate
from the BOG in comparison to 1.178 (0.025)% per gate
from RB, demonstrating agreement within 10% between
the two techniques.

Having established agreement between the RB and
BOG in the two-qubit case, we now consider a six-qubit
BOG experiment. In this regime, RB is difficult to
perform because the decomposition of multi-qubit Clif-
ford gates results in many more native entangling gates.
Moreover, experiments beyond the two-qubit regime have
been shown to capture error mechanisms absent from sin-
gle and two-qubit measurements [21, 30].

The structure of the circuits executed are illustrated in
Fig. 2 (a). Random single qubit rotations are applied to
each qubit before applying CNOTs in parallel to adjacent
qubit pairs, alternating each cycle which qubit pairs per-
form the CNOT, thus exploiting the native connectivity

𝑛
2#

(a) (b)

FIG. 2. (a) Six-qubit BOG circuits. Haar-random single-
qubit rotations are applied to each qubit followed by CNOTs.
Alternating layers of CNOTs are applied after single qubit
rotations. (b) Data for the six-qubit BOG circuits. Data
are binned according to quantum state (blue triangles) and
are fit to an exponential to extract an average CNOT rate
of 1.502 (0.022)%. The blue solid line is a noisy simulation
of the circuit with the CNOT errors measured from the two-
qubit BOG circuits. The orange circles are the data binned
by the experimental probability which detects only incoherent
errors. Fitting these data to an exponential yields an average
incoherent error rate of 0.980 (0.038) %. The solid orange line
is noisy simulation using error rates measured from purity RB.
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2Q RB 2Q BOG 2Q BOG
(barriers)

6Q BOG

Avg. 2Q
error rate

1.178
(0.025)%

1.292
(0.054)%

1.340
(0.054)%

1.502
(0.022)%

TABLE I. Average gate errors comparing between differ-
ent benchmarking methods. Two-qubit BOG agrees within
10% of two-qubit RB. Adding barriers between cycles in the
two-qubit bog circuits enforces the CNOTs between different
qubits to start simultaneously each cycle, resulting in idling
qubits since CNOTs between different qubits have variable
lengths. The resulting idle time increases the average gate
error. The six-qubit BOG detects a higher average effective
error rate due to unavoidable idle times during the alternating
cycles of CNOTs.

of our device via a hardware-efficient circuit structure. In
general, any native entangling 2-qubit gate can be used
in these circuits. These experiments are averaged over
40 random number seeds, repeated with 8000 shots each
and the results were binned into 30 bins. Error bars are
generated by calculating the standard deviation of eight
groups of five seeds averaged together. Figure 2 (b) illus-
trates the fidelity of the six-qubit system as a function
of the circuit depth, defined as one cycle of single qubit
rotations and one cycle of parallel CNOTs. The blue
points are the BOG fidelity binned by the pre-computed
quantum state (algorithm 1), which captures both in-
coherent and coherent noise. By fitting this curve to a
single exponential decay, we can relate the decay rate of
the exponential, λ, to an average gate error (EPG) by
EPG = 3

4
2
5λ. Here again the prefactor of 3

4 is due to the
dimensionality of a two-qubit depolarizing channel. The
second prefactor 2

5 is to account for the five CNOT gates
per two circuit layers. In this six-qubit circuit we extract
an average CNOT error rate of 1.502 (0.022)%, notably
higher than the average CNOT error rates measured in
the two-qubit case, 1.292 (0.054)%. These error rates are
summarized in table I.

This increase in average error rate is likely due to the
additional qubit idling time when the six-qubit BOG cir-
cuits are executed in comparison to the six-qubit BOG
circuits. Idling qubits are introduced in two separate in-
stances in the six-qubit BOG circuits. First, because the
CNOT pairs now alternate between adjacent qubit pairs
(Fig. 2 (a)) and because the CNOT lengths are different,
the qubit pairs with the fastest CNOTs must wait for the
slower CNOTs to finish executing before the next layer
of the circuit can be executed. This is in contrast to the
two-qubit BOG circuits (Fig. 1 (b)) where the start of the
execution of a CNOT between qubits is not constrained
to the timing of the adjacent CNOTs. Indeed, repeating
the two-qubit BOG experiments with barriers inserted
between the CNOT layers, which enforces the simultane-
ous timing of adjacent CNOTs, supports this conclusion
resulting in a higher average CNOT error rate of 1.340
(0.054)% (not shown).

A second qubit idle period occurs when Q1 and Q11

𝑛
2#(a)

(b)

(c)

FIG. 3. (a) Six-qubit BOG circuits with injected Z noise fol-
lowing each CNOT. Virtual rotations of 1, 2, 3, 4, and 5% of
2π radians are injected as a purely coherent noise source. (b)
Fidelity decay rates of the Z noise injected circuits, binned by
the precomputed quantum state (algorithm 1), demonstrat-
ing a spread in decay rates due to the increase in coherent
noise. Markers are offset in the x direction for clarity. (c)
Fidelity decay rates of the same coherent noise injected cir-
cuits, binned by the experimental probability (algorithm 2).
Binning by this method only detects incoherent noise, and as
such the decay rates of the five curves are identical. Markers
have been offset in the x direction for clarity.

are left idle during the even cycles of the six-qubit BOG
circuits. This another error which is not captured by
two-qubit measurements. On these cycles, CNOTs are
only applied to the inner two pairs of qubits, (Q2, Q3)
and (Q5, Q8). This highlights the ability to detect errors
that are likely to occur during the execution of a realis-
tic algorithm, but are not evident by one and two-qubit
benchmarking.

