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Quantum network is the key to enable distributed quantum information processing. As the
single-link communication rate decays exponentially with the distance, to enable reliable end-to-end
quantum communication, the number of nodes need to grow with the network scale. For highly
connected networks, we identify a threshold transition in the capacity as the density of network
nodes increases—below a critical density, the rate is almost zero, while above the threshold the
rate increases linearly with the density. Surprisingly, above the threshold the typical communica-
tion capacity between two nodes is independent of the distance between them, due to multi-path
routing enabled by the quantum network. In contrast, for less connected networks such as scale-
free networks, the end-to-end capacity saturates to constants as the number of nodes increase, and
always decays with the distance. Our results are based on capacity evaluations, therefore the mini-
mum density requirement for an appreciable capacity applies to any general protocols of quantum
networks.

I. INTRODUCTION

Quantum information (QI) science has brought advan-
tages in various applications [1–4]. To unleash the full
power of QI processing in distributed tasks [5, 6], a quan-
tum network (QN) [7–11] aiming at entanglement distri-
bution and QI transmission is the key.

The Internet is mainly built upon fiber networks, with
photons as the information carrier. Similarly, photons as
the only known “flying qubits” will likely be the informa-
tion carrier in a QN. In both cases, channel loss is the
major challenge to communication. Therefore, network-
ing protocols that make use of intermediate nodes or re-
peaters are important for both. Unlike classical informa-
tion, quantum information cannot be simply cloned and
amplified, and therefore increasing the number of nodes,
even repeater nodes [12–22], are costly. In this regard,
a key question for designing a QN is to understand the
trade-off between the density of nodes and the entangle-
ment distribution rate: how many nodes are necessary
to guarantee reliable QI transmission between multiple
users in a fixed region?

The answer not only depends on the overall distances
between the users, but also on the topology of the QN
to be built [23]. As it is likely that well-developed clas-
sical fiber networks can be adopted as the base of QNs,
Ref. [24] developed a model for QN on the the proba-
bilistic transmission of single photons and took a clas-
sical network science approach to study its connectiv-
ity by the giant component. However, for QNs exploit-
ing quantum technologies such as quantum error correc-
tion [25] and non-classical state generation [26, 27], the
semi-classical approach has a limited implication. In par-
ticular, Ref. [24]’s critical density highly depends on the
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repetition of each channel uses and thus blurs the es-
sential constraints. More recently, Refs. [28, 29] consid-
ered effects from repeater nodes. As the results rely on
specific protocols, the fundamental limits of the trade-
off remains unclear. We address the same question with
a full quantum information approach based on the fun-
damental limits [30–34], and obtain a minimum density
requirement that generally applies to any protocols.

As the exact architecture and protocols of QNs are un-
clear, we take the information-theoretical approach and
evaluate the end-to-end capacity [33] of QI transmission.
To account for different possibilities of the future QNs,
we consider typical types of network models [40], based
on the Waxman networks [36, 37], Erdős-Rényi model
and scale-free networks [38, 39]. Our results provide
an upper bound to characterize the quantum capacity
of QNs and the analysis applies to all kinds of quan-
tum communication. In Waxman and Erdős-Rényi QNs,
the ensemble-averaged capacity abruptly transits from al-
most zero to nonzero values at a critical density of nodes.
Above the threshold, it grows with the density linearly,
at a rate depending on the statistical properties of the
QN. Surprisingly, in this region the end-to-end capacity
typically does not depend on the distance between the
two end nodes, due to the multi-path routing enabled
by the coordination of the entire QN. In scale-free QNs,
the ensemble-averaged capacity saturates to a constant
depending on the scale of the network as the density of
nodes increases, due to the limited connectivity in the
network that prevents efficient multi-path routing.

II. MODEL OF QNS

The skeleton of a QN can be described by a graph,
with vertices G being the network nodes and edges E
representing the transmission links [41]. As nodes are
located geographically, we can assign a 2-D coordinate

mailto:zhuangquntao@email.arizona.edu


2

x to each node. The transmission link along each edge
Ex,x′ is modeled as a bosonic pure loss channel, with
a transmissivity η(x,x′) = 10−γD(x,x′) for fiber length
D(x,x′) at a state-of-the-art rate γ = 0.02 per kilometer
(km). For simplicity, we assume that for each edge, the
fiber length D(x,x′) and the geographical distance ‖x−
x′‖2 are identical.

With the transmission links on each edge defined,
one needs to specify the graph structure—the coordi-
nates and connections of the vertices—to specify the
QN. Without loss of generality, we choose the coordi-
nates x of the N nodes uniformly random in a square
ΩR ≡ [−R,R]× [−R,R], with an area of |ΩR| = 4R2.

In the random Waxman model [36, 37], each pair
of nodes is connected with a probability Π (x,x′) =

e−D(x,x′)/αL decaying exponentially with the distance.
Here L = 2

√
2R is the maximum possible distance in a

square; the constant α controls the typical fiber length
and is fixed so that αL = 226km to model the U.S.
fiber-optics networks [37]. It is worthy to point out
that Ref. [24] adopted the same Waxman QNs. In the
scale-free model [39], the network is built up dynami-
cally: when each node x is being added, it is connected
to m nodes out of all the previous added nodes. The
probability of node x′ being connected to node x is pro-
portional to the current degree Dg (x′) and inversely
proportional to the distance D (x,x′), i.e., Π (x,x′) ∝
Dg (x) /D (x,x′) , in contrast to the Waxman model’s
exponential decay with distance.

To obtain a direct impression, we visualize the two
models in Fig. 2 (a) and Fig. 4 (a) respectively. Im-
mediate differences in the connectivity can be seen, e.g.
by comparing Fig. 2 (a2) and Fig. 4 (a1): for the same
N = 1585 nodes in a region of scale R ' 800 km, the
Waxman model is much more connected and homoge-
neous, while the scale-free model is less connected and
heterogeneous. These differences can be captured by
their statistical properties. As shown in Fig. 1(a)(b),
the Waxman QN model has a Poisson degree distribu-
tion and the average degree grows with the number of
nodes linearly [45]; while the scale-free QN model has a
long-tailed power-law degree distribution and a bounded
average of 2m. It is also worthy mentioning that the
Waxman model has a percolation phase transition (see
Appendix A), where the percentage of the giant compo-
nent of the graph increases sharply from close to zero to
unity as the density ρ = N/|ΩR| increases above a criti-
cal value of ρG ' 7× 10−6. However, we show that this
necessary condition is far from being sufficient.

While we base our QN models on the Internet, a QN
will be majorly different from Internet. In particular,
classical repeaters [42] are not counted as network nodes
in the study of Internet [40], as they are universally de-
ployed and cheap. In contrast, quantum repeaters are
nontrivial and therefore directly considered as network
nodes in this study. In this regard, the Waxman model’s
exponential decay of long direct links will be more likely
for QNs. However, our goal is not to determine which

Figure 1. (a) The degree distribution of Waxman network,
with density ρ = 10−5, fits well with a Poisson distribu-
tion (red curve) with A = 3.0 × 105. (b) The cumula-
tive degree distribution of the scale-free model, with density
ρ = 10−5, fits well with a power-law (red curve). (c) A four-
node QN, with the axes as the geographical coordinates. The
blue color indicates a cut between X1 and X2 and the num-
ber on each edge equals the edge capacity in Eq. (1). For
the cut indicated by blue edges, the cut capacity of Eq. (2)
C (Ux,x′) = 1.75 + 0.93 = 2.68, which turns out to be the
minimum cut. (d1-d2) Examples of entanglement distribution
protocols. (d1) Direct communication strategy with potential
error correction. (d2) Entanglement-swap strategy. After an
entanglement swap measurement on a1b1, nodes X1 and X2

can share an entangled state in a2b2.

model can better represent a QN, an emerging technol-
ogy, but to characterize each model in terms of quantum
communications.