We apply our second binning method to this six-qubit
experiment (Fig. 2 (b)) in order to extract the aver-
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FIG. 4. Extracted error average CNOT error rates from the
six-qubit BOG experiments with injected coherent Z noise.
As the magnitude of the injected Z noise increases, the aver-
age CNOT error increases quadratically, as the average inco-
herent CNOT error remains constant. Simulation of the gate
(blue dotted line) with the injected Z noise with an additional
best fit ZZ noise of 56.7 kHz is also shown. Additionally, the
average purity error per gate is shown (orange dotted line).
The difference in the curves indicates the amount of residual
coherent noise.

age incoherent error per gate and compare this figure to
the average two-qubit purity error as measured by purity
RB [32]. We demonstrate good agreement between the
average incoherent error per gate as measured by the six-
qubit BOG experiment, 0.980 (0.038)%, compared with
the average purity error per gate, 0.958 (0.023)%. We
note to build good statistics for this method, the number
of shots taken must be much larger than the number of
basis states in the Hilbert space.

Finally, we repeat the six-qubit experiment while in-
jecting a purely coherent Z noise to each qubit each time
a CNOT is applied to demonstrate the BOG is able to
effectively discriminate between coherent and incoherent
noise. After each CNOT, a small Z rotation from 1% to
5% of a 2π rotation is applied to the control and target
qubits as a virtual rotation (Fig. 3 (a)). This injected
noise takes 0 time as it is implemented in software as a
reorientation of the x-axis of the Bloch sphere and can
be executed with near perfect fidelity [33]. We note that
the injected Z noise of the last cycle will be undetected
in the measurement basis of our experiment. This small
error should not affect the extracted error per gate since
this error is equivalent to a SPAM error.

When binning by the pre-computed quantum state
(Algorithm 1), we observe an obvious increase in the de-
cay rate of the fidelity curve which increases with the
magnitude of the injected coherent noise (Fig. 3 (b)),
as this method is sensitive to both incoherent and coher-
ent errors. With increasing levels of coherent noise we
observe a wider spread in the error bars. This effect is
qualitatively consistent with calculations of the variance
of RB with coherent noise [29] and is due to the con-

structive and destructive interference of unitary noise.
When binning by the experimentally measured proba-
bilities (Algorithm 2), the resulting decay rates remain
constant as the injected noise is purely coherent and bin-
ning by this method only detects incoherent errors (Fig.
3 (b)).

The extracted error rates from Fig. 3 are summarized
in Fig. 4. In addition to the extracted average error
per gate and incoherent error per gate, we plot the av-
erage purity error, measured from purity RB, and simu-
lations of the average error per gate with coherent noise.
As expected, the error per gate increases quadratically
as the magnitude of the Z noise increases, a hallmark
of coherent noise [5, 19]. The difference of these two
curves indicates the relative amount of coherent noise in
the gate error. Notably at 0 injected Z noise, there is
a discrepancy between the average gate error and the
incoherent gate error, indicating some amount of coher-
ent noise that is unaccounted for. We model this resid-
ual noise as a static ZZ interaction between the con-
trol and target qubit, applied after each CNOT. Fitting
this ZZ interaction with the average CNOT gate time of
443.73 ns, we extract an effective ZZ interaction strength
of 56.7 kHz, the same order of magnitude as the av-
erage independently-measured static ZZ interaction of
24.4 kHz. With this simple model we capture the scaling
behavior of the experimental data, though this effective
ZZ strength is likely an overestimate since it only con-
siders the ZZ interaction between the control and target
qubits. The model omits the additional ZZ interactions
from nearest-neighbor spectator qubits and other higher
weight interactions [30], as well as the mitigating effects
of echo pulses applied during the CNOT [16]. Therefore,
the ZZ interaction we extract is likely some sum of all of
these effects and our noise model is the simplest non-local
model which reasonably reflects the experimental data.

In conclusion, we have demonstrated a hardware-
efficient multi-qubit metric capable of discriminating be-
tween coherent and incoherent noise, a regime inaccessi-
ble to current benchmarking techniques. This technique
can be used as a diagnostic tool for different hardware
platforms as the BOG accommodates different native
two-qubit entangling gates and requires no special qubit
connectivity or layout. It can determine whether the al-
gorithmic performance of a quantum computing system
is limited by its coherence or by the quality of the con-
trol and calibrations. If the system fidelity is limited by
unitary errors, it can determine how much of the error
can potentially be corrected by improvements in control.
In addition, it can detect error sources that are only ev-
ident in multi-qubit experiments (namely true quantum
algorithms), errors that may not be evident from stan-
dard two-qubit benchmarks. As we move towards circuits
for error correcting codes, the ability to detect coherent
vs. incoherent errors is critical. There are also further
open questions about directly connecting the metrics in
this manuscript, or any metrics derived from random cir-
cuits, to the performance of large scale codes. A possible
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future extension is to replace the random unitary opera-
tors in our circuit construction with random elements of
the Clifford group, producing circuits that are analogous
to those used in stabilizer measurements.
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