III. PROTOCOLS AND CAPACITY FORMULA

To distribute entanglement between two nodes X1 and
X2 in a QN, the nodes can transmit quantum states be-
tween all links and perform two-way classical communi-
cation in combination of local operations at each node.
To begin with, let’s consider an instance of a four-node
network in Fig. 1(c). In a single-path routing strategy,
one can choose a path from X1 to X2 (e.g. X1−X4−X2,
X1 − X3 − X2, or X1 − X3 − X4 − X2) and utilize all
the channels along the path once to distribute the en-
tanglement. With the path fixed, one can either perform
direct communication or adopt entanglement swap [43],
as shown in Fig. 1(d). A more efficient approach is to
adopt multi-path routing. For example, nodes X1 and
X2 in Fig. 1(c) can utilize multiple non-overlapping paths
simultaneously (X1 −X3 −X2 and X1 −X4 −X2) and
achieve a better performance.

As protocols vary, to obtain universal results, we con-
sider the ultimate achievable entanglement distribution
rate among all protocols [32, 33]. In contrast to classi-
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Figure 2. Waxman QNs, α = 0.1 (R ' 800 km). (a1)-(a5) Visualizations with different number of nodes N . The darkness and
opacity of the color of the nodes and edges indicate the relative amplitude of the capacity (darker means larger). The blue
edges are the minimum cut solution to random pairs of end nodes indicated by the red dots. (b1)-(b5) The end-to-end capacity
C (x,x′) between random nodes x,x′ for QNs with fixed N,α. The x-axis is the graph distance between two nodes dG (x,x′),
in terms of the shortest fiber path. The scattered circles are 50 random pairs in a single QN sample and the red dashed lines
indicate the average obtained from 5000 random data.

cal communication [2, 44], QI transmission rate for each
edge is fundamentally limited by the channel loss to be

CE (Ex,x′) = − log2 (1− η) = − log2

(
1− 10−γD(x,x′)

)
,

(1)
regardless of the energy, where η = 10−γD(x,x′) is the
channel loss [32]. To characterize the importance of
a single node, we define the node capacity CN (x) =∑

x′∈N (x) CE (Ex,x′), as the sum of the edge capacities.
Consider the graph with edge capacities {CE (Ex,x′)}

as the weights (e.g. Fig. 1(c)), the problem of solving the
end-to-end capacity is reduced to solving the minimum
cut [33]. Let’s first introduce a cut Ux,x′ between two
nodes x and x′ as the set of edges such that their deletion
will disconnect the two nodes. For example, in Fig. 1(c),
the blue part indicates a cut for A and B. Then the
capacity between end nodes x and x′ is given by the
“edge connectivity” between them [33]

C (x,x′) = min
Ux,x′

CU (Ux,x′) ≡ min
Ux,x′

∑
Ey,y′∈Ux,x′

CE (Ey,y′) .

(2)
To obtain further insights, we derive an upper bound of
the end-to-end capacity by the node capacities of the two
end nodes, C (x,x′) ≤ min {CN (x) , CN (x′)} , as one can
always choose the cut that consists of all edges connected
to one of the end nodes.

Figure 3. (a) Average end-to-end capacity 〈C〉 vs. nodes den-
sity ρ. The dark green solid line and the light green dashed
line give the upper bounds 〈C (x)〉 ' ζρ and its shifted fitting
〈C〉 = ζ(ρ− ρc) + 1 respectively. The arrows indicate critical
densities for the birth of giant connected component (ρG), for
the prediction of Ref. [24] (ρB) and ρc ' 4.25× 10−4 is when
〈C〉 = 1. (b) The average of the ratio of end-node edges inside
the minimum cut. It shares the same legend as in (a). (c) Av-
erage end-to-end capacity 〈C〉 of Erdős-Rényi model vs node
density ρ. The green lines from top to bottom correspond to
the asymptotic upper bound 〈C〉 = ζERpρ for α = 1, 0.5, 0.2.

We take a statistical approach and evaluate the average
end-to-end capacity 〈C (x,x′)〉 in an ensemble of network
models, where the average is over the choices of the end
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Figure 4. Scale-free QNs with N = 1585 nodes, with sim-
ilar arrangements and ensemble-averaging to Fig. 2. (a1)-
(a2) Visualizations of the QN model with different scales
R = 800, 160 km, with fixed N = 1585 nodes. (b1)-(b2)
The corresponding end-to-end capacity.

nodes x, x′ and the random realization of the network,
with fixed numbers of nodes N and scale R. In this
regard,

〈C (x,x′)〉 ≤ 〈min {CN (x) , CN (x′)}〉 ≤ 〈CN (x)〉 , (3)

upper bounded by the ensemble-averaged node capacity.
Compared to the edge connectivity approach based on
probabilistic single-photon transmission in Ref. [24], our
quantum capacity approach applies to all protocols and
reveals essential features of a network.

IV. RATE TRANSITION OF WAXMAN QNS

To study Waxman QNs, we first fix the scale R ' 800
km and vary the number of nodes N . In Fig. 2 (b), we
plot the end-to-end capacity C (x,x′) of random pairs vs.
the graph distance dG (x,x′) (the shortest path length)
between them. When the number of nodes is small (e.g.
Fig. 2 (b1)), the capacity decays with the graph distance
drastically; while surprisingly, when the number of nodes
becomes larger (e.g. Fig. 2 (b2)), the capacity is almost
independent of the graph distance [35]. This is due to
the effect of multi-path routing—the number of possi-
ble paths increases significantly with distance when the
nodes are dense.

To systematically evaluate the transition in the end-
to-end capacity, we evaluate the ensemble-averaged ca-
pacity 〈C (x,x′)〉 for different values of R and N . We
expect the density of nodes ρ to be the crucial param-
eter. Indeed, we can show that when R is large, the
ensemble-averaged node capacity 〈CN (x)〉 ' ζρ, as the
upper bound in Ineq. (3), is linear in density ρ with the
coefficient ζ ' 4358 (see Appendix C).

In Fig. 3 (a), we plot the average capacity vs the node
density ρ for different system size R. Overall, for a fixed
density ρ, the capacity 〈C〉 converges as the scale R
increases. When the density is small, the capacity is
mostly close to zero (see Appendix B); As the density
increases, we see a sudden transition from almost zero
capacity to o(1) capacity at a critical density. The tran-
sition happens at around 〈C〉 ∼ 1 corresponding to a
density ρc ' 4.25× 10−4, which is much larger than the
giant component transition ρG ' 7×10−6 and the result
ρB ' 6.82× 10−5 from Ref. [24].

After this transition, the average capacity increases lin-
early with node density ρ, approaching the upper bound
ζρ (dark green line). The reason of the convergence
can be observed from Fig. 2 (a): when the connectiv-
ity is high, the minimum cut (blue edges) becomes a cut
formed by all the edges connecting to one of the end
points. To be more quantitative, we calculate the ratio
of the edges in the minimum cut that contain at least one
end node. As shown in Fig. 3 (b), the ratio transits from
close to zero to unity at the same time as the end-to-end
capacities approach the upper bounds. In fact, we find
that a shifted upper bound ζ(ρ− ρc) + 1 fits the overall
numerical results well, as shown by the green dashed line
in Fig. 3(a).

Note that Ref. [24]’s critical density depends on the
protocol parameters—e.g. the number of repetition np
for each link; therefore the value of their critical density is
not an essential characterization of the QN. Their results
have to obey the constraint in our paper, as any protocol
has its rate bounded by the capacity. We can confirm as
follows: as they consider np = 1000 repeated use of each
channel to successfully establish one single Bell pair, the
end-to-end capacity per channel use in their protocol is
merely 10−3 for density ρ = ρB , which is in fact within
the vanishing capacity region in our results.

V. RATE SATURATION OF SCALE-FREE QNS

Now we switch the focus to scale-free QNs (see Fig. 4).
Similarly, we evaluate the end-to-end capacity for the
same set of choices of R and N . In Fig. 5 (a), the
ensemble-averaged capacity 〈C(x,x′)〉 grows as N in-
creases and saturates to a constant dependent on the
scale R of the network. This is due to the limited de-
gree of scale-free networks, which constrains the upper
bound of the node capacity to be bounded by a constant
∝ m and dependent on R (see Appendix E). As we can
see in Fig. 5 (b), the ratio of edges of end points being
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(𝑎)

(𝑏)

(𝑐)

Figure 5. Scale-free model. (a) Average end-to-end capacity
〈C〉 vs. the number of nodes N for various scales R’s. (b) The
average of the ratio of end-node edges inside the minimum
cut. (c) Capacity vs. the scale of the QN. The orange curve
is the upper bound 〈C (x)〉 from numerical integration (see
Appendix E).

in the minimum cut is now determined by the network
scale, and gets close to unity when the network is small.
Indeed, in Fig. 5 (c) we see the gap between the satu-
rated capacity and the upper bound from node capacity
is small for small R, while larger with R increasing. Over-
all, the capacity decays with R exponentially, even when
the number of nodes is large.

In additional to the saturation of capacity, the graph-
distance-independence of the capacity is absent for scale-
free QNs. In Fig. 4 (b), regardless of the capacity being
large or small, there is a sharp decrease of the end-to-end
capacity as the graph distance increases, in contrast to
the Waxman QNs in Fig. 2 (b). This is due to the lack
of multi-path routing, constrained by the connectivity of
the scale-free networks. Indeed, we can find the average
clustering coefficient 〈rc〉 decaying with the system size,
instead of saturating to constants with number of nodes
in the Waxman case (see Appendix A).

VI. RATE TRANSITION OF ERDŐS-RÉNYI
QNS

We also extend our analyses to the Erdős-Rényi model,
a network model with uniform edge connection probabil-
ity p. To compare with the Waxman model, we match
the number of edges in Erdős-Rényi model to the Wax-
man model with same α and N , via choosing a proper
p. The corresponding degree distribution is binomial (see
Appendix A).

We evaluate the transition of average end-to-end ca-
pacity 〈C〉 with node density in Fig. 3(c), and identify
similar trend to the Waxman model: when ρ is large,
〈C〉 grows linearly with ρ; while when ρ is small, there
is still a sharp decrease in the capacity. While in the
Waxman model, the capacity 〈C〉 agrees among differ-

ent α in the linear transition, Erdős-Rényi model shows
a clear dependence on α, and thus on the connection
probability p. We can also explore further the depen-
dence on α through the upper bound of node capacity
in Eq. (3). 〈CN (x)〉 ' ζERpρ, where ζER ' 5137.9 (see
Appendix D). We can directly see the dependence of 〈C〉
on connection probability p from the asymptotic upper
bound and we show them in Fig. 3(c).

VII. CONCLUSION AND DISCUSSIONS

In this paper, we examine the end-to-end quantum
communication capacity in Waxman, Erdős-Rényi QNs
and scale-free QNs. Our results provide guidance on the
design of QN infrastructure, as the capacity places an
achievable upper bound on rates of quantum communi-
cation protocols.

In particular, our results suggest that when the con-
nectivity of the QN is high (like in the Waxman case),
multi-path routing will enable reliable quantum commu-
nication. On the practical side, considering that quan-
tum repeaters might be as costly and expensive as user
nodes, this indicates that at a moderate metropolitan
scale where users are dense and direct links are possi-
ble, it might be better to simply build more direct links
between the users and utilize the multi-path routing for
reliable quantum communication.

Our results are based on network capacity results and
therefore reveals essential property of a QN, independent
on the protocol. We reveal more detailed properties of
QNs, other than the simple connectivity properties in
Ref. [24]. Our results address the entanglement gener-
ation capacity, which is the most relevant quantity in a
QN. In particular, our results allow unlimited two-way
classical communication (via an underlying classical net-
work) as assistance in the entanglement generation pro-
cess. Ref. [24] limits the protocols to be at a single pho-
ton level, and is strongly dependent on the specific pro-
tocol parameters to generate entanglement. The density
of nodes to guarantee reliable communication would de-
pend on the exact meaning of reliable communication,
however, a network above the threshold we identified
is preferable as the capacity starts to become distance-
independent.
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Appendix A: Basic properties networks.

As shown in Fig. 6, in the Waxman model, the aver-
age degree 〈k〉 of the nodes increases with the number
of nodes N linearly, at a rate depending on the scale α;
In the scale-free network, the average degree saturates to
〈k〉 = (2N − 1 −m)m/N ' 2m as the number of nodes
N increases. Here m is the number of edges brought by
the addition of each single node.

We plot the degree distribution of Erdős Rényi model
and mean degree in Fig. 7.

The Waxman model has a giant component transition
as the density of nodes ρ increases. As shown in Fig. 8(a),
the ratio of the size of the largest connected component
NG over the total number of nodes N increases from close
to zero to unity abruptly at a density of ρG ' 7× 10−6.
The transition becomes sharper as the number of nodes
increase.

To understand the connectivity of the networks, we
plot the clustering coefficient’s dependence network pa-
rameters. For a single node, the single-node local cluster-
ing coefficient rc(x) = t/[k(k − 1)/2] identifies the exis-
tence of connections between its k neighbors N (x). Here
t is number of triangles that is attached to the node x.
We can define the graph clustering coefficient 〈rc〉 by av-
eraging over all nodes. For Waxman networks, 〈rc〉 con-

(𝑎)

(𝑏)

Figure 6. Average degree of (a) Waxman and (b) Yook models
and its dependence on the number of nodes N . (a) Solid
lines gives linear fitting results of 〈k〉 = Aρ where ρ is the
density of nodes. (b) Dashed lines show the theory curve
〈k〉 = (2N − 1−m)m/N .

(𝑎) (𝑏)

Figure 7. Degree distribution and mean degree of Erdős Rényi
model. (a) Degree distribution of Erdős Rényi model with
α = 0.1. The red ccurves represent the analytical expression
for it. (b) Mean degree of Erdős Rényi model with different
α.

verging to a constant dependent on α as the number of
nodes increases, as shown in Fig. 8(b). While for the
scale-free networks, 〈rc〉 decays to zero as the number of
nodes N increases, as shown in Fig. 8(c).

Appendix B: Additional data for the end-to-end
capacity

We provide additional data of the numerical calcula-
tions. First, we show the distribution of the end-to-end
capacity between random pairs of nodes in each ensemble
of networks. Fig. 9 shows the Waxman case, correspond-
ing to Fig. 2(b1)-(b5); while Fig. 10 shows the scale-free
case, corresponding to Fig. 4(b1)(b2) of the main paper.
The average of the data utilized here gives the red curves
in the corresponding plots of the main paper, which are
also shown as red curves in these plots.

Next, we present an in-depth analyses of Fig. 3 in the
main paper. Fig. 11(a) shows each curve of capacity vs.
number of nodes for different scales individually, with-
out collapsing everything in plotting with density. In the
main paper, we do not show the long tails, as these tails
are mainly due to rare cases of random pairs of nodes ly-
ing very close to each other. Indeed, if we plot the median
instead of the mean, as shown in Fig. 12, these long tails
are not present and we see a clear sharp drop. To avoid
burying the main take-away in such technical details, we
do not present the entire data in the main paper. Here
we also evaluated the exact upper bound from Eq. (C1)
for each curve, which converges to the asymptotic results
shown in the main paper (see Fig. 13 for details of the
convergence). In Fig. 11 (b), we calculate the critical
number Nc for 〈C〉 = 1, which is much larger than the
giant component transition point NG or the results from
Ref. [24]. We can also solve 〈C (x)〉 = 1 in Eq. (C1) to
obtain a lower bound estimate on Nc, which works well
when R is large as shown in Fig. 11(c). In Fig. 11(d), we
plot the capacity in linear scale to show the deviations
between the actual capacities and the upper bounds in
more detail. The major reason for the deviation at large
R and high density is due to the second inequality of
Ineq. (3) of the main paper, which we also print here

〈C (x,x′)〉 ≤ 〈min {C (x) , C (x′)}〉 ≤ 〈C (x)〉 , (B1)

as interchanging the order of ensemble averaging and
minimization is not tight.

Appendix C: Derivation of the asymptotic results
for Waxman model

Due to the independence between the edges between
nodes, we have
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Figure 8. (a) The relative size NG/N of the largest component in the Waxman QN model vs. the density of nodes, α,L are
both determined by N and density. To obtain the average, we sampled 10, 10, 5 graphs for N = 500, 1000, 104 separately. The
dashed vertical line at a density ∼ 7 × 10−6 indicates the transition point. (b) Clustering coefficients vs α for Waxman QN
model, in the large number of nodes N � 1 limit. (c) Clustering coefficients of the scale-free QN model.

(𝑎) (𝑏) (𝑐) (𝑑) (𝑒)

Figure 9. More details on Fig. 2(b1)-(b5). We have used the same numbering of the subplots for consistency. The gray scale
PDF represents the statistical distribution (plotted in nonlinear scale

√
ñ for visualization) of end-to-end capacity over 5000

random pairs of end nodes (50 pairs from each of the 100 random QNs). The red lines are the average end-to-end capacity in
each of the distance window. We sort the 5000 samples according to the graph distances from small to large and divided them
into 20 groups of 250 points accordingly. We take the average of the capacity and graph distance in each group and obtain a
data point.

(𝑎) (𝑏)

Figure 10. More details on Fig. 4(b1)(b2) in the main paper. We have used the same numbering of the subplots for consistency.
The gray scale PDF represents the statistical distribution (plotted in nonlinear scale

√
ñ for visualization) of end-to-end capacity

over 5000 random pairs of end nodes (50 pairs from each of the 100 random QNs). The red lines are the average end-to-end
capacity in each of the distance window. We sort the 5000 samples according to the graph distances from small to large and
divided them into 20 groups of 250 points accordingly. We take the average of the capacity and graph distance in each group
and obtain a data point.
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Figure 11. (a) Average end-to-end capacity 〈C〉 vs. number of nodes N for various α’s. The system size R ' 80/α km. We
see a critical drop at small N when α is not too large, indicated by the dashed lines going down to zero. The green solid lines
gives the upper bounds in Eq. (C1). (b) The average of the ratio of end-node edges inside the minimum cut. It shares the
same legend as in (a). (c) We plot the critical number of nodes vs α. The green curve indicates a lower bound from solving
〈C (x)〉 = 1 in Eq. (C1). In comparison, we plotted the results predicted from Ref. [24] (black open circles) and the critical
number of nodes NG for the appearance of giant components. (d) Average end-to-end capacity 〈C〉 vs. density of nodes ρ for
various α’s in a linear scale. The system size R ' 80/α km. The green line represents the asymptotic upper bounds 〈C〉 ' ζρ
and the dashed lines with same colors as dots shows the linear fitting in the range 〈C〉 > 0.1. The inset is the dependence of
average end-to-end capacity with density in the range ρ ∈ (10−5, 10−3). The dark blue solid line presents a power-law relation
as 〈C〉 ∼ ρ3.

〈C (x)〉 =
(N − 1)

|ΩR|2
ˆ

ΩR

d2x

ˆ
ΩR

d2x′Π (x,x′) C (Ex,x′) (C1)

= − (N − 1)

|ΩR|2
ˆ

ΩR

d2x

ˆ
ΩR

d2x′e−D(x,x′)/αL log2

(
1− 10−γD(x,x′)

)
(C2)

= − (N − 1)

|ΩR|2
[ˆ

ΩR

d2x

ˆ
Ω∞

d2x′e−D(x,x′)/αL log2

(
1− 10−γD(x,x′)

)
+O(R)

]
(C3)

= − (N − 1)

|ΩR|

ˆ
Ω∞

d2x′e−D(x,x′)/αL log2

(
1− 10−γD(x,x′)

)
+O(NR−3) (C4)

= − (N − 1)π

2R2

ˆ ∞
0

r dr e−r/αL log2

(
1− 10−γr

)
+O(NR−3) (C5)

= − (N − 1)π

2R2

ˆ ∞
0

r dr e−r/αL log2

(
1− 10−γr

)
+O(NR−3) (C6)

= −2πρ

ˆ ∞
0

r dr e−r/αL log2

(
1− 10−γr

)
+O(NR−3) +O(R−2). (C7)

Inputting αL = 226 and γ = 0.02 we have the asymptotic
expansion of

〈C (x)〉 = ζρ, (C8)

ζ = −2π

ˆ ∞
0

dr re−r/226 log2

(
1− 10−0.02r

)
' 4357.9.

(C9)

In Fig. 13, we compare the asymptotic results with the
exact numerical integration in Eq. (C1). A good con-
vergence towards the asymptotic result is found with the
increasing scale R.
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Figure 12. (a) Average end-to-end capacity 〈C〉 vs. density of
nodes ρ for various α’s. The system size R ' 80/α km. We see
a critical drop at small N when α is not too large, indicated
by the dashed lines going down to zero. The green solid lines
gives the upper bounds in Eq. (C1). (b) The median end-to-
end capacity 〈C〉 vs. density of nodes ρ for various α’s. It
shares the same legend as in (a). Instead of a long tail, we
see clear sharp drop around the transition point.
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Figure 13. Comparison of the exact upper bound in Eq. (C1)
and its asymptotic limit 〈C〉 ' ζρ for the Waxman model.
We plot those upper bound by dashed lines with different α
and asymptotic limit in orange line.

Appendix D: Derivation of node capacity in Erdős
Rényi models

〈C (x)〉 =
(N − 1)

|ΩR|2
ˆ

ΩR

d2x

ˆ
ΩR

d2x′Π (x,x′) CE (Ex,x′)

= − (N − 1)p

|ΩR|2
ˆ

ΩR

d2x

ˆ
ΩR

d2x′ log2

(
1− 10−γD(x,x′)

)
= − (N − 1)p

|ΩR|

ˆ
Ω∞

d2x′ log2

(
1− 10−γD(x,x′)

)
+O(NR−3)

= − (N − 1)pπ

2R2

ˆ ∞
0

r dr log2

(
1− 10−γr

)
+O(NR−3)

= ζERpρ+O(NR−3) +O(R−2),

(D1)

Appendix E: Derivation of the asymptotic results
for scale-free model

Considering the on average 2m neighbours as indepen-
dent, the ensemble-averaged node capacity is

〈C (x)〉 =
2m

|ΩR|2
ˆ

ΩR

d2x

ˆ
ΩR

d2x′ 〈Π (x,x′) C (Ex,x′)〉

(E1)

=
2m

A

ˆ
ΩR

d2x

ˆ
ΩR

d2x′ 〈 Dg (x′)

D (x,x′)
C (Ex,x′)〉 (E2)

where the normalization constant

A =

ˆ
ΩR

d2x

ˆ
ΩR

d2x′ 〈 Dg (x′)

D (x,x′)
〉 . (E3)

The 〈·〉 inside the integral now denotes average over the
degree distribution of neighbours, conditioned on the
neighbour being at x′. We can approximate the distribu-
tion of the degree as independent of the distance to node
x, then 〈Dg (x′) f(x,x′)〉 = 〈D〉 f(x,x′), where 〈D〉 is
a constant and f(x,x′) is an arbitrary function of x,x′.
We can cancel out the constant and equivalently calculate

〈C (x)〉 =
2m

A′

ˆ
ΩR

d2x

ˆ
ΩR

d2x′ 〈 1

D (x,x′)
C (Ex,x′)〉

(E4)

A′ =

ˆ
ΩR

d2x

ˆ
ΩR

d2x′ 〈 1

D (x,x′)
〉 . (E5)

The above integral can be numerically calculated. It is
clear that 〈C (x)〉 does not grow with the number of nodes
N , as m is now a constant.
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